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Introduction

Tectonic sedimentary accretion is a
well-established geological process at
active continental margins, where off-
scraping, progressive deformation and
piling up of deep-sea sediments com-
bine to form a sequence of several
imbricate thrust sheets of the accre-
tionary wedge.
As the wedge construction pro-

cesses are strongly influenced by both
the dip of the basal décollément level
and its mechanical characteristics [as
described by the �Coulomb wedge�
theory (Davis et al., 1983)], a detailed
study of the deformation front could
provide a good source of information
for understanding the wedge�s evolu-
tion and mechanics.
The External Calabrian Arc (here-

inafter ECA) was formed by the
convergence of the African and Euro-
pean regions and the subduction of
the Ionian plate beneath the Calabrian
plate, as is clearly defined by seismic-
ity (Chiarabba et al., 2008), the tem-
poral and spatial pattern of volcanic
activity (De Astis et al., 2003) and
seismic tomography (Wortel and
Spakman, 2000): offscraped sediments

from the subducting Ionian plate have
piled up along thrust faults opposite
the European region. However, the
ECA is a unique accretionary wedge
showing, unusually, both a low
décollément dip and narrow taper
(Lenci and Doglioni, 2007) and the
highest outward growth rate of its
deformation front (Torelli et al.,
2007), perhaps reflecting the occur-
rence of Messinian salt within the
wedge (e.g. Polonia et al., 2008).
Although regional geophysical

studies conducted over the past
20 years suggest constraints on the
internal structure of the ECA (e.g.
Catalano and Sulli, 2006), few, if any,
of these studies have discussed in
detail its thin frontal portion, i.e. the
transition of the ECA to the Ionian
abyssal plain. I believe that this is the
reason why major questions remain
unanswered: (1) are the Messinian
evaporites composed of salt that
makes them behave as a weak décollé-
ment level? and (2) how do the Mes-
sinian evaporites influence the tectonic
style and geometry of the wedge?
Until now, the seismic character of

the Messinian evaporites, in terms of
reflectivity patterns and deformational
structures, has not been convincingly
related to their stratigraphic layering
and rheology. That is because the
rough sea-bed topography (otherwise
known as the �cobblestone topo-
graphy�, Hersey, 1965) at the ECA�s
southernmost front and the occur-

rence, at depth, of diffraction hyper-
bolae coming from the Messinian
evaporitic sequence have strongly
hampered the study of the ECA�s
internal structure.
The aforementioned questions are

addressed here through analysis of a
recently migrated set of seismic reflec-
tion profiles from the NW Ionian Sea
around the front of the wedge, to the
east and south-east of the Malta
Escarpment (Fig. 1). A new detailed
seismostratigraphic analysis allows a
better definition of the seismic stratig-
raphy of the Messinian evaporite
deposits. The style of deformation at
the front of the wedge in different
transects is analysed, and the role
played by Messinian evaporites in
controlling the tectonic style of the
thin frontal portion of the wedge is
discussed.

General background

The SE-verging ECA is an active arc-
shaped accretionary wedge (Sartori,
1982), developing above the NW-
plunging Ionian oceanic basement
and its Mesozoic to Tertiary (Cata-
lano et al., 2001) sedimentary cover.
In the outermost part of the ECA,

the main regional décollément surface
is located at the base of the Messinian
evaporite deposits (Merlini et al.,
2000; Chamot-Rooke et al., 2005;
Finetti, 2005; Polonia et al., 2008).
The occurrence of evaporites is often
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expressed by a peculiar morphology
known as �cobblestone topography�
because of the presence of km-size,
convex-upward features well imaged
by seismic surveys (e.g. Rossi and
Sartori, 1981) of the ECA.
Both the SE-dipping topographic

