THREE SOLUTIONS TO MIXED BOUNDARY VALUE PROBLEM DRIVEN BY $p(z)$-LAPLACE OPERATOR

CALOGERO VETRO AND FRANCESCA VETRO

Abstract. We prove the existence of at least three weak solutions to a mixed Dirichlet-Neumann boundary value problem for equations driven by the $p(z)$-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.

1. Introduction

Let $M \subset \mathbb{R}^N$ ($N \geq 3$) be an open bounded domain with smooth boundary. In this article we consider the following mixed Dirichlet-Neumann boundary value problem driven by the $p(z)$-Laplace operator:

$$(P_{\xi,\mu}) \begin{cases} -\text{div} (|\nabla u(z)|^{p(z)-2}\nabla u(z)) + a(z)|u(z)|^{p(z)-2}u(z) = \xi g(z, u(z)) & \text{in } M, \\ u = 0 & \text{on } M_1, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \mu h(\gamma(u)) & \text{on } M_2, \end{cases}$$

where $p \in C(M)$ is a function with some regularities satisfying

$$N < p^- := \inf_{z \in M} p(z) \leq p(z) \leq p^+ := \sup_{z \in M} p(z) < +\infty,$$

M_1, M_2 are smooth $(N-1)$-dimensional submanifolds of ∂M and Γ is a smooth $(N-2)$-dimensional submanifolds of ∂M with $M_1 \cap M_2 = \emptyset$, $M_1 \cup M_2 = \partial M$, $\overline{M_1} \cap \overline{M_2} = \Gamma$, $a \in L^\infty(M)$ with $a_0 := \text{ess inf}_{z \in M} a(z) > 0$ is the potential function, $g : M \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function (that is, for all $z \in \mathbb{R}$, $z \to g(z, y)$ is measurable and for a.a. $z \in M$, $y \to g(z, y)$ is continuous), $h : \mathbb{R} \to \mathbb{R}$ is a nonnegative continuous function, $\gamma : W^{1,p}(M) \to L^p(\partial M)$ is the trace operator, $\xi > 0$ and $\mu \geq 0$ are real parameters, and ν is the outer unit normal to ∂M.

We recall that the $p(z)$-Laplace operator drives processes of physical interest, as stated in Diening-Harjulehto-Hästö-Růžička [7]. Existence and multiplicity results for problems involving the $p(z)$-Laplace operator were obtained by Papageorgiou-Vetro [12], Rodrigues [13], Vetro [14] (Dirichlet condition), Deng-Wang [6], Heidarkhani-Afrouzi-Hadjian [10], Pan-Afrouzi-Li [11] (Neumann condition). In [12] the authors consider a $(p(z), q(z))$-equation with reaction g which depends on the solution but does not satisfy the Ambrosetti-Rabinowitz condition. Their approach is variational based on critical point theory together with Morse theory (critical groups). These

Key words and phrases. Dirichlet-Neumann boundary value problem; $p(z)$-Laplace operator; variable exponent Sobolev space.

2010 Mathematics Subject Classification: 35J20, 35J25.

Corresponding author: Francesca Vetro (francescavetro@tdtu.edu.vn).
tools are used also in [13]. This time, the author studies a nonlinear eigenvalue problem for \(p(z) \)-Laplacian-like operator, originated from a capillary phenomena. The reaction is superlinear at infinity and the author proves the existence of infinite many pairs of solutions. [14] also considers a problem driven by the \(p(z) \)-Laplacian-like operator. There, the reaction satisfies a sub-critical growth condition and the results deal with the existence of one and three solutions (via critical point theory). In [10, 11] the authors prove the existence of three solutions for \(p(z) \)-Laplace problems with potential function. In particular, [10] considers small perturbations of nonhomogeneous Neumann condition. A similar problem is discussed in [6], where the authors use sub-supersolution method and strong comparison principle. For mixed boundary value problems there are the recent works of Barletta-Livrea-Papageorgiou [1], Bonanno-D’Agui-Sciammetta [2] (for the constant \(p \)-Laplace operator).

