ORIGINAL RESEARCH PAPER

Proteomic analysis of *Parietaria judaica* pollen and allergen profiling by an immunoproteomic approach

Marilisa Barranca · Simona Fontana · Simona Taverna · Giovanni Duro · Isabelle Zanella-Cleon · Michel Becchi · Giacomo De Leo · Riccardo Alessandro

Received: 12 November 2009/Revised: 13 November 2009/Accepted: 17 November 2009/Published online: 2 December 2009 © Springer Science+Business Media B.V. 2009

Abstract Parietaria judaica pollen is a common cause of airway allergic disease in the Mediterranean area. Proteome analysis of mature Parietaria judaica pollen by two-dimensional gel electrophoresis (2-DE) and mass spectrometry has established the first reference proteome map of this weed. Proteins involved in a variety of cellular functions as well as the occurrence of allergens were detected. By using 2-DE and immunoblotting with sera from Parietaria judaica allergic patients we obtained a more detailed characterization of Parietaria judaica allergen profile

Marilisa Barranca and Simona Fontana contributed equally to this work.

Electronic supplementary material The online version of this article (doi:10.1007/s10529-009-0180-5) contains supplementary material, which is available to authorized users.

M. Barranca · S. Fontana · S. Taverna · G. De Leo · R. Alessandro (☒) Sezione di Biologia e Genetica, Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Via Divisi 83, 90133 Palermo, Italy e-mail: ricale@unipa.it

G. Duro

Istituto di Biomedicina ed Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy

I. Zanella-Cleon · M. Becchi Institut de Biologie et Chimie des Proteines, UMR 5086 CNRS, IFR128 Lyon, France so to improve our comprehension of the pathogenesis of pollen-induced allergic reaction.

Keywords Allergens · *Parietaria judaica* · Immunoproteome · Pollen

Introduction

Parietaria judaica belongs to the Urticaceae family and is commonly found in urban and rural areas. Its pollen is one of the main causes of allergy in the Mediterranean area (Masullo et al. 1996). Parietaria judaica pollen allergens have been identified and characterized by immunochemical and molecular-biological techniques (Amoresano et al. 2003; Stumvoll et al. 2003). Par j 1 and Par j 2 represent two major allergens belonging to a family of glycoproteins known as non-specific lipid transfer proteins (Salcedo et al. 2004). Recently, the presence of minor allergens like profilin (Par j 3) and 2-EF-hand (Par j 4) proteins have been also described (Asturias et al. 2004; Bonura et al. 2008). However, other proteins, specific isoforms or post-translational modifications (PTM) of known allergens, can contribute to hypersensitivity reactions in allergic individuals. The accurate diagnosis of hypersensitive patients as well as the in-deep knowledge of the mixtures for a effective immunotherapy depend on the molecular characterization of all allergenic components from a biological source.

Proteomic profiling of pollen extracts coupled with classical immunological approaches have been applied to examine the presence of novel allergenic components in maize, grass, and other species (González-Buitrago et al. 2007; Petersen et al. 2006). An understanding of P. judaica pollen proteome would provide insight in the molecular nature of allergens as well as of other proteins involved in the functional specialization of pollen. Using 2-DE followed by LC-MS/MS analyses, we generated the first reference map of the P. judaica mature pollen proteome. In total, we identified 70 protein spots including isoforms, and by using an immunoproteomic approach with serum from P. judaica allergic patients, we have obtained a more detailed characterization of Parietaria judaica allergen profile so to improve our comprehension of the molecular determinants of P. judaica-induced allergic reaction. In particular, we have evidenced that the IgE from patients recognise Par j 1 and the Par j 2 P2 allergens while they don't recognise the polypeptide Par j 2 P8. These results could provide important indications to develop new and more efficient vaccines for allergic patients.

Materials and methods

Pollen collection and protein extraction

Pollen from *Parietaria judaica* was purchased from Allergon (Ängelholm, Sweden) and extracted as previously described (Alessandro et al. 2009). Briefly, the pollen grains were defatted with diethyl ether, extracted in PBS at 4°C, dialysed against water and finally lyophilised and stored at -80°C until use.

