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The Oliver and Pharr �J. Mater. Res. 7, 1564 �1992�� procedure is a widely used tool to analyze
nanoindentation force curves obtained on metals or ceramics. Its application to polymers is,
however, difficult, as Young’s moduli are commonly overestimated mainly because of viscoelastic
effects and pileup. However, polymers spanning a large range of morphologies have been used in
this work to introduce a phenomenological correction factor. It depends on indenter geometry: sets
of calibration indentations have to be performed on some polymers with known elastic moduli to
characterize each indenter. © 2006 American Institute of Physics. �DOI: 10.1063/1.2364863�

The standard Oliver and Pharr �OP� procedure1 is often
used to analyze the unloading part of force curves, i.e., the
relation between applied load and penetration depth obtained
by a nanoindentation. This procedure has its roots in Sned-
don’s contact mechanics model2 that holds for classical
theory of elasticity. However, the capability of polymers to
deform lies in their ability to adjust their chain conformation
on a molecular level3 and the mobility of the macromol-
ecules with their structural arrangements �depending on mo-
lecular and morphological constraints� gives rise to a well-
known pronounced time dependence of mechanical
properties. Viscoelasticity is therefore intrinsic to the nature
of polymers and its effects cannot be eliminated: it has to be
properly taken into account with special contact mechanics
models and nanoindentation procedures.4 As a consequence,
the OP procedure can be used to study polymers with a quali-
tative analysis, comparing different responses to nanoinden-
tation, but quantitative analysis is still a challenging issue.5,6

Several adjustments have been proposed in the literature,
e.g., the calibration of the area function on polycarbonate,
but despite these efforts, the OP procedure still usually over-
estimates Young’s moduli of polymers.6 The use of high
loading rates7 and holding times,7 thus maintaining the maxi-
mum load constant for a certain amount of time, can mini-
mize viscoelastic contributions during the unloading curve;
nevertheless Young’s modulus estimation is not satisfactory.6

For this reason, we try in this work to introduce a purely
phenomenological correction factor, being aware that it does
not allow us to analyze the force curve in a viscoelastic

framework. However, the accuracy of Young’s modulus es-
timation is considerably improved. In summary, seven differ-
ent polymeric samples characterized by semicrystalline,
amorphous, and mesomorphic morphologies were used.

The nanoindentation system used in this study was an
assembly of a NT-MDT �Moscow, Russian Federation�
atomic force microscope with the standard head replaced by
a triboscope indentor system �Hysitron Inc., Minneapolis,
MN� which can apply a programmed load history on the
indenter.

A standard fused silica sample was used to calibrate in-
strument compliance as well as the area function of a Berk-
ovich indenter according to OP.1 Although spherical indent-
ers are often employed in the literature in order to induce
small penetration depths in polymers, we chose in this work
a Berkovich indenter to comply with the standard OP proce-
dure, provided that the applied loads were tiny enough to
obtain penetration depth smaller than 200 nm. Indentations
were performed in load-controlled mode after collecting im-
ages of the area to be indented in order to check surface
roughness in the selected area. Load was initially ramped at
constant rate up to the selected value, kept constant for 10 s
and brought back to zero with the same rate. Load varied in
the range of 10–140 �N, and it was applied with high load-
ing rate, 30 or 100 �N/s. Thermal drift was measured and
corrected for each indentation.

The polymers used in this work covered a broad range of
morphologies, glassy amorphous, and semicrystalline ones.
Atactic polystyrene �PS�, N5000, was kindly supplied from
Nova Chemicals, and polycarbonate, Lexan 121R, from GE
Plastics. The isotactic polypropylene �iPP�, trade namea�Electronic mail: piccarolo@unipa.it
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T30G, was kindly supplied by Montell. In case of iPP, the
samples were prepared by melt solidification under different
conditions using cooling rates �11.5, 80, 360, and 888 K/s�
typical of processing.8 Under these conditions they develop a
broad range of morphologies from purely � monoclinic up to
completely mesomorphic at low and high cooling rates,
respectively.8 Depending on the morphology, whose homo-
geneity is preserved by the solidification procedure adopted,
the samples have different mechanical properties. Young’s
moduli vary between 1.2 GPa for the semicrystalline one
�cooling rate of 11.5 K/s� and 700 MPa �888 K/s� when the
completely mesomorphic morphology is obtained.9

Nanoindentation experiments can qualitatively capture
the mechanical behavior of different polymers and mor-
phologies. For example, nanoindentations performed at peak
load of 30 �N, not shown here, gives rise to penetration
depths of approximately 60, 95, and 110 nm for amorphous
PS, semicrystalline and mesomorphic iPP, respectively.
These penetration depths correctly reflect the stiffness of the
different morphologies. In order to switch to a quantitative
analysis of the force curves, the OP procedure has been used
in this work. The contact stiffness S, i.e., the slope of the
unloading curve, is measured from each force curve; it al-
lows to estimate the reduced modulus Er through the equa-
tions

hc = hmax − �Pmax/S , �1a�

S = ��
2

��
Er

�Ac, �1b�

where Ac is the contact area, hc is the evaluated contact
depth, and hmax and Pmax are the maximum penetration depth
and applied load, respectively. Three correction factors are
used in these equations �usually called �, �, and �� and the
choice of their values might introduce some difficulties.1,10