Here, we give two existence theorems of three weak solutions to problem \((P_{\xi,\mu}) \) (that is, mixed boundary value problem with variable exponent version of the \(p \)-Laplace operator), by using a variational approach and critical point theorems. Here the reaction \(g : M \times \mathbb{R} \to \mathbb{R} \) is \(L^1 \)-Carathéodory (that is, \(g \) is Carathéodory and for any \(s > 0 \) there exists \(l_s \in L^1(M) \) with \(|g(z, y)| \leq l_s(z) \), for a.e. \(z \in M \) and for all \(|y| \leq s \)). So, the three critical points results of Bonanno-Marano [4] and Bonanno-Candito [3] apply to energy functionals associated to problem \((P_{\xi,\mu}) \).

2. Mathematical background

Let \((E, E^*)\) be a Banach topological pair. Here, we use the variable exponent Lebesgue spaces \(L^{p(z)}(M) \), \(L^{p(z)}(\partial M) \), and the generalized Lebesgue-Sobolev space \(W^{1, p(z)}(M) \). These spaces (referring to the norms below) are separable, reflexive and uniformly convex Banach spaces (see Fan-Zhang [8]). Precisely, we have

\[
L^{p(z)}(M) = \left\{ u : M \to \mathbb{R} : u \text{ is measurable and } \int_M |u(z)|^{p(z)} \, dz < +\infty \right\},
\]

with the norm

\[
\|u\|_{L^{p(z)}(M)} := \inf \left\{ \xi > 0 : \int_M \left| \frac{u(z)}{\xi} \right|^{p(z)} \, dz \leq 1 \right\} \quad \text{(i.e., Luxemburg norm)}.
\]

On the other hand, we have

\[
L^{p(z)}(\partial M) = \left\{ u : \partial M \to \mathbb{R} : u \text{ is measurable and } \int_{\partial M} |u(z)|^{p(z)} \, d\sigma < +\infty \right\},
\]

where \(\sigma \) is the surface measure on \(\partial M \). This time, we consider the norm

\[
\|u\|_{L^{p(z)}(\partial M)} := \inf \left\{ \xi > 0 : \int_M \left| \frac{u(z)}{\xi} \right|^{p(z)} \, d\sigma \leq 1 \right\}.
\]

Also, the generalized Lebesgue-Sobolev space \(W^{1, p(z)}(M) \) is defined as

\[
W^{1, p(z)}(M) := \{ u \in L^{p(z)}(M) : |\nabla u| \in L^{p(z)}(M) \},
\]

and we take the norm
\[\|u\|_{W^{1,p}(M)} = \|u\|_{L^p(M)} + \|\nabla u\|_{L^p(M)}, \]

which is equivalent to the norm
\[\|u\| := \inf \left\{ \xi > 0 : \int_M \left(a(z) \left| \frac{u(z)}{\xi} \right|^{p(z)} + \left| \nabla u(z) \right|^{p(z)} \right)dz \leq 1 \right\}, \]

(for details we refer to D’Aguì-Sciammetta [5]). So, we work with the norm \(\|u\| \) instead of \(\|u\|_{W^{1,p}(M)} \) on \(W^{1,p}(M) \). In proving our theorems, we make use of the following result, which links \(\|u\| \) to \(\rho(u) = \int_M \left(a(z) \left| u(z) \right|^{p(z)} + \left| \nabla u(z) \right|^{p(z)} \right)dz \) (see Fan-Zhao [9]).

Theorem 1. If \(u \in W^{1,p}(M) \), one has

(i) \(\|u\| < 1 (= 1, > 1) \iff \rho(u) < 1 (= 1, > 1); \)

(ii) if \(\|u\| > 1 \), then \(\|u\|^{p^{-}} \leq \rho(u) \leq \|u\|^{p^{+}}; \)

(iii) if \(\|u\| < 1 \), then \(\|u\|^{p^{-}} \leq \rho(u) \leq \|u\|^{p^{+}}. \)

For notational simplicity, by \(E \) we denote the set
\[E = W^{1,p}_{0,M_1}(M) = \{ u \in W^{1,p}(M) : u_{|M_1} = 0 \}, \]

where we consider the norm \(\|u\| \).

