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COUNTABLY COMPACT WEAKLY WHYBURN SPACES

SANTI SPADARO

Abstract. The weak Whyburn property is a generalization of the classical sequen-
tial property that was studied by many authors. A space X is weakly Whyburn
if for every non-closed set A ⊂ X there is a subset B ⊂ A such that B \ A is
a singleton. We prove that every countably compact Urysohn space of cardinal-
ity smaller than the continuum is weakly Whyburn and show that, consistently,
the Urysohn assumption is essential. We also give conditions for a (countably com-
pact) weakly Whyburn space to be pseudoradial and construct a countably compact
weakly Whyburn non-pseudoradial regular space, which solves a question asked by
Bella in private communication.

1. Introduction

The letter X denotes a Hausdorff topological space. The weak Whyburn prop-
erty is a natural refinement of the sequential property that relies on the following
generalization of convergent sequence.

Definition 1.1. Given a space X, we say that A ⊂ X is an almost closed set
converging to x if A \ A = {x}.

Definition 1.2. A space X is called weakly Whyburn if for every non-closed set
A ⊂ X there is an almost closed set B ⊂ A which converges to a point outside of A.

Weakly Whyburn spaces were introduced by Simon [11] under the name of WAP
spaces.

Clearly, every sequential space is weakly Whyburn. Let p ∈ βω \ ω. Then the
space ω∪{p} with the topology induced from the Čech-Stone compactification of the
integers βω shows that the previous implication cannot be reversed. Bella [3] noted
that every compact weakly Whyburn space is sequentially compact and satisfies the
following weakening of sequentiality.

Recall that a transfinite sequence {xα : α < κ} ⊂ X (where κ is a cardinal) is
said to converge to a point x ∈ X if for every open neighbourhood U of x there is an
ordinal β such that {xα : α > β} ⊂ U .
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2 SANTI SPADARO

Definition 1.3. A space X is called pseudoradial if for every non-closed set A ⊂ X,
there is a point x ∈ A \ A and a transfinite sequence {xα : α < κ} ⊂ A such that
{xα : α < κ} converges to x.

Bella [3] proved that every compact weakly Whyburn space is pseudoradial and Dow
[7] constructed under ♦ an example of a compact pseudoradial non-weakly Whyburn
space. The existence of such a space within the usual axioms of ZFC is still an open
problem. Recall that a P -space is a topological space where every Gδ set is open. The
behavior of Lindelöf P -spaces is closer to that of compact spaces than that of general
Lindelöf spaces. For example, a countable product of Lindelöf P -spaces is Lindelöf
and every Lindelöf P -space is normal. In [4] we proved a version of Bella’s result for
Lindelöf P -spaces: every Lindelöf weakly Whyburn P -space such that ψ(X) < ℵω

is pseudoradial. It is still an open question whether there exists a Lindelöf weakly
Whyburn non-pseudoradial P -space.

It would be interesting to know whether the Lindelöf property can be weakened
to countable extent (that is, every closed discrete set is countable) in our result. We
prove that this is the case for spaces of character at most ω2. We also construct an
example of a countably compact weakly Whyburn regular space which is not pseudo-
radial, thus showing that compactness cannot be weakened to countable compactness
in Bella’s result. This answers a question asked by Bella in private communication.

In Section 2 we prove that every countably compact Urysohn space of cardinality
smaller than the continuum is weakly Whyburn and show that the Urysohn assump-
tion is essential by constructing a countably compact Hausdorff non-weakly Whyburn
space of cardinality ω1.

In our proofs we will sometimes use elementary submodels of the structure (H(µ), ǫ).
Dow’s survey [6] is enough to read our paper, and we give a brief informal refresher
here. Recall that H(µ) is the set of all sets whose transitive closure has cardinality
smaller than µ. When µ is regular, H(µ) is known to satisfy all axioms of ZFC, except
for the power set axiom, but as long as µ is large enough to contain everything we
need in our proof, this will not be a problem. We say, informally, that a formula is
satisfied by a set S if it is true when all bounded quantifiers are restricted to S. A set
M ⊂ H(µ) is said to be an elementary submodel of H(µ) (and we write M ≺ H(µ))
whenever a formula with parameters in M is satisfied by H(µ) if and only if it is
satisfied by M .