slope of the wedge (about 1�) and the
wedge taper (about 2–3�; Torelli et al.,
2007; Polonia et al., 2008) are very
low compared with other prisms
worldwide (Clift and Vannucchi,
2004; Lenci and Doglioni, 2007).
These values require low basal friction
conditions or a weak décollément level
(Davis et al., 1983; Dahlen et al.,
1984), usually of salt. The occurrence
of salt within the ECA has been
locally highlighted by multi-offset
reflection and refraction seismic

surveys (Finetti, 1982, 2005; Makris
et al., 1986; De Voogd et al., 1992;
Cernobori et al., 1996; Stampfli et al.,
2001; Chamot-Rooke et al., 2005;
Polonia et al., 2008). Nevertheless,
deformation structures observed on
seismic profiles do not provide
evidence of salt-involved tectonics,
perhaps because of the lack of high-
quality data.
Near the outer front of the ECA,

shortening of the post-Messinian
deposits results from slumps or mass
gravity flows (based on high-defini-
tion, multibeam data) that have been
related, in turn, to a gravitational
collapse at the top of the evaporites
in the presently starved Calabrian
subduction (Chamot-Rooke et al.,
2005).

Dataset

To constrain better the main features
of the thin frontal part of the ECA, I
use recently migrated multichannel
seismic profiles acquired in the 1990s
within the framework of the Italian
deep crust exploration project (CROP
Project, Fig. 1). Application of migra-
tion techniques to the CROP dataset
focused on imaging, in detail, the
shallow subsurface in the 1.0–
2.0 s ⁄TWT range. The recording
parameters of the profiles are listed
in Table 1.
An earlier conventional processing

sequence carried out by the Osserva-
torio Geofisico Sperimentale (OGS) of
Trieste (Table 2) did not yield clear,

Fig. 1 Bathymetric map of the study area. The grid of the interpreted (CROP)
multichannel seismic profiles (bold segments), together with the locations of seismic
reflection lines, seismic refraction profiles and drilling that contribute to the seismic
interpretations proposed in this paper, are shown. Main structural features based on
present and previously published (Catalano et al., 2001; Chamot-Rooke et al., 2005)
studies are displayed. Inset shows a schematic structural map of the study area and
surrounding area. The numbers in the legend are: (1) Tyrrhenian deep basin; (2)
Algerian basin; (3) thinned Sardinia and Kabilian continental crust; (4) African
continental thinned crust; (5) African continental crust; (6) Ionian oceanic basin; (7)
Sardinia units; (8) Kabilian-Calabrian units; (9) Sicilian-Maghrebian units; (10)
Ionian accretionary wedge; (11) thrust fronts; (12) transtensional fault; (13) Moho
isobaths in km; (14) hypothetical Ionian crustal boundary; and (15) bathymetry. For
a detailed bathymetric map, see Polonia et al. (2008), fig. 1 therein.

Table 1 Main recording parameters of

CROP profiles.

Shot by OGS

Vessel OGS Explora

Recording format ⁄ density SEG D – 6250 BPI

Sampling rate 4 ms

Recording length 17 s ⁄ TWT

Recording length

(line CROP 2B)

21 s ⁄ TWT

Low cut frequency OUT

High cut frequency 77 Hz slope

53 dB ⁄ oct

No. active groups 180

Streamer 4500 m

Group interval 25 m

Basic group length 25 m

No. hydrophones

for groups

32

Offset (source ⁄ 1st group) 125 m

Streamer depth 12 m (±1 m)

Nocht frequency 62 Hz

Streamer sensitivity 10 V bar)1

Nominal fold 4500%

Nominal fold

(line CROP 2B)

3600%

Energy source Air Gun

Array type TUNED-D080 ⁄ 103 ⁄ 06

Total array volume 4906 Cu.in–80.40 L

Operating pressure 2000 Psi–140 bar

Operating tolerance ±10%

Power output 103.4 bar m)1

No. subarray 4

Guns no. subarray ⁄
subvolume

8 ⁄ 1226.5 Cu.in

Subarray length 14 m

Total guns number 32

Source length 56 m

Source width 45 m

Operating depth 8 m

Notch frequency 93.7 Hz

Shot interval 50 m

Shot interval

(line CROP 2B)

62.5 m
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high-quality, seismic stack sections.
Multiple reflections and diffraction
hyperbolas, created at the seafloor,
within the accretionary wedge and at
the basement, were very frequent
(Fig. 2a).
I carried out post-stack Kirchhoff

time migration (Berkhout, 1980) at the
CERI (Memphis, TN, USA), using the
software ProMAX by Landmark
Graphics, Corp. (Houston, TX,
USA). I focused on the velocity distri-
bution with depth, by utilizing the
results of the Expanding Spread Profile
(ESP) data supplied byDeVoogd et al.
(1992). Improvement of the data qual-
ity and enhancement of the signal-to-
noise ratio of the data are shown in
Fig. 2, wherein both unmigrated and
migrated stack sections are illustrated.

Stratigraphy

In the outer ECA, the Deep Sea
Drilling Project (DSDP) site (No.

Table 2 Main processing steps and parameters of CROP profiles original stacks.

Step Process Details

1 CODE-4 CONVERSION

2 RESAMPLING Time sampling to 8 ms

3 GEOMETRY UPDATE

4 PRE-FILTER. Wind 0.0 17 s 2 ⁄ 24 out Hz ⁄ dB

5 ARRAY SIMULATION

6 TRACE EQUALIZATION

7 DECONVOLUTION Predictive minimum phase inv. filter 3 wind 32–

300 ms operator

8 PRELIMINARY VELOCITY ANALYSIS

9 MULTIPLE ATTENUATION F ⁄ K domain filter applied on CDP gathers NMO

corrected by multiple velocity field and pass only

negative events

10 VELOCITY ANALYSIS

11 NMO ⁄ STACK Inside and outside mute applied to remove stretched

data and refracted signals

12 ZERO PHASE CONVERSION

13 F-K FILTER Starting about 2 s from seabed ±12 ⁄ ±40 ms ⁄ tr
REJECT

14 MULTICHANNEL FILTER Radial Predictive Filter, 7 traces Wind 0.0–1.3 s dip

)9 ⁄ +9 ms ⁄ tr 80% time variant feedback

15 TIME VARIANT FILTER

16 PLOTT

(a)

0 5 km

(b)

Fig. 2 Comparison between (a) an original unmigrated section and (b) the post-stack time migration section. Note a diffracted
energy package well recognizable from 5.5 to 6.3 s ⁄TWT in (a), coming from the Messinian evaporite deposits; the diffracted
energy is well collapsed at its source point in (b). Close-ups are also shown. Also, the noise around 10.5 s ⁄TWT on the unmigrated
section disappears on the migrated section. For the location, see Fig. 4.
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374; Fig. 1; Hsu et al., 1978) and
seismic data (e.g. Finetti, 1982)
show that up to 400 m of Plio-
Quaternary deposits overlie the
Messinian evaporitic sequence. The
thickness of the Messinian deposits
varies from about 1300 m to about
2800 m (De Voogd et al., 1992).
However, direct observation of the
composition of the evaporitic
sequence in the Ionian Sea, i.e.
the DSDP drilling, is poor; it
penetrates only about 80 m beneath
the base of the Pliocene and some
40 m into gypsum-bearing and salt
horizons (Hsu et al., 1978).
As a consequence, knowledge of the

stratigraphy of the Messinian deposits
is limited to inferences from seismic
data.
Correlation of the OD-22 seismic

reflection profile with DSDP results
(including the P-velocity measure-
ments; Hsu et al., 1978; see fig. 15
therein) suggests a bipartition of the
Messinian sequence, which is made up
of a transparent �salt layer� at the
bottom and well-layered �upper evap-
orites� at the top, consisting of
gypsum ⁄dolomitic mudstone cycles.
A similar bipartition is suggested by

previous workers, using seismic reflec-
tion and ⁄or refraction data (Table 3).
A subdivision into �upper� and �low-

er� evaporites comes also from Sicilian
onshore mine and borehole data (e.g.
the Braemi well, Fig. 3); these divi-
sions are otherwise known as First
and Second Cycle Evaporites (Decima
and Wezel, 1971; Butler et al., 1995;
Roveri et al., 2006).
Inferences from seismic data (Cata-

lano et al., 2001; see fig. 8 therein)
suggest that the substratum of the
Messinian evaporites consists of a
4-km-thick unit, seismically inter-
preted as pelagic deposits from the
Mesozoic to Early Messinian.