2-DE, image acquisition and analysis

Aliquots of the lyophilised proteins, $60 \mu g$ for analytical gels and 1 mg for preparative gels, were solubilized in a buffer containing 8 M urea, 4% w/v CHAPS, 40 mM Tris and 65 mM DTE and a trace amount of Bromophenol Blue.

The first dimension IEF was carried out using immobilized pH gradient (IPG) strips, pH 3–10 non-linear and pH 4–9 linear, 18 cm long. The first dimension, equilibration steps and the second dimension were performed as previously described (Fontana et al. 2007).

Gels were stained with ammoniacal silver nitrate for analytical gels (Hochstrasser et al. 1988) or Comassie staining for preparative gels. The gels were scanned by densitometer ImageScanner II (GE Healthcare Life Science, NJ, USA) and the Image-Master 2D Platinum 6.0 software (GE Healthcare Life Science, NJ, USA) was used to perform the qualitative and quantitative analysis of the 2-DE maps. Human serum was used as internal standard for isoelectric point (pI) and Molecular Weight (MW) calibration of the 2-DE gel with pH 3–10 non linear gradient (Bjellqvist et al. 1993).

In-gel protein digestion

Coomassie Blue or silver-stained protein spots were excised from the preparative gels and cut into 1-mm pieces. In-gel digestion was performed as described by Shevchenko et al. (1996) with minor modifications. De-staining was obtained by successive washes with 20 mM NH_4HCO_3 buffer and H_2O /acetonitrile (50/50 v/v) mixture for Coomassie Blue. For proteolytic digestion, the gel was treated by 5-15 μl trypsin (20 ng/µl in 50 mM NH₄HCO₃) for 5 h at 37°C. The resulting tryptic peptides were extracted from the gel by centrifugation and the supernatant fraction was recovered. A second extraction step was performed using 10-15 µl H₂O/acetonitrile/formic acid (60/36/4; by vol.) for 30 min and, finally, all extracts were pooled. For LC-ESI/MS/MS experiments, extracts were dried under vacuum and re-suspended in 0.1% TFA solution.

NanoLC/nanospray/tandem mass spectrometry (LC-ESI/MS/MS)

Experiments were performed on a Q-STAR XL instrument (Applied Biosystems, Courtaboeuf, France) equipped with a nanospray source using a distal coated silica-tip emitter (FS 150-20-10-D-20, New Objective, USA) set at 2300 V. Information Dependent Acquisition (IDA) mode allowed +2 to +4 charged peptide ions within a m/z 400-2000 survey scan mass range to be analyzed for subsequent fragmentation. MS/MS spectra were acquired in the m/z 65-2000 range. The collision energy was automatically set by the software (Analyst 1.0) and was related to the charge of the precursor ion. The MS and MS/MS data were recalibrated using internal reference ions from a trypsin

autolysis peptide at m/z $842.510 \text{ [M + H]}^+$ and m/z $421.759 \text{ [M+2H]}^{2+}$. Deconvolution of the TOF MS spectra were done with Bayesian Peptide Reconstruct tool of Analyst. Multicharged ions in 700-1,800 m/z range with 0.2 Da mass tolerance were used to calculate glycopeptide masses from 2,000 to 4,000 Da.

Tryptic peptides were separated using an UltimatenanoLC (Dionex, Voisins Le Bretonneux, France) with a C_{18} PepMap micro-precolumn (5 μ m; 100 Å; 300 μ m \times 5 mm; Dionex) and a C_{18} PepMap nanocolumn (3 μ m; 100 Å; 75 μ m \times 150 mm; Dionex). After a 3 min wash with 0.05% TFA in H₂O/acetonitrile (98/2 v/v) of the injected sample solution on the micro-precolumn, the chromatographic separation was developed using a linear 60 min gradient from 0 to 50% B, where solvent A was 0.1% formic acid in H₂O/acetonitrile (95/5 v/v) and solvent B was 0.08% formic acid in H₂O/acetonitrile (20/80 v/v) at approx 200 nl/min.

Protein identifications were performed using the Paragon Algorithm thorough search mode in Protein-PilotTM software (Applied Biosystems, Courtaboeuf, France).