The downward Lowenheim-Skolem theorem guarantees that for every S ⊂ H(µ),
there is an elementary submodel M ≺ H(µ) such that S ⊂ M and |M | ≤ |S| · ω.
This theorem is sufficient for many applications, but it is often useful forM to satisfy
some kind of closure property. For example, M is said to be ω-covering if for every
A ∈ [M ]ω there is B ∈ M such that A ⊂ B and |B| ≤ ℵ0. Given a large enough
regular µ and S ∈ [H(µ)]ω there is M ≺ H(µ) such that S ⊂ M , M is ω-covering
and |M | = ℵ1.
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The following theorem is also used often: let M be an elementary submodel of a
large enough H(µ) such that κ + 1 ⊂M and let S be a κ-sized element of M . Then
S is a subset of M (in particular, every countable element of an infinite elementary
submodel is always a subset of it).

All undefined notions can be found in [8] for topology and [10] for set theory.

2. When is a small countably compact space weakly Whyburn?

Recall that a space is Urysohn if for every pair of points x 6= y there are open
neighbourhoods U of x and V of y such that U ∩ V = ∅.

Theorem 2.1. Every countably compact Urysohn space of cardinality < 2ℵ0 is weakly
Whyburn.

Proof. Let X be a countably compact Urysohn space. Suppose that X is not weakly
Whyburn. Then there is a non-closed set A ⊂ X such that no almost closed set
converges outside of it.

Set A∅ = A. Suppose that for some n < ω we have constructed subsets {Af : f ∈
2≤n} of A such that:

(1) Af \ A 6= ∅, for every f ∈ 2≤n.

(2) For every i ≤ n and for every f, g ∈ 2i such that f 6= g, we have Af ∩Ag = ∅.
(3) Af ⊂ Ag, whenever f ⊃ g.

Given f ∈ 2n, let xf⌢0, xf⌢1 be distinct points such that xf⌢0, xf⌢1 ∈ Af \A. Let
Uf⌢0 and Uf⌢1 be neighbourhoods of xf⌢0 and xf⌢1 respectively such that Uf⌢0 ∩
Uf⌢1 = ∅ and let Af⌢0 = Uf⌢0 ∩ Af and Af⌢1 = Uf⌢1 ∩Af .

Let {Af : f ∈ 2<ω} be the family obtained at the end of the induction. For every
f ∈ 2ω, use countable compactness to pick a point xf ∈

⋂
{Af↾n : n < ω}.

We claim that the map φ : 2ω → X defined by φ(f) = xf is one-to-one and hence
|X| ≥ 2ℵ0 . Indeed, if f 6= g then there is n < ω such that f ↾ n 6= g ↾ n. Now
xf ∈ Af↾n and xg ∈ Ag↾n and Af↾n ∩ Ag↾n = ∅, which implies that xf 6= xg. �

The above theorem cannot be extended to Hausdorff spaces, unless CH holds. The
counterexample is a variation on a space from [5]. First of all, we need the following
lemma.

Recall that a weak P -space is a space where countable sets are closed.

Lemma 2.2. There is a regular weak P -space (Z, ρ) that is not weakly Whyburn.

Proof. Let X = σ(2ω1) = {f ∈ 2ω1 : |f−1(1)| < ℵ0}, with the topology induced from
the topology generated by the Gδ subsets of 2

ω1. Let X ′ be a disjoint copy of X and
define a topology ρ on Z = X ∪ X ′ as follows. Fix a bijection F : X → X ′. We
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declare all points of X ′ to be isolated and a basic neighbourhood of a point x ∈ X to
be of the form U ∪ F (U) \ F (N), where U is a neighbourhood of x in X and N is a
nowhere dense subset of X .

Claim 1. (Z, ρ) is a weak P -space.

Proof of Claim 1. Let C ⊂ Z be a countable set. Since X is a P -space, the set
N := F−1(C ∩X ′) is nowhere dense.

Let x /∈ C. If x ∈ X ′, then {x} is a neighbourhood of x disjoint from C, while if
x ∈ X then, since X is a P -space, there is an open set U ⊂ X (with its usual topology)
such that U ∩ (C ∩X) = ∅. Therefore U ∪ F (U) \ F (N) is an open neighbourhood
of x disjoint from C. △

Claim 2. (Z, ρ) is not weakly Whyburn.

Proof of Claim 2. We claim that no almost closed set converges outside ofX ′. Indeed,
let A ⊂ X ′ be such that A \ X ′ 6= ∅. Then F−1(A) is somewhere dense in X , and

hence we can find a non-empty open set U lying inside F−1(A). But then U ⊂ A\A.
Since X does not have any isolated points, the set U has infinite cardinality, and that
implies that A is not an almost closed set. △

�

Theorem 2.3. There is a countably compact space of cardinality ℵ1 which is not
weakly Whyburn.

Proof. Let Y = ω1 and identify the set of all successor ordinals with the space Z
defined in Lemma 2.2. We define a topology τ on Y by declaring a set U ⊂ Y to be
open if U is open in the order topology and U ∩ Z is open in (Z, ρ).

Claim 1. (Y, τ) is sequentially compact.

Proof of Claim 1. Let S ⊂ Y be a countable infinite set. Pick xn ∈ S such that
xn−1 < xn, for every n ≥ 1. Then {xn : n < ω} converges to sup{xn : n < ω} in the
order topology. But then this is true for the coarser topology of (Y, τ) as well. △

Claim 2: (Y, τ) is a Hausdorff space.

Proof of Claim 2. Let x, y ∈ Y be distinct points. Let I and J be disjoint intervals
in the order topology such that x ∈ I and y ∈ J . Then I ∩ Z and J ∩ Z are disjoint
countable subsets of Z. Since countable sets are closed in Z we can find disjoint sets
U and V ,open in Z, such that I ∩ Z ⊂ U and J ∩ Z ⊂ V . So I ∪ U and J ∪ V are
disjoint open subsets of Y which separate x and y. △

�
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Also, the cardinality of the continuum is the smallest possible in Theorem 2.1, as
the following well-known example shows (details are included for the reader’s conve-
nience).

Example 2.4. A countably compact regular space of cardinality continuum which is
not weakly Whyburn.

Proof. Consider the Čech-Stone compactification of the integers βω and set A0 = ω.

Let β < ω1 and suppose we have constructed subsets {Aα : α < β} of βω such
that |Aα| ≤ 2ℵ0, for every α < β. For every A ∈ [

⋃
α<β A]

ω, choose an accumulation

point pA ∈ βω and set Aβ = {pA : A ∈ [
⋃

α<β Aα]
ω}. Then

⋃
{Aα : α < ω1}

is a countably compact space without convergent sequences. But every countably
compact weakly Whyburn space contains a convergent sequence. It suffices to note
that the closure of every countable almost closed set is a compact countable (and
hence second-countable) space. �

There are consistent examples of non-weakly Whyburn spaces of cardinality con-
tinuum that are even compact. For example, Juhász and Szentmiklóssy construct in
[9] a compact non-pseudoradial space of cardinality continuum. Since every compact
weakly Whyburn space is pseudoradial, their example cannot be weakly Whyburn.
However, we don’t know a ZFC example of a compact non-weakly Whyburn space of
cardinality continuum.

3. Which weakly Whyburn spaces are pseudoradial?

The following three theorems summarize what has been known so far about the
relationship between the weak Whyburn property and pseudoradiality.

Theorem 3.1. (Bella, [3]) Every compact weakly Whyburn space is pseudoradial.

Theorem 3.2. [4] Every Lindelöf weakly Whyburn P -space X such that ψ(X) < ℵω

is pseudoradial.

Theorem 3.3. (Alas, Madriz-Mendoza and Wilson, [1]) Every weakly Whyburn k-
space is pseudoradial.

Angelo Bella asked us in private communication whether compactness can be weak-
ened to countable compactness and regularity in the first theorem. We show that the
answer is negative. We then address the problem of weakening the Lindelöf property
to countable extent in the second theorem.

Definition 3.4. A sequence {xα : α < κ} ⊂ X is called free if for every ordinal

β < κ, {xα : α < β} ∩ {xα : α ≥ β} = ∅. The freeness of X (F (X)) is defined as the
supremum of the cardinalities of the free sequences in X.
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The following lemma is well-known, but we include a proof for the reader’s conve-
nience.

Lemma 3.5. For every space X, we have F (X) ≤ L(X) · t(X).

Proof. Let κ = L(X) · t(X) and suppose by contradiction that X contains a free
sequence F = {xα : α < κ+} of cardinality κ+. Since L(X) ≤ κ, the set F has a
complete accumulation point x. Now, by t(X) ≤ κ, there is a set C ⊂ F such that
|C| ≤ κ and x ∈ C. Let γ < κ+ be an ordinal such that C ⊂ {xα : α < γ}. Since F

is a free sequence, we have x /∈ {xα : α ≥ γ} and that contradicts the fact that x is a
complete accumulation point of F . �

Lemma 3.6. (A. Bella, [2]) Let X be a pseudoradial regular space. Then t(X) ≤
F (X).

Theorem 3.7. There is a countably compact regular weakly Whyburn non-pseudoradial
space.

Proof. Let X = Σ(2ω2) = {x ∈ 2ω2 : |x−1(1)| ≤ ℵ0} and let p ∈ 2ω2 be the point
defined by p(α) = 1, for every α < ω2. We will prove that Y = X ∪ {p} with the
topology inherited from 2ω2 is the required example.

It is well known that the space X is Fréchet-Urysohn (see [8]), and that implies
both that X is weakly Whyburn and that X has countable tightness.

Claim. L(X) = ℵ1.

Proof of Claim. Let U be an open cover of X . Without loss of generality we can
assume that for every U ∈ U , there is a finite partial function σ : ω2 → 2 such that
U = {x ∈ 2ω2 : σ ⊂ x}. The domain of σ will then be called the support of U and we
will write supp(U) = dom(σ).

Let θ be a large enough regular cardinal and M be an ω-covering elementary
submodel of H(θ) such that X,U , ω2 ∈M and |M | = ℵ1.

We claim that U ∩M covers X . Indeed, let x ∈ X be any point and let A ∈M be
a countable set such that x−1(1) ∩M ⊂ A.

Let Z = {y ∈ X : (∀α ∈ ω2 \ A)(y(α) = 0)}. Then Z ∈ M and Z is a compact
subspace of X . So there is a finite subfamily V ∈ M of U such that Z ⊂

⋃
V. Since

V is finite, we have V ⊂M . It then follows that U ∩M covers Z.

Let a be the point such that a(α) = x(α) for all α ∈ M ∩ ω2 and a(α) = 0 for all
α ∈ ω2 \M . The fact that x−1(1) ∩M ⊂ A implies that a ∈ Z and hence there is
U ∈ U ∩M such that a ∈ U . Note that supp(U) is a finite element of M and hence
supp(U) ⊂M . But since x and a coincide on M we then have that x ∈ U as well, as
we wanted.

This proves L(X) ≤ ℵ1, but we can’t have L(X) = ℵ0 because X is countably
compact non-compact. Hence L(X) = ℵ1.
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△

Suppose by contradiction that Y is pseudoradial. Note that t(Y ) = ℵ2, hence by
Lemma 3.6, Y contains a free sequence F of size ω2. So F \ {p} is a free sequence of
size ω2 in X . But F (X) ≤ L(X)t(X) = ℵ1 · ℵ0 = ℵ1, and that is a contradiction. �

Angelo Bella noted that Example 3.7 has the best possible character. As a matter
of fact, every initially κ-compact weakly Whyburn regular space of character at most
κ+ is pseudoradial (recall that a space is called initially κ-compact if every open cover
of cardinality ≤ κ has a finite subcover). Before proceeding to the proof of this, we
prove a simple lemma about convergent sequences in general spaces that is behind
many results of this kind.

Lemma 3.8. Let X be any space and let x ∈ X be a point such that ψ(x,X) =
χ(x,X). Then X \ {x} contains a transfinite sequence converging to x.

Proof. Suppose χ(x,X) = κ and let {Uα : α < κ} enumerate a local base at x.
Inductively choose points xβ ∈ X such that, for every β < κ, xβ ∈

⋂
{Uα : α ≤

β} \ ({xα : α < β} ∪ {x}). This can be done because ψ(x,X) = κ. Note that
{xα : α < κ} converges to x. �

Proposition 3.9. Let X be an initially κ-compact weakly Whyburn regular space
such that χ(X) ≤ κ+. Then X is pseudoradial.

Proof. Let A ⊂ X be a non-closed set and let B be a subset ofA such thatB\A = {x}.
If ψ(x,B) ≤ κ, then let {Uα : α < λ} be a minimal sized family of open subsets of B
such that

⋂
α<λ Uα = {x}. Inductively choose points xα ∈

⋂
{Uβ : β ≤ α}\({xβ : β <

α}∪{x}), for every α < λ. Since B \A = {x}, we have xα ∈ A, for every α < λ. Note
now that {xα : α < λ} converges to x. Indeed, let V be an open neighbourhood of x
in B. We have {x} =

⋂
{Uα : α < λ} ⊂ V . As λ ≤ κ, by initial κ-compactness of B,

there is a finite subset F of λ such that
⋂
{Uα : α ∈ F} ⊂ V . If we let γ = max(F ),

we see that {xα : α ≥ γ} ⊂ V , and hence {xα : α < λ} converges to x.

If ψ(x,B) = κ+, then ψ(x,B) = χ(x,B) and hence we can use Lemma 3.8. �

However, we don’t know an answer to the following question when κ > ℵ0.

Question 3.10. Is there, for every cardinal κ, an initially κ-compact weakly Whyburn
space of character at most κ++ which is not pseudoradial?

We are greatly indebted to Ofelia Alas for her considerable simplification of the
proof of Theorem 3.12.

Lemma 3.11. Let X be a regular P -space of countable extent and let x be a point
such that ψ(x,X) = ω1. Then χ(x,X) = ω1.
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Proof. Recall that every regular P -space is zero-dimensional. Let {Uα : α < ω1}
be a decreasing family of clopen sets such that

⋂
{Uα : α < ω1} = {x}. We claim

{Uα : α < ω1} is actually a local base at x. Suppose that this is not the case and let
W be an open neighbourhood of x such that Uα * W , for every α < ω1. Use this
to choose, for every α < ω1 a point xα ∈ Uα \W . Use countable extent to find an
accumulation point z of the set {xα : α < ω1}. Since every countable subset of X is
closed we have that z is actually a complete accumulation point of {xα : α < ω1}.

Then z ∈ {xα : α ≥ β} for all β < κ and hence z ∈
⋂
{Uα : α < κ} = {x}. It follows

that z = x, but that is a contradiction, because W is an open neighbourhood of x
disjoint from {xα : α < ω1}.

�

Theorem 3.12. Let X be a regular weakly Whyburn P -space of countable extent such
that χ(X) ≤ ω2. Then X is pseudoradial.

Proof. Let A ⊂ X be a non-closed set and let B ⊂ A be a set such that B \A = {x},
for some x ∈ A \ A.

If ψ(x,B) = ω1 then, applying Lemma 3.11 we see that χ(x,B) = ω1. Let {Uα :
α < ω1} be a decreasing local base for x in B. For every α < ω1, let xα be a point in
Uα ∩ B \ {x}. Since B \ A = {x}, we actually have xα ∈ A and hence {xα : α < ω1}
is a sequence inside A converging to x:

If ψ(x,B) = ω2 = χ(x,B) then Lemma 3.8 guarantees the existence of a sequence
{xα : α < ω2} ⊂ B \ {x} converging to x. Since B \ A = {x} we actually have that
{xα : α < ω2} ⊂ A and hence we are done. �

The following simple example shows that Theorem 3.12 is not covered by Theorem
3.2.

Example 3.13. A weakly Whyburn P -space X of countable extent which is not Lin-
delöf.

Proof. Let X = {α < ω2 : cf(α) > ℵ0} with the topology inherited from the order
topology on ω2. Then X is clearly a P -space. To see why X has countable extent,
note that for every A ∈ [X ]ω1 there is B ⊂ A such that otp(B) = ω1 and hence
sup(B) belongs to X and is an accumulation point of A. To see why X is weakly
Whyburn, let A be a non-closed set. Let x = min(A \ A). If we set B := A ∩ [0, x],
we see that B \ A = {x}. Finally, the open cover consisting of all initial segments
shows that X is not Lindelöf. �

The following natural question is left open.

Question 3.14. Is there a regular weakly Whyburn P -space X of countable extent
such that ψ(X) < ℵω and X is not pseudoradial?
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In view of Lemma 3.8, an example answering positively to Question 3.14 must also
be a positive answer to the following question.

Question 3.15. Is there a regular P -space X of countable extent with a point x ∈ X
such that ψ(x,X) < χ(x,X) and ψ(X) < ℵω?
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