We recall that a function \(u \in E \) satisfying
\[\int_M \left| \nabla u(z) \right|^{p(z)-2} \nabla u(z) \nabla v(z)dz + \int_M a(z) |u(z)|^{p(z)-2}u(z)v(z)dz \]
\[= \xi \int_M g(z, u(z))v(z)dz + \mu \int_{M_2} h(\gamma(u(z)))\gamma(v(z))dz, \]

for all \(v \in E \), means a weak solution of problem \((P_{\xi, \mu}). \)

We mention the fact that \(W^{1,p}(M) \hookrightarrow W^{1,p^{-}}(M) \) continuously. Also, as \(N < p^{-} \), \(W^{1,p^{-}}(M) \hookrightarrow C_0(M) \) compactly, and hence \(W^{1,p}(M) \hookrightarrow C_0(M) \) compactly (so \(E \hookrightarrow C_0(M) \) compactly). If we put
\[k = \sup_{u \in W^{1,p}(M) \setminus \{0\}} \frac{\sup_{z \in M} |u(z)|}{\|u\|}, \]

then
\[\|u\|_{\infty} \leq k\|u\|, \]

with \(\|u\|_{\infty} \) to denote the usual norm in \(L^\infty(M). \)

The quantity
\[k_b = 2^{\frac{p^{-}-1}{p}} \max \left[\left(\frac{1}{\|a\|_1} \right)^{\frac{1}{p}}, \frac{\text{diam} (M)}{N^{\frac{1}{p^{-}}} \left(\frac{p^{-} - 1}{p^{-} - N} \right) \text{meas} (M)} \right], \]

where \(M \) is convex, \(\text{diam} (M) \) is the diameter of \(M \), \(\text{meas} (M) \) is the Lebesgue measure of \(M \), satisfies the inequality \(k_b(1 + \text{meas} (M)) \geq k \). This means that \(k_b(1 + \text{meas} (M)) \) is an upper bound of \(k \) (see [5]).
Next, let $G : M \times \mathbb{R} \to \mathbb{R}$ be the function given as
\[G(z,t) = \int_0^t g(z,y) \, dy, \quad \text{for all } t \in \mathbb{R}, \ z \in M, \]
and $H : \mathbb{R} \to \mathbb{R}$ be the function given as
\[H(t) = \int_0^t h(z) \, dz, \quad \text{for all } t \in \mathbb{R}. \]

Our approach is variational, which means that we study the critical points of the energy functional (say I_ξ) associated to problem (P_ξ, μ). So, we introduce the functional $B : E \to \mathbb{R}$ defined by
\[B(u) = \int_M G(z,u(z)) \, dz + \frac{\mu}{\xi} \int_{\Gamma_2} H(\gamma(u(z))) \, d\sigma, \quad \text{for all } u \in E. \]
Clearly, $B \in C^1(E, \mathbb{R})$ and has a compact derivative given as
\[B'(u)(v) = \int_M g(z,u(z))v(z) \, dz + \frac{\mu}{\xi} \int_{\Gamma_2} h(\gamma(u(z)))\gamma(v(z)) \, d\sigma, \quad \text{for all } u,v \in E. \]

Moreover, let $A : E \to \mathbb{R}$ be the functional given as
\[A(u) = \int_M \frac{1}{p(z)} [|\nabla u(z)|^{p(z)} + a(z)|u(z)|^{p(z)}] \, dz, \quad \text{for all } u \in E, \]
with A in $C^1(E, \mathbb{R})$. Note that A is Gâteaux differentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative $A' : E \to E^*$ is
\[A'(u)(v) = \int_M [|\nabla u(z)|^{p(z)-2}\nabla u(z)\nabla v(z) + a(z)|u(z)|^{p(z)-2}u(z)v(z)] \, dz, \quad \text{for all } u,v \in E. \]

We recall the following property of A' (see, for example, [13, Proposition 2.6]).

Proposition 1. The functional $A' : E \to E^*$ is a strictly monotone and bounded homeomorphism.

Finally, consider the functional $I_\xi : E \to \mathbb{R}$ defined by $I_\xi(u) = A(u) - \xi B(u)$ for all $u \in E$. We have
\[\inf_{u \in E} A(u) = A(0) = B(0) = 0. \]
We mention that the critical points of I_ξ are the weak solutions of problem (P_ξ, μ).

3. Three weak solutions of Bonanno-Marano type

We establish a theorem producing three weak solutions to problem (P_ξ, μ). So, we use the following three critical point result of Bonanno-Marano [4, Theorem 3.6].