Recently Troyon and Martin11 showed that the value for
�, a geometrical parameter,1,10 has to be evaluated for each
force curve from the unloading exponent, m using a power
fitting law. Even though � changes slightly in the normal
operating conditions adopted to test metals or ceramics,11

where m is bounded between 1 and 2, its variation is defi-
nitely debatable for polymers.5,6 Therefore, we used the com-
mon value of 0.75.1 The correction factor �, equal to 1.034
�Ref. 12� for the Berkovich indenter, is a purely geometric
factor,1,10 which takes into account that the indenter is not a
perfect cone. The correction factor � arises from the im-
proper account, in Sneddon’s solution, for radial material
displacement into the contact region.13 Following Hay et
al.,13 the factor � depends, for a cone indenter, on sample
Poisson ratio and the indenter half-included angle. This cor-
rection factor takes the value of 1.067 in the case of typical
Poisson ratio of 0.3 and the cone with half-included angle
such as to give rise to a ratio of displaced volume and pen-
etration depth equivalent to the Berkovich indenter.13

The OP analysis was performed with these correction
factors and the values for contact stiffness, i.e., the slope of
the unloading curve and contact depth from the force curves
collected on all the materials studied in this work. Young’s
moduli obtained from nanoindentations performed in load-
controlled mode with a loading rate of 30 �N/s are plotted
in Fig. 1 as the filled series in a 1:1 plot against the elastic
moduli measured through macroscopic tensile tests. Even

tough some difference might be expected since bulk modulus
is compared in Fig. 1 to a local measurement, it can be
clearly observed that the disagreement is evident, with
Young’s modulus overestimated up to 3.3 times.6 Neither a
depressed glass transition at the surface, due to increased
mobility, should play a role implying a lower modulus than
the bulk.

It is worth mentioning that the magnitude of this devia-
tion is so large that it cannot be due to a wrong choice of the
abovementioned correction factors, which can change the re-
sults of up to approximately ±15%.

The unusual high values found for the elastic moduli
could be explained with the observation that a compression
modulus is being measured through nanoindentations, and it
can be larger than the one macroscopically measured through
tensile tests. However, the magnitude of the deviation �the E
from nanoindentation is often several times bigger than the
one measured in macroscopic tests� makes this conjecture
quite unreasonable when considering that for most polymers
compressive and tensile elastic moduli differ at most by
20%.14

Once the failure of the OP procedure has been identified,
a phenomenological correction factor � can be introduced for
each force curve, as the ratio of the modulus obtained by the
nanoindentation and the expected one,

� = EOP/Eexpected, �2�

where, in this case, the expected modulus Eexpected has been
replaced by the macroscopic one measured through tensile
tests.

Here we assume that the correction factor depends on
the material, i.e., on elastic modulus, and on penetration
depth. Since Fig. 1 shows that the deviation from the correct
elastic modulus is larger for more compliant samples, an
inverse relation can be assumed for � on E. Concerning pen-
etration depth, a more complex relation is expected due to
the nonideality, i.e., bluntness, of the tip which is assumed to
be ideally sharp. Identifying the relationship �=��p ,E� is the
aim of the following discussion.

The correction factor � is plotted in Fig. 2 against the
elastic modulus of the different polymers and fused silica at
various penetration depths, i.e., 20, 50, 100, and 140 nm. It is

FIG. 1. Comparison between Young’s moduli obtained by macroscopic tests
and by the Oliver and Pharr procedure, with �empty series� and without
�filled series� the � correction factor.
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worth noting that the very low roughness of the samples, in
the order of 1 nm on a 2�2 �m2 area, allowed us to use
such shallow penetration depths without accounting for con-
tact between single asperities.15 The fitting equation to this
plot can be

� = 1 + B�p�/E , �3�

where B is the only fitting parameter and depends on pen-
etration depth. The form of Eq. �3� is particularly attractive
because � becomes 1 for a stiff material such as fused silica,
thus not introducing any correction to the OP procedure,
while it increases the more compliant is the material. The
parameter B dependence on penetration depth was afterwards
fitted with a power law relation, as shown in Fig. 3.

The final dependence for the correction factor is then

� = 1 + apb/E . �4�

Although it might seem that the knowledge of the real
elastic modulus is needed to evaluate the correction factor �,
a few iterations on Eqs. �2� and �4� lead to the correct elastic
modulus once a and b are known through a preliminary cali-
bration.

The method was finally checked by calibrating the pa-
rameters a and b on the polymer with highest modulus, i.e.,
PS, in the range of penetration depths of 20–120 nm. The
parameters a and b were determined to be 1.134�1010 and
−0.485, respectively.

Using the correction factor �, the elastic moduli of all
the different polymers studied in this work were recalculated
from the data corresponding to the filled series in Fig. 1,
leading to the results shown in Fig. 1 as the empty series.

In summary, a satisfactory evaluation of elastic moduli
of polymers can be obtained by coupling the common cali-
brations of the Oliver and Pharr procedure on fused silica
with the calibration of the correction factor �, in the range of
penetration depths of interest, on polymer samples of known
elastic moduli. It is worth mentioning that particular care
must be taken concerning the choice of Young’s modulus to
be inserted in Eq. �4�. Indeed, mechanical properties of poly-
mers are very often assumed on the basis of data in the
literature, which can result in large mistakes due to the dif-
ferent molecular characteristics �molecular weight, molecular
weight distribution, etc.� as well as, and in particular, to the
morphology developed during sample preparation.16 For ex-
ample, avoiding the use of injection moulded semicrystalline
samples is highly recommended because thermal gradients,
pressure, and shear at the near surface can give rise to a
morphology gradient and thus to an inhomogeneous, un-
known a priori, structure.17
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FIG. 2. Relation between the correction factor � and the macroscopic
Young’s modulus at different penetration depths. Fitting lines as in Eq. �3�.

FIG. 3. Power law fitting of the parameter B, as obtained from Fig. 2 and
Eq. �3�, vs penetration depth.

171905-3 Tranchida et al. Appl. Phys. Lett. 89, 171905 �2006�


