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ABSTRACT 
 

 
In living systems, proteins usually team up into “molecular machinery” 

implementing several protein-to-protein physical contacts – or protein-protein 
interactions (PPIs) – to exert biological effects at both cellular and systems levels. 
Deregulations of protein-protein contacts have been associated with a huge number of 
diseases in a wide range of medical areas, such as oncology, cancer immunotherapy, 
infectious diseases, neurological disorders, heart failure, inflammation and oxidative 
stress. 

PPIs are very complex and usually characterised by specific shape, size and 
complementarity. The protein interfaces are generally large, broad and shallow, and 
frequently protein-protein contacts are established between non-continuous epitopes, that 
conversely are dislocated across the protein interfaces. For this reason, in the past two 
decades, PPIs were thought to be “undruggable” targets by the scientific research 
community with scarce or no chance of success. However, in recent years the Medicinal 
Chemistry frontiers have been changing and PPIs have gained popularity amongst the 
research groups due to their key roles in such a huge number of diseases. 

Until recently, PPIs were determined by experimental evidence through 
techniques specifically developed to target a small group of interactions. However, these 
methods present several limitations in terms of high costs and labour- and time-wasting. 
Nowadays, a large number of computational methods have been successfully applied to 
evaluate, validate, and deeply analyse the experimentally determined protein 
interactomes. In this context, a high number of computational tools and techniques have 
been developed, such as methods designed to construct interaction databases, quantum 
mechanics and molecular mechanics (QM/MM) to study the electronic properties, 
simulate chemical reactions, and calculate spectra, and all-atom molecular dynamics 
simulations to simulate temporal and spatial scales of inter- and intramolecular 
interactions. These techniques have allowed to explore PPI networks and predict the 
related functional features. 

In this PhD work, an extensive use of computational techniques has been reported 
as valuable tool to explore protein-protein interfaces, identify their hot spot residues, 
select small molecules and design peptides with the aim of inhibiting six different studied 
PPIs. Indeed, in this thesis, a success story of in silico approaches to PPI study has been 
described, where MD simulations, docking and pharmacophore screenings led to the 
identification of a set of PPI modulators. Among these, two molecules, RIM430 and 
RIM442, registered good inhibitory activity with IC50 values even within the nanomolar 
range against the interaction between MUC1 and CIN85 proteins in cancer disease.  

Furthermore, computational alanine scanning, all-atom molecular dynamics 
simulations, docking and pharmacophore screening were exploited to (1) rationally 
predict three potential interaction models of NLRP3PYD-ASCPYD complex involved in 
inflammatory and autoimmune diseases; (2) identify a potentially druggable region on 
the surface of SARS-CoV-2 Spike protein interface and select putative inhibitors of the 
interaction between Spike protein and the host ACE2 receptor against COVID-19 
(CoronaVIrus Disease 2019); (3) investigate intramolecular modifications as a 
consequence of a point mutation on C3b protein (R102G) associated with the age-related 
macular degeneration (AMD) disease; (4) design non-standard peptides to inhibit 
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transcriptional events associated with HOX-PBX complex involved in cancer diseases; 
and (5) to optimise a patented peptide sequence by designing helix-shaped peptides 
embedded with the hydrogen bond surrogate approach to tackle cocaine abuse relapses 
associated with Ras-RasGRF1 interaction. 

Although all the herein exploited techniques are based on predictive calculations 
and need experimental evidence to confirm the findings, the results and molecular 
insights retrieved and collected show the potential of the computer-aided drug design 
applied to the Medicinal Chemistry, guaranteeing labour- and time-saving to the research 
groups. On the other hand, computing ability, improved algorithms and fast-growing data 
sets are rapidly fostering advances in multiscale molecular modelling, providing a 
powerful emerging paradigm for drug discovery. It means that more and more research 
efforts will be done to invest in novel and more precise computational techniques and 
fine-tune the currently employed methodologies. 
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PREFACE 
 

 
The research activities conducted during the PhD three-year period were focused 

on the analysis and study of six different protein-protein interactions (PPIs) involved in 
cancer, inflammatory and immune system diseases and addiction to substances of abuse. 
The research work was funded by Ri.MED Foundation, therefore most of the research 
activities were conducted at the Molecular Informatics Unit led by Dr Ugo Perricone, 
exploiting the computing power present at Ri.MED Foundation. Then, between the end 
of the second year and the beginning of the third year of the PhD course, the research 
activities were followed up at Cardiff University in the Molecular Modelling laboratory 
under the supervision of Professor Andrea Brancale. 

The first part of the work was focused on the study and deepening of protein-
protein interactions, their physicochemical characteristics and the computational 
techniques applied to date for the exploration of protein-protein interfaces and the 
identification of potential modulators. Thus, this study made it possible to prepare in 2018 
a review article entitled "An overview of recent Molecular Dynamics applications as 
medicinal chemistry tool for undruggable sites challenge" published in the peer-reviewed 
journal Medicinal Chemistry Communications. 

Subsequently, in May and June 2018 I took part in the Erasmus Plus for 
Traineeship programme through an internship at the laboratories of the company 
BioAscent Discovery Ltd. located in New House (Glasgow), in the United Kingdom. The 
activities carried out at this institution have allowed me to acquire skills related to the 
automated management of large libraries of molecules, in detail about their storage, their 
dissolution and the preparation of aliquots and plates for biological assays. In fact, the 
computational techniques for identifying potentially active molecules, such as docking 
and pharmacophore approach, usually allow to "filter" large libraries of molecules to 
identify a few hundred compounds responding to precise parameters. These selected 
compounds should then be acquired or synthesized and stored in specific storage systems, 
and can undergo transformations, such as dissolutions or dilutions for carrying out 
biological/biophysical tests. The skills acquired during the traineeship provided me with 
a comprehensive view of the procedure for acquiring, managing and processing physical 
libraries of compounds. 

The first period of the PhD work was focused on research activities conducted at 
Ri.MED Foundation under the supervision of Dr Ugo Perricone and focused on the study 
of two protein-protein interactions, described below: 
• Interaction between Mucin 1 (MUC1) and Cbl-interacting protein of 85 kDa 

(CIN85), which has been associated with invasiveness of tumour cells and with the 
development of metastasis in the colorectal tract. In pathological conditions, MUC1 
protein is in a hypoglycosylated state, which allows it to interact with CIN85 forming 
a complex capable of migrating and invading new tissues. The computational study 
made it possible to identify two small molecules that have been shown to inhibit the 
interaction between these two proteins registering biological activity in the 
nanomolar range. 

• Interaction between the Pyrin domain (PYD) of the protein NACHT, LRR and PYD 
domains-containing 3 (NLRP3) and the Pyrin domain of the protein Adapter 
apoptosis-associated speck-like protein containing a CARD (ASC), which has been 



 IV 

associated with numerous chronic inflammatory and autoimmune diseases, such as 
ulcerative colitis, Crohn's disease, psoriasis, multiple sclerosis, or rheumatic diseases 
and arthropathies, such as systemic lupus erythematosus, etc. Computational 
techniques made it possible to create three potential NLRP3PYD-ASCPYD interaction 
models, which have been used for the identification of potentially active small 
molecules, that will be tested in the laboratories of Ri.MED Foundation. 

 
In June 2019, I continued my research activities at the Molecular Modelling 

laboratory at the University of Cardiff, in the United Kingdom, under the guidance of 
Professor Andrea Brancale. During the months I spent in Cardiff, I worked on the study 
of three projects on the following protein-protein interactions: 
• Interaction between the C3b protein and factor H (FH), which has been associated 

with age-related macular degeneration (AMD). In particular, recent studies have 
shown that the patients affected by this disease present a mutated form of C3b protein 
(C3bR102G). This mutation causes a reduction in the affinity of FH protein for C3b, 
thus prolonging the activity of C3b and therefore the activation of the inflammatory 
system associated with the complement. The computational techniques applied to 
this study made it possible to identify a peptide that should be able to discriminate 
the wild-type form of C3b protein from the mutant, in order to develop a diagnostic 
kit able to identify the mutation C3bR102G using plasma samples from patients. 

• Interaction between Homeobox proteins (HOX) and Pre-B-cell Leukaemia 
Homeobox (PBX) proteins, which has been associated with transcriptional events 
related to the development of numerous forms of cancer in various human tissues. 
Computational techniques made it possible to design a peptide motif binding the 
PBX protein and, based on this, to identify peptides composed of non-natural amino 
acids, i.e. residues that have a different side chain than the amino acids present in 
nature, with the aim of inhibiting the cooperative binding between the two proteins. 
The peptides designed will be synthesized and tested in the laboratories of Cardiff 
University. 

• Interaction between the Rat sarcoma protein (Ras) and the protein Ras guanine 
nucleotide-releasing factor 1 (RasGRF1), which has been associated with relapsing 
behaviours in patients dependent on substances of abuse, such as cocaine. The 
computational methods employed have allowed to design and identify some peptides 
through the employment of the 310-hydrogen bond surrogate approach. This latter 
consists in the introduction of a C-C bond between the amino acid i and the amino 
acid i+3 to simulate the hydrogen bond between the backbone of the two involved 
amino acids. In this way, the peptides are forced to assume an α-helix conformation. 
The designed peptides will be synthesized and tested at Cardiff University 
laboratories and should block the interaction between Ras and RasGRF1 proteins to 
improve behavioural alterations caused by drug addiction. 

 
Finally, after the research period carried out in Cardiff, I worked on another 

project concerning the Coronavirus, that has caused the pandemic currently underway. 
Specifically, the research activities relating to this project were focused on the protein-
protein interaction described below: 
• Interaction between the Spike glycoprotein of the Severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) and the receptor Angiotensin-converting enzyme 2 
(ACE2) of the host organism, which has been identified as the event triggering the 
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virus entry into the host cell. In particular, computational methods have made it 
possible to identify the N-terminal portion of the interaction interface of Spike as the 
region potentially most suitable for the design of putative inhibitors. Therefore, a 
group of small molecules was selected and will be tested to verify their potential 
ability to compete with ACE2 for binding the Spike protein N-terminal region. 

 
This study allowed to prepare a research article entitled “Targeting SARS-CoV-2 

RBD interface: a supervised computational data-driven approach to identify potential 
modulators” published in the peer-reviewed journal ChemMedChem. 
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CHAPTER ONE 
 

PROTEIN-PROTEIN INTERACTIONS – Computational 
approaches to study protein-protein interfaces in Medicinal 
Chemistry 
  
 

1.1 Introduction 
 

In the last decades, research efforts in cell biology, molecular biology, 
biochemistry, structural biology, and biophysics have built a significant knowledge about 
functions and molecular properties of individual proteins. This knowledge has been made 
available by consulting the major protein databases like UniProt [1, 2]. However, proteins 
rarely carry out their biological functions alone. On the contrary, they usually team up 
into “molecular machinery” implementing several physicochemical interactions to exert 
biological effects at both cellular and systems levels. In this context, it should be crucial 
to investigate and unravel the complex molecular relationships in living systems to get a 
complete map of protein-to-protein physical contacts – or protein-protein interactions 
(PPIs) – occurred in a living organism. This map has been also referred to as interactome 
[3, 4]. It has been reported that the human interactome consists of about 650,000 PPIs [5, 
6], compared to only about 20,000 protein-coding genes [7], and any deregulation of these 
interactions leads to a disease state. This fact has increased the interest in the PPIs 
representing a wide source of novel targets for the development of new therapeutics, 
leading to important breakthroughs in understanding biological pathways, host-pathogen 
interactions and cancer growth and spreading [8–18]. Indeed, targeting protein-protein 
interactions is getting particularly attractive due to more and more available data 
especially about protein-protein complexes and entire signalling pathways. 

PPIs have been shown to be significant therapeutic targets for a wide range of 
medical areas, such as oncology [19–23], cancer immunotherapy [24], tropical infectious 
diseases [25], neurological disorders [26], heart failure [27], inflammation and oxidative 
stress [7]. In the past two decades, PPIs were thought to be “undruggable” targets by the 
scientific research community with scarce or no chance of success [28]. However, recent 
efficient large-scale technologies on genomics and proteomics programmes, such as the 
high-throughput experimental technologies, allowed to identify and measure broad 
networks of protein interactions between protein pairs by reaching a comprehensive 
knowledge of the protein-protein interactome. Thus, in recent years a collection of large- 
and small-scale efficient technologies have notably identified and increased the number 
of reported protein-protein interactions [29], by building public repositories of PPIs. A 
compendium of these PPI databases can be found in “Pathguide” [30].  
 

Recent successes in the inhibition of PPIs with small molecules have emerged 
from both academic and private research by applying several new strategies to modulate 
the activity of proteins and identify new drugs against this tremendous reservoir of 
potential targets [31–46]. Targeting PPIs usually means specifically interfere with dimer 
and oligomer formation or disrupting antibody-antigen interaction [47] or specifically 
targeting protein-protein interactions to alter a signalling pathway within a cell process. 
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As the binding region of PPIs is significantly different as compared with protein-
traditional drug interactions, different approaches and techniques have been developed. 
For example, gene-editing methods allowed to perform point mutations within the 
genomes of mammalian cells [48], making possible the validation process of individual 
PPIs as putative drug targets with unprecedented precision. Finally, the protein-protein 
interfaces have been shown to be less conserved among species than traditional active 
sites, therefore PPI inhibitors are also commonly thought to have a greater opportunity 
for being selective [49]. 
 
 

1.1.1 Protein-protein interfaces characteristics and composition 
 

Protein-protein interactions are very complex and usually characterised by 
specific shape, size and complementarity [50]. The protein interfaces are generally large, 
broad and shallow, and frequently their contacts are established between non-continuous 
epitopes, that conversely are dislocated across the protein interfaces. 

Their recognition sites can exhibit standard sizes 1200-2000 Å2 [51], while a few 
smaller interfaces normally present sizes ranging 750-1200 Å2, and they usually make 
short-term and low-stability complexes [52, 53]. On the contrary, large interfaces range 
sizes 2000-4660 Å2 and they essentially occur between G-proteins and other components 
of the signal transduction system and between proteases and a particular class of inhibitor 
protein partners [51, 54].  

Furthermore, it is often assumed that the energy of protein-protein binding is 
directly related to the buried hydrophobic surface area, when the protein heterodimer 
interfaces sizes exceed 600 Å2 [55–59]. This size cut-off has been considered the 
minimum area required to make an almost water-free environment around a critical set 
of energetically favourable interactions [56]. In this context, a particular aspect of interest 
is that, during the protein folding process, hydrophobic residues shield themselves from 
the solvent, yielding a hydrophobic protein interior (also called core) and a hydrophilic 
surface (termed rim) [52, 60, 61]. Amino acids at the protein-protein interface core are 
more hydrophobic than those at the rim [13, 52, 61–63] and are more frequently identified 
as hot spots [56]. This physicochemical diversity between interior amino acids and 
surface amino acids is highly connected to protein stability and evolution. Indeed, it was 
demonstrated that buried amino acids at the core are more conserved than those at the rim 
[64–67], while residues at the surface of proteins show a major inclination in mutating 
[68–72]. This fact is probably connected to a higher protein destabilisation when interior 
amino acids mutate resulting in hard damages to the structure and function of the protein 
[73] or the cell [74]. 
 

As above mentioned, protein-protein interface amino acids are frequently 
hydrophobic and bury a large extent of non-polar surface area, hence it has been assumed 
that the hydrophobicity is a leading force in PPIs [75–77]. The non-polar regions 
originated by the presence of hydrophobic residues establish van der Waals contacts, 
resulting in the expulsion of water molecules in the interface, and causing an increase in 
entropy that favours complex formation [78] and results in a gain in free energy [79]. 
Indeed, the free energy gain generated by all the individual van der Waals contacts 
together with the energy gain produced by the desolvation process represents a 
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considerable free energy increase, that may provide a higher stabilization of the protein-
protein complex [50]. 

In fact, these contacts provide tight packing between protein residues organized 
as patches including protrusions from the surface. The number of these patches may vary 
from 1 to 15 together with their sizes that are between 200 and 400 Å [80].   

Another driving force of protein-protein interactions is represented by the 
electrostatic contacts [55, 81–85], whereas their importance is to the electrostatic 
complementarity of interacting protein surfaces [54, 55, 86–88], that promotes complex 
formation [89, 90] and defines the lifetime of the complexes [91]. Furthermore, the 
average number of hydrogen bonds is proportional to the width of the protein surfaces 
[92, 93], that is one hydrogen-bond is usually found each 100–200 Å of surface. In 
general, it was found that 76% of protein-protein hydrogen bonds are established by the 
side chains of amino acids, while the other hydrogen bonds are generated between the 
surrounding water molecules and the protein contact surfaces [94–96]. 
 

A systematic analysis of the key amino acids at the interface, also termed hot 
spots, unveiled a non-random composition on protein interfaces [97]. The most conserved 
and frequent amino acids at protein-protein interfaces are usually tryptophan (21%), 
arginine (13.3%), and tyrosine (12.3%) [56], whereas the average percentage of aromatic 
residues as hot spots clearly demonstrate their importance to protein interactions. 

Leucine, serine, threonine, and valine residues are less present or overall absent 
as hot spots even if in some cases they can be important for some protein-protein 
complexes [56]. In particular, tryptophan has been shown to play a unique function due 
to its aromatic nature [98], that can contribute with aromatic π-interactions and 
hydrophobic contacts. Moreover, tryptophan can also donate hydrogen bond and can 
shield fragile hydrogen bonds from water with its hydrophobic nature [99]. Finally, 
tryptophan mutation to an alanine generates a large cavity, due to the significant 
difference in sizes [56] by triggering a highly complex destabilisation. 

Arginine can establish multiple types of favourable interactions arranging up to 
five hydrogen bonds and a salt bridge thanks to its positive charge on the guanidinium 
motif [56].  

As above mentioned, tyrosine was the third more conserved amino acids among 
protein-protein complexes database. It shows a hydrophobic surface, and both aromatic 
π-interactions and the hydrogen bonding ability of its 4-hydroxyl group [56]. On the 
contrary, phenylalanine, the most similar amino acid to tyrosine, has three times lower 
probability of being a hot spot, probably because it cannot participate in hydrogen bonds 
as for tyrosine due to the lack of the hydroxyl group [56].  

The analysis of several complexes has highlighted that aspartate and asparagine 
are more frequent at protein interfaces compared to glutamate and glutamine. This fact 
can be explained because aspartate and asparagine present less conformational freedom 
due to the shorter side chains. This can result even presumably in differences in side-
chain conformational entropy [100]. Moreover, although leucine and isoleucine are 
isomers with essentially identical chemistry, the first amino acid is present only for 
0.83%, while the isoleucine reported a frequency of 9.62% as a hot spot [56]. 
 

Complementarity is a significant characteristic of protein-protein interfaces 
essentially defined based on the size of the buried surface, the alignment of polar and 
non-polar residues, the number of buried waters, and the packing densities of atoms 
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involved in the PPI [101]. As already mentioned, most protein-protein interactions are 
characterised by optimal tight-fitting regions [102] with complementary pockets 
distributed across the binding interface and including structurally conserved residues 
[103]. Indeed, residues across the protein-protein interface often coevolve [104, 105], and 
they create complemented pockets rich in conserved residues [102]. These pockets are 
defined as complementary [106] because it exists a strong complementarity both in shape 
and in the closeness of hydrophobic and hydrophilic hot spots. Moreover, charged 
residues can establish salt bridges while hydrophobic residues belonging to a protein 
surface fit into small recesses on the opposite face [107]. Usually, this complementarity 
may provide druggable sites for the identification of modulators [102] based on the hot 
spots of one face that pack against the hot spot of the other face establishing a region 
determinant for complex binding [108, 109]. 

The number of these hot spots is tightly correlated with the interface size [102], 
and their local distribution and packing are crucial factors determining the PPI 
stabilisation [57].  

It has been demonstrated that on average 79% of the hot spot amino acids are 
located on complemented pockets [57], and 93% of residues that upon alanine scanning 
mutagenesis report a free energy difference of binding (ΔΔGbinding) higher than 4 kcal/mol 
are usually found as protruding or complemented pocket residues [57]. Complemented 
pockets usually show a few polar and ionizable amino acids (e.g. arginine, lysine, 
glutamate, and aspartate) compared to other surface pockets [102]. This fact contributes 
to decreasing the desolvation barrier necessary for protruding residues to contact into the 
complemented pocket. However, at the bottom of these pockets, several polar and 
ionisable residues have been found to increase binding stability, with the effect of 
enhancing polar-polar interactions in a hydrophobic environment [102]. Among the most 
frequent residues located in complemented pockets, tryptophan is often the most 
abundant and may act by shielding the complemented pocket from the solvent [110]. On 
the other hand, glycine is a conserved amino acid when located within a complemented 
pocket rather than if found in another region of the protein interface. As glycine is a 
residue that lacks a side-chain, hence it usually generates tight packing with aromatic, 
polar, and small hydrophobic amino acids in the interacting chain and establishing some 
backbone H-bonds across the interface [111]. 
 
 

1.1.2 Drug design of protein-protein inhibitors 
 

Unlike classical targets, such as membrane receptors or enzymes, that include a 
well-defined binding site, the complexity of PPIs impacts also on designing modulators 
and their chemical and physicochemical features [112]. 

Often for protein-protein interactions, there are no natural ligands or known active 
compounds to be exploited as a reference to guide the drug design process, requiring an 
unconventional drug discovery strategy to be applied for the identification of hit 
compounds [55, 86, 87, 113, 114].  

Successful PPI modulators reported in literature often show molecular weights 
two or three times higher than traditional small molecules [53, 115]. Indeed, the protein 
interacting surfaces are usually shallow and are widely exposed to the solvent molecules, 
and usually hits show low affinities for protein-protein interactions, reporting KD values 
of 0.1-5 mM [115–117].  
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Generally, PPI modulators (PPIMs) are classified as stabilisers or disruptors 
according to their mechanism of action [112, 118]. PPI stabilisers provide an increase in 
protein-protein complex binding affinity and stability by directly binding the interaction 
interface (orthosteric stabilisation) or binding to a remote site of the protein and causing 
an increase of protein-protein affinity (allosteric stabilisation) [112, 118]. On the other 
hand, the PPI disruptors may compete in binding one of the two protein partners at the 
binding region (orthosteric disruption) or destabilise a PPI through an interaction with a 
distal or proximal site on the protein surface (allosteric disruption), generating a decrease 
in protein-protein affinity (figure 1.1). 
 

 
Figure 1.1. PPI modulators mechanism of action, where green and purple structures represent two different 
proteins interacting with each other. On the left, two interacting proteins are illustrated. When PPIM 
interfere with these proteins four scenarios can occur: (A) an orthosteric stabilization, where the PPIM 
binds both proteins in a different region than the protein-protein interface stabilising the complex; (B) an 
orthosteric disruption, where the PPIM is positioned within the interfacial binding region; (C) an allosteric 
stabilisation, where the PPIM binds one of the two protein partners at a distal site of the protein surface 
generating a stabilisation of the protein-protein interaction; and (D) an allosteric disruption, where the PPIM 
binds a region of the two proteins at a distal site of the protein surface triggering conformational changes 
within this protein and causing protein-protein disruption [112].  
 

However, several troubles have been found in developing small molecule 
antagonists that target protein-protein interactions. First, a database of starting structures 
is not available to draw from and build novel potential modulators. Indeed, small ligand 
databases designed for traditional targets are usually inappropriate to target PPIs through 
for example virtual high-throughput screening. A principal component analysis 
(including topological surface area, logP, and MW) reported by Pagliaro et al. [119] on 
three commercial databases for PPIs (Maybridge, Asinex and Chemical Diversity 
Database International Diversity Collection) showed that only 50% by the diversity space 
was covered. It means that the current chemical libraries exhibit scarce diversity to cover 
mostly the PPI drugs chemical space. However, nowadays a significant number of 
validated cheminformatic and machine learning methods has been applied to fill in this 
gap. Indeed, general observations concerning protein-protein interaction chemical 
features of PPI modulators reporting nanomolar KD values highlighted that the molecular 
weights are usually at least 650 KDa and therefore the PPIMs will not, in general, observe 
Lipinksi’s rule of 5 [53]. 
 

As already mentioned, protein-protein interfaces are flat making it more difficult 
to design small molecules able to accommodate a binding pocket. However, usually some 
specific residues involved in contacts, termed hot spots, can be identified as crucial for 
stabilising the complex. Indeed, the hot spots contribute to most of the free energy of 
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binding and can be targeted for drug design [120]. In this context, fragment-based ligand 
design is often very successful for designing drugs targeting PPIs, because it allows 
enlarging the chemical diversity of the designed compounds to be screened [121]. 
 

Although the above-described issues in PPIMs design, in the past decades, an 
increasing number of success stories have appeared. Several small molecules have been 
reported to target more than 40 different PPIs, corresponding to various topological 
spaces – primarily helix-based domains, β-strand domains, mixed folding (helix + - β-
strand) and loop-binding groove domains [122]. Some of these drugs have been 
demonstrated to be very effective as PPI disruptors, such as p53-MDM2 inhibitors [123], 
IL2-IL2R inhibitors [124], AMA1-RON2 inhibitors [125], and a few of these (e.g. ABT-
263) have reached pre-clinical or clinical trials [126–131]. 
 

The PPI inhibitors are usually classified into the following three categories: 
antibodies, peptides and peptidomimetics. These compounds can be designed based on 
certain protein recognition motifs and they include specific molecular scaffolds that have 
been shown to exhibit biological or pharmacological activity when incorporated into drug 
design [132]. PPI inhibitors exploiting secondary structures as scaffolds, such as α-helix 
[133–135], β-sheet [136], or β-turns [137, 138] are also referred as “proteomimetics” 
[139, 140]. Other examples of PPI modulators are the extended structures and proline-
rich segments [141] that also reproduce molecular motifs, but also organic molecules such 
as benzodiazepines that can introduce recognition sites for proteins [142]. 

Although peptides present some disadvantages such as metabolic instability, poor 
oral bioavailability and scarce ability to cross membranes, most of them showed high 
selectivity and potency [143]. However, in physiological conditions, the peptides 
consisting of less than 15 amino acids generally are expected to be essentially unstable 
due to a low nucleation probability according to the helix-coil transition theory [144, 
145]. They show certain flexibility and can take a huge amount of different conformations 
[146–148]. Therefore, several synthetic strategies have been developed to create peptides 
with stable folded structure [149], e.g. the hydrogen bond surrogate (HBS) approach 
[150] (figure 1.2). This strategy is expected to overwhelm the intrinsic nucleation 
propensities of the amino acids by providing upstream a preorganization of the residues, 
that causes the helix formation initialization [150–153].  

 
Figure 1.2. Hydrogen bond surrogate approach is based on the generation of an artificial α-helix where the 
C=O · · · H-N hydrogen bond between the ith and the (i + 4)th residues is mimicked by a covalent bond of 
the type C=X–Y–N, where X and Y are usually carbon atoms [150, 153]. 
 
 

1.2 Molecular modelling in protein-protein interactions  
 

Nowadays, the PDB structures are used as a benchmark for unveiling specific key 
host-guest interactions, structural protein insights, protein conformational changes and so 
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on. However, in some cases, structural complexes are unavailable often because of the 
difficulty in experimentally solving them through NMR or X-ray crystallography 
methodologies. Therefore many research efforts have been focused on developing 
methods to predict protein-protein structural insights and molecular properties [121].  

In this context, CAPRI [154], the critical assessment of predicted interactions, was 
created in 2001 as a forum for evaluating methods for computational protein-protein 
docking and protein complex interaction prediction. This forum is biannually updated 
with computational data from international research groups that are invited to test their 
developed computational methods and predict the structures of protein complexes, that 
will be experimentally solved and made public later than year.  

The main steps of a conventional drug discovery process for protein-protein 
interactions are summarised in scheme 1.1 [155].  
 

 
Scheme 1.1. A schematic PPI inhibitor design procedure involving computational techniques 
(computational alanine scanning, docking and pharmacophore approaches)  across the different stages of 
the PPI drug design [132].  
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The first step to undertake a drug discovery programme on PPIs is the 
experimental evidence of interaction between the two proteins of interest [155]. Indeed, 
before performing extensive docking and pharmacophore calculations, hot-spot 
identification studies and design of PPI, first experimental methods should highlight and 
confirm an interaction between the two proteins of interest or identify the partner of a 
known protein of interest. When the structure of the protein-protein complex is available 
and the hot spots are known from mutational studies, docking or pharmacophore 
screening can be the first step of the work to design drug-like molecules. On the contrary, 
if the PPI structure is not available but the structures of the protein monomers of interest 
have been experimentally solved alone and mutational data are known, the protein 
complex can be simulated by performing protein-protein docking. The next sections 
describe in detail the steps of a drug discovery programme on PPIs, starting from the 
protein-protein complex generation through protein-protein docking and contacts 
investigation by performing computational alanine scanning and molecular dynamics 
simulations, and continuing with docking and pharmacophore screening to identify 
putative PPI inhibitors. 

 
 
1.2.1 Protein-protein complex prediction through docking  
 
There are two types of protein-protein docking: (1) the template-based docking, 

where the structures of individual proteins are docked using as a reference a template 
structure of a known dimer of proteins belonging to the same homologous family. This 
method is usually fast because no automatic docking and scoring algorithms are 
employed. The generated protein-protein complex is then minimised to get the docked 
conformation; (2) The template-free docking, where the protein complex is generated 
using docking algorithms with or without the support of experimental data [132]. 
 

In general, when template-free docking is performed without the support of 
experimental data, the complex structures is usually generated by fixing in the space a 
protein and rotating and translating the second one around the first. Each new protein-
protein configuration is scored based on the energy of interaction calculated according to 
terms such as surface complementarities, electrostatic interactions, van der Waals 
interactions, and other terms depending on the method applied. These calculations are 
very time-consuming and the disadvantage is that it is very unlikely to find every possible 
rotation and translation for two interacting monomers. On the other hand, when 
experimental mutational data are available a docking method that incorporates this 
information can be employed to dock the two protein structures. An example of 
application performing this docking method is HADDOCK (High Ambiguity Driven 
DOCKing) [156–158], where the user should provide information obtained from 
biochemical and chemical shift perturbation data from NMR titration, as well as 
mutagenesis experiments [157]. On the basis of the input data about active and passive 
residues, ambiguous interaction restraints (AIRs) are introduced during the docking to 
provide the most likely orientation of the two proteins. The resulting structures are ranked 
according to their intermolecular energy, that is calculated based on the three different 
docking stages. The first stage is characterised by randomization of orientations and rigid-
body energy minimization, that generates several thousand of models including rotational 
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and translational optimisation. For this stage, the “Rigid score” is calculated as in 
equation (1), 
 

Rigid Score = 0.01 EAIR + 0.01 EvdW + 1.0 Eelect + 1.0 Edesolv – 0.01 BSA (1) 
 
where EAIR is the ambiguous interaction restraint energy, EvdW is the van der Waals 
energy, Eelect is the electrostatic energy, Edesolv is the desolvation energy and BSA is the 
buried surface area. 

The second stage of HADDOCK docking protocol is a semi-flexible simulated 
annealing, that introduces flexibility to the protein partners through three-step molecular 
dynamics-based refinement. For this stage, the “Flexible score” is defined as in equation 
(2). 
 

Flexible Score = 0.1 EAIR + 1.0 EvdW + 1.0 Eelect + 1.0 Edesolv – 0.01 BSA (2) 
 

Finally, the third stage is the refinement in explicit solvent (TIP3P model [159]) 
performing short molecular dynamics simulation to refine contacts. For this stage, the 
“Water score” is calculated as in equation (3). 
 

Water Score = 0.1 EAIR + 1.0 EvdW + 0.2 Eelect + 1.0 Edesolv (3) 
 

A specific type of protein-protein interactions can occur when a small fragment 
of a protein of interest establishes contacts with another protein. In this case, it is referred 
to as protein-peptide interaction. It is very frequent that the peptide of interest exhibits a 
specific secondary structure. Examples of protein-peptide interactions in literature are the 
SH3 domains, the WW domains and the PDZ domains [160–164].  

Most of the protein-protein docking software is often not suitable for performing 
protein-peptide docking because they do not incorporate the relevant flexibility of side 
chains of both partner molecules. At the same time, software used for docking of small 
molecules show limitations in the number of rotatable bonds for flexibility [132]. In this 
context, London et al. [161] developed a protein-peptide docking method that applies a 
coarse model of interaction and Monte-Carlo simulations to refine the complex using 
energy minimization. The resulting protein-peptide complex includes refinement of both 
protein and peptides backbone and side chains in their bound state. 

Once the protein-protein or protein-peptide complexes (experimentally solved or 
docked) are available, the next step is the analysis of the hot spot residues of both protein 
partners.  
 
 

1.2.2 Computational alanine scanning for predicting hot spots  
 

One of the most valuable procedure for detecting crucial amino acids within 
protein-protein interfaces is the alanine scanning mutagenesis. This methodology allows 
to identify key residues and analyse a wide range of protein-protein interfaces [52, 56, 
120, 165–167]. Although this technique is very costly and time-consuming, alanine 
scanning mutagenesis is definitely suitable for mapping functional epitopes, by 
introducing alanine substitutions in place of other amino acids in order to remove side-
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chain atoms from the β-carbon without introducing additional conformational freedom 
[168–171].  

Alanine is the amino acid of choice to perform computational residue scanning, 
because it shows a propensity to form α-helices, but can also occur in β-sheets. It is also 
generally equivalent to simply truncating a side chain back to the β-carbon, which is the 
first side chain atom. The β-carbon position depends upon the backbone dihedral angles 
(φ and ψ) of the polypeptide, so it is really part of the main chain structure of the protein. 
Thus, alanine is generally an accepted single residue of first choice for mutational 
scanning, because it retains the β-carbon but no other side chain chemistry.  

On the other hand, glycine is not suitable for the substitutions because it lacks side 
chain, thus it is unusually flexible and can take on polypeptide backbone conformations 
generally not allowed by other amino acids [172]. Therefore, mutations to glycine may 
cause flexibility and possible conformational changes convoluted with the effects of 
removing the side chain atoms making experimental data interpretation more complex 
than for alanine. Moreover, replacing side chains with larger, more constrained (such as 
branched β-carbon side chains of valine and isoleucine), more polar, differently charged, 
or more hydrophobic atoms may all cause changes in structures and conformation along 
with the side chain chemistry, thereby further complicating the analysis of results. 

In light of the above, alanine substitutions are chosen to get reliable measurements 
of the energetic contributions of individual side chains to protein binding at specific 
positions on protein interfaces. The development of this technique allowed to unveil a 
highly uneven distribution of energetic contributions of individual residues across each 
interface. Only a little number of residues (the hot spots) can be considered crucial by 
significantly contributing to the binding free energy of protein-protein complexes [52, 55, 
173–178]. Hot spots have been defined as those amino acids that upon alanine mutation 
generate a binding free energy difference (ΔΔGbinding) higher than 2.0 kcal/mol [120], 
while residues with ∆∆Gbinding < 2 kcal/mol are defined neutral [179]. Binding free energy 
values higher than 4 kcal/mol have been associated with a strong impact on protein 
binding affinity. However, these values are quite unusual and the most accepted and 
reliable threshold for mutation results is over 2 kcal/mol. Thorn and Bogan [120] analysed 
interfacial residues of a protein database and interestingly found that an average of 9.5% 
of these residues were hot spots. 
 

Nowadays, when alanine scanning mutagenesis results are not available or they 
required too much time, the energy contributions of individual amino acids at a binding 
interface can also be theoretically predicted in silico, by performing a computational 
alanine scanning with molecular mechanics energy calculations combined with Poisson–
Boltzmann [121] or generalized Born [180] and surface area continuum solvation 
(MM/PBSA and MM/GBSA) methods. This technique has been shown to be reasonably 
accurate, by reporting several success rates in literature [181].  
 

This fully atomistic computational methodological approach consists of a 
computational Molecular Dynamics simulation protocol performed in a continuum 
medium using the Poisson-Boltzmann or generalized Born model. This method allows to 
perform a systematic scanning mutagenesis of protein-protein interfaces and it is able of 
affordably predicting the experimental results of mutagenesis. 
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The mutant complexes are usually generated by performing a single truncation of 
the mutated side chain, replacing Cα with a hydrogen atom and setting the Cα-H direction 
to that of the former Cα-Cβ. The ΔΔGbinding is calculated as the difference between the 
mutant (ΔGbinding_mut) and wild type (ΔGbinding_wt) complexes free energy defined as 
follows [182] in equation (4). 
 
 ΔΔGbinding = ΔGbinding_mut −ΔGbinding_wt (4) 

 
Typical contributions to the free energy (Gcomplex) are based on the internal energy 

(bond, dihedral, and angle) (Eint), the electrostatic (Eelect) and the van der Waals (EvdW) 
interactions, the free energy of polar solvation (Gpolar_solv), the free energy of non-polar 
solvation (Gnon-polar_solv), and the entropic contribution (S) according to the following 
equation (5). 
 

Gcomplex = Eint + Eelect + EvdW + Gpolar_solv + Gnon-polar_solv – TS (5) 
 
 

1.2.3 Molecular dynamics applications in protein-protein interactions  
 

Protein-protein interactions are crucial actors in most biological processes, 
therefore detecting specific amino acid residues can contribute to investigating the 
specificity and the strength of protein interactions. For this reason, an atomic exploration 
of the protein-protein systems may provide a better understanding of the driving forces 
for PPIs, by elucidating also the molecular recognition processes between the protein 
partners [9, 47, 183–186, 52, 55, 56, 75, 86, 87, 102, 107]. Furthermore, protein structures 
may change when performing their biological functions or undertake transitions from 
unfolded to folded state and vice versa [187]. 

Classical all-atom molecular modelling is very useful for exploring local motions 
by playing a crucial role for generating realistic molecular representations of biological 
protein functions, exploration of experimental data and other tasks involved into a drug 
discovery process [188–194]. On the other hand, atomistic molecular dynamics (MD) 
simulations can generally simulate folding processes of small and relatively quick folding 
proteins [195, 196] or the potential dimerization process [197]. Therefore, in the last ten 
years, the application of coarse-grained modelling of proteins [198, 199] has been 
increased [200] as an important technique to analyse large biomolecular systems [201]. 
The coarse-grained modelling has been successfully used in investigating protein folding 
mechanisms and protein structure prediction [187]. Coarse-grained models are 
computationally time-saving compared to all-atom simulations and may reproduce much 
longer time-scales and/or larger sizes of the systems under study (figure 1.3). 
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Figure 1.3. The molecular modelling techniques applied at different resolutions, quantum, all-atom, coarse-
grained, and mesoscale, can range several time scales and system sizes [187]. 
 

The coarse-grained protein modelling can generate several levels of reduced 
models of polypeptide chain [202–204]. However, to achieve an atomistic precision level 
to characterise protein-protein interactions, in synergy with other computational and 
experimental techniques, all-atom MD simulations represent a valuable method [205], 
especially when some interacting hot spots are not visible from the crystal structure and 
conversely, motions can unveil them. Hence, interactions unreported before can also be 
detected [206]. MD simulations can also be useful to identify transient pockets that play 
a role in protein-protein binding but could not be captured by crystallography [207, 208]. 
In fact, PPIs are also characterised by a dynamic nature, therefore transient pockets and 
buried binding hot spots can emerge on the protein surfaces and guide the design of small 
molecules to these transient areas, as demonstrated by several studies reported in the 
literature. The conformational changes on protein-protein interactions usually involve 
motions of side chains and small loop perturbations [206, 209]. Thus, MD can allow 
exploring binding interfaces in terms of flexibility, and previously undetected important 
interactions can be identified. Indeed, protein-protein interfaces are flexible, show 
adaptability, and can change from the unbound to bound state. It can be noticed in some 
proteins that upon protein-protein binding a partner can undertake conformational 
changes exhibiting novel cavities usually not visible in the unbound state [206].  

However, in some cases, all-atom molecular dynamics simulations employing 
classical mechanics have been demonstrated to present limitations in suitably exploring 
all the energy landscapes of biological molecules with many local minima frequently 
separated by high-energy barriers [210–212]. Indeed, in long simulations, several free 
energy minima can trap proteins in non-relevant conformations, impeding going forward 
to relevant conformations, leading to poor dynamic characterization of protein structures 
[210, 213]. For this purpose, enhanced sampling techniques can be employed, such as 
replica-exchange molecular dynamics (REMD), metadynamics and simulated annealing 
[212]. 

Moreover, in some cases, the predictive potential of MD simulation could be 
limited by the accuracy of the tuned force fields applied to define inter- and 
intramolecular interactions. To date, the atomistic physics-based force fields, such as 
OPLS3e [225], DES-Amber [226], CHARMM36m [227] and others, have reached high 
levels of accuracy especially for the simulation of biological macromolecules comparing 
the predicted data with the experimental ones (often from single-chain systems). In the 
case of proteins, the force field parameters have been widely refined with improved water 
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models and torsion-angle potentials ensuring highly accurate simulations of both folded 
and disordered protein systems [226, 228, 229]. 

 
Furthermore, MD simulations have reported several success cases in supporting 

the design of novel PPI inhibitors by complementing experimental screening techniques 
[113]. In this context, MD simulations can predict the binding mode of potential PPI 
modulators, whereas static structures conversely can provide only a few structural 
insights [207]. Thus, MD can be exploited in the validation process of high-affinity PPI 
binders, as multiple host-guest conformations are sampled during the trajectory.  

Moreover, MD simulations can be applied to refine structures of low-quality 
resolution protein-protein complexes solved via experimental techniques, such as X-ray 
crystallography and cryo-electron microscopy (cryo-EM) [214]. Indeed, the generation 
of high-quality resolution structures of multiprotein complexes via these classical 
experimental methods still reports several challenges. Therefore, computational all-atom 
explorations such as MD simulations can help to elucidate structural and conformational 
dynamics of complex macromolecular structures relevant for biological processes [215]. 
 

During the MD simulations, the Newton equations of motions for all atoms of the 
system under study are integrated numerically, whereas the forces applied on every atom 
i (fi) are defined by calculating the gradient of the potential energy function, V(rN), as 
reported in equation (6) [113]. 

!" 	= 	m"	&" 	=	–
()(+,)
(+"

 (6) 

where mi and ai are respectively the mass and the acceleration of each atom i. The 
potential energy function V(rN) is parametrised through the selected force field and it 
depends on the positions of all N particles (rN) in the system. The force field is applied to 
model bonded interactions, such as bonds, angles and torsion angles, and nonbonded 
interactions, such as van der Waals and electrostatic contacts. Therefore, during the 
trajectories, each atom can move depending on the force fi exerted on it and equation 6 is 
integrated repeatedly for a predefined number of timesteps.   

In this equation, each generated conformation of the proteins is associated with a 
potential energy and the forces fi applied on each atom of the system are directly 
proportional to the gradient of the potential energy function. The forces are computed by 
using MD applications, such as the most common Desmond [216], NAMD [217] and 
Gromacs [218], including a very small integration time step (Δt) in the order of 
femtoseconds (10−15 second) in the attempt of reproducing biologically relevant 
timescales [113].  

Moreover, when setting MD parameters, the solvent, i.e. the surrounding water 
molecules for physiological environments, can be modelled explicitly (e.g. TIP3P [159]) 
or included via continuum models [219]. The resulting MD trajectory reproduces the 
dynamics of protein conformations in a short-time simulation. However, nowadays the 
powerful and specialised hardware [220, 221] can massively compute longer MD 
simulations ranging from microseconds to milliseconds to deeply investigate 
conformational motions and identify novel potential molecular recognition sites between 
proteins [222–224]. 
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1.2.4 Docking and pharmacophore screening 
 
Once the protein-protein or protein-peptide complexes (experimentally solved or 

docked) are available and the hot spots have been identified, virtual screening campaigns 
can be run. Among several computational methods applied in a drug discovery process 
for PPIs, docking is a virtual screening method most used to identify potential modulators 
and for the lead optimisation. It has been extensively used and plays a key role in several 
stages during the design of PPI inhibitors [132]. Molecular docking works predicting 
ligand orientation and potential conformations within the binding pocket or on the protein 
surface. The overall docking process is based on two steps: a conformational search for 
the ligands within the defined grid box on a protein surface to generate several possible 
conformations; and a scoring algorithm that allows ranking the different generated 
conformations bound to the receptor, or “poses”, on the basis of an energy function (from 
lowest to highest energy values) [230–233]. 
 

Docking screening presents three main issues related to the protein-protein 
surfaces characteristics that are not found in a traditional binding pocket. The first issue 
is the flexibility of proteins in conformational search and scoring, especially for transient 
PPIs or in presence of conformational changes in the binding site from bound to unbound 
states. The second issue is represented by water bridges that small molecules or peptides 
could establish in the bound state. Indeed, in most of the PPI hot spots, water molecules 
arrange around the hot spots leaving them dry. Hence ligands interacting with these hot 
spots can exhibit water bridges that usually are not included in docking procedure [18]. 
Even if some docking applications can incorporate water molecules, most of them are 
used for the active sites of enzymes, where the interactions with water molecules are 
usually well known or there are a few water molecules within the pocket. Finally, the 
third issue is related to the absence of protein-protein complex PDB structures in some 
cases and neither experimental data that can guide the complex generation [132].  

 
The designed molecules can be docked to the protein surface defining the grid box 

on the hot spots, in order to test the ability of these compounds to interact with the key 
amino acids. For this purpose, there are several docking applications that can be 
employed, such as the most used AutoDock [234], Glide [235], MOE [236], GOLD [237] 
and others [232, 238–240].  

 
In parallel with the docking technique, one of the employed computational 

methods for virtual screening campaign is the pharmacophore approach. For PPI projects 
the pharmacophore model can be built based on the chemical functionalities of one of the 
two protein partners [241]. Pharmacophore modelling derived from protein-protein 
interfaces have proven to perform efficient virtual screening for PPI drug discovery [242]. 
Employing a classical approach of pharmacophore modelling and virtual screening, 
several success stories have been reported on identifying inhibitors for PPIs [243–246]. 
For this purpose, many pharmacophore applications can be used, such as LigandScout 
[245], Phase [247, 248] and others [249]. 

A pharmacophore model can be defined as the 3D representation of the chemical 
features that are necessary for molecular recognition of a ligand by a protein and to obtain 
a desired biological effect, such as inhibition. Therefore, different molecules that contain 
functional groups in the appropriate 3D conformation and report high pharmacophore 
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scores can be considered promising modulators. The pharmacophore model generally 
consists of sphere-like features corresponding to the molecular functionalities such as 
hydrophobic, aromatic, hydrogen bond acceptor or donor, positive or negative ionisable 
groups [250]. This computational technique can be exploited into different molecular 
modelling strategies. For example, the generated models can be used as queries to identify 
molecules from a virtual compound database, but also they can address the docking of 
the molecules within the receptor by retaining the conformations extracted from the 
pharmacophore screening [251]. Finally, the model can also be used to compare 
pharmacophore and docking results and guide in selecting the consensus molecules as the 
most promising [241].  
 

Thus, selecting and testing the compounds retrieved from virtual screening 
campaigns, hit molecules can be found by reporting experimental evidence that they may 
act as PPI modulators. Hence, once again docking and pharmacophore screening can be 
exploited to perform hit optimisation protocols. Indeed, the results from both techniques 
(docking and pharmacophore approach) are predictions that even need experimental 
validations. For this reason, several methods, such as surface plasmon resonance (SPR) 
[164], and NMR techniques, are available to provide information about respectively 
kinetics of binding and structure-activity relationship (SAR) of small molecules to 
proteins [252, 253]. 

Other techniques used for PPI modulators design are the proximity ligation assays 
[254] and enzyme fragment complementation assays [255], that respectively analyse 
protein dimerization and the related inhibition implemented by small molecules; FRET 
[256], and mass spectrometry [257–262]. However, these experimental techniques are no 
subjects of this work, hence they will not be discussed in this thesis. 
 
 

1.3 Structure of the thesis 
 

This PhD thesis is overall focused on computational approaches to the exploration 
of protein-protein interactions. Therefore, in this chapter, an overview of the protein-
protein interactions has been provided by describing protein-binding interfaces 
characteristics and composition and the most frequently used computational techniques 
within a PPI drug discovery programme. Next chapters present molecular modelling 
strategies to address the exploration and drug design approaches on six different PPI 
projects, as below listed: 

• CHAPTER 2 – deals with the design strategy of small molecule inhibitors of the 
interaction between MUC1 (Mucin 1) and CIN85 (Cbl-interacting protein of 85 
kDa) to prevent the invasiveness of cancer cells together with metastatic effects 
[263–265]; 

• CHAPTER 3 – reports the study of the interaction between the pyrin domain 
(PYD) of NLRP3 protein (NACHT, LRR and PYD domains-containing 3) and 
the PYD of ASC protein (adapter apoptosis-associated speck-like protein 
containing a CARD) involved into inflammatory diseases, in order to reproduce 
putative models of the NLRP3PYD-ASCPYD complex [266, 267]; 

• CHAPTER 4 – describes computational studies to identify a potential interacting 
region on the Spike protein surface of the novel coronavirus SARS-CoV-2 to 
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select putative inhibitors of the binding to human ACE2 protein (Angiotensin-
converting enzyme 2), in order to prevent the viral entry [268, 269]; 

• CHAPTER 5 – is focused on the structural analysis of the interaction between the 
mutated C3b protein (C3bR102G) and its protein partner Factor H in patients 
affected by Age-Macular Degeneration disease [270]; 

• CHAPTER 6 – reports a computational approach to modify the structure of a 
patented peptide including non-standard amino acids with the aim of inhibiting 
the trimeric complex formation between HOX (homeobox protein), PBX (Pre-B 
cell leukaemia transcription factor) and DNA to prevent cancer diseases [271, 
272]; 

• CHAPTER 7 – describes a structural optimisation strategy of a patented peptide 
by employing a 310-helix hydrogen bond surrogate approach to tackle the 
interaction between Ras (rat sarcoma protein) and RasGRF1 (Ras guanine 
nucleotide-releasing factor 1) proteins that have been associated with cocaine 
addiction and abuse [273, 274]. 

 
The above-listed PPI projects aim to provide comprehensive methodologies to 

address computational strategies for structural insights in PPIs and the design of protein-
protein inhibitors such as small molecules or peptides. The work performed on Spike 
protein of SARS-CoV-2 has already been published in ChemMedChem Journal (DOI: 
10.1002/cmdc.202000259), while the other works have been considering for research 
articles that in a short time will be submitted to scientific peer-reviewed journals.  
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CHAPTER TWO 
 

MUC1-CIN85 INTERACTION – Supervised multi-
computational approach to identify hit compounds 
 
 

2.1 Introduction 
 

Cancer is one of the most severe diseases and the second leading cause of death 
globally. The World Health Organisation (WHO) states that in 2018 the cancer burden 
rose to 18.1 million new cases and 9.6 million cancer deaths. Many efforts have been 
done to tackle this global threat, and novel treatments have shown to be reliable and 
mainly improve the patient’s life quality. However, it is expected that even more research 
efforts will be necessary to fight cancer morbidity and mortality [1]. Furthermore, to 
complicate already hard clinical cases, late stages of the disease are often associated to 
invasiveness and metastasis, a process composed by multiple steps when cancer cells 
detach from the basement membrane, degrade the surrounding matrix, and finally invade 
the neighbouring tissues and enter the bloodstream [2]. In this context, experimental 
evidence, such as lung experimental assays performed at the University of Pittsburgh, 
unveiled the crucial role of a protein-protein interaction between the Mucin 1 (MUC1) 
and the Cbl-interacting protein of 85 kDa (CIN85) throughout the invasiveness and 
metastasis process [3]. 

MUC1 is a transmembrane glycoprotein that is normally expressed in the 
glandular or luminal epithelial cells of mammary gland, oesophagus, stomach, 
duodenum, pancreas, uterus, prostate, and lungs, and to a lesser extent, in hematopoietic 
cells [4, 5]. MUC1 exerts a protecting role of the epithelia. The extracellular domain, that 
extends up to 200-500 nm from the cell surface, is heavily glycosylated with extended 
negatively charged sugar branches [6]. This glycosylation generates a physical barrier 
that prevents pathogenic accessibility and adhesion. Furthermore, the sugar chains 
oligomerise to form a mucinous gel, that lubricates and protect the underlying epithelia 
from pollutants, pH changes, desiccation and microbes [7, 8].  

MUC1 consists of two peptide fragments extracellularly associated through stable 
hydrogen bonds: the longer N-terminal subunit (MUC1-N) and the shorter C-terminal 
subunit (MUC1-C) [9]. The first fragment is composed of two domains: the proline, 
threonine and serine-rich (PTS) domain and the Sea urchin sperm protein enterokinase 
and agrin (SEA) domain. The PTS domain is also designated as the variable number 
tandem repeat (VNTR) region usually consisting of 20-21 amino acids, that are 20 to 120-
fold repeated in normal cells [10]. In the VNTR region, serine and threonine residues 
compose about 40% of the amino acids, and they are extensively O-glycosylated, while 
N-glycosylation occurs on the five asparagine residues of VNTR. Indeed, it is estimated 
that 50-90% of MUC1 weight is to be ascribed to the O-glycosylation and a lesser extent 
to the N-glycosylation. The sugar moieties mask the peptide core working as a shield 
from undergoing proteolytic cleavage by environmental enzymes. On the contrary, the 
shorter subunit of MUC1 (MUC1-C) consists of three domains: the 58 amino acid 
extracellular domain (ECD), a 28 amino acid transmembrane domain (TMD), and a 72 
amino acid cytoplasmic tail (CT) (figure 2.1) [4, 11]. 
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Figure 2.1. MUC1 composition [11] 
 

Under normal conditions, MUC1 is located on the plasma membrane as a 
heterodimeric complex. On the other hand, it has been associated with pathological 
conditions, when presenting aberrant glycosylation in cancer cells (figure 2.2).  
 

 
Figure 2.2. Glycosylated MUC1 VNTR vs hypoglycosylated MUC1 VNTR at the endothelial cell 
membrane [12] 
 

Normal MUC1 and the tumour-associated MUC1 (TA-MUC1) differ for 
biochemical features, but also their cellular distribution. Normally, the glycosylation 
process starts when the α-GalNAc transferase catalyses the addition of N-acetyl 
galactosamine (GalNAc) to serine and threonine residues of the MUC1-N backbone, 
generating the Tn antigen. Then, the galactose is added to Tn antigen by a transferase 
enzyme (Core 1 β-1,3-galactose transferase) to generate Core 1 O-glycan or T antigen. 
This latter is again added with N-acetyl glucosamine (GlcNAc) by another transferase 
enzyme (Core 2 β-1,6-N-acetyl glucosamine), catalysing the formation of Core 2 O-
glycan. The sugar branches of the Core 2 O-glycans undergo further chain elongation 
followed by termination upon addition of fucose or sialic acid to the terminal sugar [13] 
(figure 2.3A).  

In pathological conditions, this sugar-coating process on MUC1-N backbone is 
disrupted because Tn and T antigens are sialylated to sialyl Tn and sialyl T by the 
enzymes α-2,6-sialyltransferase and α-2,3-sialyltransferase, respectively, due to high 
levels of expression of these enzymes in cancer cells. This sialylation causes a premature 
termination of chain elongation resulting in hypoglycosylation of MUC1, that impacts 
the stability and subcellular localization of MUC1 [14] (figure 2.3B). In particular, in 
colon cancer cells, a specific mechanism dominates, i.e. MUC1 overexpresses the sialyl 
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Lewisx (sLex) and sialyl Lewisa (sLea) epitopes and a decrease in O-acetylation appears 
to contribute to such expression in these cells [14].  
 

 
Figure 2.3. A) Mechanism of sugar branches elongation on normal MUC1 VNTR; B) Aberrant sugar 
elongation of TA-MUC1 [11] 
 

Fewer sugars on the VNTRs pave the way to new scenarios of interaction with 
other proteins, owing to the increase of MUC1 peptide backbone accessibility to more 
efficient or completely new protein-protein interactions, that can profoundly change 
intracellular signalling in tumours compared to normal cells. Indeed, experimental in vitro 
and in vivo assays highlighted a new protein-protein association between MUC1 and 
CIN85 [3]. 

CIN85 is a protein usually associated to the Cbl proteins (Cbl-b and c-Cbl), multi-
adaptor-associated ubiquitin ligases, that recruit CIN85 and initiate endocytic 
internalization and trafficking and sorting of several other proteins [15, 16]. 
CIN85 contains three Src homology 3 (SH3) domains at its N-terminus followed by a 
proline-rich region and a C-terminal coiled-coil region [17] (figure 2.4).  
 

 
Figure 2.4. CIN85 protein consisting of three Src homology 3 (SH3) domains, a proline-rich region and a 
C-terminal coiled-coil region [17]  
 

The SH3 domains are small modular interacting domains, that generally bind to 
proline-containing targets (PXXP motifs). It has been shown that SH3 domains of CIN85 
recognise an atypical proline-arginine motif, PXXXPR (where X is any amino acid), in 
Cbl and many other proteins implicated in the control of clathrin-mediated receptor 
endocytosis, receptor recycling, and cytoskeletal rearrangements [15–18]. Indeed, it is 
noteworthy that each repeat in MUC1 VNTR contains a highly conserved sequence, 



 33 

PDTRPA (figure 2.5), representing a good candidate for binding to CIN85, as it was 
confirmed by the experimental assays [3].  
 

 
Figure 2.5. On the left, an example of the amino acid composition of MUC1 including VNTR [19]; on the 
right, 3D structure of a VNTR of MUC1 (PDB ID: 5OWP) 
 

CIN85 has also been implicated in a number of important cellular processes 
including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, 
immunological synapse, cell migration and invasion [16, 20–23]. CIN85 was reported to 
be detected on lamellopodia and invadopodia, which are involved in cell adhesion and 
migration, suggesting that overexpression of CIN85 could promote invasiveness of 
cancer cells [24]. 

Indeed, co-precipitation experiments performed on mouse ovarian cancer and 
human breast cancer cell lines highlighted an association between MUC1 and CIN85, 
while the use of confocal immunofluorescence microscopy identified the co-localization 
of these two proteins both intracellularly and on the cell surface. In fact, the protein-
protein complexes were found mainly in the membranes (including plasma membrane, 
mitochondria, Golgi apparatus, endosomes and endoplasmic reticulum), the cytosol and 
cytoskeleton fractions, with very little or none detected in the nuclear fraction. 
Furthermore, an important discovery was that these protein-protein complexes co-
localised on large invadopodia-like protrusions (figure 2.6A-C), whereas the invadopodia 
are structures that are the first step bringing to tumour cell adhesion and invasion. 
 

 
(A) (B) (C) 

Figure 2.6. Confocal immunofluorescence microscopy assays on mouse ovarian cancer and human breast 
cancer cell lines revealed highly stained invadopodia-like protrusions of (A) anti-MUC1 antibodies (green-
stained), (B) anti-CIN85 antibodies (red-stained) and (C) both together (yellow-stained). White arrows 
indicate the invadopodia-like protrusions [3].  
 

Therefore, the MUC1-CIN85 association suggested that MUC1 regulates also 
CIN85 role in cell migration and invasion. It was also confirmed by assays in vivo using 
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a well-characterised model of experimental lung metastasis produced by intravenous 
injection of B16 mouse melanoma cells into mice. The results highlighted the detection 
of metastatic lung nodules in the mice, thus confirming the previous deduction from in 
vitro assays [3]. 

In light of the above, CIN85-MUC1 interaction appears to be an interesting 
pharmacological target. The druggability of this protein-protein interface should be very 
challenging, considering that an X-ray crystal structure of the complex is not available. 
Therefore, the strategy of targeting a protein-protein interaction is usually associated with 
intrinsic issues, where a binding pocket is not detectable and the interaction surface is 
very shallow and broad.  

The SH3 domains of CIN85 have evolved to incorporate different modes of 
recognition for cognate ligands, providing a level of specificity to achieve its 
multifunctional capability. Binding of peptides containing proline-rich sequences to SH3 
domains can occur in two opposing orientations. In some cases, the stoichiometry is 1:1, 
where a single peptide of a protein partner binds one SH3 domain. On the other hand, 
recent studies reported that a single proline-rich motif can simultaneously bind to both N-
terminal SH3 domain A (referred to as CIN85A) and SH3 domain B (referred to as 
CIN85B), due to the long linker between these regions [25]. An example of this 
heterotrimeric complex was detected by Ceregido et al., that resolved an X-ray crystal 
structure of a dimer of CIN85 in complex with a proline-rich peptide of Cbl-b with the 
sequence 902-PARPPKPRPRR-912 [26]. Mutational studies performed on CIN85 
protein in complex with this Cbl-b peptide allowed to identify crucial residues, that could 
guide the design of novel modulators of CIN85 by potentially inhibiting the interaction 
with MUC1. Therefore, starting from the PDB structure analysis of CIN85 protein (PDB 
ID: 2BZ8) and from literature data, a hypothesis was formulated: CIN85 could share the 
same interacting surface for Cbl-b protein and MUC1, considering the high similarity 
between PXXXP motifs of these two proteins. Moreover, experimental assays performed 
by Cascio et al. [27] reported that CIN85 interact with both proteins (Cbl-b and MUC1) 
in a dimeric form. In fact, the authors used a MUC1 peptide agonist capable of inducing 
CIN85 dimerization, that showed to enhance the binding between CIN85 homodimer and 
MUC1 peptide in two times higher extent than in its absence [27]. This evidence 
suggested that the binding region of MUC1 on CIN85 homodimer could be the same of 
Cbl-b as visible in PDB 2BZ8 [26]. 