Theorem 2. Let (E, E^*) be a Banach topological pair with E reflexive. Let $A : E \to \mathbb{R}$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative has a continuous inverse on E^*, $B : E \to \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $A(0) = B(0) = 0$. Assume that there exist $r > 0$ and $w \in E$, with $0 < r < A(w)$, such that
(i) \(\sigma = \frac{1}{r} \sup_{A(u) \leq r} B(u) < \frac{B(w)}{A(w)} = \rho; \)

(ii) for each \(\xi \in \left[\frac{1}{\rho}, \frac{1}{\sigma} \right] \), \(I_\xi := A - \xi B \) is coercive.

Then, for each \(\xi \in \left[\frac{1}{\rho}, \frac{1}{\sigma} \right] \), \(I_\xi \) has at least three distinct critical points in \(E \).

Here, we define \(\eta : \overline{M} \to \mathbb{R} \) by \(\eta(z) = \rho(z, \partial M) \), where \(\rho \) means the Euclidean distance. Let \(D = \eta(z_0) \) with \(z_0 \in M \) point of maximum for \(\eta \) so that \(B(z_0, D) = \{ z \in \mathbb{R}^N : \rho(z_0, z) < D \} \subset M \). Fixed \(s \in [1, +\infty[\), we set \(s_D = s^{-1} \) and \(\kappa_D = \frac{s}{(s-1)D} \) (note that \((1-s_D)D\kappa_D = 1 \)). For each \(\alpha \geq 1 \), we consider a function \(w_\alpha : M \to \mathbb{R} \) defined by

\[
(2) \quad w_\alpha(z) = \begin{cases}
0 & z \in M \setminus B(z_0, D), \\
\alpha & z \in B(z_0, s_D D), \\
\alpha \kappa_D(D - |z - z_0|) & z \in B(z_0, D) \setminus B(z_0, s_D D).
\end{cases}
\]

Now, we set \(\alpha := d \geq 1 \) (so we fix \(w_d : M \to \mathbb{R} \) and \(c \geq k \) with

\[
A(w_d)p^+ \int_M \max_{|y| \leq c} G(z, y)dz < \left(\frac{c}{k} \right)^{p^-} \int_{B(z_0, s_D D)} G(z, d)dz.
\]

Also, we choose

\[
\xi \in \Omega := \left[\frac{A(w_d)}{\int_{B(z_0, s_D D)} G(z, d)dz}, \frac{\left(\frac{c}{k} \right)^{p^-}}{p^+ \int_M \max_{|y| \leq c} G(z, y)dz} \right]
\]

so that

\[
(3) \quad \delta := \min \left\{ \frac{c^{p^-} - \xi^{p^+}k^{p^+} \int_M \max_{|y| \leq c} G(z, y)dz}{p^+k^{p^+}\sigma(M_2)\max_{|y| \leq c} H(y)}, \frac{1}{2k^{p^-}p^+\sigma(M_2)\limsup_{|y| \to +\infty} \frac{H(y)}{|y|^{p^-}}} \right\},
\]

with \(\sigma(M_2) := \int_{M_2} d\sigma \) and, as usual, we take \(r/0 = +\infty \).

Our first result is the following proposition, where we use the hypothesis:

(h) \(h : \mathbb{R} \to \mathbb{R} \) satisfies

\[
\limsup_{|z| \to +\infty} \frac{H(z)}{|z|^{p^-}} < +\infty.
\]

Recall that \(h \) is continuous, too.

Proposition 2. If (h) holds, then we can find \(\delta > 0 \) as in (3) such that, for each \(\mu \in [0, \delta] \), the functional \(I_\xi(u) = A(u) - \xi B(u) \), for all \(u \in E \) (\(\xi \in \Omega \)) is coercive whenever

\[
\limsup_{|z| \to +\infty} \frac{\sup_{y \in M} G(z, y)}{|y|^{p^-}} < \frac{1}{2c^{p^-}\text{meas}(M)} \int_M \max_{|y| \leq c} G(z, y)dz.
\]
Proof. Suppose

\[
\limsup_{|y| \to +\infty} \sup_{z \in M} \frac{G(z, y)}{|y|^{p^-}} > 0,
\]

so that we can find \(l > 0 \) with

\[
\limsup_{|y| \to +\infty} \sup_{z \in M} \frac{G(z, y)}{|y|^{p^-}} < l < \int_M \max_{|y| \leq c} G(z, y) \frac{dz}{2c^{p^-} \text{meas} (M)},
\]

\[
\Rightarrow \quad G(z, y) \leq l |y|^{p^-} + C_l, \quad \text{for each } y \in \mathbb{R} \text{ and } z \in M \text{ (for some } C_l > 0).}
\]