Seismic interpretation

For the description of the seismic
stratigraphy, I use a representative
portion of the CROP 22 profile that
exhibits (Fig. 4) from the top to the
bottom:

1 A 0.2- to 0.4-s ⁄TWT thick sequence,
with good lateral continuity, low-
amplitude andhigh-frequency reflec-
tors; it shows planar to sub-planar
geometry (unit A). The P-velocity

is very low (about 1.9 km s)1,
Makris et al., 1986; De Voogd et al.,
1992); I equate this unit to the
Plio-Quaternary deposits.

2 A group of reflectors (unit B)
consisting of (i) a seismically trans-
parent-to-chaotic interval, 0.2–
0.6 s ⁄TWT thick, bounded at its

base by a strong horizon (trans-
parent subunit) and upward by (ii)
a strongly reflecting, well-layered
interval, with a thickness ranging
between 0.2 and 0.3 s ⁄TWT (lay-
ered subunit). Unit B is character-
ized by high P-velocity, from
4.5 km s)1 within the layered sub-

Table 3 Subdivision of Messinian evaporites based on seismic facies analysis and ⁄or
its calibration with P-velocities, compiled from previous work (modified from Tay

et al., 2002).

Montadert et al. (1978) Upper evaporites (evaporites and marls

encountered in DSDP boreholes)

Alternance of low and high

velocities, from 3.5 to 4.4 km s)1

Salt (halite–anhydrite) 4.5 km s)1

Camerlenghi (1991) Upper evaporite (gypsum and marls) 3.0–3.3 km s)1

Lower evaporite (salt) 4.3–4.8 km s)1

De Voogd et al. (1992) Upper evaporite 4.4–4.5 km s)1

Lower evaporite 4.2 km s)1

(a) (b)

Fig. 3 (a) Simplified log of the Braemi well (T.D. 4050 m); note the occurrence of a
lower evaporitic subunit, up to 1000 m thick, made up of salt with local dolomite
horizons, sandwiched between pre-evaporitic deposits (i.e. diatomaceous Tripoli Fm.)
at the bottom and a cyclic alternation of gypsum layers (selenite and balatino),
anhydrite and brackish-to-continental marls with overlying gypsarenites and silici-
clastic deposits at the top. (b) Schematic geological map of Sicily showing the
distribution of the First Cycle Evaporites (from Roveri et al., 2006) and the location
of the commercial well.
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unit to a slightly lower velocity
(4.2 km s)1) within the transparent
subunit, and a velocity inversion at
the base (De Voogd et al., 1992).
Seismic facies calibrated with
refraction data permit the correla-
tion of unit B with the Mediterra-
nean-wide Messinian evaporites
(Hsu et al., 1978); in particular,
acoustically transparent facies and
P-velocities in the range of about
4.2 km s)1, such as those coming
from other datasets worldwide (e.g.
Le Douaran et al., 1984; Fruehn
et al., 2002), suggest a rock salt
composition for the lower subunit.
Assuming the link between the
velocity model and the lithology
of previous works (Table 3), I cor-
relate the lower transparent sub-
unit with salt and the overlying
layered subunit with gypsum and
marls.