Therefore, based on these considerations, the goal of this project was to identify 
inhibitors of the dimeric form of CIN85 that was expected establishing interaction with 
MUC1, in order to tackle the metastatic process triggered by this interaction. For this 
purpose, computational techniques, such as molecular dynamics, docking and 
pharmacophore screenings were applied. In detail, first a structural analysis of the 
proteins was conducted by performing MD simulations, and then a consensus approach 
based on docking and pharmacophore techniques was applied to select putative 
compounds able to target the dimeric form of CIN85. Scheme 2.1 summarises the steps 
of this workflow, that are in detail described below leading to the identification of two 
potential hit compounds. Indeed, the biological activity of these molecules was confirmed 
by co-immunoprecipitation assays and interaction inhibition assays, reporting promising 
IC50 values in low micromolar (µM) and even nanomolar (nM) ranges. Close analogues 
of these two compounds have been identified and will be tested to confirm the results for 
the previous singletons.  
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Scheme 2.1. Overview of the computational workflow performed to identify consensus molecules 
potentially modulating CIN85 protein by inhibiting the binding interface 
 
 

2.1.1 A computational analysis of CIN85 dimer interacting interface  
 

Src Homology 3 (SH3) domains of CIN85 exhibit a characteristic beta-barrel fold, 
that usually consists of five or six β-strands arranged as two tightly packed anti-parallel 
β-sheets [17]. As previously mentioned, CIN85 was found binding MUC1 in a dimeric 
form, generating a heterotrimeric complex. To date, the only currently available PDB 
structure of CIN85 dimer complexed with a peptide is the PDB 2BZ8 [28]. In this 
complex, a proline-arginine motif of Cbl-b protein is sandwiched by two SH3 domains 
of CIN85 arranged in a dimeric form. Figure 2.7 depicts the heterotrimeric complex. 
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Figure 2.7. 3D representation of CIN85-Cbl-b complex (PDB ID: 2BZ8). Orange structures embedded into 
grey transparent surfaces are the CIN85 SH3 domains in complex with the short purple peptide that is a 
proline-arginine-rich fragment of Cbl-b protein [28]. 
 

Cbl-b fragment consists of eleven amino acids, 902-PARPPKPRPRR-912, 
arranged in a polyproline II (PPII) helix conformation. This protein is a ubiquitin ligase 
playing a key role in receptor downregulation by mediating multiple monoubiquitinations 
of the receptors and promoting their sorting for lysosomal degradation [28]. The structure 
analysis of the PDB 2BZ8 unveiled a pseudo-symmetrical orientation of the peptide, as 
depicted in figure 2.8, with a stoichiometry 1:0.57. Indeed, the N-terminal portion of Cbl-
b fragment is engaged in the Type I orientation, while the C-terminal portion is involved 
in the Type II orientation [26].  

 
Figure 2.8. Pseudo-symmetrical orientation of Cbl-b peptide in complex with two CIN85 SH3 domains. 
The N-terminal region of the peptide is involved in the Type I orientation, while the C-terminus is engaged 
in the Type II orientation [26] 
 

Furthermore, the analysis of Cbl-b binding mode to two SH3 domains of CIN85 
allowed to identify the interactions and the involved residues for both proteins, that are 
shown in figure 2.9 including a 2D interaction diagram.  
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Figure 2.9. 2D interaction diagram of Cbl-b peptide and the established interactions with CIN85 SH3 
domains amino acids. Purple arrows stand for hydrogen bonds, red arrows are salt bridges and red lines pi-
cation interactions 
 

The observed interactions were mainly H-bonds, where the side chains of Cbl-b 
amino acids Arg904 and Arg911 interact with Asp16 and Glu17 belonging to SH3 
domains, creating H-bonds and salt bridges. The Cbl-b residues Lys907 and Arg909 
backbone carbonyl groups establish hydrogen bonds with Asn51 and Trp36 residues of 
the two CIN85 domains, respectively. Moreover, Arg904 and Arg911 are also involved 
in pi-cation interaction with Trp36. Finally, some hydrophobic contacts were detected 
between Cbl-b Pro906, Pro908, Pro910 and CIN85 Trp36 and Phe52. All these 
interactions are grouped in table 2.1. 
 
Table 2.1. Residues of Cbl-b protein and CIN85 SH3 domains involved in interactions. 

Interaction type Cbl-b Peptide CIN85 SH3 domains 
H-Bond Arg904, Arg911, Lys907, Arg909 Asp16, Asp17, Asn51, Trp36 

Salt bridge Arg904, Arg911 Asp16, Asp17 
Pi-Cation Arg904, Arg911 Trp36 

Hydrophobic Pro906, Pro908, Pro910 Trp36, Phe52 
 

Furthermore, in order to determine the functional role of the two arginine residues 
of Cbl-b peptide (Arg904 and Arg911) for binding CIN85 and the receptor 
downregulation, Jozic et al. performed mutational studies, where Arg904 and Arg911 of 
Cbl-b were mutated to alanine (R904A and R911A, respectively). The amount of co-
precipitated CIN85 together with the protein partner was quantified by reporting that the 
mutation R911A reduced the interaction with CIN85 by approximately 60%, while the 
mutation R904A reduced the binding by about 25%. Finally, mutations of both sites in 
Cbl-b abolished the co-precipitation with CIN85 [28]. Moreover, mutation of Lys907 did 
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not affect the formation of a trimeric complex [26]. These data were also consistent with 
the NMR titration experiments performed by Ceregido et al. that calculated different KD 
values for Type I and Type II orientations, whereas the first orientation showed KD = 46.9 
µM, while Type II provided KD = 2.0 µM, showing a preferential behaviour for Type II 
orientation. Once again this data demonstrated that Arg911, that is involved in Type II 
Cbl-b peptide orientation, is more important in terms of trimeric complex formation, in 
comparison with Arg904 that is instead involved in the Type I orientation [26]. Therefore, 
it should be notable that mutation of Arg904 does not appreciably change the apparent 
affinity of the peptide for CIN85, but changes the relative enthalpic and entropic 
contributions to ΔG of the complex [28]. All this information was crucial for the several 
steps of this project and was processed in order to guide the computational studies. 
Moreover, as above mentioned, experimental assays suggested that MUC1 VNTR is able 
to bind the dimeric form of CIN85 [27], and this assumption was investigated as described 
in the next steps. 
 
 

2.2 Results and discussion 
 
 

2.2.1 Molecular Dynamics simulation of CIN85-Cbl-b complex 
 

The first step of this work was the analysis of the PDB structure of CIN85 in a 
dimeric form bound to Cbl-b peptide (PDB ID: 2BZ8 with resolution 2.0 Å) [28]. The 
only available data about crucial interactions between CIN85 and the protein partner were 
retrieved from the above-mentioned mutational studies and from a single PDB structure 
(PDB 2BZ8), where two SH3 domains of CIN85 bind to the proline-arginine-rich peptide 
of Cbl-b. However, a PDB structure accounts only static positions and conformations of 
amino acid side chains or protein backbone, hence it could be likely that some interaction 
cannot be visible in that precise conformation of the complex. Therefore, two short 
Molecular Dynamics simulations of the PDB 2BZ8 were run on CIN85-Cbl-b peptide 
complex to explore the most stable and frequent interactions established during the 
trajectories. For this purpose, the complex structure was first optimised at pH 7.0 ± 2.0 
and the fluoroproline present on the peptide was mutated to a natural proline. The 
simulation time was set 50 ns for each system and both MD were run. The stability of the 
complexes was checked by visualising the RMSD plots (Plot 2.1A-B) and energy, 
temperature, pressure and volume were monitored during the entire trajectories (average 
energy values in table 2.2). 
 

 
(A) 

 
(B) 

Plot 2.1. RMSD plots of the first (A) and the second (B) MD simulations of CIN85-Cbl-b peptide complex 
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Table 2.2. Energy values monitored during the two MD trajectories of CIN85-Cbl-b peptide complex 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -55660.520 91.135 0.000 -67384.654 102.536 0.000 
Potential energy (kcal/mol) -68546.195 68.881 0.000 -82957.344 77.312 0.000 

 
Both simulation outputs provided similar information and they retrieved mostly 

the same interactions already visible in the PDB structure, except for a new hydrophobic 
contact generated between Phe8 of CIN85 and Pro906 of Cbl-b, that was observed and 
very frequent in both simulations. This information was therefore used for the next steps 
of the workflow. The protein-ligand contacts plots for the two MD simulations are 
reported below (Plot 2.2A-B) together with the timeline representation of the protein-
ligand contacts, that provide a measure to understand the frequency of occurrences of the 
interactions (Plot 2.3A-B). Finally, figure 2.10 shows the ligand interaction path 
including the percentage of occurrence per each during one of the two trajectories. 

 
(A) 

 
(B) 

Plot 2.2. Protein-ligand contacts retrieved from the first (A) and the second (B) MD simulations of CIN85-
Cbl-b peptide complex. The plots describe the intensity of protein interactions monitored throughout the 
simulations. The green bars represent the hydrogen bonds, the purple ones are for hydrophobic contacts, 
the pink bar is for ionic or polar interaction, and the blue ones show water bridges. 
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(A) 

 
(B) 

Plot 2.3. Timeline representation of the interactions and contacts established by CIN85 protein with Cbl-b 
peptide during the first (A) and the second (B) MD simulations. 
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Figure 2.10. Cbl-b peptide ligand interactions with the two chains of the protein partner.  
 
 

2.2.2 Protein-peptide docking of CIN85 SH3 domains and MUC1 peptide 
 

The analysis of MD outputs provided key data for the next step of this work.  
As previously mentioned, this study was based on a hypothesis to be explored, i.e. MUC1 
peptide could bind and share the same CIN85 interacting interface of Cbl-b peptide since 
experimental evidence demonstrated that CIN85 SH3 domains are able to bind MUC1 
VNTR building a heterotrimeric complex [27]. Furthermore, both Cbl-b and MUC1 
VNTR share similar proline-rich motifs PXXXP. This information is crucial to 
investigate the protein-protein interaction but does not provide information about specific 
interactions established between the three protein partners. Moreover, unfortunately, a 
PDB structure of CIN85-MUC1 complex is not currently available, for this reason, it was 
necessary to create an interaction model of this complex by running a protein-peptide 
docking of MUC1 VNTR to CIN85 dimer. Hence, the analysis of the PDB 2BZ8 complex 
and MD results were used as a benchmark to perform and validate the protein-peptide 
docking results.  

For this purpose, the PDB structure of MUC1 hypoglycosylated VNTR peptide 
(GVTSAfPDT*RPAP, including a fluoroproline and a sugar moiety linked to Thr5, the 
2-acetamido-2-deoxy-alpha-D-galactopyranose) in complex with two subunits of the 
anti-MUC1 antibody SM3 (PDB ID: 5OWP with resolution 1.85 Å) [29] was downloaded 
from the Protein Data Bank [30]. The protein partners of MUC1 were deleted and the 
peptide was prepared at pH 7.0 ± 2.0 by also mutating the fluoroproline of the peptide to 
a natural proline. The protein-peptide docking was performed in a standard precision 
mode using Glide. The calculations generated several protein-peptide combinations, 
where the docked peptide exhibiting the lowest docking score (-9.802 kcal/mol) was the 
one depicted in figure 2.11. By this binding mode MUC1 peptide maintained as much as 
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similar conformation to the starting one present in the PDB 5OWP. The other results 
showed the peptide in highly folded conformation quite different from the well-known 
natural PPII helix conformation, that is usually assumed by MUC1 VNTR, as reported in 
the literature [26]. Therefore, the other solutions were neglected and the first protein-
peptide docked complex was processed to perform additional computational studies, i.e. 
Molecular Dynamics simulations. 
 

 
Figure 2.11. CIN85 SH3 domains (grey structures on the left and on the right) in complex with MUC1 
VNTR peptide with the sequence GVTSAPDT*RPAP (red filament with green stick bonds). 
 

Furthermore, most of the CIN85-MUC1 peptide interactions retrieved from this 
docking were in accordance with those identified from the PDB 2BZ8 between CIN85 
SH3 domains and Cbl-b peptide, whereas the key residues of CIN85 were Asp16, Glu17 
and Asn51 for the hydrogen bonds and Trp36 for both hydrophobic contacts and H-bonds. 
The amino acids Asp16 and Glu17 of an SH3 domain established hydrogen bonds with 
MUC1 Arg6, and from the other SH3 chain generated H-bonds with MUC1 Ser1 
backbone. Trp36 of CIN85 created a salt bridge with MUC1 Arg6, Asn51 of CIN85 
formed a hydrogen bond with MUC1 Asp4, and Phe52 established a hydrophobic contact 
with MUC1 Pro3, as shown in figure 2.12. In order to deeply explore these interactions 
and analyse their stability two Molecular Dynamics simulations were run, as described in 
the next section. 



 43 

 

 
Figure 2.12. MUC1 VNTR peptide interactions with SH3 domains residues of CIN85 from first prioritised 
protein-peptide docked complex.  
 
 

2.2.3 Molecular Dynamics simulations of CIN85-MUC1 complex 
 

The heterotrimeric complex, SH3-SH3-MUC1 VNTR, selected from protein-
peptide docking outputs was used to run two different short MD simulations of 50 ns, to 
minimise the system and extract the most frequent and stable interactions.  

The stability of the complexes was checked by analysing the RMSD plots (Plot 
2.4) and energy, temperature, pressure and volume were monitored during the entire 
trajectories (average energy values in table 2.3). 
 

 
(A) 

 
(B) 

Plot 2.4. RMSD plots of the first (A) and the second (B) MD simulations of CIN85-MUC1 peptide complex 
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Table 2.3. Energy values monitored during the two MD trajectories of CIN85-MUC1 peptide complex 
 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy 
(kcal/mol) -56873.047 93.095 0.000 -53980.081 90.896 -0.001 

Potential energy 
(kcal/mol) -69904.760 70.510 0.000 -66340.262 69.104 -0.001 

 
Even for CIN85-MUC1 peptide complex the residues Asp16, Asp17 and Trp36 

of CIN85 established the main interactions with MUC1 peptide, although not all the 
interactions with the key residues were observable as the most stable during the whole 
trajectories, such as contacts with Asn51 of CIN85, as visible in Plot 2.5A-B and Plot 
2.6A-B. 

 
(A) 

 
(B) 

Plot 2.5. Protein-ligand contacts retrieved from the first (A) and the second (B) MD simulations of CIN85-
MUC1 complex. The plots describe the intensity of protein interactions monitored throughout the 
simulations. The green bars represent the hydrogen bonds, the purple ones are for hydrophobic contacts, 
the pink bar is for ionic or polar interaction, and the blue ones show water bridges. 
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(A) 

 

 
(B) 

Plot 2.6. Timeline representation of the interactions and contacts established by CIN85 protein with MUC1 
peptide during the first (A) and the second (B) MD simulations. 
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Furthermore, for a better interaction analysis figure 2.13 shows the ligand and the 

contacts established with the protein partner including the related percentage of 
occurrences during one of the two trajectories. 

 
Figure 2.13. MUC1 peptide ligand interactions with the two chains of the protein partner during an MD 
trajectory. 
 

All the above information from docking and MD simulations suggested that the 
hypothesis of MUC1 binding to CIN85 dimer could be likely, but it should be further 
investigated. These above-produced data were collected and used to guide the next step 
of this work together with the MD information retrieved from CIN85-Cbl-b peptide 
complex simulations, in order to address and apply a supervised structure-based 
consensus approach.  
 
 

2.2.4 Pharmacophore map creation based on literature and MD data 
 

All the information from the literature (mutational studies and PDB protein-
protein complex structure) and MD simulations were collected and considered to guide 
the creation of a supervised pharmacophore map of the interactions between two CIN85 
SH3 domains and Cbl-b peptide. The first step was the generation of the pharmacophore 
importing the protein-protein complex in LigandScout software, thus getting the 3D map 
illustrated in figure 2.14. 
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Figure 2.14. First pharmacophore map of the contacts between CIN85 SH3 domains and Cbl-b peptide 
from PDB 2BZ8. 
 

This pharmacophore map did not include the hydrophobic features referring to the 
proline amino acids, Pro906, Pro908 and Pro910, that were identified as fundamental 
from experimental assays [26]. Therefore, these residues were selected and included in 
the map for the next screening, and the resulting pharmacophore is depicted in figure 
2.15A. However, this 3D interaction map consisted of many features (13 features). 
Therefore, such a numerous pharmacophore map could fail in promisingly matching 
molecules, because small molecules might not be able to cover all these features and such 
a widespread interaction area. Hence, three pharmacophore features corresponding to 
Arg904 side chain group were deleted. This choice was done according to literature data, 
where mutational studies confirmed that Arg904 mutated to alanine does not significantly 
reduce the trimeric complex formation, and for this reason, the related features were even 
considered less important compared for example to the ones referring to Arg911. The 
resulting pharmacophore map is shown in figure 2.15B. 
 

 
(A) 
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(B) 

Figure 2.15. (A) Pharmacophore map updated including hydrophobic features referring to Pro906, Pro908 
and Pro910 superimposed on the Cbl-b peptide. (B) Focus on modified pharmacophore map not including 
three interaction features corresponding to Arg904. Green spheres refer to hydrogen bond donors, red 
spheres correspond to hydrogen bond acceptors, yellow spheres are hydrophobic contacts, and blue spikes 
are positive ionizable features. 
 

The last pharmacophore map was composed of ten features. However, the model 
was still too numerous for the pharmacophore screening, hence three pharmacophore 
features were marked as optional, i.e. the ones corresponding to Pro905 and Lys907 
backbone carbonyl groups and Arg909 side chain. Then, this pharmacophore was used to 
perform a virtual screening including a dataset of about 110,000 PPI-targeted compounds 
belonging to several chemical providers, such as BioAscent and MolPort. The screening 
was performed allowing maximum 3 features to be omitted and the output provided 5,535 
compounds matching the pharmacophore map, with a hit-rate of 5.3% compared to the 
initial compound dataset. Among these molecules, the first prioritised 500 were analysed 
through a visual check to select the most promising ones in terms of best matching the 
pharmacophore, especially for the features corresponding to Arg911, that from 
mutational studies was defined as the most important residue for protein-protein binding 
[28].  

The selected compounds were 225, that were further processed to perform 
docking screening in order to apply a consensus approach, including two different 
computational techniques and select the best compounds for both approaches. 
 
 

2.2.5 Docking screening of 225 best compounds from pharmacophore 
screening 

 
From the pharmacophore screening, only 225 molecules from the initial PPI-

targeted database were selected to be processed for a docking screening. For this purpose, 
the PDB 2BZ8 was used to create a docking grid, whereas the grid was defined selecting 
Cbl-b peptide. The molecule conformations were first generated using the Schrödinger 
tool and then docked on the receptor. All the initial compounds were retrieved from the 
screening and the analysis of docking results showed that most of them were able to 
establish the crucial interactions known from literature and MD simulations outputs. For 
this reason, all the compounds were considered for the next step of the workflow. 
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2.2.6 Cluster generation of the selected compounds 
 

The 225 selected molecules were then filtered using PAINS and REOS structures 
of CANVAS [31, 32], in order to delete all those containing toxic groups or portions that 
could interfere with biological assays, respectively, thus reaching overall 183 compounds. 
Furthermore, in order to avoid to select compounds sharing the same chemotypes and 
avoid chemotype redundancy among the consensus compounds, a clustering process was 
computed identifying finally 120 compound centroids per each cluster. For this purpose, 
2D radial fingerprints [31–33] were calculated for each molecule, as this fingerprint type 
accounted the ramified structures and therefore more radially distributed atoms within 
classical PPI-targeted compound structures [34]. These molecules were then grouped 
through a hierarchical clustering to identify and select overall 120 compound groups, that 
could be used as structures representative for their respective clusters (figure 2.16). Thus, 
the commercial availability of these molecules representative for the clusters was 
checked. Finally, only 56 compounds of these initial 120 were purchased and shipped to 
the laboratory of Dr Sandra Cascio at the Department of Immunology, University of 
Pittsburgh, to perform experimental assays, identify putative hit compounds among the 
56 purchased molecules and validate the above described computational workflow. 
 

 
Figure 2.16. Hierarchical clusters representation of the selected compounds for CIN85 interacting surface. 
 

The structures of these compounds and the related properties are reported in table 
2.4, except for two molecules that reported promising results for CIN85-Cbl-b co-
precipitation assays and low micromolar and nanomolar IC50 values, as described in the 
next section. Some of these compounds present Rule of five violations, for example, 
owing to molecular weight often over 500 g/mol or logP over 5. However, even though 
the rule of five remains the benchmark for selecting drug-like compounds, nowadays 
most of the recently identified drugs do not meet these rules, and the drug-likeness rules 
are getting lesser and lesser restrictive [35]. Moreover, this project deals with a protein-
protein interaction that is a well-known challenging target, where the binding surface is 
very widespread and shallow and usually a designed molecule that is intended to mimic 
a protein partner portion should cover a wide area of the target by violating, in this way, 
some Lipinski’s rules [36]. For this reason, the physicochemical properties of the selected 
compounds were all considered acceptable and the molecules were purchased and tested. 
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Table 2.4. Consensus molecules purchased and assayed on CIN85 protein in the homodimeric form. 

 
RIM410 
logPo/w: 7.021 
PSA: 90.308 
MW: 607.993 g/mol 

 
RIM411 
logPo/w: 5.524 
PSA: 72.663 
MW: 434.62 g/mol 

 
RIM412 
logPo/w: 4.197 
PSA: 79.286 
MW: 422.519 g/mol 

 
RIM413 
logPo/w: 4.893 
PSA: 99.763 
MW: 491.622 g/mol 

 
RIM414 
logPo/w: 3.707 
PSA: 62.854 
MW: 499.574 g/mol 

 
RIM415 
logPo/w: 4.209 
PSA: 150.049 
MW: 573.694 g/mol 

 
RIM416 
logPo/w: 3.887 
PSA: 62.549 
MW: 466.52 g/mol 

 
RIM417 
logPo/w: 4.875 
PSA: 108.931 
MW: 433.527 g/mol 

 
RIM418 
logPo/w: 4.249 
PSA: 91.321 
MW: 470.566 g/mol 

 
RIM419 
logPo/w: 5.663 
PSA: 71.175 
MW: 456.464 g/mol 

 
RIM420 
logPo/w: 4.395 
PSA: 106.681 
MW: 496.536 g/mol 

 
RIM421 
logPo/w: 3.531 
PSA: 93.217 
MW: 323.397 g/mol 

 
RIM422 
logPo/w: 2.144 
PSA: 114.275 
MW: 398.479 g/mol 

 
RIM423 
logPo/w: 2.213 
PSA: 86.434 
MW: 442.015 g/mol 

 
RIM424 
logPo/w: 2.912 
PSA: 67.322 
MW: 429.508 g/mol 

 
RIM425 
logPo/w: 4.295 
PSA: 67.589 
MW: 380.486 g/mol 

 
RIM426 
logPo/w: 5.152 
PSA: 53.457 
MW: 416.909 g/mol 

 
RIM427 
logPo/w: 3.421 
PSA: 112.226 
MW: 411.478 g/mol 
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RIM428 
logPo/w: 4.292 
PSA: 70.953 
MW: 345.397 g/mol 

 
RIM429 
logPo/w: 4.671 
PSA: 91.4 
MW: 444.566 g/mol 

 
 
 

Confidential 
structure 

 
 
RIM430 
logPo/w: 4.759 
PSA: 96.099 
MW: 439.373 g/mol 

 
RIM431 
logPo/w: 5.601 
PSA: 104.931 
MW: 550.649 g/mol 

 
RIM432 
logPo/w: 1.81 
PSA: 93.684 
MW: 449.564 g/mol 

 
RIM433 
logPo/w: 5.768 
PSA: 71.669 
MW: 482.91 g/mol 

 
RIM434 
logPo/w: 5.887 
PSA: 65.202 
MW: 473.607 g/mol 

 
RIM435 
logPo/w: 5.913 
PSA: 73.202 
MW: 444.978 g/mol 

 
RIM436 
logPo/w: 4.573 
PSA: 85.783 
MW: 410.428 g/mol 

 
RIM437 
logPo/w: 3.51 
PSA: 102.848 
MW: 403.861 g/mol 

 
RIM438 
logPo/w: 3.346 
PSA: 100.736 
MW: 456.559 g/mol 

 
RIM439 
logPo/w: 5.638 
PSA: 65.72 
MW: 452.933 g/mol 

 
RIM440 
logPo/w: 5.549 
PSA: 103.287 
MW: 445.517 g/mol 

 
RIM441 
logPo/w: 2.956 
PSA: 106.478 
MW: 424.529 g/mol 

 
 
 

Confidential 
structure 

 
 
RIM442 
logPo/w: 4.709 
PSA: 87.787 
MW: 471.576 g/mol 

 
RIM443 
logPo/w: 2.91 
PSA: 22.006 
MW: 276.421 g/mol 

 
RIM444 
logPo/w: 5.142 
PSA: 63.301 
MW: 498.704 g/mol 

 
RIM445 
logPo/w: 4.429 
PSA: 123.57 
MW: 464.563 g/mol 
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RIM446 
logPo/w: 1.066 
PSA: 77.496 
MW: 321.419 g/mol 

 
RIM447 
logPo/w: 4.394 
PSA: 103.726 
MW: 450.88 g/mol 

 
RIM448 
logPo/w: 4.792 
PSA: 74.063 
MW: 410.834 g/mol 

 
RIM449 
logPo/w: 5.388 
PSA: 43.574 
MW: 366.342 g/mol 

 
RIM450 
logPo/w: 5.23 
PSA: 74.842 
MW: 419.543 g/mol 

 
RIM451 
logPo/w: 1.726 
PSA: 147.265 
MW: 460.522 g/mol 

 
RIM452 
logPo/w: 2.13 
PSA:  110.083 
MW: 486.921 g/mol 

 
RIM453 
logPo/w: 1.835 
PSA: 143.054 
MW: 489.56 g/mol 

 
RIM454 
logPo/w: 3.275 
PSA: 108.714 
MW: 436.493 g/mol 

 
RIM455 
logPo/w: 3.303 
PSA: 110.802 
MW: 444.48 g/mol 

 
RIM456 
logPo/w: 5.358 
PSA: 49.576 
MW: 442.578 g/mol 

 
RIM457 
logPo/w: 4.12 
PSA: 62.385 
MW: 354.444 g/mol 

 
RIM458 
logPo/w: 4.692 
PSA: 56.519 
MW: 388.486 g/mol 

 
RIM459 
logPo/w: 5.012 
PSA: 63.003 
MW: 412.567 g/mol 

 
RIM460 
logPo/w: 3.948 
PSA: 96.641 
MW: 481.583 g/mol 

 
RIM461 
logPo/w: 5.138 
PSA: 56.909 
MW: 418.556 g/mol 

 
RIM462 
logPo/w: 5.786 
PSA: 62.705 
MW: 424.947 g/mol 

 
RIM463 
logPo/w: 2.986 
PSA: 60.576 
MW: 395.518 g/mol 
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RIM464 
logPo/w: 6.275 
PSA: 100.161 
MW: 496.583 g/mol 

 
RIM465 
logPo/w: 3.875 
PSA: 62.068 
MW: 417.528 g/mol 

 

 
 

2.2.7 Experimental assays results 
 

The experimental assays of the 56 purchased compounds were conducted by Dr 
Sandra Cascio and her research group at the Department of Immunology of the University 
of Pittsburgh. The performed assays used semi-quantitative methods, meaning that they 
were surely able to provide reliable data about the compound ability to inhibit CIN85-
Cbl-b and CIN85-MUC1 complexes, but they did not provide a quantification of the 
biological activity. For the pull-down assays, the inhibition of CIN85-Cbl-b complex 
formation was investigating, by detecting the co-precipitation of the complex using SDS 
phage methods to check the intensity of the bands including each compound with a 
concentration of 10 µM. The related outputs are reported below in table 2.5.  
 
Table 2.5. Pull-down assays to detect the co-precipitation of CIN85-Cbl-b complex in presence of the 
selected compounds. Compounds squared in red showed the best results in terms of complex formation 
inhibition. 
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As can be seen, compounds RIM430 and RIM442 showed the best results. They 

were able to inhibit the protein-protein complex formation with higher intensity compared 
to the other molecules. For this reason, these two chemical entities were further processed 
in order to get IC50 values to explore if these molecules were also able to inhibit the 
formation of CIN85-MUC1 complex. For this purpose, a 40-mer MUC1 peptide was used 
and interestingly both molecules showed a good inhibitory capacity thus provided for 
RIM430 nanomolar IC50 value and for RIM442 low micromolar IC50 value (tables 2.6). 
 
Table 2.6. Pull-down assay results showing IC50 values of compounds RIM430 and RIM442 in order to 
analyse CIN85-MUC1 peptide (40 aa) complex co-precipitation. 
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RIM430 

 
RIM442 

 
 

2.3 Methods 
 
 

2.3.1 Preparation of PDB structures 
 

The PDB structures used in this work were first prepared and optimised by using 
“Protein preparation wizard” [37] tool of Schrödinger suite (release 2016-4). For this 
purpose, the bond orders for untemplated residues and known HET groups were assigned 
and hydrogens were added. Bonds to metals were broken, zero-order bonds between 
metals and nearby atoms were added and formal charges to metals and neighbouring 
atoms were corrected. Disulfide bonds were created. Water molecules beyond 5 Å from 
HET groups were deleted. For ligands, cofactors and metals het states were generated at 
pH 7.0 ± 2.0 using Epik [38]. Finally, H-bonds were optimised by using PROPKA [39] 
at pH 7.0. 
 
 

2.3.2 MD simulations of CIN85 in complex with MUC1 and Cbl-b 
 

MD simulations were run twice for the two systems, CIN85-Cbl-b peptide and 
CIN85-MUC1 peptide complexes by using Schrödinger suite. The systems were first 
tuned through “System builder” tool. The solvent model TIP3P [40] and the orthorhombic 
box shape were selected, the box side distances were set 12 Å and the system was 
neutralized by adding Na+ ions. Then these systems were used to run MD calculations 
[41] of 50 ns per each trajectory. The number of atoms, pressure and temperature were 
maintained constant, whereas pressure was set 1.01325 bar and temperature 300.0 K. 
Finally, the model systems were relaxed before simulation, and the force field was set as 
OPLS3 [42]. 
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2.3.3 Ligand preparation for docking screening 
 

In order to perform docking and pharmacophore screening, BioAscent and 
MolPort PPI-targeted compound libraries were considered including over 110,000 
molecules. The virtual libraries were filtered through KNIME platform [43] using the 
SMART alerts, in order to delete those compounds containing carcinogenic, mutagenic, 
chelating, reactive, unstable, toxic and skin sensitising groups [44]. The resulting 
compounds were prepared using “LigPrep” tool of Schrödinger suite. The selected force 
field was OPLS3 [42] and the protonation states were generated at pH 7.4 ± 0.2 using 
Epik [38]. The molecules were desalted and tautomers were generated retaining 
compound specific chirality. Finally, no more than 32 different conformations were 
generated per ligand. 
 
 

2.3.4 Ligands preparation for pharmacophore screening 
 

All the compounds already prepared by using “LigPrep” tool were further 
processed through “Create screening database” tool of LigandScout software (version 4.3 
- released by Inte:Ligand GmbH) [45–48], specifying “iCon Best” [49] as conformer 
generation type to create high-quality ligand conformations. All the other settings were 
applied as default.   
 
 

2.3.5 Pharmacophore map creation and screening 
 

The pharmacophore map of CIN85 in complex with Cbl-b peptide was generated 
by importing PDB 2BZ8 into the structure-based perspective of LigandScout. Then the 
pharmacophore map was created on Cbl-b peptide resulting in 11 features (figure 2.14). 
Four of these were deleted because considered not crucial for protein-protein binding, i.e. 
the pharmacophore features referring to Arg904 and Lys907. On the other hand, three 
more hydrophobic features were included on Pro906, Pro908 and Pro910, and three 
pharmacophore features were marked as optional, thus getting a pharmacophore map 
composed by 10 features (figure 2.15B). The resulting pharmacophore map was used to 
perform screening of MolPort and BioAscent PPI-targeted database. For this purpose, the 
pharmacophore-fit was set as scoring function, for the screening mode, all query features 
must be matched except for maximum three pharmacophore features that could be 
omitted. Finally, for the retrieval mode, the best matching conformations were retained. 
Pharmacophore screening was performed and the outputs were collected and analysed. 
 
 

2.3.6 Receptor grids generation of CIN85 and docking screenings 
 

In order to perform peptide and ligand docking, two grids were generated on PDB 
2BZ8 including CIN85 in complex with Cbl-b peptide. The binding region was defined 
by selecting Cbl-b peptide and in detail for the peptide docking, the option to create a grid 
suitable for peptide docking was flagged. The VdW radii scaling factor for non-polar 
atoms were set by 1.0 with partial charge cut-off 0.25. For both grids, the applied force 
field was OPLS3 [42]. Then, the docking screenings were performed by using “ligand 
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docking” tool of Schrödinger suite [50, 51]. The selected protocol was standard precision 
and the selected ligand sampling method was flexible. Finally, the VdW radii scaling 
factor for non-polar atoms was set 0.8 with partial charge cut-off 0.15. All the other 
settings were maintained as default. Docking screening was run and results were 
compared with pharmacophore outputs. 
 
 

2.3.7 Cluster generation of the selected compounds 
 

The overall 183 consensus molecules were clustered in order to reduce chemotype 
redundancy. For this purpose, these compounds were imported in CANVAS software [31, 
32] released by Schrödinger and the “Binary fingerprints from structures” tool was used. 
The fingerprint type was chosen as radial (ECFP) [33] and the “Hierarchical clustering” 
tool was run by applying Tanimoto similarity as metric and the cluster linkage method as 
average. 
 
 

2.4 Conclusions 
 

The workflow herein reported describes the steps involving the performed 
computational techniques to rationally design potential inhibitors of MUC1-CIN85 
interaction. This work has demonstrated to be effective, as it led to the identification of 
compounds that were able first to inhibit CIN85-Cbl-b interaction at a concentration of 
10 µM and then CIN85-MUC1 interaction reporting an inhibiting activity falling in a 
nanomolar range. Therefore, twenty close structural analogues of RIM430 and RIM442 
were selected and purchased. These compounds will be sent to the Department of 
Immunology of the University of Pittsburgh, where Dr Sandra Cascio and her research 
group will conduct further biological assays in order to confirm the preliminary hit 
compounds and guide next structure-activity relationship process.  

These findings should provide crucial information about unveiling the contacts 
between MUC1 and CIN85 proteins and identifying unprecedently found inhibitors of 
this interaction. Finally, the effective inhibiting activity of these compounds will allow to 
tackle the associated metastatic process and improve the pathological conditions of 
patients affected by cancer diseases. 

This work has allowed to prepare a research article submitted to a scientific peer-
reviewed journal. 
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CHAPTER THREE 
 

NLRP3PYD-ASCPYD INTERACTION – Supervised structural 
prediction of protein-protein complexes 
 
 

3.1 Introduction 
 

The NACHT, LRR and PYD domains-containing 3 (NALP3 or NLRP3) is a 
cytosolic pattern recognition receptor (PRR) belonging to the nucleotide-binding 
oligomerization domain (NOD)-like receptor family, that senses exogenous and 
endogenous danger signals. NLRP3 is expressed predominantly in macrophages and is a 
component of the inflammasome, a cytosolic machinery consisting of multiprotein 
oligomers of the innate immune system responsible for the activation of inflammatory 
responses [1, 2].  

Among members of this PRR family, the most explored are NLRP1 (NLR family, 
pyrin domain- containing 1), the NLRC4 (NLR family, CARD domain-containing 4) and 
the AIM2 (absent in melanoma 2) inflammasomes [3, 4]. 
 

NLRP3 is composed by three domains: a nucleotide-binding oligomerisation 
domain containing a CARD (caspase activation and recruitment domain) (NACHT), a 
leucine-rich repeat domain (LRR) and a pyrin domain (PYD).  

NLRP3 inflammasome molecular activation still remains to be fully defined. 
However, recent studies have greatly enhanced to understand the mechanism. 

Upon activation, NLRP3 triggers an oligomerisation process producing a helical 
fibrillar assembly of the adapter apoptosis-associated speck-like protein containing a 
CARD (ASC) via PYD–PYD interactions. ASC fibrils assemble into the so-called ASC 
speck structures and recruit pro-caspase-1, that undergoes an autoproteolytic activation, 
by releasing the activated caspase 1 (figure 3.1) [5–7]. The latter is able to cleave pro-
interleukin(IL)-1β and pro-IL-18 to generate the inflammatory cytokines IL-1β and IL-
18 [3, 4, 8]. Furthermore, activated caspase-1 is also able to cleave gasdermin-D 
(GSDMD) to the active form (GSDMD-N), thus triggering the pyroptosis, that is the 
programmed cell death [3, 9]. 
 

 
Figure 3.1. NLRP3 oligomerisation complex established by NLRP3PYD and ASCPYD interactions and by 
ASC and Caspase 1 CARD domains contacts [10]. 
 

NLRP3 inflammasome acts as a highly sensitive surveillance mechanism that 
works against any type of perturbation that damages plasma membrane integrity and the 
associated K+ gradient across the membrane [5, 11–13]. Its activation usually requires 
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two different signals, which are generally referred to as the priming signal (signal 1) and 
the activation signal (signal 2). The priming step (signal 1) is induced by inflammatory 
stimuli such as TLR4 agonists which trigger NF-κB-mediated NLRP3 and pro-IL-1β 
expression, on the other hand, the activation step (signal 2) is induced by PAMPs 
(pathogen-associated molecular patterns) and DAMPs (damage-associated molecular 
patterns), that promote NLRP3 inflammasome assembly and caspase-1-mediated IL-1β 
and IL-18 secretion and pyroptosis [14].   
 

The events that usually provoke NLRP3 inflammasome activation (figure 3.2) are 
the following: 

1. Ion fluxes, such as K+ efflux, Ca2+ signaling, Na+ influx, and Cl- efflux [13, 15–
20]; 

2. Reactive oxygen species (ROS) generation, especially from the mitochondria, has 
also been identified as promoting NLRP3 inflammasome activation; whereas 
chemical inhibitors preventing ROS production abrogate numerous stimuli-
induced NLRP3 inflammasome activation [20–23]; 

3. Amyloid β (Aβ) protein, a pathogenic misfolded protein expressed in 
neurodegenerative disease [20, 24]; 

4. Post-translational modifications of NLRP3, including phosphorylation and 
ubiquitination [20, 25, 26]. 

 
Furthermore, other routes for the activation of the NLRP3 inflammasome, namely 

non-canonical and alternative inflammasome activation have been recently proposed 
[27]; whereas the non-canonical NLRP3 inflammasome activation is strictly correlated 
with gram-negative infection or in vitro lipopolysaccharide (LPS)-stimulation. 
 

 
Figure 3.2. NLRP3 Inflammasome composition and cell function. 
 

However, enhanced NLRP3 activity followed by a consequent increase in IL-1β 
release (and in some cases pyroptotic cell death) has been associated to a large array of 
diseases, such as chronic inflammatory and autoimmune diseases (such as inflammatory 
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bowel disease, ulcerative colitis and Crohn’s disease [28–31], psoriasis [32], autoimmune 
encephalomyelitis and multiple sclerosis [33]), several rheumatic diseases and crystal 
arthropathies (such as systemic lupus erythematosus, rheumatoid arthritis, systemic-onset 
juvenile idiopathic arthritis, etc. [34–36]). 

Moreover, in recent years NLRP3 overexpression and the activation of the 
NLRP3-mediated inflammatory response has been demonstrated in various 
neurodegenerative diseases [37, 38] (e.g. amyotrophic lateral sclerosis [39], Alzheimer’s 
and Parkinson’s diseases [40–44]), and metabolic and vascular diseases (such as Type 2 
diabetes and atherosclerosis [45–49]).  

Finally, the NLRP3 inflammasome acts on the pathogenesis of cancer by 
modulating innate and adaptive immune responses, cell death, proliferation and the gut 
microbiota. Indeed, excessive inflammation promotes breast cancer, fibrosarcoma, 
gastric carcinoma and lung metastasis in a context-dependent manner [50, 51].  

Therefore, inhibiting NLRP3 inflammatory activity represents a therapeutic 
strategy that has been demonstrated in several studies, registering inflammatory responses 
in animal models of myocardial infarction using a variety of experimental NLRP3 
inhibitors [52]. 

Indeed, the aim of this project was to first understand the structural basis of 
NLRP3 inflammasome assembly, and in detail NLRP3-ASC contacts via PYD-PYD 
interaction; and then identify putative modulators of this homotypic interaction between 
the pyrin domains of NLRP3 and ASC protein, in order to prevent the multimeric 
complex formation.  
 
 

3.1.1 Pyrin domains characteristics 
 

Experimental evidence has extensively demonstrated that NLRP3 inflammasome 
assembly depends on a protein interacting domain belonging to the death domain 
superfamily, which is composed by the following four subfamilies: 39 death domains 
(DDs), 8 death effector domains (DEDs), 33 caspase-recruitment domains (CARDs) and 
22 PYDs belonging to several proteins [53, 54]. The death domain superfamily is one of 
the biggest families of protein domains and highly prevalent in apoptotic and 
inflammatory signalling proteins [55, 56]. 

The canonical globular structure of pyrin domains is characterised by six 
amphipathic α-helices arranged in an antiparallel α-helical bundle with Greek-key 
topology (figure 3.3).  
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Figure 3.3. Globular structure of a pyrin domain composed of six amphipathic α-helices (H1, H2, H3, H4, 
H5 and H6). 
 

These six α-helices can be spatially arranged and combined into three distinct 
types of asymmetric homotypic interactions, involving six patches, whereas the helices 
positions are illustrated in figure 3.4. In type I interaction, patch Ia, including helices 1 
and 4, interacts with helices 2 and 3 from patch Ib. A type II interaction is formed when 
residues from helix 4 and the loop between helices 4 and 5 composing patch IIa interact 
with residues of helices 5 and 6 loop (patch IIb). Finally, the type III interaction is 
established when residues from helix 3 (patch IIIa) interact with the two loops between 
helices 1 and 2 and helices 3 and 4 (patch IIIb). 

In particular, the Type I interaction is the most commonly observed and abundant 
among the PYDs homotypic complexes [57]. 
 

 
Figure 3.4. The three different asymmetric interaction types established by PYDs [57]. 
 

Each PYD exhibits its own surface polarity, as it can be seen in figure 3.5, where 
significantly widespread blue and red areas at the PYD surfaces are depicted, that refer 
to partially positively charged and partially negatively charged residue side chains, 
respectively [58]. The distribution of the polarity at the PYD surface could suggest that 
these domains should prefer electrostatic or charge-charge interactions, providing 
important information to help to unveil PYD-PYD interaction. 
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Figure 3.5. Surface polarity of some PYDs, among which NLRP3 pyrin domain (blue-squared structure). 
The red-coloured areas correspond to the position of partially negatively charged amino acids, while the 
blue-coloured portions are partially positively charged residues and the white regions correspond to neutral 
amino acids. 
 
 

3.1.2 NLRP3PYD interacting region 
 

As a member of death fold domain superfamily, NALP3PYD exhibits the canonical 
six α-helices structure, H1 to H6, where the helix bundle is tightly packed by a central 
hydrophobic core. The latter includes Leu10, Ala11, Tyr13, and Leu14 from H1; Phe25 
and Leu29 from H2; Leu54, Ala55, and Met58 from H4; Ala67, Ile74, and Phe75 from 
H5; and Ala87 from H6 (figure 3.6A). A second hydrophobic patch of NALP3 PYD can 
be detected on residues Phe32, Ile39, Pro40, Leu41, Pro42, Leu57, and Phe61, that take 
part in the formation of H3 and anchor it to H2 (Figure 3.6B).  
 

  
(A) (B) 

Figure 3.6. 3D structures of NLRP3PYD including residues composing (A) the hydrophobic core and (B) 
the hydrophobic patch between H3 and H6. 
 

All these amino acids were found conserved among different PYDs, thus 
suggesting a potential role for ASC interaction and the overall protein folding [59]. 
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Indeed, NALP3 PYD is highly similar to other PYDs, whereas Bae et al. [59] reported 
the top eight PYD matches identified by a structured-based sequence alignment: ASC, 
ASC2, NALP7, NALP10, MNDA, NALP1, vFLIP and FADD DEDs.  

Furthermore, a number of residues on NALP3 surface are abundantly conserved 
among PYDs, including the hydrophobic residues Leu17, Leu22, Pro33, Pro34, His51, 
Val52, Ile59, Gly63, Ile78, and Tyr84. In addition, 10 surface-charged residues, Glu15, 
Asp21, Lys23, Lys24, Lys48, Asp53, Glu64, Glu65, Arg81, and Lys89 are also conserved 
among different PYDs [59]. 

In 2017, through a mass spectrometry analysis Stutz et al. discovered that NLRP3 
inflammasome assembly is regulated by phosphorylation on three Serine sites, Ser5 
located in PYD, Ser161 positioned between PYD and NOD domains, and Ser728 
identified in LRR domain [60]. Among these, Ser5 was located at the PYD charge-charge 
interacting interface, suggesting that phosphorylation likely disrupts the PYD-PYD 
interaction. Indeed, this insight was confirmed by further assays on the dephosphorylation 
performed by the protein phosphatase 2A (PP2A), that allowed to restore the downstream 
signalling.  

Therefore, Ser5 phosphorylation is a natural mechanism of NLRP3 inactivation 
disrupting its assembly. Ser5 is located in a polybasic patch formed by three positively 
charged residues in Helix 1 (Arg7, Lys9 and Arg12) and three other positively charged 
amino acids in Helix 6 (Lys86, Arg89 and Lys93).  

Therefore, the suggested mechanism of NLRP3 inactivation is based on a negative 
charge insertion upon Ser5 phosphorylation within the positively charged patch; whereas 
the addition of the phosphate negative charge neutralises the positive neighbourhood, 
causing the inactivation of the protein (figure 3.7A-B). 
 

 
(A) (B) 

Figure 3.7. NLRP3PYD phosphorylation at Ser5 introduces a negative charge within the positively charged 
patch by neutralizing it. (A) NLRP3PYD surface including the positively charged patch highlighted by the 
red circle. (B) The addition of a phosphate group within the positively charged patch neutralises the area. 
Blue regions at the surface stand for positive residues, red regions for negative amino acids and white/grey 
regions for neutral amino acids. 
 

This mechanism was also confirmed by mutational studies performed by Stutz et 
al., where Ser5 was mutated to a neutral amino acid (S5A) and to a positive amino acid 
(S5R), where these mutations did not disrupt the interaction with ASCPYD. On the 
contrary, the phosphomimetic mutants of NLRP3PYD, i.e. S5E and S5D, prevented the 
interaction with ASC pyrin domain. Furthermore, alanine mutations were conducted on 
Arg7, Lys9 and Arg12 belonging to H1, and Lys86, Arg89 and Lys93 referring to H6. 
Mutations on helix 1 generated the complete abrogation of NLRP3PYD filament 
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formation, while mutations on helix 6 did not result in any NLRP3 inflammasome 
disruption. These data provided crucial information about NLRP3PYD interacting surface, 
identifying Arg7, Lys9 and Arg12 as the responsible residues for PYD-PYD interaction, 
and confirming that this latter is driven by electrostatic contacts [60]. Furthermore, NMR 
titration data shed light on two opposing interfaces on NLRP3PYD that should be directly 
involved in association with ASC: one interface involves H1 and the N-terminus of H2 
and H4 (including residues Arg9, Tyr10, Glu13, Asp14, Val18, Asp19, Leu20, Ala47, 
Asp48, Val50, Asp51, Lys84 and Asp88), and the other formed by H5 (with residues 
Thr4, Gly35, Ile37, Phe59, Gly61, Glu63, Thr66, Ala67, Val70, Trp71, Ala74, Glu89 and 
Lys91) [61]. 
 
 

3.1.3 ASCPYD interacting regions 
 

ASC protein together with NLRP3 plays a key role in the regulation of apoptosis 
and inflammation through self-association and protein-protein interactions mediated by 
PYD domains. The pyrin domain of ASC protein is known to self-associate by involving 
two different interacting surfaces: one consisting of H1, H4 and H5 N-terminus, while 
the other surface composed by H2, H3 and H5 C-terminus [62]. Indeed, these two 
interacting surfaces suggest that ASCPYD is able to establish the most common and usual 
interaction type among PYDs, i.e. the type I; that is properly established between helices 
1 and 4 of a pyrin domain and helices 2 and 3 of another pyrin domain. In detail, NMR 
titration data on alanine mutants highlighted that the nature of the interactions between 
the protein partners is electrostatic. In fact, these two regions show a polar character, 
where the interface composed by H1, H3-H4 loop, and H4 is negatively charged 
involving three identified hot spot residues (Glu13, Asp48 and Asp51). On the other hand, 
the interface generated by H2 and H3 is positively charged with two key residues, Lys21 
and Arg41 [62]. Moreover, in the latter interface other key amino acids were identified, 
Leu25, Val30 and Leu45, establishing hydrophobic interactions (Figure 3.8). Therefore, 
ASCPYD interactions appear to be mainly dominated by electrostatic contacts and 
hydrogen bonding with a smaller contribution from hydrophobic side chains. 
Furthermore, Vajjhala et al. suggested that ASCPYD can use these two interacting surfaces 
to simultaneously engage in self-association and interaction with NLRP3, resembling a 
type I interaction [63]. 

 
Figure 3.8. ASCPYD including a positively charged interface highlighted by the blue circle and a negatively 
charged interface identified by the red circle. 
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Indeed, experimental assays by NMR and analytical ultracentrifugation reported 

by Oroz et al. confirmed that ASCPYD-ASCPYD and ASCPYD-NLRP3PYD share the same 
interacting regions, but ASCPYD showed a preference for NLRP3PYD, as demonstrated by 
a lower value of the dissociation constant (KD = 22 µM) for ASCPYD-NLRP3PYD complex 
compared to ASCPYD-ASCPYD complex (KD = 40-100 µM) [61]. 
 
 

3.2 Results and discussion 
 
 
3.2.1 Virtual screening workflow 

 
The above-described data from experimental assays were crucial to design the 

computational study of this project. Indeed, a crystal structure of ASCPYD-NLRP3PYD 
complex is currently not available, thus making more complex the study of this protein-
protein interaction, and eventually the design and identification of putative modulators. 
Therefore, in this work, the first step was to build a complex of PYD-PYD interaction by 
applying a supervised protein-protein docking between ASCPYD and NLRP3PYD. This 
docking provided several results among which three PYD-PYD interaction models were 
selected as the best ones in terms of docking score and the most similar structures to Type 
I interaction. Then, these three models were used to perform Molecular Dynamics 
simulations, setting the simulation time 50 ns, in order to identify the most stable 
interactions and, in this way, to retrieve the hot spot residues per each complex. Data 
retrieved from MD calculations were used to run ligand docking of PPI-targeted libraries 
setting constraints for each model grid. Then, the most promising compounds were 
selected according to docking scores and the key interactions established with NLRP3 
hot spot residues. These molecules were further processed to run a pharmacophore 
screening, where the pharmacophore maps were built for each NLRP3PYD-ASCPYD 
model. Finally, the related screenings identified consensus molecules according to both 
computational techniques, ligand docking and pharmacophore screenings. Scheme 3.1 
summarises the above-mentioned steps of this work, that are deeply described below in 
the next sections. 
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Scheme 3.1. Overview of the computational workflow performed for building ASCPYD-NLRP3PYD 
complex and screening the PPI-targeted compound libraries. 
 
 

3.2.2 Selection of the PDB structures 
 

In order to perform the protein-protein docking, the PDB structures of NLRP3PYD 
and ASCPYD were selected and downloaded from the Protein Data Bank [64]. For ASC 
protein the PDB 3J63 was used, where several PYD structures are combined to create a 
unified assembly. For NLRP3PYD the PDB 2NAQ was downloaded, that collects twenty 
3D NMR solution structures. Therefore, in order to guide the decision process about 
NLRP3PYD structure to be used among the twenty, the conformation of ASCPYD PDB 
3J63 structure (i.e. chain A) was used as a reference due to its bounded state to other PYD 
structures. Thus, a superimposition was run including ASCPYD (chain A) and each of the 
twenty NLRP3PYD structures and RMSD values were calculated. The aim was to selected 
and use for the next steps of this work the NLRP3PYD structure with the lower RMSD 
value, that could reproduce spatial conformation most similar to ASCPYD (PDB 3J63 
chain A). Indeed, the latter already exhibits a binding conformation and besides the pyrin 
domains essentially share the same interaction type (type I). Therefore, each of the twenty 
NLRP3PYD structures was superimposed on Chain A of PDB 3J63 using the superposition 
tool of Schrödinger, considering firstly the C-α of the backbone and then the AA side 
chains. Although the RMSD values calculated for these structures were similar among 
them, the best NLRP3PYD entry was the number 6 reporting the lowest RMSD values 
considering both backbone C-α and AA side chains. Therefore, entry 6 was further 
processed to perform protein-protein docking. Table 3.1 reports the RMSD values for 
both backbone C-α and AA side chains. 
 
Table 3.1. RMSD values calculated on the twenty 3D NMR solution structures of NLRP3PYD from PDB 
2NAQ, by using Chain A of ASCPYD assembly of PDB 3J63. 
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PDB 2NAQ – Entry number RMSD (Å) – Backbone C-α RMSD (Å) – Side chains 
Entry 1 3.1107 7.6229 
Entry 2 3.2339 7.8069 
Entry 3 2.9078 7.6338 
Entry 4 3.1872 7.9247 
Entry 5 3.0677 7.8981 
Entry 6 2.8620 7.4860 
Entry 7 3.1439 7.6654 
Entry 8 3.0968 7.6607 
Entry 9 3.2437 7.6734 
Entry 10 3.1454 7.7077 
Entry 11 3.1172 7.7956 
Entry 12 3.1016 7.8481 
Entry 13 3.2598 7.7021 
Entry 14 3.0752 7.6129 
Entry 15 3.1583 7.6243 
Entry 16 3.2182 7.7137 
Entry 17 3.0192 7.8918 
Entry 18 3.2094 7.7054 
Entry 19 3.2992 7.9603 
Entry 20 3.1053 7.8364 

 
 

3.2.3 Supervised protein-protein docking 
 

As previously mentioned, ASCPYD is able to establish a Type I interaction with its 
PYD partner. Therefore, the aim of the protein-protein docking was to reproduce this 
protein-protein binding mode for ASCPYD-NLRP3PYD complex. For this purpose, 
HADDOCK software (v2.2) [65] was used and two different docking protocols were 
applied.  

For the first protocol, all the hot spot residues for both proteins as reported in 
literature were defined as “active” in the software, i.e. Arg7, Lys9 and Arg12 (involved 
in H1-H4) were indicated for NLRP3PYD, while Lys21, Leu25, Arg41, Leu45 (involved 
in H1-H4), and Glu13, Asp48, Asp51 (involved in H2-H3) were selected for ASCPYD. 
HADDOCK software (v2.2) generated 133 complexes that were grouped into 6 clusters, 
whereas the related data are reported in table 3.2 and the principal component analysis in 
plot 3.1.  
 
Table 3.2. ASCPYD-NLRP3PYD complex clusters sorted by HADDOCK scores, from lowest to highest. 

 ASCPYD-NLRP3PYD COMPLEX CLUSTER NUMBER 
 Cluster 4 Cluster 1 Cluster 3 Cluster 2 Cluster 6 Cluster 5 

HADDOCK 
score -117.5 ± 7.3 -106.2 ± 5.4 -84.8 ± 2.4 -81.4 ± 2.5 -66.6 ± 8.5 -53.4 ± 3.2 

Cluster size 12 82 13 16 5 5 
RMSD from 
the overall 
lowest-energy 
structure 

2.0 ± 1.2 8.4 ± 0.2 7.0 ± 0.5 12.5 ± 0.7 6.6 ± 0.3 10.1 ± 0.3 

Van der 
Waals energy -31.7 ± 2.4 -34.1 ± 3.3 -32.2 ± 3.1 -28.1 ± 2.9 -17.1 ± 7.5 -22.4 ± 5.0 

Electrostatic 
energy -427.0 ± 60.3 -282.2 ± 25.7 -244.1 ± 54.9 -217.7 ± 64.4 -194.5 ± 28.1 -141.8 ± 33.9 

Desolvation 
energy -1.3 ± 4.6 -19.0 ± 6.3 -4.0 ± 7.9 -10.6 ± 12.0 -12.9 ± 8.0 -4.3 ± 7.6 

Restraints 
violation 
energy 

9.9 ± 13.54 33.0 ± 32.26 2.9 ± 0.49 8.7 ± 14.69 22.1 ± 22.56 16.9 ± 16.85 

Buried 
surface area 1348 ± 54.6 1228.0 ± 29.1 1365.6 ± 73.4 933.4 ± 45.9 897.2 ± 16.3 877.9 ± 168.5 

Z-Score -1.5 -1.0 0.0 0.2 0.8 1.4 
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Plot 3.1. HADDOCK scores of first docking protocol are plotted vs i-RMSD of each PYD-PYD generated 
complex; where i-RMSD is the interface-RMSD calculated on the backbone (CA, C, N, O, P) atoms of all 
residues involved in intermolecular contact using a 10 Å cut-off; a.u. are arbitrary units. The cluster 
averages and standard deviations are indicated by coloured dots with associated error bars. The average 
values are calculated on the best four structures of each cluster (based on the HADDOCK score). 
 

Cluster 4 and Cluster 1 were considered the most promising according to the 
lowest HADDOCK scores, Z-scores, the most abundant cluster size and the capacity in 
reproducing type I interaction. Indeed, the first PYD-PYD complex, hereby Model 1 
presented the lowest HADDOCK score (-117.5 ± 7.3) and Z-score (-1.5), and good cluster 
size including 12 PYD-PYD complexes. On the contrary, in terms of helices binding 
modes similarity to type I interaction, the helices involved in the protein-protein contacts 
were not exactly matching to Type I helices spatial arrangement. Indeed, according to 
Model 1, H1-H6 of NLRP3PYD established interactions with H1-H4 of ASCPYD. Figure 
3.9 depicts the Model 1.  
 

 
Figure 3.9. Model 1 of ASCPYD-NLRP3PYD complex, where the blue structure is NLRP3PYD and the pink 
one is ASCPYD. The protein-protein interaction is established between H1-H6 of NLRP3PYD and H1-H4 of 
ASCPYD. 
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According to Model 1 complex, the main interactions were essentially hydrogen 

bonds and some salt bridges. Table 3.3 reports this information. 
 
Table 3.3. Main interactions established between NLRP3PYD and ASCPYD in Model 1. 

MODEL 1 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Ser5 Asp48 2 H-bonds 
Cys8 Asp51 1 H-bond 

Arg12 Asp51 
Asp54 

1 H-bond + 1 salt bridge 
1 salt bridge 

Asp16 Arg5 1 H-bond 
Asp80 Arg3 1 salt bridge 

Lys86 
Asp6 

Asp10 
Glu13 

1 H-bond + 1 salt bridge 
1 salt bridge 

1 H-bond + 1 salt bridge 

Arg89 Glu13 1 H-bond + 1 salt bridge 

 
The NLRP3PYD-ASCPYD complex was also explored performing a computational 

alanine scanning by using PPCheck tool [66] to unveil the hot spot amino acids for both 
protein partners of Model 1. All those amino acids that showed high differences between 
the complex total energies after mutation and before mutation were considered hot spots 
for the Model 1. Table 3.4 shows the results including the total energies of the wild-type 
(before mutation) and the mutated complexes (after mutation) for those amino acids 
providing high ΔΔG difference value. 
 
Table 3.4. Computational alanine scanning results of Model 1. 

  Total energy of the complex (kJ/mol)  

 Amino acid Before mutation After mutation Difference 

A
SC

 

Asp10 -252.59 -202.40 50.19 
Glu13 -252.59 -201.79 50.80 
Arg3 -252.59 -230.41 22.18 

Leu50 -252.59 -240.51 12.08 
Asp51 -252.59 -228.74 23.85 
Arg5 -252.59 -224.56 28.03 

N
LR

P3
 Arg12 -252.59 -188.00 64.59 

Lys86 -252.59 -191.43 61.16 

Arg89 -252.59 -179.46 73.13 

 
The second PYD-PYD complex selected from the docking showed a slightly 

lower HADDOCK score (-106.2 ± 5.4) compared to Model 1, but better similarity to the 
type I interaction, where H1-H4 of NLRP3PYD interacted with H1-H2 loop, H2, H3-H4 
loop, and H4 of ASCPYD, as depicted in figure 3.10. This complex herein refers to Model 
2 and considered for further analysis. 
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Figure 3.10. Model 2 of ASCPYD-NLRP3PYD complex, where the orange structure is NLRP3PYD and the 
green one ASCPYD. The protein-protein interaction is established between H1-H4 of NLRP3PYD and H1-H2 
loop, H2, H3-H4 loop and H4 of ASCPYD. 
 

Even for Model 2, the analysis of the interactions established between the two 
PYDs highlighted mainly hydrogen bonds and even salt bridges and VdW contacts, as 
listed in table 3.5. 
 
Table 3.5. Main interactions established between NLRP3PYD and ASCPYD in Model 2. 

MODEL 2 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Arg7 
Asp51 
Asp48 
Ser46 

2 H-bonds +1 salt bridge 
1 salt bridge 

1 H-bond 

His51 Glu13 1 H-bond 

Arg12 Glu13 
Leu15 

2 H-bonds + 1 salt bridge 
2 H-bonds 

Cys8 Asp48 1 H-bond 
Lys9 Glu18 1 H-bond + 1 salt bridge 
Val52 Leu50 VdW contacts 

Met3 Leu25 
Leu45 

VdW contacts 
VdW contacts 

 
This second model was also used to perform computational alanine scanning 

calculations in order to focus the attention on specific hot spots of this second PYD-PYD 
complex, and the results are reported in the following table 3.6. 
 
Table 3.6. Computational alanine scanning results of Model 2. 

  Total energy of the complex (kJ/mol)  
 Amino acid Before mutation After mutation Difference 

A
SC

 Glu13 -213.07 -143.49 69.58 

Asp51 -213.07 -208.63 38.73 

N
LR

P3
 Arg12 -213.07 -146.64 66.43 

His51 -213.07 -190.50 22.57 
Arg7 -213.07 -148.78 64.29 
Lys9 -213.07 -189.16 23.91 
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Finally, a second protein-protein docking protocol was applied, but in this case 
not all the hot spots of ASCPYD were defined as “active” during setting the docking 
parameters. The aim was to force the software in reproducing the Type I interaction for 
the NLRP3PYD-ASCPYD complex. Indeed, two considerations were done: 1) Type I 
interaction is established by H1-H4 of a pyrin domain and H2-H3 of another PYD, and 
2) the NLRP3 identified hot spots residues belong to H1-H4 interface (Arg7, Lys9 and 
Arg12). Therefore, for ASCPYD only the hot spots referring to H2-H3 interacting surface 
(Lys21, Arg41, Leu25 and Leu45) were defined as active. Hence, the best solution of this 
docking was the third model (Model 3) with HADDOCK score of -77.0 ± 5.0. This second 
protein-protein docking built 115 PYD-PYD structures clustered into 19 groups and, only 
for the best ten, data are reported in table 3.7. In plot 3.2 HADDOCK scores for each 
protein-protein complex are plotted vs i-RMSD. 
 
Table 3.7. ASCPYD-NLRP3PYD complex clusters sorted by HADDOCK scores, from lowest to highest. 

 ASCPYD-NLRP3PYD COMPLEX CLUSTER NUMBER 

 Clust. 4 Clust. 
1 Clust. 5 Clust. 

11 
Clust. 

3 
Clust. 

2 
Clust. 

9 
Clust. 

7 
Clust. 

6 
Clust. 

8 
HADDOCK 
score 

-82.9 ± 
10.5 

-77.0 ± 
5.0 

-73.3 ± 
7.3 

-73.3 ± 
18.8 

-70.3 ± 
3.5 

-66.1 ± 
9.0 

-65.0 ± 
11.9 

-63.1 ± 
12.5 

-60.4 ± 
9.7 

-57.7 ± 
12.3 

Cluster size 9 12 8 5 9 9 6 6 6 6 
RMSD from 
the overall 
lowest-
energy 
structure 

10.2 ± 0.4 11.9 ± 
0.4 

11.7 ± 
0.3 11.7 ± 0.4 9.2 ± 

1.1 
11.1 ± 

0.4 8.7 ± 0.8 12.9 ± 
0.4 

11.2 ± 
0.2 

11.6 ± 
0.4 

Van der 
Waals 
energy 

-19.6 ± 
4.2 

-17.2 ± 
6.0 

-11.5 ± 
4.7 

-14.8 ± 
7.4 

-21.8 ± 
2.5 

-13.6 ± 
4.9 

-22.0 ± 
5.6 

-4.9 ± 
3.0 

-8.9 ± 
4.1 

-14.9 ± 
4.7 

Electrostatic 
energy 

-232.0 ± 
29.9 

-247.3 ± 
37.0 

-254.4 ± 
24.2 

-236.0 ± 
74.7 

-174.2 ± 
23.9 

-219.6 ± 
76.8 

-127.0 ± 
59.2 

-195.1 ± 
43.0 

-197.6 ± 
32.5 

-201.2 ± 
82.2 

Desolvation 
energy 

-19.9 ± 
12.7 

-10.4 ± 
11.0 

-12.7 ± 
2.0 

-12.1 ± 
5.9 

-15.9 ± 
4.8 

-8.8 ± 
10.8 

-21.0 ± 
7.7 

-20.5 ± 
3.9 

-12.6 ± 
1.1 

-3.3 ± 
5.6 

Restraints 
violation 
energy 

30.1 ± 
16.36 

0.9 ± 
0.89 

17.9 ± 
119.2 8.9 ± 13.3 22.5 ± 

18.0 
2.6 ± 
2.11 

34.5 ± 
33.0 

12.7 ± 
18.10 

6.1 ± 
9.47 

7.8 ± 
13.29 

Buried 
surface area 

941.6 ± 
14.8 

881.2 ± 
174.0 

703.3 ± 
119.2 

698.2 ± 
129.5 

857.4 ± 
88.8 

788.6 ± 
107.8 

741.0 ± 
129.8 

493.5 ± 
134.5 

594.9 ± 
133.3 

805.2 ± 
29.8 

Z-Score -1.9 -1.1 -0.6 -0.6 -0.2 0.4 0.5 0.8 1.1 1.5 

 

 
Plot 3.2. HADDOCK scores of second docking protocol are plotted vs i-RMSD of each PYD-PYD 
generated complex, where i-RMSD is the interface-RMSD calculated on the backbone (CA, C, N, O, P) 
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atoms of all residues involved in intermolecular contact using a 10 Å cut-off; a.u. are arbitrary units. The 
cluster averages and standard deviations are indicated by coloured dots with associated error bars. The 
average values are calculated on the best four structures of each cluster (based on the HADDOCK score). 
 

Model 3, illustrated in figure 3.11, was also analysed to identify the main 
interactions between the two PYDs highlighted by this model. Table 3.8 reports the most 
important interactions, that are mainly hydrogen bonds and salt bridges. 

 
Figure 3.11. Model 3 of ASCPYD-NLRP3PYD complex, where the purple structure is NLRP3PYD and the 
orange one ASCPYD. The protein-protein interaction is established between H1 and H3-H4 loop of 
NLRP3PYD and H2-H4 of ASCPYD. 
 
Table 3.8. Main interactions established between NLRP3PYD and ASCPYD in Model 3. 

MODEL 3 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Ser5 Glu18 1 H-bond 
Cys8 Asp48 1 H-bond 
Lys9 Glu18 1 H-bond + 1 salt bridge 

Arg12 Glu18 1 salt bridge 
Glu15 Lys21 1 H-bond + 1 salt bridge 
Asp50 Arg41 1 salt bridge 
Asp53 Arg41 1 H-bond + 1 salt bridge 
Lys48 Arg41 1 H-bond 
His51 Leu45 VdW contacts 
Val52 Leu25 VdW contacts 

 
Finally, as for the previous two models, the computational alanine scanning was 

run to identify the key residues for Model 3, and the results are collected in table 3.9. 
 
Table 3.9. Computational alanine scanning results of Model 3. 

  Total energy of the complex (kJ/mol)  
 Amino acid Before mutation After mutation Difference 

A
SC

 

Glu18 -184.53 -138.97 45.56 
Lys21 -184.53 -156.81 27.72 
Leu25 -184.53 -175.62 8.91 
Arg41 -184.53 -110.05 74.48 
Leu45 -184.53 -172.29 12.24 

N
LR

P3
 Glu15 -184.53 -160.93 23.60 

Asp50 -184.53 -149.17 35.36 
Asp53 -184.53 -143.20 41.33 
Lys9 -184.53 -162.56 21.97 
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3.2.4 Molecular Dynamics simulations of the three models 
 

In order to better minimise the PYD-PYD complexes generated by running the 
protein-protein docking, and even more to confirm and/or identify the most stable 
interactions for both proteins, a short-time all-atom Molecular Dynamics simulation (t = 
50 ns) was performed for each model. The analysis of the trajectories demonstrated that 
the systems were stable during the whole simulations, as shown by the plots 3.3A-C 
below reported.  
 

 
(A) 

 
(B) 

 
(C) 

Plot 3.3. RMSD plots of MD trajectories of (A) Model 1, (B) Model 2, and (C) Model 3. 
 

MD frames of all the three models were clustered and the frames representative 
for the resulting clusters were analysed, in order to retrieve the most stable contacts 
between the two PYD domains. 

For Model 1, up to ten frame clusters were generated, where the most 
representative frames were: 

• Frame 350 at 17.5 ns à representative for 5 frames; 
• Frame 800 at 41 ns à representative for 23 frames; 
• Frame 270 at 13.5 ns à representative for 19 frames; 
• Frame 490 at 24.5 ns à representative for 16 frames. 

Therefore, the analysis of the PYD-PYD binding for each of these frames 
highlighted the most abundant and frequent interactions among the two proteins, as 
reported in table 3.10. 
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Table 3.10. Analysis of the most abundant and frequent interactions between NLRP3PYD-ASCPYD 
complexes of the most representative MD frames of Model 1. 

MD FRAMES OF MODEL 1 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Lys9 Glu13 1 H-bond + 1 salt bridge 
Arg12 Asp54 2 H-bonds + 1 salt bridge 
Glu15 Arg5 1 salt bridge 
Asp16 Arg3 1 H-bond + 1 salt bridge 
Lys86 Asp10 1 H-bond + 1 salt bridge 
Arg89 2 H-bonds + 1 salt bridge 

 
For the second model, the MD frames were clustered considering up to ten clusters 

to retrieve. Hence, the most representatives were: 
• Frame 40 at 2.0 ns à representative for 46 frames; 
• Frame 930 at 46.5 ns à representative for 25 frames; 
• Frame 690 at 34.5 ns à representative for 30 frames. 

These three frames were analysed and the most abundant and frequent interactions 
were collected and listed in the following table 3.11. 
 
Table 3.11. Analysis of the most abundant and frequent interactions between NLRP3PYD-ASCPYD 
complexes of the most representative MD frames of Model 2. 

MD FRAMES OF MODEL 2 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Arg7 Asp51 
Asp48 

2 H-bonds + 1 salt bridge 
1 H-bond + 1 salt bridge 

Ser5 Asp48 1 H-bond  
Arg12 Glu13 1 H-bond + 1 salt bridge 
His51 Glu13 VdW contacts 
Val52 Leu50 VdW contacts 
Cys8 Ala49 VdW contacts 

 
For the third model, ten clusters were identified and the most populated were: 

• Frame 970 at 48.5 ns à representative for 61 frames; 
• Frame 340 at 17.0 ns à representative for 25 frames; 
• Frame 60 at 3.0 ns à representative for 13 frames. 

The interactions of the above frames of the PYD-PYD complexes were explored 
and the most stable ones were identified. Table 3.12 summarises them. 
 
Table 3.12. Analysis of the most abundant and frequent interactions between NLRP3PYD-ASCPYD 
complexes of the most representative MD frames of Model 3. 

MD FRAMES OF MODEL 3 
NLRP3PYD amino acid ASCPYD amino acid Interaction 

Asp53 Arg41 2 H-bonds + 1 salt bridge 
Asp50 1 H-bond + 1 salt bridge 
Ser5 Glu18 1 H-bond 

Val52 Leu25 VdW contacts 
Cys8 Leu25 VdW contacts 
His51 Gly42 VdW contacts 

 
These data were further processed to perform supervised ligand docking of PPI-

targeted libraries by building docking grids including H-bond constraints. 
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3.2.5 Supervised ligand docking  
 

All the data from literature and computational techniques were collected and 
processed to tune ligand docking protocols for each model. Indeed, considering the hot 
spot residues identified by NMR titration data performed by Varjjhala et al. [62] and the 
computational alanine scanning results obtained by using PPCheck software [66], 
docking grids for each model were generated including H-bond constraints. In detail, for 
Model 1 three constraints as hydrogen bond donors were defined on the side chain groups 
of Lys9, Arg12 and Lys86; for Model 2 three H-bond donor constraints on the side chain 
groups of Arg7, Arg12 and His51; and finally, for Model 3 only two constraints were set 
indicating hydrogen bond acceptors on the side chain groups of Asp50 and Asp53. In 
order to run the molecular docking calculations PPI-targeted libraries of commercially 
available compounds were downloaded from Asinex, ChemDiv, Enamine and Life 
Chemicals databases, that included α-helix mimetics, peptidomimetics, non-peptide 
peptidomimetics, shape-helix mimetics and PPI-enriched libraries together with an in-
house library of chemical entities designed and synthesised by the Medicinal Chemistry 
group of STEBICEF Department (University of Palermo). These molecules were filtered 
deleting all those compounds containing reactive, toxic or carcinogenic groups, thus 
getting overall about 175K of compounds, and then were optimised at pH 7.0. Moreover, 
the related outputs were used to perform ligand docking screenings on the three grids, 
filtering results including only molecules matching at least 2 of the defined constraints. 
For Model 1 overall about 95K compounds were retrieved, while for Model 2 the outputs 
turned out about 120K molecules, and for Model 3 about 22K compounds were able to 
dock NLRP3PYD. Examples of ligand binding modes are depicted in figure 3.12A-C. 
 

 
(A) 

 
(B) 

 
(C) 

Figure 3.12. Examples of binding modes of PPI-targeted compounds to NLRP3PYD based on (A) Model 1, 
(B) Model 2 and (C) Model 3. 
 
 

3.2.6 Pharmacophore maps creation and screenings 
 

The docking outputs showed to be not selective in terms of number of molecules 
retrieved from the initial ones. Therefore, running another computational technique, such 
as the pharmacophore approach, could be useful to deeply explore the binding surface of 
NLRP3 pyrin domain and address the results to identify consensus molecules. This 
process should increase the success rate in identifying potential hit compounds or 
modulators of the PYD-PYD interaction. 
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Therefore, for each complex model a merged pharmacophore was created based 
on ASCPYD-NLRP3PYD complex structure generated by HADDOCK software (v2.2) [65] 
and the related MD representative frames that were above analysed. Only for Model 3, 
two different pharmacophores were generated as herein described. 

First, for Model 1 a supervised pharmacophore map was created. For this purpose, 
five different pharmacophore maps were built based on PYD-PYD complex generated by 
HADDOCK software (v2.2) [65] and the four most representative MD frames (frame 
350, 800, 270 and 490). All these 3D maps were generated based by defining ASCPYD as 
ligand and NLRP3PYD as the receptor. The five pharmacophore maps differed for some 
features, hence it was necessary to create a unique merged pharmacophore map that was 
further modified according to data from the literature and the computational studies. 
Therefore, a hydrophobic feature on ASC Leu45 and a hydrogen bond acceptor feature 
on ASC Ser46 were deleted, because they were only present in PYD-PYD complex 
structure from docking. Then, hydrogen bond acceptor and negative ionisable features on 
ASC Glu13 belonging to all the pharmacophore maps were interpolated because they 
showed close 3D spatial positions. The same procedure was applied for ASC Asp51 and 
Asp54, whose hydrogen bond acceptor and negative ionisable features were interpolated 
and the sphere tolerance was increased by 0.30 Å. For the same reasons, the hydrogen 
bond donor and positive ionisable features of ASC Arg3 and ASC Arg5 were interpolated 
and the sphere tolerance was increased as well by 0.30 Å. The resulting pharmacophore 
map was composed of 13 interaction features. However, such a copious pharmacophore 
could be too selective for virtual screening, hence some features were marked as optional 
for screening purposes. For this reason, the hydrophobic feature on ASC Leu50, the 
hydrogen bond acceptor and the negative ionisable features on ASC Asp6, and the 
hydrogen bond donor and positive ionisable features referring to ASC Arg3 and Arg5 
were defined as optional, because considered less important according to literature data 
and computational studies outputs. Figure 3.13A shows the Model 1 pharmacophore map. 
This latter was used to perform a virtual screening including molecules obtained from 
docking outputs. For this purpose, the maximum number of omitted features to be 
permitted was 4, thus getting 113 consensus molecules. 

For the second PYD-PYD model, four different pharmacophore maps were 
created, considering the NLRP3PYD-ASCPYD complex structure from HADDOCK 
docking, and the MD representative frames 930, 690 and 40. The 3D interaction maps 
were merged and the resulting pharmacophore was further refined according to data from 
literature and computational studies, but also considering the features mostly shared by 
the four maps. Therefore, the hydrophobic features corresponding to ASC Leu50 and the 
hydrogen bond acceptor and negative ionisable features referring to Asp48 were 
interpolated among the four maps and for the resulting features the tolerance was 
increased by 0.30 Å. Finally, the features related to ASC Leu9 and Glu18 were marked 
as optional. The final pharmacophore map was composed of overall 10 features and is 
depicted in figure 3.13B. It was used to perform another pharmacophore screening with 
the molecules retrieved from the docking on Model 2. The screening produced 77 
consensus molecules. 

For the third model, two different final pharmacophore maps were created and 
used for virtual screenings, due to specific positional differences for two features referred 
to ASC Glu18 and Lys21. Both maps were based on merging the pharmacophore map 
built on PYD-PYD complex from HADDOCK docking and an MD frame, i.e. frame 970 
(figure 3.13C) and frame 340 (figure 3.13D). Therefore, for both final maps, the two 
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hydrogen bond donor features corresponding to ASC Arg41 were interpolated and the 
related tolerance was increased by 0.30 Å. For frame 970, a hydrophobic feature on Leu28 
was deleted, while for frame 340 a hydrophobic, a negative ionisable and a hydrogen 
bond donor features were deleted as well, marking the hydrophobic feature on Leu45 as 
optional for both pharmacophores. These two 3D maps were used to run separately two 
screening including molecules selected from the ligand docking previously run on Model 
3. The overall consensus molecules obtained from both screenings were 76. 
 

 
 

 
 

(A)  
(B) 

 
(C) 

 
(D) 

Figure 3.13. Supervised pharmacophore maps of (A) Model 1, (B) Model 2, (C) Model 3 MD frame 970 
and (D) Model 3 MD frame 340. Yellow spheres are hydrophobic interactions; red spheres are hydrogen 
bond acceptors; green spheres are hydrogen bond donors; blue spikes are positive ionisable features; red 
spikes are negative ionisable features; and dotted spheres are features marked as optional. 
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The consensus molecules for the three models were then filtered to delete all the 
duplicates between the virtual screening outputs, identifying overall 28 molecules from 
the in-house compound library (the main scaffolds of these compounds are depicted in 
table 3.13) and 229 compounds from the PPI-targeted libraries. The latter were further 
filtered through CANVAS software [67, 68] released by Schrödinger, by using REOS 
and PAINS structures in order to delete all those molecules containing reactive groups or 
groups able to interfere with the biological assays, respectively. The resulting compounds 
were overall 28 in-house compounds, designed by Medicinal Chemistry group of 
STEBICEF Department, and 193 unique chemical entities from PPI-targeted libraries. 
These selected molecules have been assaying in order to validate which of these three 
models is the most reliable and similar to the actual ASCPYD-NLRP3PYD complex. Table 
3.13 shows the main representative scaffolds of the 28 in-house consensus compounds. 
Furthermore, the identification of potential hit can pave the way to the discovery of 
modulators of the PYD-PYD interaction between NLRP3 and ASC proteins, thus 
representing a potential strategy to tackle the diseases associated to the overactivation of 
the inflammasome. 
 
Table 3.13. Main representative scaffolds of the 28 consensus compounds from STEBICEF in-house 
library. 

 
AC185 

MW: 446.523 g/mol 
logPo/w: 6.171 

 
ACM56 

MW: 459.565 g/mol 
logPo/w: 5.934 

 
MF195 

MW: 429.539 g/mol 
logPo/w: 4.413 

 
MF33 

MW: 403.458 g/mol 
logPo/w: 3.569 

 
MF89 

MW: 390.459 g/mol 
logPo/w: 4.166 
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3.3 Methods 
 
 

3.3.1 Protein preparation 
 

The PDB structures of NLRP3PYD (PDB ID: 2NAQ) and ASCPYD (PDB ID: 3J63) 
were downloaded from PDB database [64] and were pre-processed by using “Protein 
Preparation Wizard” tool [69] by Schrödinger suite. Bond orders for untemplated residues 
and known HET groups were assigned. Hydrogens were added to the structures. Bonds 
to metals were broken, zero-order bonds between metals and nearby atoms were added 
and formal charges to metals and neighbouring atoms were corrected. Disulfide bonds 
were created. Water molecules beyond 5 Å from het groups were deleted. For ligands, 
cofactors and metals, het states were generated at pH 7.0 ± 2.0 using Epik [70]. Finally, 
H-bonds were optimised by using PROPKA [71] at pH 7.0. 
 
 

3.3.2 Protein-protein docking using HADDOCK and computational alanine 
scanning using PPCHECK 

 
HADDOCK software (v2.2) [65] was used to perform two protein-protein 

dockings between NLRP3PYD (PDB 2NAQ entry 6) and ASCPYD (PDB 3J63). For the first 
docking, the following residues were defined as active: Glu13, Lys21, Leu25, Arg41, 
Leu45, Asp48 and Asp51 for ASCPYD, and Arg7, Lys9 and Arg12 for NLRP3PYD. For the 
second docking, NLRP3PYD active residues were the same used for the first docking, 
while for ASCPYD, only residues involved in H2 and H3 were included as active, that is 
Lys21, Leu25, Arg41 and Leu45. For both protein-protein dockings, passive residues 
were automatically defined by the software by flagging the related box. The three selected 
protein-protein models were processed by using PPCheck software [66], whereas residues 
at the binding interface were detected, including the following ones for the models, and 
the computational alanine scanning was performed.  
 

• Model 1 
ASCPYD à Asp10, Ala11, Leu12, Glu13, Asn14, Leu20, Lys21, Lys24, Gly2, 
Arg3, Leu44, Leu45, Ser46, Met47, Asp48, Ala49, Leu50, Asp51, Leu52, Thr53, 
Asp54, Lys55, Val57, Arg5, Asp6, Ala7, Ile 8 and Leu9 
NLRP3PYD à Arg12, Tyr13, Glu15, Asp16, Leu17, Met3, Ala4, Ser5, His51, 
Thr6, Val52, Arg7, Cys8, Arg80, Lys9, Asp82, Leu83, Glu85, Lys86, Ala87, 
Lys88, Arg89, Asp90, Glu91, Leu10 and Ala10 

• Model 2 
ASCPYD à Asp10, Ala11, Leu12, Glu13, Asn14, Leu15, Thr16, Ala17, Glu18, 
Glu19, Leu20, Lys21, Lys22, Lys24, Leu25, Arg41, Gly42, Ala33, Leu44, Leu45, 
Ser46, Met47, Asp48, Ala49, Leu50, Asp51, Leu52 and Leu9 
NLRP3PYD à Arg12, Tyr13, Glu15, Asp16, Met3, Ala4, Ser5, Asp50, His51, 
Thr6, Val52, Asp53, Ala55, Thr56, Arg7, Cys8, Lys9, Arg89, Asp90, Leu10 and 
Ala11 

• Model 3 
ASCPYD à Thr16, ala17, Glu18, Glu19, Lys21, Lys22, Lys24, Leu25, Leu28, 
Pro40, Arg41, Gly42, Ala43, Leu44, Leu45 and Ser46 
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NLRP3PYD à Arg12, Tyr13, Glu15, Met3, Leu22, Ala4, Ser5, Gln45, Glu47, 
Lys48, Ala49, Asp50, His51, Thr6, Val52, Asp53, Leu54, Thr56, Arg7, Cys8, 
Lys9, Leu10 and Ala11 

 
 

3.3.3 MD simulations of ASCPYD-NLRP3PYD docking models 
 

MD simulations were run for the three selected ASCPYD-NLRP3PYD docking 
models, by using Schrödinger suite. The systems were first tuned through “System 
builder” tool. The solvent model TIP3P [72] and the orthorhombic box shape were 
selected. The box side distances were set 12 Å and the system was neutralized by adding 
Na+ ions. Then these systems were used to run MD calculations [73] of 50 ns per each 
trajectory. Number of atoms, pressure and temperature were maintained constant, 
whereas pressure was set 1.01325 bar and temperature 300.0 K. Finally, the OPLS3 force 
field was set [74] and the model systems were relaxed before simulation. 
 
 

3.3.4 MD trajectory clustering 
 

In order to analyse the most stable and frequent interactions during the three MD 
simulations, it was necessary to cluster MD frames for the three models. For this purpose, 
“Desmond trajectory clustering” tool [75] released by Schrödinger suite was applied. 
RMSD matrix was based on protein backbone. The step frequency at which the frames 
were analysed was 10. The hierarchical cluster linkage method applied was average and 
the clusters to be generated were set by 10. 
 
 

3.3.5 Ligand preparation for docking screening 
 

PPI-targeted compound libraries were downloaded from Asinex, ChemDiv, 
Enamine and Life Chemicals databases, including α-helix mimetics, peptidomimetics, 
non-peptide peptidomimetics, shape-helix mimetics and PPI-enriched libraries together 
with an in-house library of chemical entities designed and synthesised by the Medicinal 
Chemistry group of STEBICEF Department (University of Palermo). The virtual libraries 
were filtered through KNIME platform [76] using the SMART alerts, in order to delete 
those compounds containing carcinogenic, mutagenic, chelating, reactive, unstable, toxic 
and skin sensitising groups [77]. All these compounds were prepared using “LigPrep” 
tool of Schrödinger suite. The selected force field was OPLS3 [74] and the protonation 
states were generated at pH 7.4 ± 0.2 using Epik [70]. The molecules were desalted and 
tautomers were generated retaining compound specific chirality. Finally, no more than 
32 different conformations were generated per ligand. 
 
 

3.3.6 Receptor grids generation on the three models and docking screenings 
 

In order to perform ligand docking screening on the three NLRP3PYD-ASCPYD 
models, three grids were generated including constraints. The binding region was centred 
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by selecting NLRP3PYD interface residues per each model as reported below and ASCPYD 
was deleted from the complex.  

• Model 1 grid centred on Lys9, Arg12, Glu15, Lys86 and Arg89 
• Model 2 grid centred on Ser5, Arg7, Lys9, Arg12, His51 and Val52 
• Model 3 grid centred on Met3, Ser5, Cys8, Asp50, His51, Val52 and Asp52 

For model 1 three H-bond donors were set as constraints on Lys9, Arg12 and 
Lys84 side chains; for model 2 three H-bond donors were defined on Arg7, His51 and 
Arg12 side chains; and for model 3 two H-bond acceptors were set on Asp48 and Asp51 
side chains. The VdW radii scaling factor for non-polar atoms was set by 1.0 with partial 
charge cut-off 0.25. For all the grids the applied force field was OPLS3 [74]. Then, the 
docking screenings were performed by using “ligand docking” tool of Schrödinger suite 
[78, 79]. The selected protocol was standard precision and the selected ligand sampling 
method was flexible. Finally, the VdW radii scaling factor for non-polar atoms was set 
0.8 with partial charge cut-off 0.15 and the constraints to be matched by ligands were set 
at least 2 per each model. All the other settings were maintained as default. 
 
 

3.3.7 Ligands preparation for pharmacophore screening 
 

In order to perform pharmacophore screening, the molecules retrieved from the 
three docking screenings were prepared to perform pharmacophore screenings. Hence, 
the related compound conformations were prepared through “Create screening database” 
tool of LigandScout software (version 4.3 - released by Inte:Ligand GmbH) [80–83], 
specifying “iCon Best” [84] as conformer generation type to create high-quality ligand 
conformations. All the other settings were applied as default.   
 
 

3.3.8 Pharmacophore map creation and screening 
 

The pharmacophore maps of the three NLRP3PYD-ASCPYD models were generated 
by importing the PDB structures provided by HADDOCK outputs and the selected most 
representative MD frames. For these structures, the pharmacophore maps were created 
and then merged according to each NLRP3PYD-ASCPYD model. Therefore, for model 1 
five pharmacophores were generated on HADDOCK model 1 and MD frames 350, 800, 
270 and 490. The first pharmacophore was composed by 18 features, the second by 13 
features, the third by 14 features, the fourth by 15 features and the fifth by 12 features. 
These pharmacophores were merged, and the features corresponding to ASC Arg3 and 
Asp51 were interpolated with Arg5 and Asp54 features respectively, due to the close 
position, and the sphere tolerance was increased by 0.30 Å. Then, a hydrophobic feature 
on ASC Leu45 and a hydrogen bond acceptor feature on ASC Ser46 were deleted, 
because they were only present in a pharmacophore map. Finally, the features referring 
to ASC Arg3/Arg5, Asp6 and Leu50 were marked as optional. The resulting 
pharmacophore consisted of 13 features as shown in figure 3.13a. 

For model 2, four pharmacophores were generated based by using HADDOCK 
protein-protein model and MD frames 930, 690 and 40. The first pharmacophore was 
composed of 15 features, the second by 7 features, the third by 8 features and the fourth 
by 12 features. The four 3D maps were merged and two hydrophobic features referring 
to ASC Leu50 were interpolated and the sphere tolerance was increased by 0.30 Å, as 
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well as for the two hydrogen bond acceptor features of ASC Asp48. Finally, the resulting 
pharmacophore map consisted of 10 features where three (hydrophobic on ASC Leu9, H-
bond acceptor and negative ionisable features on ASC Glu18) were marked s optional. 

For model 3, three pharmacophore maps were generated by using HADDOCK 
protein-protein model and MD frames 970 and 340. The first pharmacophore was 
composed by 7 features, the second by 9 features and the third by 11 features. By merging 
these pharmacophores the features corresponding to ASC Glu18 and Lys21 showed high 
spatial difference, hence two final pharmacophore maps were created by merging 
HADDOCK protein-protein model 3D map first with MD frame 970 pharmacophore and 
then with MD frame 340 pharmacophore. The first map was composed of 7 features, 
whereas one (feature on Leu45) was defined as optional, and the second consisted of the 
same features differently positioned. Even for this map, the hydrophobic feature on Leu45 
was marked as optional. 

Therefore, the above-described pharmacophore maps were used to perform the 
screening of compounds retrieved from docking outputs. For this purpose, the 
pharmacophore-fit was set as scoring function, for the screening mode all query features 
were matched except for maximum three pharmacophore features that could be omitted. 
Finally, for the retrieval mode, the best matching conformations were retained.  
 
 

3.4 Conclusions 
 

The work herein described allowed to build three different interaction models of 
NLRP3PYD-ASCPYD complex based on data collected from the literature and the applied 
computational techniques. Indeed, the Protein Data Bank [64] does not currently report 
an X-ray crystal structure of this PPI. Thus, these models were crucial to perform further 
computational studies and subsequently identify a set of compounds aimed at inhibiting 
the PPI under study. Overall, 193 unique chemical entities were selected according to the 
results from docking and pharmacophore screening. These molecules have been already 
purchased to perform biological assays at Ri.MED Foundation laboratories in order to 
test and investigate their potential activity against the NLRP3PYD-ASCPYD interaction. 
Their proved activity could represent a turning point for tackling several inflammatory 
and autoimmune diseases, such as ulcerative colitis, Crohn’s disease [28–31] and multiple 
sclerosis [33]), affecting millions of people worldwide.  
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CHAPTER FOUR 
 

SPIKE RBD-ACE2 PD INTERACTION – Identification of a 
protein interacting region to select putative modulators 
 
 

4.1 Introduction 
 

In December 2019, a virus-transmitted flu epidemic spread out worldwide, 
whereas first cases of the severe acute respiratory syndrome caused by the novel 
coronavirus (SARS-CoV-2) were detected [1]. Due to a really high rate of virulence 
associated with morbidity and mortality (36.9 million infected people and more than 1 
million deaths globally) [2] affecting 216 countries, in March 2020 COronaVIrus Disease 
2019 (COVID-19) was considered a health emergency of international concern, thus it 
was stated as a pandemic by the World Health Organization (WHO) [3, 4]. Since the 
beginning of 2000s, coronaviruses already were associated with disease outbreaks: 
SARS-CoV emerged in Guangdong (China) in 2002 [5, 6], and MERS-CoV (Middle East 
respiratory syndrome coronavirus) affecting the Arabian Peninsula in 2012 [7, 8]. The 
nature of these viruses was originally zoonotic, but over the time they crossed the species 
barrier through bats, for SARS-CoV and SARS-CoV-2, and dromedary camels for MERS 
[9–11]. These viruses are grouped in four genera, whereas SARS-CoV and SARS-CoV-
2 belong to the same b-CoV genus [12]. When aligned SARS-CoV and SARS-CoV-2 
proteins exhibit a strong correlation with about 76% of sequence identity. Coronaviruses 
are positive-strand RNA viruses containing a membrane coated by Spike (S) 
glycoproteins that provide their characteristic crown aspect [13], as depicted in figure 4.1. 

 
Figure 4.1. SARS-CoV-2 membrane coating through Spike glycoprotein [14, 15] 
 

S glycoprotein promotes the interactions with the host cell by mediating receptor 
recognition and membrane fusion [16, 17]. S protein consists of two functional subunits, 
S1 and S2, which are non-covalently bound in the pre-fusion state. S1 bears the receptor-
binding domain (RBD), also termed as domain B, able to bind the host cell receptor, while 
S2 subunit presents the fusion machinery and is responsible for the membrane fusion. 
During the viral infection procedure, S1 binds the host cell receptor, thus S protein 
undergoes a cleavage event at the boundary site, between S1 and S2 subunits (S1-S2 
cleavage site), and it is converted to the post-fusion conformation. After this first step, a 
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second cleavage occurs through the host protease at a different cleavage site, generating 
conformational changes in S2 and causing membrane fusion [18–20]. The binding to the 
host receptor and the proteolytic events produce a synergistic effect inducing 
conformational changes and helping the coronavirus to enter the host cell [21]. The first 
entry step for both coronaviruses (SARS-CoV-2 and SARS-CoV) is mediated by the 
interaction with the host Angiotensin-converting enzyme 2 (ACE2).  

ACE2 is a protein essentially present in type II alveolar lung, oesophagus, heart 
and kidney cells [22, 23]. This protein contains an N-terminal peptidase domain (PD), 
that can bind the virion S glycoprotein, and a C-terminal Collectrin-like domain (CLD) 
[24, 25]. SARS-CoV-2 S protein establishes contacts with ACE2 at the surface of type II 
pneumocytes reporting similar affinity to SARS-CoV S glycoprotein [26, 27]. The crystal 
structures of both coronavirus types components shed light on the N-linked glycans 
overlay at the surface of S, and it was proposed as a mechanism developed by the viruses 
to elude the immune system [28, 29]. Indeed, in a first stage, the host immune system 
fails to recognise the pathogens due to the presence of S glycoproteins showing several 
sugar moieties covering the membrane. Thus, the immune system exchanges the virus 
with a normal sugar-coated host cell and does not attack it. In this way, viral S 
glycoproteins can bind the host cell receptor allowing the virus to enter [30]. The 
glycosylation region mainly refers to S1 subunit which contains the RBD [31].  

Based on this information, several research efforts have been done to tackle 
SARS-CoV-2 disease outbreak to identify potential therapeutics [21, 32–47]. The RBD 
region of SARS-CoV-2 could be a suitable region to address the design of novel 
therapeutics [48]. For the past SARS-CoV outbreak, S glycoprotein was indicated as the 
site of action of neutralising antibodies, such as S230 antibody, isolated from human 
survivors [49–51]. In 2019, Walls et al. showed that this antibody was able to prevent the 
virus-host receptor binding and caused a conformational modification to the fusion 
machinery with a ratcheting mechanism. The SARS-CoV S glycoprotein structure was 
characterised in complex with S230 in both closed and open states (PDB IDs: 6NB6 and 
6NB7, respectively). The analysis of this antibody-S protein complex highlighted that the 
S230 epitope is located near Leu443 residue, whereas Tyr442 and Tyr475 are residues 
involved in the interaction. These amino acids have been shown to take part in the binding 
with ACE2 strengthening the hypothesis that S230 antibody works as a competitive 
inhibitor of coronavirus-host receptor interaction [52].  

The work herein described has been published in the peer-reviewed journal 
ChemMedChem [53]. This project was based on a computational analysis of the 
interaction between S protein and ACE2 peptidase domain, in order to 1) identify a 
potential druggable area on the RBD interface, and 2) target this identified site with an in 
silico high-throughput screening campaign. The main goal was to select small molecules 
with the potential to modulate the virus entry. Putative drugs able to inhibit this PPI could 
work as fusion-blocking agents, representing an interesting strategy already employed for 
viruses outbreaks [54]. Indeed, inhibitors of the viral entry should prevent viral spreading 
and decrease the viral load at the very beginning of the infection. 

It is noteworthy that the molecular contacts between S glycoprotein and ACE2 are 
widespread within the protein interfaces, hence the design of small molecule modulators 
represents a challenging strategy to inhibit the RBD domain. Furthermore, unlike the 
most common hydrophobic nature of PPIs, the S glycoprotein RBD-ACE2 molecular 
recognition is essentially mediated by hydrophilic interactions [55, 56]. To date, the 
design of monoclonal antibodies targeting the virus-human interface is the election 
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strategy together with the development of vaccines registering a robust preclinical and 
clinical pipeline [57, 58]. On the contrary, this work was based on a different strategy, 
that is a computational methodology consisting of 1) alanine scanning to explore the 
contribution of each amino acid to the protein-protein interactions, and identify potential 
druggable hot spots or binding pockets; 2) MD simulations to identify the most stable and 
frequent interactions between the two proteins; and 3) docking and pharmacophore 
screening campaigns to select potential hit compounds in order to provide the other 
research groups with useful tools for drug discovery programmes concerning COVID-19. 
All the steps herein described are summarised in Scheme 4.1.  
 

 
Scheme 4.1. Overview of the computational workflow aimed at determining a potential binding region at 
S glycoprotein interface and identify putative modulators of S RBD-ACE2 PD interacting interface 
 
 

4.1.1 Overlap of PDB structures highlighting open and closed states of S 
glycoprotein 

 
The X-ray crystal structures currently present in the Protein Data Bank [59] 

highlight that SARS-CoV-2 S glycoprotein folds into a long trimeric complex with a 
triangular cross-section, including the receptor-binding motif (RBM), responsible for the 
recognition pattern of ACE2 [60]. The RBD domain consists of a core and an extensive 
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loop, the so-called RBM [61], and presents two different conformations, i.e. the up-state 
visible in PDB 6VYB and the down-state observable in PDB 6VXX. 

In the first X-ray crystal structure, two of the three S chains show the down-state 
and the third one exhibits the up-state, whereas the other trimeric structure presents all S 
chains in down-state [62]. When the S glycoprotein is in up conformation, the RBD loop 
surrounds the ACE2 interface, while in the down conformation is buried into the interface 
between S1 and S2 subunits. The alignment of SARS-CoV-2 S trimeric structures in both 
open and closed states shed light on the exposition of the RBD loop on the virion surface 
to the host receptor. Furthermore, previous works on SARS-CoV and MERS-CoV 
unveiled that the open conformation of S protein is necessary to establish the interaction 
with ACE2, triggering the infection mechanism, and causing the conformational changes 
and the membrane fusion [62, 63]. Indeed, in the open state of S1 loop, the residues of the 
receptor-binding motif are exposed to the solvent to bind ACE2 (figure 4.2), indicating 
that this opening process is required to form interactions with ACE2 PD. 
 

 
Figure 4.2. A close-up of SARS-CoV-2 PDB structures superposition that unveiled the RBD dynamic 
behaviour. The light blue structure shows PDB 6VXX S protein in the closed conformation, while the blue 
chain exhibits the open state of PDB 6VYB S protein [53].  
 

Moreover, the superposition of SARS-CoV and SARS-CoV-2 X-ray crystal 
structures in open conformations revealed a similar dynamic behaviour for both B 
domains (figure 4.3), where the RBM loop exposes the key residues for the interaction 
with ACE2. 
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Figure 4.3. Superposition of SARS-CoV (purple chain, PDB 6ACD) and SARS-CoV-2 (blue chain, PDB 
6VBY) RBDs, where both exhibit open conformations of the receptor-binding motifs [53]. 
 

This high flexibility detected in RBD from the above structural comparative 
analysis was extensively demonstrated by MD simulations performed by D. E. Shaw 
research group [64], that performed two MD simulations of 10 microseconds on PDB 
6VXX in the closed conformation, and PDB 6VYB in the open state. The related 
trajectories were made available for the scientific community on the website. During the 
first MD simulation including the trimer in a closed conformation, RDB interface kept a 
buried state towards S2 subunit. In the second MD simulation, RBD initially exhibited a 
partially open conformation (figure 4.4A), but after about 2 microseconds it exhibited a 
displacement, and finally drifted apart from S2 subunit (figure 4.4B). These insights can 
provide crucial information about understanding the molecular events occurring as a first 
step of the interaction with host ACE2. 

 
(A) (B) 

Figure 4.4. (A) Frame 0 of the second MD simulation performed by D. E. Shaw group exhibiting the initial 
partially open state of RBD; (B) Frame 2003 corresponding to 2 µs of the same MD simulation presenting 
the open state of RBD [64] 
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4.2 Results and Discussion 
 
 

4.2.1 Similarity analysis of SARS-CoV and SARS-CoV-2 S proteins 
 

As above reported, SARS-CoV and SARS-CoV-2 S glycoproteins share 76% of 
amino acid sequence identity and 50% of identity within the RBM, in B domain [27]. 
This fact is also in accordance with the structural alignment of SARS-CoV and SARS-
CoV-2 RDBs that is similar between the two S glycoproteins (figure 4.5). 

 
(A) (B) 

Figure 4.5. (A) Structure alignment of SARS-CoV (PDB 6CS2: light blue chain is Spike and yellow chain 
is ACE2) and SARS-CoV-2 (PDB 6M0J: orange chain is RBD Spike and green chain is ACE2); (B) Close-
up on sequence alignment at ACE2-S proteins interface 
 

Overall 18 residues of RDB region in SARS-CoV-2 take part in the interaction 
with ACE2. Amongst these, nine amino acids are equivalent in SARS-CoV and SARS-
CoV-2 and include Tyr436-Tyr449, Tyr440-Tyr453, Asn473-Asn487, Tyr475-Tyr489, 
Gly482-Gly496, Thr486-Thr500, Gly488-Gly502, Tyr491-Tyr505, respectively. Five 
amino acids present side chains with similar physicochemical properties, that is Leu443-
Phe456, Leu472-Phe486, Asn479-Gln493, Thr487-Asn501 and Tyr442-Leu455 (Table 
4.1). 
 
Table 4.1. Interfacial amino acids comparison of SARS-CoV and SARS-CoV-2 Spike protein. On the left, 
the conserved amino acids for both SARS-CoV and SARS-CoV-2 S proteins are reported; in the middle, 
residues with similar physicochemical properties for the two proteins are shown; and on the right, residues 
that differ between the two proteins are listed. Residues marked with * are involved in the interaction with 
ACE2. 

CONSERVED AMINO ACIDS SIMILAR AMINO ACIDS DIFFERENT AMINO ACIDS 
SARS-CoV SARS-CoV-2 SARS-CoV SARS-CoV-2 SARS-CoV SARS-CoV-2 

Tyr436* Tyr449 Leu443* Phe456 Val404 Lys417 
Tyr440* Tyr453 Leu472* Phe486 Thr433 Gly446 
Asn473* Asn487 Asn479* Gln493 Pro462* Ala475 
Tyr475* Tyr489 Thr487* Asn501 Tyr484* Gln498 
Tyr481 Tyr495 Tyr442* Leu455   

Gly482* Gly496     
Thr486* Thr500     
Gly488* Gly502     
Tyr491* Tyr505     
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Even though the RBMs of both viruses are very similar, a few modifications on 
residue positions should influence the binding affinity between the two protein partners, 
S glycoprotein and ACE2. The main mutation affects Val404 residue in SARS-CoV, that 
is substituted with Lys417 in SARS-CoV-2, in the middle portion of RBD. The Lys417 
side chain establishes a salt-bridge with the carboxyl group of ACE2 Asp30, probably 
producing a strengthening effect within the bimolecular interaction between SARS-CoV-
2 RBD and ACE2. On the contrary, the amino acid Val404 does not produce interactions. 
The presence of Asn439 amino acid in SARS-CoV-2 as a replacement of Arg426 in 
SARS-CoV removes two salt-bridges with ACE2 Asn329 residue, probably weakening 
the protein-protein complex [63, 65]. However, several contact residues have high 
conservation thus explaining the overall similar binding affinity, as known from literature 
data, where SARS-CoV-2 exhibits KD values of 1.2 nM while SARS-CoV 5 nM [62]. 
This comparison between residues can provide crucial information about the putative 
anchor amino acids for the interaction between RDB and ACE2 proteins. 
 
 

4.2.2 Computational alanine scanning on SARS-CoV-2 – ACE2 interaction 
interface  

 
The analysis of the interactions between ACE2 and SARS-CoV-2 S glycoprotein 

shed light on issues in the design of small molecule modulators of this PPI. It should be 
noticed that this PPI does not represent a traditional example of protein-protein 
interaction, where the protein interfaces are often shallow and do not exhibit deep pockets 
able to accommodate a canonical ligand. Moreover, the hot spot amino acids of the 
protein partners are usually mainly hydrophobic [66] and widely dislocated along the 
whole protein surfaces, creating a discontinuous epitope [67–69]. Indeed, analysing the 
currently available PDB structures of ACE2-S protein interaction (PDB IDs: 6M17 and 
6M0J), the complex shows an interaction pattern with a 1:1 ratio, where the contacts 
between the proteins are essentially based on hydrogen bonds, some salt bridges and a 
few vdW forces. As this PPI is wide, three regions of interaction were defined, that is the 
N-terminal, the central and the C-terminal regions (figure 4.6A-C). 
 

 
(A) (B) (C) 

Figure 4.6. Spike RBD-ACE2 PD interactions according to three interface regions: (A) N-terminal region, 
(B) central region and (C) C-terminal region. PDB ID 6M0J – the light blue chain is ACE2 PD, while the 
orange chain is Spike RBD. 
 

Both PDB structures share mostly the same crucial contacts between ACE2 PD 
and S glycoprotein. At the N-terminal region, the main interactions involve the following 
residues belonging respectively to ACE2 PD and SARS-CoV-2 RBD: Tyr41 and Thr500 
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hydroxyl groups establish a hydrogen bond; the backbone carbonyl of Lys353 interacts 
with Gly502 backbone NH group; Gln42 side chain makes contact with Gly446 carbonyl; 
Asp38 and Gln42 side chains contact with Tyr449 hydroxyl side chain; Glu37 side chain 
shows an interaction with Tyr505 hydroxyl group; and Lys353 side chain interacts with 
Gly496 backbone carbonyl group. In the central region of the interaction interface, three 
main interactions are reported: a hydrogen bond between the side chain of His34 and the 
aromatic hydroxyl side chain of Tyr453, while Asp30 of ACE2 peptidase domain 
establishes a salt bridge and hydrogen bond with Lys417. Finally, at the C-terminal 
region, ACE2 Gln24 and Tyr83 side chains form H-bond interactions with Asn487 side 
chain of S protein [65]. 

To quantitatively investigate the importance of these above-mentioned interacting 
amino acids at the protein interfaces, a computational alanine scanning was computed on 
both PDB structures. The complexes were prepared at pH 7.4 and the outputs were used 
to perform the alanine scanning calculation per each complex. After performing 
substitutions to alanine for those residues participating in the PPI interface, the tool 
provided ∆∆Gaffinity values, measuring the difference between the calculated free energy 
of the mutated complex and the ∆Gaffinity of the wild-type complex. Thus, positive 
∆∆Gaffinity values pointed out a decrease in protein-protein binding affinity for the 
complex, and provide information about the contribution of each amino acid to the 
binding affinity. According to Beard et al., the results of the computational alanine 
scanning performed using Schrödinger suite have shown a connection with the 
experimental data, whereas a residue can be considered a hot spot if its mutation to alanine 
causes a ∆∆Gaffinity increase over 3.0 kcal/mol [70]. Table 4.2 report the ∆∆Gaffinity values 
for the residues belonging to both proteins that present values ≥ 3.0 kcal/mol subdivided 
according to the three interface regions (figure 4.7). 
 
Table 4.2. Computational alanine scanning results including only ACE2 and SARS-CoV-2 S protein 
interface residues with ∆∆Gaffinity values over 3 kcal/mol, for PDB 6M17 and PDB 6M0J according to the 
three interface regions (N-terminal, central and C-terminal portions). The last row of the table provides the 
total number of hot spots per region considering both PDB structures. 

PDB ID: 6M17 
N-TERM MIDDLE C-TERM 

ACE2 ∆∆Gaff Spike ∆∆Gaff ACE2 ∆∆Gaff Spike ∆∆Gaff ACE2 ∆∆Gaff Spike ∆∆Gaff 
Tyr41 12.82 Thr500 7.65 His34 8.91 Phe456 4.80 Tyr83 9.28 Phe486 11.93 

  Gly496 5.54   Leu455 4.26 Gln24 7.09 Tyr489 7.92 
  Asn501 5.29   Gln493 4.23 Met82 5.19 Asn487 3.45 
  Tyr505 3.88   Lys417 3.83     
  Gly502 3.81         
  Gln498 3.38         

PDB ID: 6M0J 
N-TERM MIDDLE C-TERM 

ACE2 ∆∆Gaff Spike ∆∆Gaff ACE2 ∆∆Gaff Spike ∆∆Gaff ACE2 ∆∆Gaff Spike ∆∆Gaff 
Tyr41 15.18 Tyr505 9.51 Lys31 7.65 Lys417 10.44 Tyr83 8.86 Asn487 10.75 
Gln42 7.70 Asn501 7.95 His34 4.18 Gln493 7.96 Gln24 7.67 Phe486 9.90 

Lys353 7.03 Thr500 7.53   Leu455 6.73 Thr27 5.97 Tyr489 6.46 
Asp38 4.95 Gln498 6.75   Phe456 6.42     
Glu37 4.35 Gly502 6.69         

  Gly496 3.75         
TOTAL HOT SPOTS = 11 TOTAL HOT SPOTS = 6 TOTAL HOT SPOTS = 7 
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(A) (B) 

Figure 4.7. (A) Hot spots residues at the three Spike RBD-ACE2 PD interaction regions for PDB 6M17 
(the dark pink chain is ACE2, while the light blue chain is S protein); (B) Hot spots residues at the three 
Spike RBD-ACE2 PD interactions regions for PDB 6M0J (the purple chain is ACE2, and the pink chain is 
S protein). In both pictures, the light blue square highlights the N-term, the red one the central region, and 
the green square indicates the C-term at ACE2-S protein interaction interface. 
 

Analysing both alanine scanning results, the identified hot spots of S 
glycoproteins are shared between the two PDB structures, while for ACE2 some hot spot 
residues differ among the two PDBs. Therefore, only the common hot spots were 
considered to proceed with for the study, neglecting those non-shared hot spots. 
Moreover, the ∆∆Gaffinity values were ranked in terms of contribution-to-binding, to 
discriminate the most important hot spots from the less relevant amino acids. In this 
context, for ACE2 peptidase domain (from PDB 6M17), the key residues were the 
following ones: Tyr41 within the recognition pattern at the N-terminal region, Tyr83 in 
the C-terminal region and His34 in the central region. Considering the other PDB 
structure 6M0J, the most valued hot spots were in the N-terminal region, involving Tyr41, 
Gln42, Gln24 and Lys353, and other two residues, Tyr83 and Lys31, that belonged to the 
C-terminal and middle regions, respectively. At the same time, the residues Phe486 and 
Tyr489 in the C-terminal region of S glycoprotein in PDB 6M17 were found crucial, and 
while the amino acids Thr500, Gly496, and Asn501 in the N-terminal region were mostly 
contributing to the ACE2-binding. On the other hand, from PDB 6M0J, the most valued 
residues were Phe486 and Asn487 belonging to the C-terminal region, Gln493 and 
Lys417 in the central region, and Thr500, Asn501 and Tyr505 in the N-terminal portion. 
In the light of the above, most of the identified hot spots for both proteins were mainly 
involved in the N-terminal portion (Table 4.2), reporting overall 11 hot spots. It suggests 
that this part of the protein-protein interface could be crucial for the PPI in comparison 
with the central and the C-terminal regions. Furthermore, the hydroxyl and aromatic side 
chain of Tyr41, the backbone carbonyl group of Lys353 and the side chain of ACE2 
Gln42 appear to be the key recognition features in the interaction with S glycoprotein and 
may guide the selection process and design of novel RBD S small molecule inhibitors. 
 
 

4.2.3 Molecular dynamics simulations on SARS-CoV-2 S protein in complex 
with ACE2 

 
The above-described analysis provided crucial information about key interactions 

but only from a static point of view. Hence, in order to get more information about crucial 
contacts, the two PDB 6M17 and 6M0J of ACE2-Spike protein complex were used to 
perform two MD simulations of 200 nanoseconds per each by using Desmond [71] to 
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investigate interactions frequency and stability during the trajectories. For both MD 
simulations, the RMSD plots were generated to check the stability of the complexes 
during the simulation, and monitoring also energy, temperature and pressure of the 
systems. The stationary shape for PDB 6M17 was obtained at about 30 nanoseconds of 
simulation, while for PDB 6M0J it was reached at about 80 nanoseconds of the trajectory 
(Plot 4.1A-B).  
 

 
(A) 

 
(B) 

Plot 4.1. (A) RMSD plot of MD on PDB 6M17 is depicted, where the system reaches the stationary shape 
after about 30 ns of simulation; (B) RMSD plot of MD on PDB 6M0J is showed, where the system achieves 
a stationary shape at about 80 ns. 
 

The trajectories turned out to be reliable for further analysis. Thus, the frames of 
both trajectories were grouped into ten clusters for both MD simulations by applying 
average as a hierarchical cluster linkage method. According to the RMSD plots, only the 
frames referring to the stable trajectory portion – after 30 nanoseconds for PDB 6M17 
and after 80 nanoseconds for PDB 6M0J – were considered to retrieve the most abundant 
and frequent interactions amongst the clusters, as reported in table 4.3. The analysis of 
the MD simulation on PDB 6M17 (cryo-EM) provided a fewer number of interactions 
than PDB 6M0J (X-ray). This should be ascribed to the different starting points for MD 
simulations and the different resolution methods employed for resolving the 3D 
structures, whereas PDB 6M17 is a cryo-EM complex while PDB 6M0J is an X-ray 
crystal structure. However, the two MD simulations present ten common interactions, 
that hence were considered the most important. Furthermore, for those different contacts, 
the involved residues were also highlighted for both MD. All this data was essentially in 
accordance with the information retrieved from literature and computational alanine 
scanning approaches. Therefore, these results were collected and processed for guiding 
the selection of putative modulators of ACE2-S protein interaction. 
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Table 4.3. On the left, key interactions between ACE2 PD and SARS-CoV-2 RBD from MD results on 
PDB 6M17; on the right, key residues involved into interactions between ACE2 PD and SARS-CoV-2 
RBD from MD results on PDB 6M0J. 

PDB ID: 6M17 PDB ID: 6M0J 

ACE2 PD Spike RBD Interaction type ACE2 PD Spike RBD Interaction type 

Gln24 Gln474 VdW Gln24 Asn487 1 H-bond 

Thr27 Phe456 VdW Thr27 Phe456 VdW 

Phe28 Tyr489 VdW Phe28 Ty489 VdW 

Asp30 Lys417 1 H-bond + 1 salt bridge Phe28 Phe486 VdW 

Lys31 Gln493 1 H-bond Asp30 Lys417 1 H-bond + 1 salt bridge 

His34 Tyr453 1 H-bond Lys31 Gln493 1 H-bond 

His34 Leu455 VdW Lys31 Tyr489 VdW 

Tyr41 Thr500 1 H-bond His34 Tyr453 1 H-bond 

Tyr83 Ala475 1 H-bond His34 Leu455 VdW 

Tyr83 Gly476 VdW Tyr41 Thr500 VdW 

Lys353 Gly502 1 H-bond Tyr41 Gln498 VdW 

Lys353 Asn501 VdW Phe79 Gln486 VdW 

Lys353 Tyr505 VdW Tyr83 Asn487 VdW 

   Tyr83 Phe486 VdW 

   Lys353 Gly502 1 H-bond 

   Lys353 Asn501 VdW 

   Lys353 Tyr505 VdW 

 
 

4.2.4 Supervised molecular docking to identify potential compounds able to 
bind N-terminal region 

 
In the light of the previous data, a knowledge-based and data-driven docking 

screening was performed on at the N-terminal, central and C-terminal regions of ACE2 
PD and SARS-CoV-2 RBD interacting interface. For this purpose, PDB 6M0J was used 
due to its better resolution (2.45 Å) compared to the PDB 6M17 (2.9 Å), and three 
different docking grids were built on S RBD, one per each interface region.  

Two different compound libraries were used for docking screening, that is the in-
stock MolPort library and a PPI-targeted compound library composed by Asinex, 
ChemDiv, Enamine and Life Chemicals databases. Owing to the large number of 
molecules, high-throughput virtual screenings were performed and the first 10,000 
molecules prioritised were re-docked by applying docking standard precision (SP) 
through Schrödinger suite [72, 73]. The best 1,000 molecules of the docking outputs were 
selected according to those establishing the interactions retrieved from the literature, the 
computational alanine scanning, the MD simulations results and the docking scores. The 
analysis of these results highlighted that the N-terminal region of Spike RBD interface 
was able to accommodate ligands better than the other two regions, the middle and C-
terminal ones. Indeed, when analysing docking outputs from these two regions, the 
compounds showed a high difference in binding poses among them, while the N-terminal 
region of S glycoprotein exhibited a small pocket able to accommodate functional groups 
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of the docked compounds. Interestingly, several ligands showed a complementarity with 
the RBD S pocket composed by the amino acids Tyr495, Gly496, Phe497, Asn501, 
Arg503 and Tyr505, as illustrated in figure 4.8. This data was used as a good starting 
point to deeply investigate this N-terminal region and allowed to consider it as the most 
potentially druggable region at the protein-protein interface compared to the other two. 
Therefore, compounds forming contacts with key amino acids at the N-terminal portion 
were taken into account for the next pharmacophore screenings. 
 

 
(A) (B) (C) 

Figure 4.8. RBD N-terminal binding region description. (A) Protein surface of N-terminal region; (B) 
Residues composing the cavity; (C) Example of ligand binding pose at N-terminal region. 
 
 

4.2.5 Pharmacophore screening of selected compounds from docking 
screenings 

 
In order to select a small representative group of the most promising compounds 

retrieved from docking outputs, the molecules were further processed through a 
pharmacophore screening. For this purpose, two different pharmacophore maps for PDB 
structures 6M17 and 6M0J were built on the N-terminal region of SARS-CoV-2 RBD-
ACE2 PD interface. As above mentioned, the N-terminal region was detected as the most 
potentially druggable, thus the other two regions were neglected within this work. Hence, 
for PDB 6M17, the three-featured pharmacophore map was generated (figure 4.9A) 
including two hydrogen bond acceptors, that is one on Glu37 side chain of ACE2 PD and 
another on Lys353 backbone carbonyl, and a hydrogen-bond donor on Tyr41 side chain 
hydroxyl. On the other hand, for PDB 6M0J, the pharmacophore map consisted of six 
features (figure 4.9B), showing four hydrogen-bond acceptors on the backbone carbonyl 
of Lys353, carboxylic groups of Glu37 and Asp38 and the side chain hydroxyl of Tyr41, 
a hydrogen-bond donor on the amine side chain group of Gln42, and a negative ionisable 
feature on Asp38 side chain of ACE2 PD.  