Patient sera

For the identification of IgE-reactive proteins, sera from patients (n=10) sensitized to *Parietaria judaica* whose radio-allergosorbent test (RAST) exhibited scores over 3, were used. Control sera were from healthy, non-allergic subjects and from subjects sensitized to other allergic sources (dust mite, Olea and Cupressus). All sera were stored at -80°C until use.

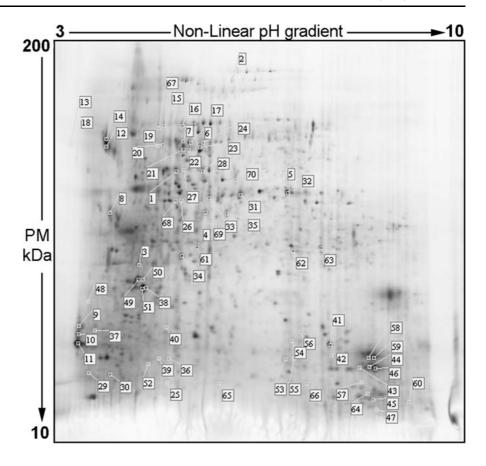
Immunoblotting

For immunoblot analysis, 2-DE gel was transferred to nitrocellulose membrane (Hybond-ECL, Amersham Bioscience, Little Chalfont, UK) and the membrane was incubated in blocking solution (5% w/v non-fat dry milk, 20 mM Tris, 140 mM NaCl, 0.1% Tween 20) (TBST) at room temperature. After several washings in TBST buffer, the filters were incubated overnight at room temperature with sera from allergic patients diluted 1:10 followed by horseradish peroxidase (HRP)-conjugated rabbit anti human IgE (1:2,000 dilution). After washings in TBST buffer,

immunocomplexes were detected by the enhanced chemiluminescence detection system (Super Signal, Pierce, Rockford, IL, USA).

Results and discussion

Proteome map of Parietaria judaica pollen


Parietaria judaica represents the main cause of allergy in the Mediterranean area where up to 80% of pollinosis patients are sensitized against the proteins composing the *P. judaica* pollen. With the aim of obtaining a comprehensive and detailed analysis of *Parietaria judaica* pollen content, we extracted total protein from 1.5 g mature pollen. Aliquots of the protein samples were subjected to 2-DE analysis and representative silver-stained 2D gel is shown in Fig. 1. Good reproducibility and resolution were achieved throughout the experimental procedures. On average 975 protein spots were clearly resolved using IPG strips pH 3–10 non-linear.

Protein identification

To obtain a first reference proteomic map of the pollen, 100 protein spots were excised from Coomassie Blue-stained gels and among these, 70 protein spots (corresponding to 21 different proteins) were identified by LC-MS/MS technology (Supplementary Table 1). Identified proteins ranged in calculated molecular mass from 92 to 7.5 kDa and in calculated pI from 4.3 to 7.1. All proteins were designated with arbitrary spot numbers as shown in Fig. 1. While the identification of proteins by proteomics methodology has found extensive application with organisms which have a complete sequence of their genomes already available, cross species identification has been used to identify proteins from several plant species (Faulkner et al. 2005; Fernando 2005; Wang, et al. 2005). In fact, in our work, due to the poor protein and DNA sequence database coverage in Parietaria judaica (only 7 proteins are present in Uni-Prot database for this plant), MS analyses allowed the recognition of 25 protein spots from P.j and 45 from other species (Supplementary Table 1). Multiple spots corresponding to the same protein were also identified, as described in other proteomic studies, and reasonably corresponding to post-

Fig. 1 Representative proteomic map of *Parietaria judaica* pollen, proteins (60 μg) were loaded on IPG strips (18 cm, 3.5–10 non-linear pH). The second dimension was performed on a vertical linear-gradient slab gel (9–16%). Gel was silver stained

translational modifications, protein degradation, different isoforms derived from different genes of a multigene family or products of alternatively spliced mRNAs.