Since \((\xi k)^{p^-} > \xi p^+ \int_M \max_{|y| \leq c} G(z, y) dz\), we have

\[
(4) \quad \xi \int_M G(z, u(z)) dz \leq \xi l \int_M |u(z)|^{p^-} dz + \xi C_l \text{meas} (M)
\]

\[
\leq \frac{(\xi k)^{p^-} \text{meas} (M)}{p^+ \int_M \max_{|y| \leq c} G(z, y) dz} \left(l \int_M |u(z)|^{p^-} dz + C_l \text{meas} (M) \right)
\]

\[
\leq \frac{(\xi k)^{p^-} \text{meas} (M)}{p^+ \int_M \max_{|y| \leq c} G(z, y) dz} (lk^{p^-} ||u||^{p^-} + C_l) \quad \text{for all } u \in E \text{ (by (1))}
\]

So, as \(\delta > \mu \), we get

\[
1 > 2\mu k^{p^-} p^+ \sigma(M_2) \limsup_{|y| \to +\infty} \frac{H(y)}{|y|^{p^-}},
\]

\[
\Rightarrow \quad H(y) \leq \frac{|y|^{p^-}}{2\mu k^{p^-} p^+ \sigma(M_2)} + C_\mu, \quad \text{for all } y \in \mathbb{R} \text{ (for some } C_\mu > 0).}
\]

By (1), we obtain

\[
(5) \quad \int_{M_2} H(\gamma(u(z))) d\sigma \leq \frac{1}{2\mu k^{p^-} p^+ \sigma(M_2)} \int_{M_2} |u(z)|^{p^-} dz + C_\mu \sigma(M_2)
\]

\[
\leq \frac{1}{2\mu p^+} ||u||^{p^-} + C_\mu \sigma(M_2), \quad \text{for all } u \in E.
\]

If \(||u|| \geq 1 \), (4) and (5) lead to

\[
I_\xi(u) = A(u) - \xi B(u)
\]

\[
\geq \frac{1}{p^+} ||u||^{p^-} - \frac{(\xi k)^{p^-} \text{meas} (M)}{p^+ \int_M \max_{|y| \leq c} G(z, y) dz} (lk^{p^-} ||u||^{p^-} + C_l) - \frac{1}{2p^+} ||u||^{p^-} - \mu C_\mu \sigma(M_2)
\]

\[
= \frac{1}{p^+} \left(\frac{1}{2} - \frac{e^{p^-} \text{meas} (M)}{\int_M \max_{|y| \leq c} G(z, y) dz} l \right) ||u||^{p^-} - \frac{(\xi k)^{p^-} \text{meas} (M)}{p^+ \int_M \max_{|y| \leq c} G(z, y) dz} - \mu C_\mu \sigma(M_2).
\]
By the choice of \(l \), we get
\[
\frac{1}{2} - \frac{c^p^- \text{meas}(M)}{\int_M \max_{|y| \leq c} G(z, y) dz} l > 0
\]
\(\Rightarrow \) \(I_\xi \) is coercive.

On the other hand, if
\[
\limsup_{|y| \to +\infty} \frac{\sup_{z \in M} G(z, y)}{|y|^{p^-}} \leq 0,
\]
we can find a positive constant \(C \) with \(G(z, y) \leq C \) for all \(y \in \mathbb{R} \) and \(z \in M \). So, following the same lines as above, we deduce that
\[
I_\xi(u) \geq \frac{1}{2p^+} \|u\|^{p^-} - \frac{(c_k)^{p^-} \text{meas}(M) C}{p^+ \int_M \max_{|y| \leq c} G(z, y) dz} - \mu C \sigma(M_2)
\]
\(\Rightarrow I_\xi \) is (again) coercive.

\(\square \)

We are ready to establish the existence of three weak solutions. To this aim we suppose that there are \(d \geq 1 \) and \(c \geq k \) with

\[
A(w_d) > \left(\frac{c}{k} \right)^{p^-},
\]
where \(w_d : M \to \mathbb{R} \) is given as in (2), satisfying

\((S_1) \) \(p^+ A(w_d) \int_M \max_{|y| \leq c} G(z, y) dz < \left(\frac{c}{R} \right)^{p^-} \int_{B(z_0, \delta D)} G(z, d) dz; \)

\((S_2) \) \limsup_{|y| \to +\infty} \frac{\sup_{z \in M} G(z, y)}{|y|^{p^-}} < \frac{\int_M \max_{|y| \leq c} G(z, y) dz}{2e^{p^-} \text{meas}(M)}; \)

\((S_3) \) \(G(z, y) > 0 \) for all \(z \in M, y \in [0, d]. \)

Theorem 3. If \((h), (S_1)-(S_3)\) hold, then we can find \(\delta > 0 \) as in (3) such that, for each \(\mu \in [0, \delta] \), problem \((P_{\xi, \mu})\) has at least three weak solutions in \(E (\xi \in \Omega). \)

Proof. We set
\[
r := \frac{1}{p^+} \left(\frac{c}{k} \right)^{p^-},
\]
so that, by (6), we have
\[
A(w_d) > \left(\frac{c}{k} \right)^{p^-} > r.
\]

By Theorem 1, for all \(u \in E \) such that \(u \in A^{-1}([\infty, r]) \), we obtain
\[
\min \{ \|u\|^{p^+}, \|u\|^{p^-} \} \leq rp^+,
\]
\(\Rightarrow \|u\| \leq \max \left\{ (p^+ r)^{\frac{1}{p^+}}, (p^+ r)^{\frac{1}{p^-}} \right\} = \frac{c}{k}, \)
\(\Rightarrow \max_{z \in M} |u(z)| \leq k \|u\| \leq c \) (by (1)).
Also, we have

\[B(w_d) = \int_M G(z, w_d(z)) \, dz + \frac{\mu}{\xi} \int_{M_2} H(\gamma(w_d(z))) \, d\sigma. \]

So, we deduce that

\[
\frac{1}{r} \sup_{A(u) \leq r} B(u) \leq \frac{\int_M \max_{|y| \leq c} G(z, y) \, dz + \frac{\mu}{\xi} \int_M \max_{|y| \leq c} H(y) \, d\sigma}{\frac{1}{p^r} \left(\frac{c}{k} \right)^{p^r}}
\]

\[= p^+ \left(\frac{k}{c} \right)^{p^r} \left[\int_M \max_{|y| \leq c} G(z, y) \, dz + \frac{\mu}{\xi} \sigma(M_2) \max_{|y| \leq c} H(y) \right]. \]

Now, if \(\max_{|y| \leq c} H(y) = 0 \), we have

\[
\frac{1}{r} \sup_{A(u) \leq r} B(u) < \frac{1}{\xi},
\]

and if \(\max_{|y| \leq c} H(y) > 0 \), it turns out to be true as

\[
\mu < \frac{c^{p^r} - \xi p^+ k^{p^r} \int_M \max_{|y| \leq c} G(z, y) \, dz}{p^+ k^{p^r} \sigma(M_2) \max_{|y| \leq c} H(y)}.
\]

By \((S_3)\) we get

\[
B(w_d) \geq \int_{B(z_0, sD)} G(z, d) \, dz
\]

\[
\Rightarrow \frac{B(w_d)}{A(w_d)} \geq \frac{\int_{B(z_0, sD)} G(z, d) \, dz}{A(w_d)} > \frac{1}{\xi}
\]

\[
\Rightarrow \frac{B(w_d)}{A(w_d)} > \frac{1}{r} \sup_{A(u) \leq r} B(u),
\]

\[
\Rightarrow \text{Theorem 2}(i) \text{ is true.}
\]

By Proposition 2, we know that Theorem 2(ii) holds true. Since all the regularity hypotheses of Theorem 2 on \(A \) and \(B \) are true, then Theorem 2 gives us the existence of at least three critical points of \(I_\xi \), which are three weak solutions of \((P_{\xi,\mu}) \). \(\square \)

4. THREE WEAK SOLUTIONS OF BONANNO-CANDITO TYPE

In this section, we do not use hypothesis \((h)\) in establishing the existence of three weak solutions. Here, we assume that \(g \) and \(h \) are nonnegative. We apply the following three critical points result of Bonanno-Candito [3, Theorem 3.3].