Observation and results

The CROP 22, 23 and 2B seismic
profiles discussed here are shown
in Figs 5–7 respectively. The Plio-
Quaternary cover (unit A) is app-
roximately 0.3–0.4 s ⁄TWT thick
(300–400 m). It appears not defor-
med, with faint sub-parallel reflectors,
in the SW portion of the CROP 22
(4400–3800 CDPs) profile and the SE
sectors of the NW-trending CROP 23
(2650–1900 CDPs) and 2B (300–1
CDPs) profiles. On the latter profile,
unit A locally shows (CDP 786–361)
gentle, short-wavelength undulations
suggestive of modest compres-
sional deformation, but no thrust
fault is imaged to penetrate this unit
clearly.
Along the profiles (3800-11 CDPs,

Fig. 5; 5800-2651 CDPs, Fig. 6; 1756-
787 CDPs, Fig. 7), horizons are

imaged to be locally disrupted
by thrust faults that sometimes
both crop out at the seafloor and
offset the underlying unit. Locally,
minor thrust faults and folds are also
common.
The underlying Messinian unit B

shows a maximum thickness of
0.6 s ⁄TWT (about 1300 m) on the
CROP 23 profile and 1.2 s ⁄TWT
(about 2500 m) on the CROP 2B
profile, according to the refraction
data (De Voogd et al., 1992). On the
latter profile, this unit, with a trans-
parent-to-chaotic facies, is bounded
at depth by a sub-horizontal, contin-
uous, strong reflector, located at
about 6.3–6.4 s ⁄TWT. I interpret this
reflector as the basal décollément. In
the 786–180 CDPs interval, the top of
the Messinian deposits is folded, with
a fold wavelength of about 1–1.5 km
and a fold amplitude of about
100 ms.
Transparent and layered subunits

are well recognizable on the CROP 23
profile (Fig. 6). Here, slight internal
wave-like undulations can be detected
in the transparent subunit (1900-2300
CDPs). This subunit is laterally dis-
continuous NW-ward, locally forming
prominent cusps below the several
overlying imbricates (Fig. 8) of the
layered subunit. I interpret these
features as salt-cored thrusts (Jackson,
1995), caused by plastic flows of salt
beds at the base of the subunit.
The overlying layered subunit, with

a maximum thickness of about 0.2–0.3
s ⁄TWT (about 450–670 m), appears
generally offset by both SE- (Fig. 9)
and NW-dipping thrusts, which sole
out at its base. Locally double-verging
thrust faults offset the overall Messin-
ian sequence.
On the CROP 22 profile (Fig. 5),

evaporite seismic facies reflectors are
well recognized from 5.8 to 6.2–
6.7 s ⁄TWT. Transparent and layered
subunits occur locally, replaced else-
where by a more chaotic facies.
NE-ward, the overall Messinian unit
is thickened, presumably due to imbri-
cated thrust faults, and images two
superposed imbricated thrust systems;
the upper one, with a chaotic facies, is
thinner (up to 0.65 s ⁄TWT, about
1400 m) than the lower one and
appears markedly detached from it
(Fig. 10). Because of both the laterally
discontinuous occurrence, well imaged
only at the central-north-easternmost

(a)

(b)

Fig. 4 (a) Seismic facies units recognized on the basis of seismostratigraphic analysis
of recently migrated data. Crustal P-velocity–depth functions determined from the
ESP 5 (De Voogd et al., 1992) are also shown. (b) Location map of both the transect
reported in a (bordeaux red line) and the transects shown in Figs 5–7.
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sector of the CROP 22 profile, and the
reduced thickness of the Messinian
upper thrust system, I interpret the

upper body to be the result of large
gravitational glide tectonics over the
Messinian salt.