When comparing the two pharmacophore maps, it was observable that both PDB 
structures shared two comparable features corresponding to residues Lys353 and Glu37, 
while the features referring to the Tyr41 side chain hydroxyl were different. Indeed, in 
PDB 6M0J, the hydrogen of the hydroxyl group of Tyr41 accepted an H-bond from 
Thr500 side chain of S protein, while in PDB 6M17, the oxygen atom of the same 
hydroxyl group formed an H-bond to Asn501 side chain. It means that the same hydroxyl 
group of Tyr41 side chain could exhibit two different behaviours, H-bond acceptor or 
donor. Thus, the information provided by these pharmacophore maps were considered 
equally important, creating a shared pharmacophore (figure 4.9C), including overall the 
seven features from both PDB complexes. 
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(A) (B) (C) 

Figure 4.9. Pharmacophore maps built on RBD N-terminal region of (A) PDB 6M17 and (B) PDB 6M0J; 
and (C) shared pharmacophore map. Red spheres are hydrogen-bond acceptors, green spheres are hydrogen 
bond donors, the green-red sphere is both hydrogen-bond donor and acceptor, the red spike is a negative 
ionisable feature and dotted spheres are features marked as optional. 
 

The high number of pharmacophore features may be too restrictive for a 
preliminary virtual screening, thus decreasing the possibility of identifying potentially 
promising compounds even not exactly matching all the pharmacophore features. For this 
reason, the resulting shared pharmacophore was modified considering the alanine 
scanning ∆∆Gaffinity values, whereas Glu37 and Asp38 were included as the less valued 
hot spots compared to Tyr41, Gln42 and Lys353. Therefore, two H-bond acceptor 
features corresponding to Glu37 and Asp38 were marked as optional, because considered 
less important for the screening purposes, and the negative ionisable feature 
corresponding to Asp38 was deleted. Subsequently, the pharmacophore screening was 
run setting no omitted features allowed. From the outputs from the initial 1,000 PPI-
targeted compound databases, 22 molecules were retrieved, while from the initial 1,000 
of MolPort library 19 compounds were obtained.  

Analysing the outputs some resulting molecules were nucleoside analogues as a 
consequence of the highly hydrophilic nature of the binding site. However, these 
nucleoside analogues were neglected from the list of consensus molecules, because they 
were considered not relevant to enter a hit-to-lead optimization in a drug discovery 
process. On the contrary, 8 molecules were chosen as the most promising considering 
docking and pharmacophore outcomes, physicochemical properties and ease of chemical 
scaffold elaboration. Table 4.4 depicts the 2D structures of these 8 selected molecules 
that were able to establish interactions with key amino acids of S glycoprotein, while 
Table 4.5 illustrates the structures and some related physicochemical properties of the 
final 32 compounds identified from docking and pharmacophore approach. These 
compounds may provide crucial information about the modulation and the druggability 
of the N-terminal region. Moreover, they would be further validated via biophysical or 
biological screening before undergoes a hit optimisation programme to identify novel 
anti-COVID-19 therapeutics. 
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Table 4.4. Ligand interaction diagrams of the eight most promising compounds among the 32 consensus 
molecules selected according to docking binding poses and pharmacophore matching capacity. 

SELECTED COMPOUNDS 

  

Spike_RM03 
∆∆Gbinding = - 58.259 kcal/mol 

Spike_RM14 
∆∆Gbinding = - 56.750 kcal/mol 

 
 

Spike_RM15 
∆∆Gbinding = - 53.986 kcal/mol 

Spike_RM25 
∆∆Gbinding = - 51.707 kcal/mol 

  

Spike_RM30 
∆∆Gbinding = -51.658 kcal/mol 

Spike_RM29 
∆∆Gbinding = - 50.333 kcal/mol 
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Spike_RM09 
∆∆Gbinding = - 49.420 kcal/mol 

Spike_RM24 
∆∆Gbinding = - 48.338 kcal/mol 

 
Table 4.5. Physicochemical information of consensus molecules retrieved from docking and 
pharmacophore screenings performed on Spike RBD N-terminal region. 

Consensus molecule MW 
(g/mol) cLogP[a] PSA[a] 

Rule of 
five 

violations 

ΔGbinding
[b] 

(kcal/mol) 
Docking 
score[a] 

Pharmaco
phore-fit 
score[a] 

 
Spike_RM01 

333.346 -0.554 153.327 0 -44.653 -5.318 58.730 

 
Spike_RM02 

392.414 -0.237 170.248 1 -48.039 -4.460 58.580 

 
Spike_RM03 

360.412 1.224 116.340 0 -58.259 -5.036 58.640 

 
Spike_RM04 

309.367 -1.066 109.749 0 -43.861 -5.042 57.410 

 
Spike_RM05 

324.186 -2.569 201.174 2 -36.930 -6.836 58.290 

 
Spike_RM06 

284.317 0.737 99.295 0 -41.534 -5.562 56.110 
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Spike_RM07 

316.359 2.177 99.412 0 -44.845 -4.381 56.240 

 
Spike_RM08 

343.385 0.027 124.934 0 -43.589 -4.290 58.700 

 
Spike_RM09 

352.435 1.920 93.900 0 -49.420 -4.935 57.650 

 
Spike_RM10 

349.388 2.717 97.396 0 -48.692 -4.690 55.830 

 
Spike_RM11 

423.430 1.060 176.119 1 -46.155 -5.676 66.590 

 
Spike_RM12 

485.576 3.518 134.235 0 -34.966 -4.281 58.070 

 
Spike_RM13 

399.449 1.159 142.345 0 -41.774 -4.894 57.430 

 
Spike_RM14 

462.504 2.397 152.169 0 -56.750 -5.320 57.600 

 
Spike_RM15 

447.493 1.987 140.299 0 -53.986 -4.834 57.040 
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Spike_RM16 

463.492 1.894 155.876 0 -49.348 -5.003 57.260 

 
Spike_RM17 

287.318 1.669 102.195 0 -42.492 -4.944 57.950 

 
Spike_RM18 

391.472 2.600 86.270 0 -46.844 -4.568 57.670 

 
Spike_RM19 

334.377 3.323 70.653 0 -44.880 -4.897 57.050 

 
Spike_RM20 

367.425 2.704 100.627 0 -47.562 -4.494 56.300 

 
Spike_RM21 

337.393 -0.002 132.701 0 -35.847 -5.296 65.190 

 
Spike_RM22 

325.410 -0.027 99.560 0 -52.666 -5.164 58.490 

 
Spike_RM23 

342.372 1.291 98.253 0 -45.305 -4.722 56.150 

 
Spike_RM24 

347.376 2.676 106.796 0 -48.338 -5.290 56.090 

 
Spike_RM25 

396.411 3.170 99.040 0 -51.707 -4.996 56.300 
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Spike_RM26 

369.376 2.247 125.321 0 -48.653 -4.958 55.910 

 
Spike_RM27 

327.385 1.176 112.532 0 -41.896 -4.100 55.870 

 
Spike_RM28 

373.457 0.891 114.365 0 -52.603 -5.720 65.860 

 
Spike_RM29 

369.395 2.229 113.967 0 -50.333 -5.224 55.330 

 
Spike_RM30 

429.425 1.171 157.547 0 -51.658 -4.842 56.210 

 
Spike_RM31 

334.377 3.672 67.779 0 -42.773 -4.987 56.780 

 
Spike_RM32 

392.413 2.555 116.506 0 -49.262 -4.854 56.190 

[a] Property computationally calculated; [b] Property computationally calculated as MM-GBSA. 
 
 

4.3 Methods 
 
 

4.3.1 Preparation of PDB complex structures of ACE2 PD–SARS-CoV-2 
RBD 

 
The PDB structures 6M17 and 6M0J including the protein complexes ACE2 PD–

SARS-CoV-2 RBD were optimised using the “Protein preparation wizard” [74] tool 
(Schrödinger Release 2018-3) [72, 73, 75]. The bond orders for untemplated residues 
were assigned by using known HET groups based on their SMILES strings in Chemical 
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Component Dictionary. Hydrogens were added to the structure, eventual bonds to metals 
were broken, zero-order bonds between metals and nearby atoms were added and formal 
charges to metals and neighbouring atoms were corrected. Disulfide bonds between two 
sulfurs, if they were close to each other, were created and water molecules beyond 5.0 Å 
from any of the HET groups, including ions, were deleted. Then, protonation and metal 
charge states for the ligands, cofactors and metals were generated at pH 7.4 ± 0.2 using 
Epik [76, 77]. Finally, PROPKA [77] was run under pH 7.4 to optimise hydroxyl, Asn, 
Gln and His states using ProtAssign. 

 
 
4.3.2 Computational Alanine Scanning on SARS-CoV-2 – ACE2 interaction 
interface 
 
The residues of both PDB complexes were imported into the “Residue scanning” 

tool [70] released with Biologics suite to perform computational alanine scanning. The 
calculation type was flagged on “stability and affinity” to get ∆∆Gaffinity values for each 
mutated residue. Only the residues from both proteins that take part in the interaction 
interfaces were selected for the substitutions to alanine, i.e. amino acids in positions 416, 
417, 455, 456, 475 to 478 and 486 to 505 for S glycoprotein; and residues from position 
21 to 48, from 79 to 83, and from 352 to 357 for ACE2 peptidase domain. Finally, the 
side-chains of the mutated residues were refined through a backbone minimization. 
 
 

4.3.3 MD simulations on SARS-CoV-2 Spike protein in complex with ACE2 
 

The optimised PDB structures 6M17 and 6M0J were also used for MD 
simulations through Desmond (released version 11.6) [71]. For both protein-protein 
complexes, a system was generated by the “System builder” tool. TIP3P [78] was chosen 
as a water solvent model and the orthorhombic box shape was selected to include the 
system. The simulation box size was calculated by using a buffer with 10 Å of distance 
between the solute structures and the simulation box boundary. Na+ ions were added to 
neutralize both simulation boxes, and the applied force field was OPLS3 [79]. Then, the 
“Molecular Dynamics” tool was used to run MD simulations. The simulation time was 
set 200 nanoseconds for each system with a trajectory recording interval of 200 
picoseconds, and the simulation seed was randomised. Finally, the number of atoms, 
pressure (1.01325 bar) and temperature (300 K) were maintained constant during the 
whole simulation. Subsequently, the MD outputs were processed to identify the most 
abundant and frequent interactions between SARS-CoV-2 RBD and ACE2 PD getting 
ten clusters per each trajectory. The backbone was chosen to set the RMSD matrix and 
frequency of clustering was 10, setting average as the hierarchical cluster linkage method.  
 
 

4.3.4 Virtual compound libraries preparation for molecular docking 
screening 

 
Several libraries of PPI-targeted compounds, such as Asinex, ChemDiv, Enamine, 

and Life Chemicals databases, and MolPort compound library were downloaded and 
prepared for the calculations. These virtual libraries were filtered through KNIME 
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platform [80] using the SMART alerts, in order to delete those compounds containing 
carcinogenic, mutagenic, chelating, reactive, unstable, toxic and skin sensitising groups 
[81], thus getting overall about 1.8 million molecules. Then, all the compounds were 
prepared using “LigPrep” tool of Schrödinger suite. The selected force field was OPLS3 
[79] and the protonation states were generated at pH 7.4 ± 0.2 using Epik [82]. The 
molecules were desalted and tautomers were generated retaining compound specific 
chirality. Finally, no more than 32 different conformations were generated per ligand. 
 
 

4.3.5 High-throughput virtual screening 
 

Three different docking grids were generated by using the “Receptor grid 
generation” tool of Schrödinger suite on the three above mentioned interaction regions at 
ACE2 PD-SARS-CoV-2 RBD interface. The grid centroids were defined selecting the 
key amino acids according to the previously collected data from literature and 
computational results analysis: for N-terminal region Gly496, Gln498, Thr500, Asn501, 
Gly502, Tyr505, for the middle region Lys417, Leu455, Phe456, Gln493, and for the C-
terminal portion Phe486, Asn487, Tyr489. The vdW radius scaling factor was set 1.0 for 
non-polar atoms with a partial charge cut-off of 0.25. Then, these grids were used to 
perform molecular docking screenings choosing a flexible protocol and the vdW radii of 
ligand non-polar atoms were scaled by 0.80 with partial atomic charge cut-off 0.15. The 
above-mentioned compound libraries were docked on these three grids, whereas high-
throughput virtual screening workflows were run due to the large number of molecules 
for the two compound libraries. The first 10,000 compounds prioritised were re-docked 
using docking SP.  
 
 

4.3.6 Pharmacophore screening of selected compounds from docking 
screening 

 
The molecules selected from docking screening were optimised using the tool 

“Create screening database” of LigandScout software (version 4.3 - released by 
Inte:Ligand GmbH) [83–86], specifying “iCon Best” [87] as conformer generation type 
to create high-quality ligand conformations. The maximum number of conformations per 
compound was maintained 200 as default, and all other default settings were applied. 
Then, the pharmacophore maps for the screening were created by using PDB 6M17 and 
PDB 6M0J. Chain B of PDB 6M17 and chain A of PDB 6M0J corresponding to ACE2 
protein were converted to ligands, in order to allow the software to define one of the two 
protein as a ligand. The two pharmacophore maps were generated using the “Create 
pharmacophore” tool, and they were transferred to the “Alignment perspective” window. 
From both pharmacophores those features not involved in the N-terminal region were 
deleted, getting three features for PDB 6M17 (figure 4.9A) and six features for PDB 6M0J 
(figure 4.9B). All hydrogen-bond vectors were converted into features to increase the 
ligand-matching capacity of pharmacophores. Then, a shared pharmacophore was 
generated (figure 4.9C), using the tool “Generate shared feature pharmacophore”, setting 
6M0J pharmacophore as reference. The resulting 3D map consisted of overall seven 
features, where a negative ionisable feature on Asp38 was deleted and the two H-bond 
acceptor features corresponding to Glu37 and Asp38 side chains were converted in 
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optional. This modified pharmacophore map was used to perform screening on the 
compound libraries previously generated. For this purpose, the scoring function was set 
“pharmacophore-fit”, the screening mode was “match all query features”, and for the 
retrieval mode was chosen “get best matching conformation”. Finally, for the compound 
libraries, the maximum number of permitted omitted features was 0. 
 
 

4.4 Conclusions 
 

The aim of the work herein detailed was the identification of a potentially 
druggable region on the S glycoprotein RBD binding interface, and select potential hit 
molecules to enter drug discovery program against the current COVID-19 pandemic. 
Although targeting PPIs is a very challenging strategy in drug discovery programmes, in 
this work, using orthogonal computational techniques and investigating the S-ACE2 
interaction interface, the N-terminal region of S RBD was identified as a druggable site 
showing a small pocket and highlighting the highest number of hot spot residues. 
Therefore, this region could be targeted as a therapeutic intervention point that may 
interfere with the host-guest recognition mechanism. 

Finally, in this context, a supervised virtual screening was performed by applying 
a consensus strategy. Indeed, docking and pharmacophore screening yielded a list of 
potential modulators, that will be validated through biochemical, biophysical or cellular 
screening.  
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CHAPTER FIVE 
 
C3b-FH INTERACTION – Structural insights of mutated C3b 
protein involved in Age-Macular Degeneration disease 
 
 

5.1 Introduction 
 

The immune response is the first-line defence against a wide variety of different 
microorganisms including viruses, bacteria, parasites and fungi, which could cause 
serious problems to the health of the host organism if not cleared from the body. Patients 
partially immunodeficient can undergo severe infectious issues despite significant 
advances in supportive care [1].  

There are two distinct types of the immune response, the innate and the adaptive, 
which aim to fight and annihilate pathogens. Among several components of the innate 
immune response, there are physical barriers such as the skin and mucous membranes, 
immune cells like neutrophils, macrophages, and monocytes, and soluble factors 
including cytokines and complement [2].  

The complement is a group of sequentially reacting proteins that are critical 
components of the innate immune response. Unlike the adaptive immunity, which needs 
several days to trigger an effective immune response, upon infection or injury 
complement takes off immediately against pathogens. Furthermore, complement does not 
exhibit “immunological memory”, a key feature of the adaptive immune system. On the 
contrary, complement is the main actor of the acute phase response aiming to destroy 
pathogens, reduce innate immune-mediated damage to the host tissues and foster a 
prompt restoration of the homeostasis [3]. It is widespread produced in essentially all 
body fluids, including tears, saliva and cerebrospinal fluid to promptly intervene 
everywhere in the body and prevent the infection [4, 5].  

The role of complement is targeting pathogens for removal by covalent attachment 
of activation fragments to the cell membrane, chemoattracting and fostering to activate 
phagocytic cells, such as neutrophils and macrophages, to engulf pathogens and lyse them 
through the formation of the membrane attack complex (MAC).  
 

Complement proteins can be divided into two broad categories: those involved in 
the activation, and those regulating the activation. On the other hand, the regulatory 
components can be subdivided into those that are soluble and those that are membrane 
bound. The complement activators can be grouped according to the main three activation 
pathways listed below: 

a) Classical pathway – It is activated by complexes formed by antibodies bound to 
bacteria and other pathogens interacting with C1 protein;  

b) Lectin pathway – It is activated by pathogen-specific carbohydrates (e.g. terminal 
D-mannose residues or N-acetyl-D-glucosamine) on the surface of some bacteria, 
fungi, viruses, parasitic protozoans, and by acetylated groups (e.g. N-acetyl-
glycine, N-acetyl-cysteine and acetylcholine) [6, 7]; 

c) Alternative pathway (AP) – It provides protection from a wide variety of 
extracellular pathogens and is activated by pathogen-associated molecular 
patterns (PAMPS), chemical moieties unique to pathogens not found in the host, 
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such as lipopolysaccharide at the cell wall of Gram-negative bacteria and 
carbohydrates found in the cell wall of fungi (zymosan) [8–12]. Unlike the 
classical and lectin pathways, the alternative pathway has been shown to maintain 
an active state at a small degree all the time by a mechanism known as “tickover”. 
Thus, the alternative pathway is always primed to respond quickly and vigorously 
to pathogens or injury [13–17].  

 
Once activated, the alternative pathway triggers a cascade of cleavage events, where 

each proenzyme forms are cleaved to their active forms and subsequently activate the 
next protein in the pathway and so on. The cleavage events share the same result, i.e. the 
generation of two multi-molecular enzyme complexes termed convertases. These ones 
cleave either C3 or C5 proteins, the two main proteins of the complement system, 
producing the cleaved fragments named based on their molecular size: the larger fragment 
is termed “b” fragment and the smaller fragment is named “a” fragment. For example, 
C3 cleavage by the C3 convertase generates the smaller C3a and larger C3b fragments.  
These fragments mediate several host defence functions, as follows [4, 5]: 

a) Chemoattraction – C3a and C5a fragments are potent chemoattractants, that is 
they stimulate and increase the phagocytic and killing activity of myeloid cells, 
such as neutrophils and macrophages, and other cell types, by recruiting them to 
the site of complement activation in a concentration-dependent manner [18–20];  

b) Opsonisation – C3b and C4b are potent opsonins, that are able to target and mark 
pathogens for phagocytosis by covalently binding to the pathogen cell surface 
through a thioester moiety. Before complement activation, the α-chains of C3 
contain a thioester bond, that is stable until the protein is cleaved to C3b. The 
thioester bond is then highly metastable and it can interact with hydroxyl groups 
on carbohydrates or amine groups on the surface of the invading pathogens, 
generating ester or amide linkages, respectively (figure 5.1) [14]. Thus, C3b can 
coat the surface of invading pathogens at a high density by masking and neutralize 
virulence factors required for interaction with host cells [21, 22].  

 

 
 
Figure 5.1. Thioester bond of C3 protein. Before alternative pathway activation, it is intact. Upon 
activation, it exhibits a metastable form, that interacts with nucleophile species to generate ester or amide 
linkages on pathogens surface [23]. 
 

c) Cell lysis – Another function of complement is the formation of the membrane 
attack complex by associating C5b protein, in a concentration-dependent manner, 
with C6, C7, C8 and multiple C9 proteins [24–26]. MAC inserts into lipid bilayers 
of susceptible bacteria, viruses, and parasites, leading to cellular dysfunction and 
osmotic lysis to disrupt cellular integrity [27].  

 
However, an indiscriminate deposition of complement and an overactivation of 

the innate immune response may induce damages to neighbouring cells, causing several 
health issues such as the deterioration of vision in age-related macular degeneration 
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(AMD) and loss of long-term memory in Alzheimer’s disease [28, 29]. To avoid self-
injury, complement activation is controlled. An important mechanism of protection is 
provided by the cofactor H (FH), which belongs to a protein family of regulators of 
complement activity (RCA) [30]. FH recruits, in turn, the factor I (FI) that binds to C3b-
FH complex and subsequently degrades C3b by cleaving it up to three times, and 
generating proteolytic fragments iC3b (after two cleavages) and C3c/C3dg (after three 
cleavages) [31]. These fragments cannot re-form C3 and C5 convertases and thereby stop 
further opsonisation and generation of membrane attack complexes [32]. 

This above-described mechanism is a protection that host cells tune through the 
regulators of complement activation (RCA) family. Their role is to either impair the 
generation of new C3b by accelerating the decay of the C3 convertases or act as a cofactor 
for factor I in degrading existing C3b [33]. In addition, unlike other activation regulators, 
the soluble and highly abundant regulator factor H provides an additional layer of 
protection by controlling the tickover activation state of the alternative pathway in 
circulation [31].  

FH consists of 20 linearly distributed complement-control-protein (CCP) 
domains, even termed short consensus repeats (SCRP), that are composed by about 60 
residues and that are common to all RCA proteins [34]. The first four domains (CCP1-4) 
of FH are crucial and sufficient to regulate the complement, while the other domains 
CCP5-20 of FH are useful to determine the specificity [34–36]. 

On the other hand, the structure of C3b shows an arrangement of 12 domains 
formed by the β chain (amino acid residues 1–645) and the α’ chain (amino acid residues 
727–1641) [37, 38]. The core of the structure consists of eight macroglobulin (MG) 
domains and a linker (LNK) domain. A complement C1r/C1s, UEGF, BMP1 (CUB) 
domain and a thioester-containing domain (TED) are visible between MG7 and MG8. 
TED domain is responsible for covalent pathogens surface attachment through the 
thioester moiety in Cys988-Gln991 [38].  

C3b-FH complex structure retrieved from PDB database [39] reveals an extensive 
interacting interface, involving several domains of C3b and four contact regions of FH 
(CCP1–4). The bottom half of CCP1 and the CCP1-CCP2 linker bind C3b through 
hydrophobic interactions and salt bridges to the acidic α’ N-terminal (α’NT) region 
(amino acid residues 727–746) and the MG7 domain [31, 40, 41]. The second binding 
region consists of a patch of conserved hydrophobic residues together with hydrophilic 
residues on CCP2 interacting with MG6 of C3b. In the third contact region, CCP3 
establishes interactions with residues of MG2 and CUB domains in α’ and β chains of 
C3b, respectively. Finally, at the fourth interacting site, CCP4 forms another bridge 
between MG1 and TED (Figure 5.2). The C3b domains α’NT, MG7, CUB and TED are 
known to arrange substantial changes during the conversion of C3 to C3b [37, 38, 42, 
43], thus providing the specificity of FH for C3b rather than C3 [44]. 
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Figure 5.2. C3b-FH complex structure. FH is depicted including the surface composed by CCP1 to CCP4 
(yellow, light green, pink and purple regions). C3b is depicted including the tertiary structure of each 
domain. In particular, MG1 and TED domains are the binding partners for FH CCP4 domain [44]. 
 

As above mentioned, C3b-FH complex formation is involved in the alternative 
pathway of complement activation, whereas this pathway has been characterised by C3 
polymorphism recently associated with the AMD disease [45, 46]. Although this 
association has been identified, the molecular basis remained unknown for decades. In 
2010, Heurich et al. shed light on C3bR102G mutation affecting AP activation by 
influencing the efficiency of regulation tuned by FH. Based on their experiments, authors 
found that the AMD risk variant (C3b102G) weakly bound FH compared with wild-type 
C3b102R, even causing decreased FI activity, extended convertase functions, and increased 
AP effects [44]. Furthermore, C3bR102G mutation was also associated with IgA 
nephropathy [47], systemic vasculitis [48], kidney allograft dysfunction [49], and dense 
deposit disease [50]. In detail, FH exhibited a weaker binding affinity for the mutated 
form (C3b102G), with KD C3b102G: 1.4 µM, compared to the wild-type C3b102R, with KD 
C3b102R: 1.0 µM [36, 51].  

C3bR102G mutation is located in a positively charged area at the interface between 
the MG1 domain and TED, and CCP4 binds TED in close proximity to MG1 [44]. 
Therefore, it is likely that Arg substitution in position 102 with Gly can decrease overall 
positive charge in C3b and alter interdomain associations around the FH binding site, 
influencing the binding affinity and the cofactor activity. 
 

In light of the above, unveiling mechanisms behind this mutation is essential to 
aid in understanding the disease aetiology. Therefore, the aim of this work was to design 
a peptide aimed at discriminating wild-type C3b from C3bR102G mutant. This peptide 
should be a potential instrument to be used for a diagnostic tool, whereas patients plasma 
should be employed to diagnose AMD associated with C3bR102G mutant form. 

For this purpose, in this work a structural analysis of C3b-FH complex was 
performed first to identify the key interactions for the three protein chains of interest, 
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second molecular dynamics technique was exploited to investigate frequency and 
stability of those interactions and then they were observed and compared between wild-
type and mutated system. This analysis allowed to develop a hypothesis to explain the 
binding affinity decrease associated with C3bR102G mutation. In this way, it was possible 
to design a peptide based on FH (CCP1-4) structure. The next sections provide a detailed 
description of this work leading to identify a putative FH-derived peptide that potentially 
should bind the wild-type C3b with higher binding affinity compared to C3bR102G variant 
overexpressed in patients affected by AMD. All the steps described in detail in the next 
sections are listed in Scheme 5.1. 
 

 
Scheme 5.1. Overview of the computational workflow performed to identify the FH minimum active 
sequence composing the FH-derived peptide aimed at discriminating WT C3b from mutant C3bR102G form 
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5.2 Results and discussion 
 
 

5.2.1 Analysis of PDB structures of the trimeric complex C3b-FH 
 

The first step of this work was the analysis of the available PDB structures of C3b-
FH complex from the Protein Data Bank [52], i.e. the PDBs 2WII (resolution 2.70 Å), 
5O32 (resolution 4.21 Å) and 5O35 (resolution 4.20 Å), where C3b and FH take part in 
the interaction with a ratio 2:1, respectively. Due to the low-quality resolutions of the last 
two PDBs, they were only used to explore the key interactions observable between C3b 
protein and factor H, while the PDB 2WII with the best resolution was chosen to deeply 
investigate the protein-protein interactions in the next steps. The protein structures were 
firstly prepared by adding missing atoms and optimising other parameters such as 
chiralities and protonated or deprotonated group states at pH 7.4 ± 0.2. In particular, for 
PDB 2WII a crosslinking process was necessary by integrating the structure with two 
missing amino acids in position 98 and 99 on chain β of C3b protein (Ser98 and Glu99). 
The analysis of the interactions highlighted the following key residues reported in table 
5.1 between C3b MG1 (chain β) and TED (chain α’) domains and FH CCP4 domain. 
 
Table 5.1. Observed interactions from PDBs 2WII, 5O32 and 5O35 between C3b domains (MG1 and TED) 
and FH CCP4. 

PDB 
ID 

C3b 
MG1 

FH 
CCP4 

Interaction 
type 

C3b 
TED 

FH 
CCP4 

Interaction 
type 

C3b 
MG1 

C3b 
TED 

Interaction 
type 

2W
II

 

Gly64 Arg246 1 H-bond Val1068 Arg232 VdW contacts Phe62 Arg1020 VdW contacts 

Lys65 Glu245 1 H-bond + 1 
salt bridge Asn1069 Arg246 1 H-bond Pro63 Trp1012 VdW contacts 

Lys66 
Arg246 
Arg257 
Pro258 

VdW contacts Ala1072 Glu245 VdW contacts Ser98 Glu1010 1 H-bond 

Leu67 Arg257 VdW contacts Ser1075 Gln234 1 H-bond Lys100 Asp1266 1 H-bond + 1 
salt bridge 

Arg94 Glu253 1 H-bond + 1 
salt bridge Gln1076 Ile221 VdW contacts Arg102 Glu1010 VdW contacts 

Arg94 Glu188 VdW Asp1134 Arg232 VdW contacts Lys104 Glu1010 1 salt bridge 
Thr162 Glu189 1 H-bond Ile1135 Arg232 VdW contacts Phe105 Leu1017 VdW contacts 
Asp178 Gln172 VdW contacts Glu1138 Gln223 1 H-bond Lys119 Glu1018 1 salt bridge 
Ser179 Gln172 1 H-bond    Val120 Leu1017 VdW contacts 
Leu180 Gly171 VdW contacts       
Leu180 Ala173 VdW contacts       
Ser181 Gly171 1 H-bond       
Gln185 Phe170 VdW contacts       

Glu211 Arg175 2 H-bonds + 1 
salt bridge       

5O
32

 

Lys65 Glu245 1 Salt bridge Asn1091 Arg232 1 H-bond Phe62 Trp1034 VdW contacts 
Lys66 Arg246 VdW contacts Ile1093 Glu245 VdW contacts Pro63 Trp1034 VdW contacts 
Lys66 Arg257 VdW contacts Ala1094 Tyr243 VdW contacts Arg102 Thr1031 VdW contacts 

Lu67 Arg257 VdW contacts Asp1096 Tyr243 VdW contacts Lys104 Glu1032 1 H-bond + 1 
salt bridge 

Arg94 Glu188 1 H-bond Ser1097 Gln234 VdW contacts Phe105 Glu1035 VdW contacts 
Glu95 Arg257 1 Salt bridge Ile1157 Arg232 VdW contacts Glu118 Gln1043 VdW contacts 
Glu95 Ser254 VdW contacts Glu1160 Ser222 1 H-bond Val120 Leu1039 VdW contacts 
Thr162 Glu189 1 H-bond    Leu198 Arg979 1 H-bond 
Asp178 Gln172 1 H-bond       
Ser179 Ala173 1 H-bond       
Ser179 Gln172 VdW contacts       
Leu180 Gly171 VdW contacts       
Leu180 Gln172 VdW contacts       
Leu180 Ala173 VdW contacts       
Ser181 Gly171 1 H-bond       
Ser181 His191 VdW contacts       
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Gln183 His191 VdW contacts       
Gln185 Glu116 1 H-bond       
Gln185 Phe170 VdW contacts       

Glu211 Arg175 2 H-bonds + 1 
salt bridge       

Glu211 Glu189 VdW contacts       

5O
35

 

Lys65 Glu245 1 Salt bridge Val1090 Arg232 VdW contacts Phe62 Leu1039 VdW contacts 
Lys66 Arg246 VdW contacts Asn1091 Arg246 1 H-bond Pro63 Arg1042 VdW contacts 
Lys66 Arg257 VdW contacts Ile1093 Glu245 VdW contacts Arg102 Glu1032 VdW contacts 
Lys66 Pro258 VdW contacts Ala1094 Tyr243 VdW contacts Asn103 Glu1035 VdW contacts 
Leu67 Arg257 VdW contacts Ser1097 Gln234 VdW contacts Lys104 Glu1032 1 salt bridge 
Thr162 Glu189 VdW contacts Ile1157 Arg232 VdW contacts Phe105 Leu1039 VdW contacts 

Asp178 Gln172 VdW contacts Glu1160 Ser222 1 H-bond Lys119 Glu1040 1 H-bond + 1 
salt bridge 

Ser179 Ala173 1 H-bond Leu1109 Cys1138 VdW contacts Val120 Leu1039 VdW contacts 
Ser179 Gln172 VdW contacts    Leu198 Arg979 VdW contacts 
Leu180 Gly171 VdW contacts       
Gln183 His191 1H-bond       
Gln185 Phe170 VdW contacts       
Gln185 Glu116 VdW contacts       

Glu211 Arg175 1 H-bond +1 
salt bridge       

Glu211 Glu189 VdW contacts       

 
As it can be observed, Arg102 in MG1 domain does not appear interacting with 

factor H, on the contrary, it is involved in interactions with the other C3b chain on TED 
domain. Thus, these considerations suggest that Arg102 should be crucial to stabilise the 
overall C3b quaternary structure including chain β and chain α’. Indeed, C3bR102G 
mutation could disrupt the linking between TED and MG1. Therefore, the work herein 
described was based on this hypothesis, that was further investigated in the next steps 
below detailed. 
 
