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a b s t r a c t

1H NMR spectroscopy was employed to investigate the molecular quality of Aglianico red wines from
the Campania region of Italy. The wines were obtained from three different Aglianico vineyards charac-
terized by different microclimatic and pedological properties. In order to reach an objective evaluation
of “terroir” influence on wine quality, grapes were subjected to the same winemaking procedures. The
careful subtraction of water and ethanol signals from NMR spectra allowed to statistically recognize the
metabolites to be employed in multivariate statistical methods: Principal Component Analysis (PCA), Dis-
criminant Analysis (DA) and Hierarchical Clustering Analysis (HCA). The three wines were differentiated
from each other by six metabolites: �-hydroxyisobutyrate, lactic acid, succinic acid, glycerol, �-fructose
ultivariate statistical analysis
erroir

and �-d-glucuronic acid. All multivariate analyses confirmed that the differentiation among the wines
were related to micro-climate, and carbonate, clay, and organic matter content of soils. Additionally,
the wine discrimination ability of NMR spectroscopy combined with chemometric methods, was proved
when commercial Aglianico wines, deriving from different soils, were shown to be statistically different
from the studied wines. Our findings indicate that multivariate statistical elaboration of NMR spectra of
wines is a fast and accurate method to evaluate the molecular quality of wines, underlining the objective

relation with terroir.

. Introduction

Red wine is a complex molecular mixture resulting from fer-
entation of juice of Vitis Vinifera must [1]. The flavours and

hemical composition of wine are usually related to the general
nvironmental conditions insisting on vineyards from which wine
s produced [2] Many geographical factors such as climate, soil geol-
gy and composition, wild yeasts [3,4] and lactic acid bacteria [5],
re able to synergistically influence wine molecular characteris-
ics [6]. The relationship between wine quality and its specific site
f production is commonly described by the French term “terroir”
7].

The analytical methods most used to investigate correlation

etween chemical composition of red wines and environmental
actors related to winemaking are: High Performance Liquid Chro-

atography (HPLC) [8], Gas Chromatography–Mass Spectrometry
GC–MS) [9], Fourier Transform Ion Cyclotron Resonance Mass

∗ Corresponding author at: Centro Interdipartimentale per la Risonanza Magnet-
ca Nucleare (CERMANU), Universita ‘di Napoli Federico II, Via Universita’ 100, 80055
ortici (NA), Italy. Tel.: +39 081 788 5236; fax: +39 081 775 5130.

E-mail addresses: Alessandro.piccolo@unina.it, alpiccol@unina.it (A. Piccolo).

003-2670/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2010.06.003
© 2010 Elsevier B.V. All rights reserved.

Spectrometry (FT-ICR-MS) [10,11], High Performance Ion Exclusion
Chromatography (HPICE) [12], and Nuclear Magnetic Resonance
Spectrometry (NMR), used both with classical [12–14] and Site
Natural Isotopic Fractionation (SNIF) NMR techniques [15].

Although NMR has poor sensitivity, liquid state NMR can
rapidly provide spectra with highly reproduciblity describing the
main molecular profile of wines without laborious sample pre-
treatments. Moreover, it has been shown [8,13,16] that NMR
results, elaborated by multivariate statistical methods, can be used
to identify and classify metabolites, common to many wines. The
simplification of a multidimensional dataset obtained by liquid
state 1H NMR spectra, was successfully achieved with a number
of multivariate statistical techniques, such as Principal Component
Analysis (PCA), Discriminant Analysis (DA) and Hierarchical Clus-
tering Analysis (HCA).

Recently, the combination of NMR spectroscopy with mul-
tivariate analysis has shown its high potential in wine quality
assessment. Kosir et al. [15] attempted to classify Slovenian wines

according to both geographical origins and beet sugar enrichment,
by coupling the SNIF-NMR with some multivariate statistical meth-
ods. However, they were not able to significantly differentiate the
wines produced in two adjacent Slovenian regions [15]. Brescia et
al. [6], using the classical NMR spectroscopy with statistical analy-

dx.doi.org/10.1016/j.aca.2010.06.003
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
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is, were able to classify red wines produced in near by provinces
f Apulia (Italy), but failed to distinguish wines obtained from dif-
erent grape varieties [12]. Later, with a similar approach, they
iscriminated Apulian from Slovenian red wines confirming the
fficacy of this method in assessing the geographical origin of
ines [16]. Moreover, wines of Montepulciano d’Abruzzo (Italy)
ere satisfactorily depending on production years, yeast strains,

nd winemaking processes [8]. The applicability of a polyphasic
pproach was further confirmed when wines deriving from differ-
nt cultivars, as grown on three different soils, were discriminated
7].

The aim of this work was to combine NMR spectroscopy with
ultivariate analysis in order to correlate wine quality to soil

ocations from which the cultivar originated. In order to reach
n objective classification of the wine terroir, the grape variety
Aglianico”, an ancient autoctonous cultivar of Campania (Italy),
as collected from three near by soils with distinct pedological
roperties, and subjected to the same winemaking process. The
ine samples were analyzed by 1H NMR spectroscopy and spectral
ata elaborated by PCA, DA and HCA statistical methods.

. Experimental

.1. Vineyards, soil sites and wine details

The vineyards under study are located in Taurasi (Avellino, Cam-
ania, Italy) (41◦00′35.39′′N/14◦57′34.29′′E), but grown in three
ifferent soil sites: Case D’Alto [C], Coste Morante [S] and Macchia
ei Goti [M]. The vineyards of “Aglianico di Taurasi” were planted

n the same year (1982), on the same rootstock (1103 Paulsen)
ithin a spurred cordon culture system. The plant density was 2000

tumps per hectare.
Soil C (41◦00′11.05′′N/14◦58′19.00′′E) is located 400 m above

ea level and developed from volcanic ashes and pomices on
inereous platforms. The soil is deep, mildly coarse textured,
ell drained and rich in nitrogen (N) and organic carbon (C).

oil S (41◦01′18.38′′N/14◦56′50.51′′E) is situated 325 m above
ea level. It is clayey and calcareous, slightly alkaline, with
iscrete exchangeable potassium and good C/N ratio. Soil M
40◦59′54.63′′N/14◦57′42.81′′E) is located 340 m above sea level,
nd is calcareous clayey and rich in exchangeable calcium and
otassium.

Samples from the C, S and M vineyard soils were collected
n 2005. Soil samples were air-dried, sieved on 2 mm sieves,
nd analyzed for organic carbon, total nitrogen, C/N ratio, avail-
ble phosphorous (P2O5), electrical conductivity, cation exchange
apacity (CEC), pH and total carbonates, as by the Official Italian
nalytical Methods for Soil [17].

The 2005 vintage grapes were manually harvested from these
ineyards and subjected to the same winemaking process as that
arried out at the winery “Azienda Agricola Contrade di Taurasi
i Enza Lonardo” located in Taurasi. Briefly, five quintals of har-
ested grapes were de-stemmed and crushed. Then, the three
usts (about 3 hL) were transferred in different sanitised steel

anks, with the same inner volume (10 hL). The musts were treated
ith K2S2O5 (60 mg kg−1 of grapes). Fermentations took place at

8 ◦C with indigenous yeast and caps were submerged twice a day.
acerations of pomaces lasted 12 days. The musts were pressed

about 8 bar) to obtain finished wines. About seven months after
he end of malo-lactic fermentation, the wines were sieved through

rotary drum filter and finally bottled on December 2006.

A total number of 16 wine bottles were used for NMR analysis:
ve from Case d’Alto (C), six from Coste Morante (S), and five from
acchia dei Goti (M). Two more wine samples (F) were obtained

rom bottles of another Aglianico red wine commercially sold as
a Acta 673 (2010) 167–172

“Fidelis 2005”, and originated from the Taburno area (Benevento,
Italy) at a distance of about 40 km from Taurasi.

2.2. NMR experiments

Wine samples were used immediately after bottle uncorking
and prepared by mixing 0.25 mL of wine with 0.75 mL of a deuter-
ated water (99.8% D2O/H2O, Armar Chemicals) solution containing
2% (v/v) formic acid (98–100% RG, Merck Chemicals) as internal
standard. Before analysis, each sample was stirred in a vortex,
and transferred into a stoppered NMR tube (5 mm, 7′′, 507-HP-7,
NORELL) and the remaining void volume gently degassed by a N2
flux.

A 400 MHz Bruker Avance spectrometer, equipped with a
5 mm BBI Bruker probe and working at the 1H frequency of
400.13 MHz, was employed to conduct all liquid state NMR mea-
surements at a temperature of 298 ± 1 K. Mono-dimensional 1H
spectra were acquired with 2 s of thermal equilibrium delay, a
90◦ pulse length ranging between 8.21 and 8.86 �s, 200 transients,
32,768 time domain points, and 11.9692 ppm (4.7893 kHz) as spec-
tral width. The free induction decay (FID) was multiplied by an
exponential factor corresponding to 0.5 Hz. An excitation sculpt-
ing (ZGESGP) [18] and a modified T1 inversion-recovery (mT1IR)
multi-suppression pulse sequences were both applied to suppress
residual water signal and ethanol multiplets.

For excitation sculpting experiments, a specific shape pulse
was built by modifying the basic shape pulse SQUA100.1000
reported in the Bruker Topspin database. The most efficient sig-
nals multi-suppression occurred when the shape pulse length
(P12) and power (SP1) were adequately calibrated. These param-
eters were optimized, respectively, at 7000 �s for all samples,
and from 40.01 to 41.4 dB, depending strictly on sample. The T1
inversion-recovery sequence was adjusted to provide simultane-
ous suppression of both water and ethanol signals by, respectively,
water pre-saturation and selection of appropriate inversion-
recovery time-length.

Structural identification of wine metabolites was achieved
by 2D NMR experiments: homo-nuclear 1H–1H COSY (COrrela-
tion SpectroscopY) and TOCSY (Total COrrelation SpectroscopY),
and hetero-nuclear 1H–13C HSQC (Hetero-nuclear Single-Quantum
Correlation). In both 2D homo-nuclear experiments excitation
sculpting was applied by employing two Bruker pulse sequences
COSYDFESGPPH and MLEVESGPPH respectively. 2D spectra were
acquired with 96 total transients, a time domain of 2k points (F2)
and 256 experiments (F1), 16 dummy scans, and 11.9692 ppm
as spectral width. Moreover, TOCSY experiments were conducted
with a mixing time of 80 ms and trim pulse length of 2500 ms.
The hetero-nuclear HSQC experiments were acquired with 80
total transients, 16 dummy scans, 0.5 ms of trim pulse length,
a time domain of 2k points and 256 experiments, and 300 ppm
(120.039 kHz) as 13C spectral width. A baseline correction was
applied to all mono- and bi-dimensional spectra and the proton
frequency axis was calibrated by associating the formic acid signal
at 8.226 ppm [19]. Spectra were processed by using both Bruker
Topspin Software (v.1.3) and MestReC NMR Processing Software
(v.4.9.9.9).

2.3. Multivariate data analyses

Statistical data elaboration was achieved by the XLStat software
v.7.5.2 (Addinsoft). A number (119) of 1H NMR variable buck-

ets were screened, each bucket width being adequately chosen
to include individual peaks or distinct multiplets, when possible.
These buckets were equally adopted for all spectra. Prior to mul-
tivariate analysis, each spectrum was normalized by dividing the
single bucket area by the sum of each signal integrated area. The



P. Mazzei et al. / Analytica Chimica Acta 673 (2010) 167–172 169

Table 1
1H chemical shift and assignment of signals which mostly differentiated wine samples.

Peak identifier Buckets interval (ppm) Assignments ı (ppm) Multiplicity and group

1 1.299–1.248 �-Hydroxyisobutyrate 1.267 s, CH3

2 1.438–1.373 Lactic acid 1.410 d, 7 �-CH3

3 2.688–2.638 Succinic acid 2.665 s, CH3

4 3.577–3.510 Glycerol 3.542 q, CH2
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the original data matrix, while retaining the maximum amount of
variability, as well as the original information contained in the data
set [29]. PCA decomposes a data matrix with m rows (wine samples)
and n columns (NMR spectral areas) into the product obtained by
5 3.782–3.743 �-Fru
6 4.624–4.586 �-d-G

: singlet; d: doublet; t: triplet; q: quartet.

ormalized values were further mean centred for PCA (Principal
omponent Analysis) and DA (Discriminant Analysis). The valida-
ion of the DA method validation consisted in building a validation
et, achieved by dividing all samples in a training set and in a test
et. The former set employed a discriminant model formed by 10 of
he 16 samples, whereas the latter set was used to test the model
nd comprised 6 of the remaining samples. A similar partition, con-
aining 37.5% of samples in the test set, allowed a sufficient number
f samples in the training set as well as a representative number of
amples in the test set [16]. This validation was repeated 5 times by
hanging, each time randomly, the samples included in the training
nd test set.

A HCA (Hierarchical Component Analysis) was developed by
pplying a hierarchical ascendant cluster analysis. By this tech-
ique, the extent of similarity among samples was measured by
uclidean distances, while cluster aggregation was based on the
verage linkage method [20].

. Results and discussion

The 1H NMR spectra of red wines (Supplementary Fig. S1a)
howed that most intense signals were those of ethanol (a triplet
t 1.204 ppm and a quartet at 3.674 ppm) and water (a singlet
t 4.804 ppm). These signals interfere with spectral elucidation
ince their large intensities not only depress other meaningful sig-
als but also overlap other molecular peaks resonating at near
y frequencies. Excitation sculpting (ZGESGP) and a modified T1

nversion-recovery (mT1IR) pulse sequences were applied to sup-
ress these interfering water and ethanol signals.

The mT1IR pulse sequence is related to 1H spin–lattice relaxation
imes of all visible signals and showed that spins of ethanol signals
elaxed almost completely before all other molecular spins began
o significantly return to equilibrium. In fact, it was observed that
pplication of a 3 s delay between initial 180◦ and second 90◦ hard
ulse, efficiently suppressed the ethanol multiplets and acetic acid
inglet at 2.09 ppm [13,21], while it allowed recovering all other
ignals without significant intensity loss. In addition, this pulse
equence included a water signal pre-saturation, that resulted in a
oncomitant removal of both undesired water and ethanol signals
Supplementary Fig. S1c). Even though both excitation sculpting
nd modified T1 inversion-recovery techniques were efficient in
uppressing the interfering signals, the mT1IR pulse sequence was
ore successful in showing a cleaner 1H spectrum of red wine (see

omparison in Supplementary Fig. S1b and c). Consequently, the
T1IR sequence was applied to all mono-dimensional spectra of
ine samples. Moreover, mT1IR spectra of wine samples from the

ame soil did not show significant differences, whereas variations
ere noticeable in wines from different soils. Therefore, these spec-

ra could be integrated to evaluate, in details, the effect of soil site
n wines molecular composition. An example of selected buckets

ith variable amplitudes within the 4.55–1.15 ppm spectral region

s shown in Fig. 1.
A preliminary Analysis of Variance (ANOVA) was applied to

data matrix constituted by 119 variables and 16 samples. It
as observed that only 6 out of the 119 employed variables con-
3.766 t, C2H, ring
onic acid 4.605 d, C1H, ring

tributed to wine differentiation within a 95% confidence interval
(Fisher test) [22]. The buckets capable of statistical differentiation
is indicated by arrows in Fig. 1, while precise bucket intervals with
structural assignment of related compound variables are reported
in Table 1. These compounds were �-hydroxyisobutyrate [13], lac-
tic acid, succinic acid, glycerol, �-fructose, and �-d-glucuronic acid
[13,23]. A spectral expansion for these metabolites is reported in
Supplementary Fig. S2. Molecular attribution to signals in respec-
tive buckets was achieved by combining spectral interpretation
of mono- and double-dimensional experiments (Supplementary
Figs. 3–5). Signals identification was further supported by molec-
ular attribution reported in literature for wine 1H NMR spectra
[13,14,16,21,24]. Most of the above compounds are mainly of
microbial origin: lactic acid is the metabolic product of malo-lactic
fermentation performed by malo-lactic bacteria (MLB) [25]; suc-
cinic acid is the major organic acid produced by yeast metabolism
[26]; glycerol is the final product of glyceropiruvic fermentation by
yeast and its formation accompanies ethanol production in sugar
fermentation [27]. Although fructose is not a product of microbial
origin, its concentration, related to glucose content, may influence
yeast fermentation, the glycerol concentration depending on glu-
cose/fructose content in must [28]. Moreover, the composition of
yeasts wild strains and MLB were found slightly different in the
three musts and related wines (data not shown).

The multivariate Principal Component Analysis (PCA) calculates
linear combinations of a starting set of variables on the basis of their
maximum variance [16]. It reduces the dimensions multiplicity of
Fig. 1. 1H spectrum of M1 sample. The superimposed rectangles contain the selected
buckets within the 4.55–1.15 ppm region, which were equally employed to integrate
all wine spectra. Arrows indicate peaks which statistically contributed to discrimi-
nate among C, S and M wine samples [Case d’Alto (C), Coste Morante (S) and Macchia
dei Goti (M)].
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ig. 2. Scatter-plot of the scores generated from the two principal components, PC1
nd PC2, obtained using analytical data from 1H NMR red wine spectra.

ultiplying a matrix of scores (m rows for wine samples and P < n
olumns for Principal Components, PCs), with a matrix of loadings
P < m rows for PCs and n columns for NMR spectral areas). Each
ombination of two resulting PCs, creates a bi-dimensional space,
onstituted by PCs as axis. Loading vectors are associated to each
f such factorial planes, correlated to the original variables, and
rientated toward the direction in which the maximum variance
f variables is expressed. This representation projects the origi-
al observations in a new reference system, whose coordinates
re regulated by the variance, and provides a final bi-dimensional
core-plot, that may be interpreted with loading-plot information
30]. This means that score-plots can indirectly highlight possi-
le differences or similarities among samples, while loading-plots
eveal the responsible spectral components (variables).

The PCA analysis was conducted on a data matrix containing
nly the six variables capable of sample differentiation (Table 1)
20]. In PCA, the first two Principal Components explained 86.0
nd 11.2% of total variance, respectively (Fig. 2). The three different
ine samples were projected to three separated score-plot regions,
hose differences resulted statistically significant (p < 0.0001) by

he Barlett’s sphericity test [31]. In fact, it was found (Fig. 2) that
CA well discriminated the C wine from S and M along the PC1
irection, being the former positioned in the negative PC1 score.
n the other hand, M and S wines were mutually well separated
long the PC2 axis. Furthermore, this PCA distribution showed that
ine replicates deriving from the same soils were associated with

lose score-plot domains, while groupings of wine replicates were
patially well separated according to soil differences (Fig. 2). This
nding testified that the molecular characteristics of the three
ines were sufficiently varied to show PCA distinctions.

The three variables which mostly contributed to differences by
C1 were provided by lactic acid (74.0%), �-fructose (12.7%), and

lycerol (12.2%) (Table 2). The PCA linear orientations of variance
ectors for these variables are shown in the loading-plot (Fig. 3),
hat correlates score-plot domains with variables. The large dis-
ance among coordinate values along PC1 between the C and the S
nd M domains (Supplementary Table S1) may then be attributed

able 2
rincipal Component Analysis eigenvalues and variable contributions (%).

Eigenvalues and variables PC1 PC2

Eigenvalue 3.472 0.453
Variance (%) 85.967 11.220
Cumulate variance (%) 85.967 97.187
�-d-Glucuronic acid 0.033 1.334
�-Fructose 12.732 5.224
Glycerol 12.203 9.228
Succinic acid 0.464 76.362
Lactic acid 74.025 0.020
�-Hydroxyisobutyrate 0.543 7.831
Fig. 3. Loading-plot of the variables associated with the first two principal compo-
nents of PCA, calculated using analytical data.

to larger lactic acid in S and M wines than in C wine. Such score-
plot distinction is additionally provided by the greater content
of �-fructose and glycerol found for C than for S and M wines.
However, the more positive PC1 scoring for M than for S wines
is explained by a greater glycerol content in the latter. As for PC2,
the main difference among samples was provided by succinic acid
(76.362%), whose content was largest in S wine. Moreover, M sam-
ples showed both greater and smaller content of �-d-glucuronic
acid and �-hydroxyisobutyrate, respectively, than C and S samples.
It is furthermore noted that within the M statistical domain, M3 and
M5 samples showed more negative PC2 scorings than the remain-
ing M samples, due to concomitant larger �-d-glucuronic and lower
glycerol amounts.

The Discriminant Analysis (DA) is a supervised statistical
method to classify samples. DA extracts discriminant functions
from a data matrix composed by independent variables in order to
maximize inter-class variance and minimize intra-class variance.
This criterium can be supported by a validation test in order to ver-
ify the statistical confidence with which the a priori classification
of some observations (test set) coincides with the a posteriori DA
prediction as elaborated by information provided by the remaining
samples (training set). One of the five applied discriminant models,
which were obtained by a validation test is shown (Supplementary
Fig. 6). In this model, C3, C4, S3, S6, M3 and M5 samples were
used as test-set samples. Since PCA indicated that M3 and M5
samples were slightly differentiated from other M samples, and
may thus be hardly recognized by DA, we chose M3 and M5 sam-
ples as M unknown objects to verify the reliability of DA analysis.
This DA exercise proved that all wine observations were correctly
associated to respective group with 100% of success (observation
coordinates and square distances for this model are reported in
Supplementary Table S2). Moreover, in all five developed discrim-
inant models, each wine sample was correctly associated to the
respective group with 100% of success and a significance of 0.05.

The observed PCA differentiation among wine samples is
reflected by different soil properties. In fact, while S and M soils

are definitely carbonatic soils, as shown by pH value and total car-
bonates content, the volcanic C soil is less carbonatic (Table 3).
Moreover, the S and M soils have a larger clay character and a
greater organic carbon and total nitrogen content than the C soil.
The diverse soil properties were confirmed by PCA differentiation



P. Mazzei et al. / Analytica Chimica Acta 673 (2010) 167–172 171

Table 3
Properties of soils under vineyards.

Properties C S M

Gross sand (%) 43.8 13.8 16.7
Fine sand (%) 41.6 33.1 34.7
Silt (%) 12.1 22.8 21
Clay (%) 2.5 30.3 27.6
Organic carbon (g kg−1) 27.1 13.5 12.2
N total (g kg−1) 2.45 1.28 1.05
C/N 11.1 10.6 11.6
P2O5 (mg kg−1) 24.3 43.6 16.9
Electric conductivity (dS m−1) 0.099 0.145 0.126
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and ethanol signals in wine samples, by a specifically modified

F
a

C.E.C. (mequiv./100 g) 26.3 29.3 24.4
pH (H2O) 6.58 8.15 8.26
Total carbonates (g kg−1) 10.5 60.6 109

mong wine samples and this suggested that soil characteristics
ad a bearing on the molecular quality of wines obtained from the
oils.

The PCA was modified (PCAe) by adding to the data matrix two
ore samples of a commercial Aglianico wine (F) from Campania

egion (supplementary Table S3). Since PCA score-plots arrange
imilar samples in near by zones, while placing dissimilar sam-
les in distant zones, addition of different unrelated samples to
he dataset would presumably project their scoring in a distinct
omain of the score-plot. Fig. 4 shows the new PCAe score-plot
here the separation between F (negative scoring on both princi-
al functions) and previous C, S, and M samples is significant. Such
eparation of F samples was attributed to much lower content of
lycerol and succinic acid for PC2, and to both smaller and larger
mount of lactic acid and �-fructose, respectively, in PC1, than for
, S, and M samples (Fig. 4).