Discussion

Active accretion at the outermost
front is indicated by a distinctive
seafloor morphology. The seismo-
stratigraphic analysis of the seismic
profiles and the velocity structure, as
given by ESP data (De Voogd et al.,
1992), suggests a general bipartition of
the Messinian unit in the outer ECA,
where it consists of a transparent
subunit at the bottom and a layered
subunit at the top.
Wave-like deformation (Fig. 6) and

salt-based compressional structures
(Fig. 8) characterize the folded but
overall unfaulted lower subunit, sug-
gesting ductile deformation, submitted
to a diffuse flow. Thrusting and brittle
deformation characterize the over-
lying subunit, which contains faults
soling out at its base.
Both the difference in seismic facies

and the difference in deformational
style allow a better definition of the
unit�s stratigraphic layering, which
consists of the reflection-free and
plastic Messinian salt layer below
and the alternation of marls and
gypsum above.
Locally, the two Messinian subunits

are not well imaged, and a chaotic
facies occurs (e.g. Figs 5 and 7).
A different deformational style is

evidenced by the occurrence of a series
of double-verging imbricated thrust
sheets of the whole Messinian unit
(e.g. Figs 5–6). This different style of

Fig. 7 Clean (top) and interpreted (bottom) sectors of the time migrated seismic CROP 2B profile. See text for discussion. For
location, see Fig. 4b.

Fig. 8 Seismic close-up from the time migrated CROP 23 profile (Fig. 6) showing
salt-cored thrusting structures.

Fig. 9 Seismic close-up from the time migrated CROP 23 profile (Fig. 6) displaying
exemplary reverse faulting in the upper Messinian reflectors. No faults occur inside
the Messinian transparent subunit (salt). Deformation in the layered subunit is brittle,
whereas the salt reacts with ductility.
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compressional structures, locally ob-
served, could reflect a different com-
position (and thus rheology) and ⁄or
thickness (ranging between 1300 and
2800 m) of the evaporites.
The décollément level of the out-

ermost ECA is located at the base of
the evaporites along a relatively flat
and gently landward-dipping reflec-
tor (Fig. 7). This observation agrees
well with the low taper value of the
ECA, indicative of very low strength
along the décollément level, such as
when it is located at the base of the
salt (e.g. Reston et al., 2002). This
observation is also confirmed by the
local occurrence of double-verging
thrust sheets offsetting the whole
Messinian unit, indicative of a �weak�
décollément level, as also highlighted
by analogue sandbox models (e.g.
Liu et al., 1992) as an effect of low
basal friction.
At the south-easternmost border of

the study area (Fig. 1), chaotic depos-
its with both reduced thickness and
narrow areal widening have been seis-
mically imaged (Fig. 5) as the product
of gravity-gliding tectonics. These
gravity transported bodies form im-
bricate allochthonous units overlying
the imbricate thrust-sheets of the
Messinian evaporite deposits. Locally,
gravity tectonics also involve part of
the overlying Plio-Quaternary depos-
its, based on the occurrence of minor
thrust faults and folds (Figs 5 and 6).
This large-scale instability of the

area, since the Late Messinian, could
be due to a progressive increase in the
wedge slope steepness, consequent to
the thickening of a sub-critically
tapered wedge. However, it could be
hypothesized that the salt tectonics
have also played a role in the emplace-
ment of the chaotic succession. In this

case, the gravity-gliding tectonics
might well reduce the top of the taper,
contributing to lowering the taper
value detected for the ECA.

Concluding remarks

Post-stack time migration of the
Ionian CROP seismic data provides
new constraints on the structures and
processes characterizing the outermost
ECA.

1 A more detailed stratigraphic
framework than previously known
of the Messinian evaporite deposits,
consisting generally of gypsum and
marls overlying salt, is given. The
�upper� evaporite layer shows evi-
dence of brittle deformation, while
the �lower� evaporite layer acted as a
widespread ductile layer, through
the development of salt-cored
thrusting structures.

2 A lateral variation in composition
(and hence in stratigraphy) and ⁄or
thickness of the Messinian depos-
its is reflected by a change in the
style of the compressional struc-
tures, with the development of
double-verging thrust faults offset-
ting the whole Messinian se-
quence.

3 Gravitational glide tectonics have
characterized the outermost ECA
since the Late Messinian, due to the
occurrence of both salt and a wedge
slope too steep to support a skinny
evaporite-based top layer (a near-
surface �olistostrome�).
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