Figure 2 shows the distribution of P.j pollen proteins according to their functional classification. Briefly, the proteins were grouped in four distinct functional classes: proteins involved in carbon metabolism and energy generation, cytoskeletal and calciumbinding proteins, stress-related proteins, pollen allergens and proteins involved in the methionine metabolism. With respect to specific allergens, we identified 11 spots (37–47) corresponding to Par j 2 P2 protein, 13 spots (49–61) corresponding to Par j 2 P8 protein, while 1 spot (36) corresponded to Par j 1 P1 protein. A search of Par j 1 and 2 protein sequences, using specific softwares supported by ExPaSy Proteomics Server evidenced both O-glycosylation sites and phosphorylation sites (http://ogpet.utep.edu/OGPET, http://www.cbs.dtu.dk/services/NetPhos).

In particular, *Par j 1* P1 protein has one glycosylation sites and five phosphorylation sites, *Par j 2* P8

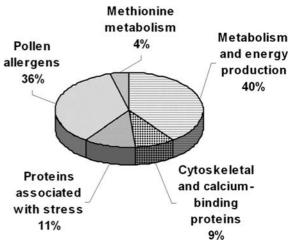
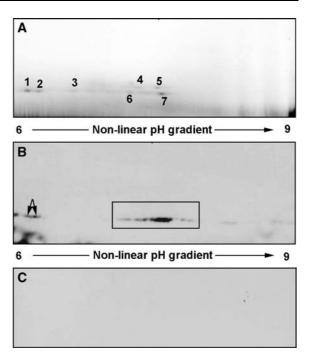


Fig. 2 Pie-chart representing the percentage distribution of identified pollen proteins within functional classes

protein has five phosphorylation sites and *Par j 2 P2* protein has three phosphorylation sites. These post-translational modifications do not change significantly the molecular weight of a protein but they may



be responsible of the shifts in isoelectric points. At the same time, post-translational modifications might have an influence on the Ig binding so that the knowledge of the structure of allergens is important to improve diagnosis and therapy of allergy (Ferreira et al. 2006).

Identification of IgE reactive spots by 2-DE and pollen allergens

Although molecular biology and immunological methodologies have allowed the identification of Par j 1 and Par j 2 as the major pollen components responsible of allergic reaction and profilin as a minor allergen (Asturias et al. 2007), the study of P.j pollen allergens have never been completed by using an immunoproteomic approach. Since Par j 1 and Par j 2 are basic proteins, to improve the separation of their several isoforms, the pollen protein samples were run on IPG strips 6-9 linear, which allows a better separation of polypeptides with a pI higher than 7. Figure 3a shows a representative Coomassiestained 2 D gels and corresponding immunoblot obtained by using pooled sera of allergic patients (Fig. 3b). In order to better characterize the biochemical identities of immunoreactive spots (Fig. 3a, numbers 1-7) they were excised from Coomassiestained 2-DE gel and subjected to LC-ESI MS/MS. Table 2 in Supplementary Material shows the results of protein spot identifications. Protein spots numbers 1 and 2 are isoforms of *Par j 1* allergen, protein spots numbers 3–5 are isoforms of Par j 2 P8 while protein spots 6 and 7 are isoforms of Par j 2 P2 allergen. Figure 3b, shows a representative western blot using the pooled sera from patients. In particular, the spot indicated with arrows corresponds to Par j 1 and spot included in the square corresponds to Par j 2 P2. Control experiments, carried out with pooled sera from 10 nonsensitized subject, indicated the specificity of antibody detection (Fig. 3c). Interestingly, no reaction was ever observed against Par j 2 P8 suggesting that Par j 2 P2, together with Par j 1, are the main allergenic components present in Parietaria judaica pollen.

The data presented in our study show for the first time the identification of *Parietaria judaica* pollen allergens through bidimensional western blot thus representing satisfactory tools for immunological

Fig. 3 2-DE analysis of *Parietaria judaica* pollen extract using a non linear pH 6–9 gradient in the first dimension followed by a 9–16% SDS-PAGE gradient in the second dimension. The separated proteins were stained by Coomassie (a) or transferred into a membrane for the detection with patients sera (b) or control subjects (c). In b *arrows* indicate $Par j \ 1$ polypeptides detected by patients sera while spots corresponding to $Par j \ 2$ P2 are bordered by a square

characterization and classification of the proteins from a raw plant extract.