HCA is an unsupervised method that recognizes and distributes
ata grouping, according to their affinity, in clusters of progres-
ive dissimilarity, as described in a dendrogram. It is assumed that
he closer the objects in a space defined by variables, the more
imilar are their properties. HCA was thus conducted to verify the
lassification of C, S and M wines according to their mutual dissim-

larity and their relation to F wines. The resulting dendrogram and

ain descriptive values are shown in Fig. 5 (relative matrix with
uantitative dissimilarities in Supplementary Table S4). Knot 35 in
he dendrogram shows that the most dissimilar clusters are those

ig. 5. Dendrogram of red wines obtained using analytical data. Euclidean distance was e
s aggregation method.
Fig. 4. Scatter-plot of PCAe. The scores generated from the two principal compo-
nents, PC1 and PC2, obtained using analytical data from 1H NMR red wine spectra. F
is two samples of an Aglianico different from C, S, and M. The PC1 and PC2 explained,
respectively, 70.48% and 23.068% of the total variance.

between F wines and the rest of Aglianico samples. This indicates
that this HCA approach visibly discriminates wines of different ori-
gin and quality. Furthermore, knot 34 reveals that the C cluster is
recognized by HCA as different from the macro-cluster containing
S and M wines. This is in accordance with results from both the PCA
score-plot and its relation to soil properties. HCA provides further
insight by closely classifying M and S clusters (knot 33) and con-
firming PCA results, which indicated that M3 and M5 were slightly
different, within the M cluster, from M1, M2 and M4 samples.

4. Conclusions

The study shows that 1H NMR spectroscopy combined with
multivariate statistical analyses can rapidly and efficiently dis-
criminate three red wines derived from the same Aglianico grape
variety grown on different soils. Multi-suppression of both water
inversion-recovery pulse technique, offered highly reproducible
NMR spectra without overlapping of meaningful peaks. Although
this approach also removed the acetic acid signal, the discrimina-
tion among the wines were anyhow assured.

mployed to find the dissimilarity among the samples, and the average correlation
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Despite the wines were produced employing the same grape
ariety and the same winemaking procedures, the PCA elaboration
f their 1H NMR spectra was able to significantly recognize dissim-
larities among their molecular properties, as shown by the content
f lactic acid, �-fructose, glycerol, succinic acid, �-d-glucuronic acid
nd �-hydroxyisobutyrate. Statistical variables of PCA were also
mployed to perform a discriminant analysis, whose five valida-
ion tests provided a 100% correct prediction of differences among
ines.

Since the diversity of the three wines could be only reconciled
o differences in soils, these results suggest that bio-pedo-climatic
actors determined the ultimate wine quality. However, some

etabolites (lactic and succinic acid, and glycerol) may have
erived from must and wine microbial activity, thus suggesting
hat indigenous yeasts and MLB may also contribute to the expres-
ion of terroir. Multivariate statistical analysis of 1H NMR spectra
ndicated a marked difference between one of the Aglianico wines
nd the other two. Since the vineyards from which the wines orig-
nated were closely located (lower than 3 km apart), wine quality
ppears to be conditioned less by macro-climate than by micro-
limate and intrinsic soil properties, which in turn influence the
ust microflora. In fact, the differentiated wine originated from
soil of higher altitude than for the other two wines, with con-

equent differences in temperature and humidity. Moreover, soil
haracteristics, such as texture and carbonate as well as organic
arbon content, varied between one soil and the other two ones.
he peculiarity of this one different soil is reflected by PCA, DA and
CA results from 1H NMR spectra of wines, thereby sustaining the
ssumption that soil physical and chemical properties are able to
etermine the overall wine quality.

A further evidence of the efficacy of combining careful NMR
pectroscopy with multivariate statistics to assess wine quality
nd its terroir, was shown by comparing results of the three wines
nder study with those of a commercially available Aglianico wine
rom another soil site. Both 1H NMR spectroscopy and multivariate
laboration clearly indicated that the latter wine had a significant
ifferent quality than the formers. Thus, the findings of this work
re promising in indicating 1H NMR spectroscopy as a rapid and
bjectively sound technique for a geographical identification of
ine quality.
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