Theorem 4. Let \((E, E^*)\) be a Banach pair with \(E \) reflexive. Let \(A : E \to \mathbb{R} \) be a convex, coercive and continuously Gâteaux differentiable functional whose derivative has a continuous inverse on \(E^* \), \(B : E \to \mathbb{R} \) be a continuously Gâteaux differentiable functional whose derivative is compact with

\[
\inf_{u \in E} A(u) = A(0) = B(0) = 0.
\]
If there exist \(r_1, r_2 > 0 \) and \(w \in E \), with \(4r_1 < 2A(w) < r_2 \), satisfying

(i) \(\frac{1}{r_1} \sup_{A(u)<r_1} B(u) < \frac{2B(w)}{3A(w)} \);

(ii) \(\frac{1}{r_2} \sup_{A(u)<r_2} B(u) < \frac{B(w)}{3A(w)} \);

(iii) \(\inf_{s \in [0,1]} B(su_1 + (1-s)u_2) \geq 0 \), for all \(u_1, u_2 \in E \), with \(B(u_1) \geq 0 \) and \(B(u_2) \geq 0 \), which are local minima of \(I_\xi = A - \xi B \), for each \(\xi \in \hat{\Omega} \), where

\[\hat{\Omega} := \left\{ \frac{3A(w)}{2}, \min \left\{ \frac{r_1}{\sup_{A(u)<r_1} B(u)}, \frac{r_2}{\sup_{A(u)<r_2} B(u)} \right\} \right\}, \]

then \(I_\xi \) has at least three distinct critical points in \(A^{-1}([-\infty, r_2]) \).

Next, we suppose that there are \(d \geq 1 \) and \(c_1, c_2 > 0 \), with \(\min\{c_1, c_2\} \geq k \), such that

\[\frac{3}{2} \frac{A(w_d)}{\int_{B(z_0, sDD)} G(z, d)dz} < \min \left\{ \left(\frac{c_1}{k} \right)^{p^-}, \frac{1}{p\int M G(z, c_1)dz}, \frac{2p}{p\int M G(z, c_2)dz} \right\}, \]

where \(w_d : M \to \mathbb{R} \) is given as in (2), satisfying

\[(S'_1) \frac{2}{p^+} \left(\frac{c_1}{k} \right)^{p^-} < A(w_d) < \frac{1}{2p^+} \left(\frac{c_1}{k} \right)^{p^-}; \]

\[(S'_2) \max \left\{ \frac{\int M G(z, c_1)dz}{\left(\frac{c_1}{k} \right)^{p^-}}, \frac{\int M G(z, c_2)dz}{\left(\frac{c_1}{k} \right)^{p^-}} \right\} < \frac{2}{3} \frac{\int_{B(z_0, sDD)} G(z, d)dz}{\Phi(w_d)}; \]

\[(S'_3) g(z, y) \geq 0 \) for each \((z, y) \in M \times \mathbb{R}. \)

Here, we consider

\[\xi \in \hat{\Omega} := \left[\frac{3}{2} \frac{A(w_d)}{\int_{B(z_0, sDD)} G(z, d)dz}, \frac{1}{p\int M G(z, c_1)dz}, \frac{\left(\frac{c_1}{k} \right)^{p^-}}{2p\int M G(z, c_2)dz} \right], \]

so that

\[\delta^* := \min \left\{ \left(\frac{c_1}{k} \right)^{p^-} - \xi p\int M G(z, c_1)dz, \left(\frac{c_1}{k} \right)^{p^-} - \frac{2p\int M G(z, c_2)dz}{\sigma(M_2)H(c_1)}, \frac{(c_1)^{p^-} - 2\xi p\int M G(z, c_2)dz}{2p\sigma(M_2)H(c_2)} \right\}. \]

Theorem 5. If \((S'_1)-(S'_3)\) hold, then we can find \(\delta^* > 0 \) as in (7) such that, for each \(\mu \in [0, \delta^*] \), problem \((P_\xi, \mu) \ (\xi \in \hat{\Omega}) \) has at least three distinct weak solutions \(u_*, u^*, \tilde{u} \), whose values range is the interval \([0, c_2]\).