Acknowledgments M.B. was a fellow of Regional Agency for Environmental Prevention, ARPA Sicilia. This work was supported by ARPA Sicilia; Università di Palermo (International Cooperation) to R.A.; ex 60% MURST to R.A. and to G.D.L.

References

Alessandro R, Gallo A, Barranca M, Principe S, Taverna S, Duro G, Cassata G, Becchi M, Fontana S, De Leo G (2009) Production of an egg yolk antibody against *Parietaria judaica* 2 allergen. Poult Sci 88(8):1773–1778

Amoresano A, Pucci P, Duro G, Colombo P, Costa M, Izzo V, Lamba D, Geraci D (2003) Assignment of disulphide bridges in Par j 2.0101, a major allergen of *Parietaria judaica* pollen. Biol Chem 384(8):1165–1172

Asturias J, Ibarrola I, Eseverri J, Arilla M, González-Rioja R, Martínez A (2004) PCR-based cloning and immunological characterization of *Parietaria judaica* pollen profilin. J Investig Allergol Clin Immunol 14(1):43–48

- Asturias J, Ferrer A, Arilla M, Andreu C, Madariaga B, Martinez A (2007) Tolerance and immunological changes of chemically modified allergen vaccine of *Parietaria judaica* in accelerated schedules. Clin Exp Immunol 147(3):491–496
- Bjellqvist B, Hughes G, Pasquali C, Paquet N, Ravier F, Sanchez J, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14: 1023–1031
- Bonura A, Gulino L, Trapani A, Di Felice G, Tinghino R, Amoroso S, Geraci D, Valenta R, Westritschnig K, Scala E, Mari A, Colombo P (2008) Isolation, expression and immunological characterization of a calcium-binding protein from *Parietaria* pollen. Mol Immunol 45(9):2465–2473
- Faulkner C, Blackman L, Cordwell S, Overall R (2005) Proteomic identification of putative plasmodesmatal proteins from *Chara corallina*. Proteomics 5(11):2866–2875
- Fernando D (2005) Characterization of pollen tube development in *Pinus strobus* (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 5(18):4917–4926
- Ferreira F, Briza P, Inführ D, Schmidt G, Wallner M, Wopfner N, Thalhamer J, Achatz G (2006) Modified recombinant allergens for safer immunotherapy. Inflamm Allergy Drug Targets 5(1):5–14
- Fontana S, Alessandro R, Barranca M, Giordano M, Corrado C, Zanella-Cleon I, Becchi M, Kohn E, De Leo G (2007) Comparative proteome profiling and functional analysis of chronic myelogenous leukemia cell lines. J Proteome Res 6(11):4330–4342

- González-Buitrago J, Ferreira L, Isidoro-García M, Sanz C, Lorente F, Dávila I (2007) Proteomic approaches for identifying new allergens and diagnosing allergic diseases. Clin Chim Acta 385:21–27
- Hochstrasser D, Harrington M, Hochstrasser A, Miller M, Merril C (1988) Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem 173(2):424–435
- Masullo M, Mariotta S, Torrelli L, Graziani E, Anticoli S, Mannino F (1996) Respiratory allergy to *Parietaria* pollen in 348 subjects. Allergol Immunopathol 24(1):3–6
- Petersen A, Dresselhaus T, Grobe K, Becker WM (2006) Proteome analysis of maize pollen for allergy-relevant components. Proteomics 6(23):6317–6325
- Salcedo G, Sanchez-Monge R, Diaz-Perales A, Garcia-Casado G, Barber D (2004) Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy 34(9): 1336–1341
- Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858
- Stumvoll S, Westritschnig K, Lidholm J, Spitzauer S, Colombo P, Duro G, Kraft D, Geraci D, Valenta R (2003) Identification of cross-reactive and genuine *Parietaria judaica* pollen allergens. J Allergy Clin Immunol 111(5):974–979
- Wang S, Chen F, Sommerfeld M, Hu Q (2005) Isolation and proteomic analysis [corrected] of cell wall-deficient *Haemato*coccus pluvialis mutants. Proteomics 5(18):4839–4851