Proof. For reader convenience we set \(r_1 := \frac{1}{p^+} \left(\frac{c_1}{k} \right)^{p^-} \) and \(r_2 := \frac{1}{p^+} \left(\frac{c_1}{k} \right)^{p^-} \). So, by \((S'_1)\) we have \(4r_1 < 2A(w_d) < r_2 \). As \(\delta^* > \mu \) and \(H(z) \geq 0 \) for \(z > 0 \), we obtain

\[\frac{1}{r_1} \sup_{A(u) \leq r_1} B(u) \leq \sup_{A(u) \leq r_1} \frac{\int M G(z, u(z))dz + \frac{\mu}{\xi} \int M \gamma(u(z)))d\sigma}{\frac{1}{p^+} \left(\frac{c_1}{k} \right)^{p^-}} \]

\[= p^+ \left(\frac{k}{c_1} \right)^{p^-} \left[\int_M G(z, c_1)dz + \frac{\mu}{\xi} \sigma(M_2)H(c_1) \right] \]
Also, we have

\[
\frac{2}{r_2} \sup_{A(u) \leq r_2} B(u) \leq 2 \sup_{A(u) \leq r_2} \frac{\int_M G(z, u(z))dz + \frac{\mu}{\xi} \int_{M_2} H(\gamma(u(z)))d\sigma}{\frac{1}{p^+} \left(\frac{c_2}{\xi} \right)^p} \\
\leq 2 \sup_{A(u) \leq r_2} \frac{\int_M G(z, u(z))dz}{\frac{1}{p^+} \left(\frac{c_2}{\xi} \right)^p} \\
< \frac{1}{\xi} \frac{2 \int_{B(z_0, sD)} G(z, d)dz}{A(w_d)} \leq \frac{2 B(w_d)}{3 A(w_d)}.
\]

This means that Theorem 4(i)-(ii) hold true.

Next, consider two local minima of \(I_\xi \), say \(u_* \), \(u^* \) \in \(E \). Clearly, \(u_* \), \(u^* \) are critical points of \(I_\xi \), and hence weak solutions of \((P_{\xi, u^*}) \). We have to show that \(u_* \), \(u^* \geq 0 \). Let \(w \) be a weak solution of \((P_{\xi, u}) \) so that

\[
\int_M \left| \nabla w \right|^{p(z)-2} \nabla w \cdot \nabla v|dz| + \int_M a(z)w^{p(z)-2}w|v|dz = \xi \int_M g(z, w)v dz + \mu \int_{M_2} h(\gamma(w))\gamma(v)d\sigma
\]

for all \(v \in E \). So, if we choose \(v = \min\{w, 0\} = w^- \in E \), we get

\[
\int_M \left| \nabla w^- \right|^{p(z)}dz + \int_M a(z)w^-^{p(z)}dz = \xi \int_M g(z, w^-)w^-dz + \mu \int_{M_2} h(\gamma(w^-))\gamma(w^-)d\sigma \leq 0
\]

(recall the sign assumptions on the data).

This leads to \(\|w^-\| = 0 \), which is absurd, and hence \(u_* \), \(u^* \) are nonnegative. So, we have

\[
su_* + (1 - s)u^* \geq 0 \quad \text{for all } s \in [0, 1],
\]

\[
\Rightarrow B(su_* + (1 - s)u^*) \geq 0 \quad \text{for all } s \in [0, 1],
\]

\[
\Rightarrow \quad \text{Theorem 4(iii) is true.}
\]

Since all the regularity hypotheses of Theorem 4 on \(A \) and \(B \) remain true, we conclude that \((P_{\xi, u}) \) has at least three distinct weak solutions for each \(\xi \in \widehat{\Omega} \). \(\square \)

References

(C. Vetro) UNIVERSITY OF PALERMO, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, VIA ARCHIROFI 34, 90123 - PALERMO, ITALY

E-mail address: calogero.vetro@unipa.it

(F. Vetro) NONLINEAR ANALYSIS RESEARCH GROUP, TON DUC THANG UNIVERSITY, HO CHI MINH CITY, VIETNAM; FACULTY OF MATHEMATICS AND STATISTICS, TON DUC THANG UNIVERSITY, HO CHI MINH CITY, VIETNAM

E-mail address: francescavetro@tdtu.edu.vn