 

5.2.2 Stability prediction of single-base mutated C3b 
 

As previously mentioned, in AMD disease C3b was found mutated in position 
102 of MG1 domain, where arginine residue is substituted with glycine. According to 
PDBs analysis, Arg102 is essentially involved in interactions with C3b TED domain 
without binding FH. Therefore, this fact could suggest that glycine in position 102 
destabilises the binding of C3b chain β with C3b chain α’. Indeed, glycine has been 
extensively demonstrated to produce a destabilising effect especially for well-defined 
protein secondary structures (e.g. α-helix [53] and β-sheet [54]). In fact, glycine lacks β-
carbon resulting in an unusual flexibility, that can take on polypeptide backbone 
conformations not allowed by other amino acids. Therefore, mutation to glycine should 
cause flexibility and possible conformational changes convoluted with the effects of 
removing the side chain atoms. Furthermore, specifically, for C3b single-base mutation, 
glycine is a neutral amino acid that in fact lacks the positive charge usually present in 
arginine side chain in physiological conditions. Therefore, these considerations highlight 
that the presence of glycine in position 102 could disrupt the interactions established by 
Arg102 of C3b MG1 domain with its protein partner. In order to deeply explore and 
quantitatively analyse this hypothesised destabilisation, the computational residue 
scanning was performed by using Schrödinger suite and DynaMut [55], two prediction 
tools.  

For the “Residue Scanning” tool of Schrödinger, the PDB 2WII was used 
including the trimeric complex C3b chain β and chain α’ and FH CCP1-4. The 
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calculations provided ΔΔGstability = 20.47 kcal/mol and ΔΔGaffinity = 0.59 kcal/mol. These 
values confirmed the destabilising effect of C3bR102G mutation. These results were also 
consistent with the DynaMut outcomes. For this tool, a different PDB structure was 
processed, that is the PDB 2I07 (where R80 corresponds to R102) including only chain β 
and chain α’. Even in this case, the prediction outcome suggested that C3bR102G mutation 
produces a destabilising effect on C3b. This information was retrieved from the Δ 
vibrational entropy energy values (ΔΔSVib) between wild-type and mutant systems with 
ΔΔSVib = 4.117 kcal/mol·K, confirming an increase of molecule flexibility. Finally, wild-
type and mutant sequence of C3b protein were extracted from their respective 3D 
structures and then aligned. The results of normal mode analysis data for each sequence 
are displayed below in plot 5.1, that reports differences in atom fluctuations comparing 
wild-type and mutant forms. 

 
Plot 5.1. RMS fluctuations of wild-type and R80G mutant C3b (R80 of the PDB used corresponds to R102). 
The secondary structure types on each region of the sequence are added to the top and bottom margins of 
the plot (black stands for helices, while grey for strands). 
 
 

5.2.3 Molecular Dynamics simulation of wild-type C3b-FH complex 
 

In order to deeply explore the most stable and frequent interactions of C3b 
residues towards factor H, two MD simulations of 500 ns were performed on wild-type 
C3b-FH complex by using PDB 2WII. The total energy of the systems and the RMSD 
plots were checked during the entire trajectories to ensure the outcomes reliability. The 
related data are shown in table 5.2 (average energy values) and Plot 5.2A-B (RMSD 
plots). 
 
Table 5.2. Energy values monitored during the two MD trajectories on C3b-FH complex 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -599319.5 317.462 -0.001 -609656.7 315.624 0.000 
Potential energy (kcal/mol) -742199.2 248.268 -0.001 -754902.7 244.986 0.000 
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(A) 

 
(B) 

Plot 5.2. RMSD plots of (A) first and (B) second MD simulation performed on C3b-FH complex. 
 

The RMSD plots highlighted the overall acceptable reliability and stability of the 
systems. Thus, all the frames of these simulations were clustered generating 10 groups of 
frames per each and the MD frames representative of the most abundant clusters were 
further analysed: 

• First MD à Frame 730 (32 frames), frame 260 (20 frames), frame 90 (12 frames), 
frame 490 (24 frames) and frame 600 (6 frames); 

• Second MD à Frame 710 (46 frames), frame 620 (6 frames), frame 250 (25 
frames) and frame 150 (9 frames). 

The analysis of these frames shed light on the most frequent and stable interactions 
extracted from the two MD trajectories, as shown in table 6.3. 
 
Table 5.3. Interactions between MG1, TED and CCP4 extracted from MD simulations performed on C3b-
FH complex (PDB 2WII). 

First MD Second MD 
C3b MG1 FH CCP4 Interaction type C3b MG1 FH CCP4 Interaction type 

Lys65 Glu245 1 H-bond + 1 salt bridge Lys65 Glu245 1 H-bond + 1 salt bridge 
Lys66 Pro258 VdW Lys66 Pro258 VdW 
Leu67 Arg257 VdW Arg94 Glu188 2 H-bonds +1 salt bridge 
Lys73 Glu264 1 H-bond Glu95 Arg257 2 H-bonds + 1 salt bridge 
Arg94 Glu188 1 H-bond Asp178 Arg166 2 H-bonds + 1 salt bridge 
Glu95 Arg257 2 H-bonds + 1 salt bridge Ser179 Ser160 1 H-bond 
Thr162 Glu189 1 H-bond Ser179 Ala173 1 H-bond 
Ser179 Ala173 1 H-bond Ser181 Gly171 1 H-bond 
Leu180 Gly171 1 H-bond Glu211 Arg175 2 H-bonds + 1 salt bridge 
Ser181 Gly171 1 H-bond Glu211 Ser159 1 H-bond 
Gln185 Phe170 VdW    
Glu211 Arg175 2 H-bonds + 1 salt bridge    

C3b TED FH CCP4 Interaction type C3b TED FH CCP4 Interaction type 
Lys1028 Glu245 1 H-bond + 1 salt bridge Lys1028 Glu245 1 H-bond + 1 salt bridge 
Asp1134 Asn230 1 H-bond Asn1069 Arg232 1 H-bond 
Glu1137 Lys228 1 H-bond + 1 salt bridge Glu1138 Lys224 1 H-bond 
Glu1138 Lys224 1 H-bond + 1 salt bridge Arg1281 Asp165 1 H-bond 
Arg1281 Asp165 1 H-bond Ile1135 Gln234 1 H-bond 

   Gln1139 Gln234 1 H-bond 
   Asp1134 Arg232 2 H-bonds 
   Glu1292 Lys156 1 H-bond + 1 salt bridge 
   Glu1138 Lys224 1 H-bond + 1 salt bridge 

C3b MG1 C3b TED Interaction type C3b MG1 C3b TED Interaction type 
Lys119 Glu1018 1 H-bond Lys100 Asp1266 1 H-bond + 1 salt bridge 
Arg102 Glu1010 2 H-bonds + 1 salt bridge Arg102 Glu1010 2 H-bonds + 1 salt bridge 
Arg102 Glu1013 1 H-bond Arg102 Glu1013 2 H-bonds + 1 salt bridge 
Glu118 Gln1021 1 H-bond Glu118 Gln1021 1 H-bond 
Lys100 Glu1292 1 H-bond + 1 salt bridge Lys119 Glu1018 1 H-bond + 1 salt bridge 
Lys104 Glu1010 1 Salt bridge Val120 Glu1018 1 H-bond 
Phe62 Tro1012 1 Pi-Pi    
Val120 Glu1018 1 H-bond    
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By analysing these interactions, Factor H appears to establish a higher number of 
interactions with C3b MG1 domain compared to TED domain. It seems to suggest a slight 
preference for MG1 domain.  

In detail, herein the most stable interactions shared by the two MD simulations were 
the following ones: 

• For MG1-CCP4 interactions à Lys65-Glu245, Lys66-Pro258, Leu67-Arg257, 
Arg94-Glu188, Glu95-Arg257, Ser179-Ala173, Ser181-Gly171 and Glu211-
Arg175; 

• For TED-CCP4 interactions à Lys1028-Glu245, Glu1138-Lys224 and Arg1281-
Asp165; 

• For MG1-TED interactions à Arg102-Glu1010, Arg102-Glu1013, Glu118-
Gln1021, Lys119-Glu1018 and Val120-Glu1018. 

The results of these MD were in accordance with the preliminary PDBs analysis, 
where Arg102 was not involved in binding with FH CCP4, but it was strongly observed 
interacting with the other C3b chain involving TED domain residues, Glu1010 and 
Glu1013, by establishing mainly two H-bonds plus a salt bridge and an H-bond and a salt 
bridge, respectively. Furthermore, among the two simulations, the shared stable 
interactions between MG1 and TED domain were Arg102-Glu1010, Arg102-Glu1013, 
Glu118-Gln1021, Lys119-Glu1018 and Val120-Glu1018, respectively.  
 
 

5.2.4 Molecular Dynamics simulation of wild-type C3b protein  
 
In order to deeply investigate whether the interactions between MG1 and TED 

domains should expect to be stable even in absence of a third protein (FH), other two MD 
simulations were performed by including only C3b protein deleting FH chain from PDB 
2WII. The simulations were run setting 500 ns of time per each and the related energy 
values are reported in table 5.4. Upon the deletion of FH, C3b chains exhibited a first 
stage of molecular arrangement involving the amino acids at the protein-protein interface 
that should move on from bound to unbound state. This fact was also observable from the 
RMSD plots that presented a first unstable portion during the trajectories until about 150 
ns for the first MD and 180 ns for the second MD (plot 5.3A-B). Therefore, the frames 
falling into these unstable regions of the MD simulations were not included in the 
following analysis.  
 
Table 5.4. Energy values monitored during the two MD trajectories on the wild-type C3b 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -5342255.0 295.364 0.000 -533885.3 297.63 -0.001 
Potential energy (kcal/mol) -661645.44 228.510 0.000 -661257.0 232.350 -0.001 
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(A)  

(B) 
Plot 5.3. RMSD plots of (A) first, (B) second MD simulation performed on wild-type C3b 
 

On this regard, the trajectory frames were clustered by generating 10 frame groups 
per MD, whereas the most abundant clusters were represented by the following frames: 

• First MD à Frame 350 (28 frames), frame 280 (37 frames), frame 410 (22 
frames); 
Second MD à Frame 270 (45 frames), frame 170 (25 frames), frame 380 (17 

frames) and frame 320 (12 frames). 
The analysis of the above-listed frames allowed to identify the key residues for 

MG1 and TED domains, as illustrated in table 5.5. The analysis of the most stable 
interactions of these MD was consistent with the previously shown results from the two 
MD simulations on C3b-FH complex.  
 
Table 5.5. Intramolecular interactions between MG1 and TED domains extracted from MD simulations 
performed on WT C3b protein without protein partner. 

First MD Second MD 
C3b MG1 C3b TED Interaction type C3b MG1 C3b TED Interaction type 

Lys119 Glu1018 1 H-bond Lys119 Glu1018 1 H-bond + 1 salt bridge 
Arg102 Glu1010 2 H-bonds + 1 salt bridge Arg102 Glu1010 2 H-bonds + 1 salt bridge 
Glu118 Gln1021 1 H-bond Glu118 Gln1021 1 H-bond 
Val120 Glu1018 1 H-bond Val120 Glu1018 1 H-bond 

 
As it can be observed, even in these simulations the two hydrogen bonds and the 

salt bridge established between Arg102 and Glu1010 were retrieved among the most 
stable and frequent interactions between MG1 and TED. It demonstrates that these 
interactions should be crucial to stabilise the complex and their stability could be 
considered independent from FH binding.  
 
 

5.2.5 Molecular Dynamics simulation of mutant C3b protein  
 

After the above described MD simulations, it was interesting to further investigate 
the previously mentioned hypothesis, i.e. C3bR102G mutation should provoke a 
destabilisation of the interaction between the two domains of C3b and consequently 
disrupt the contacts with FH CCP1-4 domains. Therefore, in order to deeply investigate 
the C3bR102G mutation-triggered destabilising effect only focusing the attention on MG1 
and TED domains binding, C3b protein was mutated in position 102 to glycine and two 
MD simulations were performed not including FH. For this purpose, PDB 2WII was used 
deleting FH. The simulation of both trajectories was 500 ns. Herein, the average energy 
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values are reported in table 5.6 and the RMSD values for each chain are plotted in Plot 
5.4A-F. 
 
Table 5.6. Energy values monitored during the two MD trajectories on C3b mutant 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -584502.1 308.721 0.000 -534307.0 291.141 0.000 
Potential energy (kcal/mol) -723394.3 239.011 0.000 -661655.0 224.101 0.000 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 

Plot 5.4. RMSD plots of MD on C3b mutant. RMSD plot of C3bR102G chain α’-chain β complex during the 
first (A) and the second (D) MD; RMSD plot of C3bR102G chain β during the first (B) and the second (E) 
MD; RMSD plot of C3bR102G chain α’ during the first (C) and the second (F) MD 
 

The RMSD plots of the protein-protein complex are not very stable and looking 
at the RMSD plot of chain β and chain α’ is deducible that the unreached RMSD 
stationary shape for the protein-protein complex is due to chain α’ (involving TED 
domain), whom RMSD plot highlights a certain instability. In order to deeply explore 
which residues mainly contribute to the molecular motions highlighted from the RMSD 
plot, the RMSF plot was computed [56] and analysed for both chain β and chain α’, and 
they are reported below (plot 5.5A-B). As expected, the highest fluctuations ranging from 
3 to 12 Å can be identified involving residues in position about 960 to 1280. This residue 
range, in fact, corresponds to the TED domain, that is the region of chain α’ that normally 
interacts with MG1 domain in chain β. 
 

 
(A)  

(B) 
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(C) 

 
(D) 

Plot 5.5. RMS Fluctuations plots on C3b mutant. RMS fluctuation plot of chain β for the first (A) and the 
second (C) MD; and RMS fluctuation plot of chain α’ for the first (B) and the second (D) MD 
 

Indeed, during the trajectories, the TED domain slightly moved away from MG1 
domain probably due to the loss of stabilising interactions such as those formed between 
Arg102 and Glu1010.  

In the light of the above analysis, the interactions between the two chains of C3b 
mutant were also explored in order to investigate whether the key interactions identified 
from previous computational studies were retrieved even for these two MD. For this 
purpose, the MD frames were clustered by getting 10 representative frames per each MD, 
where the most abundant ones were considered for the interaction analysis, thus selecting 
the following frames: 

• First MD à Frame 4430 (11 frames), frame 2430 (38 frames), frame 1720 (24 
frames), frame 520 (8 frames) and frame 4940 (10 frames); 

• Second MD à Frame 820 (38 frames), frame 370 (6 frames), frame 260 (35 
frames) and frame 910 (10 frames). 

 
As expected by exploring the interaction interface of chain β and chain α’, most 

of the crucial contacts extracted from the previous analyses were not found in both MD, 
confirming that single mutation of C3b could destabilise the quaternary structure of this 
protein, thus consequently disrupting the interaction with FH (table 5.7). 
 
Table 5.7. Analysis of stability of the crucial interactions for C3b MG1-TED extracted from MD 
simulations on C3b mutant 

MUTATED C3b 

Crucial Interaction 
MG1 - TED First MD Second MD 

Gly102 – Glu1010 ✘ ✘ 

Lys119 – Glu1018 ✓ ✘ 

Val120 – Glu1018 ✘ ✘ 

Glu118 – Gln1021 ✘ ✘ 

 
As expected, glycine in position 102 is not able to reproduce H-bond contacts 

established by Arg102 with Glu1010. This fact paves the way to a higher flexibility of 
the loop involving residue 102 resulting in new interactions not occurring in normal 
conditions, that could disrupt protein-protein binding. In fact, these considerations were 
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demonstrated for example by analysing the first MD simulation of mutated C3b protein, 
where Arg94 established intramolecular contacts with Glu211 that has been extensively 
identified as a key residue by tuning two H-bonds and one salt bridge with FH Arg175. 
This event is depicted in figure 5.3A-B. 
 

 
(A) 

 
(B) 

Figure 5.3. Comparison between MD frame of WT C3b (A), where Arg102 interacts with Glu1010 and 
Arg94 does not establish contacts with Glu211, and mutated C3b (B), where Gly102 is not able to bind 
Glu1010 and probably confers more flexibility to the red loop that can move towards Glu211 and allow it 
to interact with Arg94. 
 

Therefore, these findings suggested that the punctual mutation in position 102 
does not seem directly responsible for the decrease in binding affinity between C3b and 
its cofactor FH; on the contrary, it could be the result of the low stability at the expense 
of C3b quaternary assembly by involving MG1 and TED interactions. Hence, this 
structural destabilisation could, in turn, generate a lower affinity of C3b for Factor H. 
Thus, this insight was further explored by performing a Metadynamics simulation 
described in the next section including the mutated C3b in complex with FH. 
 
 

5.2.6 Metadynamics simulation on mutant C3bR102G in complex with FH 
CCP1-4 domains 

 
In order to further explore the C3bR102G mutation effect in presence of FH protein, 

an enhanced sampling technique was employed, that is the metadynamics simulation [57]. 
For this purpose, Arg102 was substituted to glycine to reproduce the AMD-associated 
mutation and two collective variables (CVs) were chosen to stimulate the system in 
potentially simulating the disease-associated behaviour of C3b and FH proteins. The 
selected CVs were the dihedral angles φ and ψ (figure 5.4A-B) of Gly102 that were 
exploited to investigate potential destabilising effects borne to the contacts between C3b 
MG1 domain, C3b TED domain and FH CCP4 domain in presence of the mutation 
R102G.  
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(A) 

 
(B) 

Figure 5.4. Dihedral angles (A) φ and (B) ψ of Gly102 were selected as collective variables of the 
metadynamics simulation 
 

The simulation time was set 100 ns and the energy, temperature, pressure and 
volume were monitored during the entire simulations, whereas the average energy values 
are reported in table 5.8. Figure 5.5 depicts the free-energy minima landscape of the two 
selected collective variables. 
 
Table 5.8. Energy values monitored during the metadynamics trajectory on C3b mutant 

 Average Std Dev Slope (ps-1) 
Total energy (kcal/mol) -608192.697 327.450 -0.003 

Potential energy (kcal/mol) -753399.632 259.432 -0.003 

 

 
Figure 5.5. Free-energy minimum landscape of the two selected collective variables, the dihedral angles φ 
and ψ of Gly102; from blue shades that are the lowest free energy values to yellow shades that are the 
highest free energy values 
 

The RMSD plots of the complex and the individual chains were generated and 
they are reported in plots 5.6A-D. The first plot depicted (plot 5.6A) shows the RMSD 
values representation of mutant C3b in complex with FH, that reports a certain instability 
after about 40 ns of simulation. Analysing the other three plots, that illustrated 
respectively the RMSD values of chain β including C3bR102G mutation (plot 5.6 B), chain 
α’ (plot 5.6C) and FH CCP1-4 domains (plot 5.6D) during the metadynamics trajectory, 
it is immediately visible that the instability of the RMSD plot of the complex has to be 
ascribed to chain α’ (including TED domain). Therefore, it seems that C3bR102G on MG1 
indirectly affects TED domain stability. This data was further explored by investigating 
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the most frequent interactions visible during the trajectory in presence of C3bR102G 
mutation.  
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Plot 5.6. RMSD plots of Cα of (A) mutated C3b-FH complex, (B) chain β including C3bR102G mutation, 
(C) chain α’ and (D) FH CCP1-4 domains during the metadynamics trajectory 
 

Thus, the frames obtained from the metadynamics simulation were clustered to 
select 10 groups and the frames representative for the most frequent and abundant clusters 
were the following ones: frame 870 (19 frames), frame 310 (18 frames), frame 720 (12 
frames) and frame 100 (11 frames). These latter were analysed and the shared visible 
interactions were collected and registered in table 5.9. 
 
Table 5.9. Comparison between the stable interactions extracted from the previous MD simulations and 
the stable interactions extracted from the metadynamics simulation 

Stable interactions extracted  
from previous MD simulations 

Stable interactions extracted  
from Metadynamics simulation 

C3b MG1 FH CCP4 Interaction type C3b MG1 FH CCP4 Interaction type 
Lys65 Glu245 1 H-bond + 1 salt bridge Lys65 Glu245 1 H-bond + 1 salt bridge 
Lys66 Pro258 VdW Glu95 Arg257 2 H-bonds + 1 salt bridge 
Leu67 Arg257 VdW Glu95 Ser254 1 H-bond 
Glu95 Arg257 2 H-bonds + 1 salt bridge    

C3b TED FH CCP4 Interaction type C3b TED FH CCP4 Interaction type 
Lys1028 Glu245 1 H-bond + 1 salt bridge Asp1074 Lys236 1 salt bridge 
Glu1138 Lys224 1 H-bond + 1 salt bridge Gln1139 Gln234 1 H-bond 

   Ile1135 Gln234 1 H-bond 
C3b MG1 C3b TED Interaction type C3b MG1 C3b TED Interaction type 

Arg102 Glu1010 2 H-bonds + 1 salt bridge Lys119 Glu1018 1 H-bond + 1 salt bridge 
Arg102 Glu1013 1 H-bond    
Glu118 Gln1021 1 H-bond    
Lys119 Glu1018 1 H-bond    
Val120 Glu1018 1 H-bond    
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As it can be noticed, some key interactions between MG1 domain and FH CCP4 
domain identified from the previous MD simulations were not met during the analysis of 
the metadynamics outcome. Furthermore, TED domain and FH CCP4 domain did not 
completely establish the crucial interactions herein previously highlighted. Finally, only 
one interaction between MG1 and TED domain was stable during the entire trajectory 
and it was also observed from the previously analysed MD simulations. These results are 
in accordance with the instability registered from the RMSD plot of chain α’ (in plot 
5.6C) and strengthen the above-formulated hypothesis, that mutation in position 102 can 
potentially disrupt the interactions between the two domains of C3b (MG1 and TED), 
through a destabilisation of C3b quaternary structure. This destabilisation could 
eventually affect also the contacts with FH protein, in particular considering the CCP4 
domain. All these considerations were collected and led the design of a peptide based on 
FH protein considering the region interacting both contemporarily with MG1 and TED 
domains. 
 
 

5.2.7 Identification of FH-derived peptide and structure folding prediction 
 

Computational studies shed light on the structural insights about the affinity 
decrease of single-mutated C3b for FH protein. Therefore, in order to design a peptide 
able to discriminate the WT C3b protein from the mutated one, a promising strategy could 
be the selection of a portion of FH corresponding to the CCP4 domain, that can bind not 
only MG1 but also TED domain in normal conditions. This strategy could provide a 
peptide able to recognise and bind WT C3b and probably unbind or scarcely bind the 
mutated C3bR102G detected in patients affected by AMD. For this purpose, based on the 
previous studies, the key interactions formed by FH CCP4 residues with WT C3b MG1 
and TED domains were considered and they are reported below in table 5.10. 
 
Table 5.10. Key residues contacting each other referring to FH CCP4 and C3b domains (MG1 and TED) 
as retrieved from MD simulations analyses 

FH CCP4 C3b 

Key residues MG1 Domain TED Domain 

Glu245 Lys65 Lys1028 

Arg257 Glu95 - 

Glu253 Arg94 - 

Arg232 - Asp1134 

Gln234 - Gln1139 

 
Therefore, the designed peptide should contain Arg232, Gln234, Glu245, Glu253 

and Arg257 of FH. The resulting peptide, hereinafter FH peptide, was composed of 34 
amino acids based on FH sequence including the following residues. 
 

231-ERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEE-264 
 

The corresponding portion of FH is characterized by β-strands and loops as 
illustrated in figure 5.7, and it presents a disulfide bridge between Cys237 and Cys262. 
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Figure 5.7. FH peptide structure 

 
The next step was the study aimed at predicting the putative peptide folding to 

reproduce its native conformation. For this purpose, two software based on ab initio 
calculations were used, QUARK and PEP-FOLD3, that are usually performed when no 
global template information is available. Indeed, in this case, ab initio calculations were 
useful to avoid influences from available homologous templates in reproducing peptide 
folding. 

The first software, QUARK, exploits a computer algorithm for ab initio protein 
structure prediction and peptide folding, which aims to construct the correct protein 3D 
model from amino acid sequence only. QUARK models are built from small fragments 
by replica-exchange Monte Carlo simulation under the guide of an atomic-level 
knowledge-based force field [58, 59].  

The other software, PEP-FOLD3, applies a de novo approach aimed at predicting 
peptide structures from amino acid sequences. This method is based on a Hidden Markov 
Model sub-optimal conformation sampling approach, that allows generating models for 
peptides from 5 to 50 amino acids [60–66]. 

Both software generated five models that showed a succession of β-strands and 
loops very similar to the original structure. The models are illustrated in figure 5.8A-B. 
 

 
(A) 

 
(B) 

Figure 5.8. QUARK models (A) and PEP-FOLD3 models (B). 



 133 

 
All these models are not perfectly able to match with native FH conformation but 

they show similar folding. However, native FH peptide sequence includes a disulfide 
bridge between Cys237 and Cys262, that should contribute to further stabilise the peptide 
conformation and reproduce the native folding. 
 
 

5.2.8 Molecular Dynamics of FH peptide 
 

In order to explore the stability of FH peptide in its folded conformation, two MD 
simulations were run setting a time of 500 ns by employing FH peptide in the native 
conformation. For both trajectories, the system energy, pressure, temperature and volume 
were also monitored (average energy values in table 5.11) and the RMSD plots were 
examined observing good stability (Plot 5.6A-B). 
 
Table 5.11. Energy values monitored during the two MD trajectories of FH peptide 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -22464.846 58.126 0.000 -22465.720 58.070 0.000 
Potential energy (kcal/mol) -27598.547 43.959 0.000 -27599.576 44.023 0.000 

 

 
(A) 

 
(B) 

Plot 5.6. RMSD plots of first (A) and second (B) MD simulation performed on FH peptide 
 
 

5.2.9 Molecular Dynamics of C3b-FH peptide complex 
 

In order to check the stability of contacts between the designed FH peptide and 
C3b chains, two MD simulations of the complex were computed. The simulation time 
was set 500 ns and the related energy values and RMSD plots are reported respectively 
in table 5.12 and in plot 5.7A-B. 
 
Table 5.12. Energy values monitored during the two MD trajectories on C3b-FH peptide complex 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -583626.391 307.453 0.000 -533943.837 297.835 0.000 
Potential energy (kcal/mol) -722449.857 236.721 0.000 -661202.901 231.987 0.000 

 



 134 

 
(A) 

 
(B) 

Plot 5.7. RMSD plots of first (A) and second (B) MD simulation performed on C3b-FH peptide complex 
 

As it can be observed from the RMSD plots, the stationary shapes were reached 
after about 130 ns of trajectory for the first MD and after about 90 ns for the second MD. 
This initial instability of the RMSD plots should be due to the lack of CCP1-3 domains 
of FH proteins that were deleted from the original structure to include only the residues 
231-264 of the designed FH peptide. Therefore, the analysis of the most frequent and 
stable interactions between C3b domains and FH peptide was based on the MD frames 
referring to the stable portions of the RMSD plots. As made for the previous MD 
simulations, even in this case the frames were clustered into 10 groups. Only the frames 
falling into the stable portion of the RMSD plots (after about 130 ns for the first 
simulation and after about 90 ns for the second MD) were considered, that is: 

• First MD à Frame 660 (12 frames), frame 940 (22 frames), frame 550 (29 
frames) and frame 180 (15 frames); 

• Second MD à Frame 820 (75 frames), frame 110 (18 frames), frame 150 (14 
frames). 
Hereby the most stable and frequent interactions retrieved from the MD 

trajectories are reported in table 5.13.  
 
Table 5.13. The most stable and frequent interactions between C3b domains and FH peptide during the 
two MD simulations 

First C3b-FH peptide MD Second C3b-FH peptide MD 

FH C3b  FH C3b  

Key residues MG1 Domain Interaction type Key residues MG1 Domain Interaction type 

Glu245 Lys65 1 H-bond + 1 salt bridge Glu245 Lys65 1 H-bond + 1 salt bridge 

Glu245 Gln109 1 H-bond Glu245 Gln109 1 H-bond 

Glu264 Lys73 1 H-bond + 1 salt bridge Glu263 Lys73 1 H-bond + 1 salt bridge 

Glu253 Arg94 2 H-bonds + 1 salt bridge Glu264 Lys73 1 H-bond + 1 salt bridge 

   Arg257 Glu95 2 H-bonds + 1 salt bridge 

   Ser254 Glu95 1 H-bond 

Key residues TED Domain Interaction type Key residues TED Domain Interaction type 

Arg232 Gln1131 1 H-bond Gln234 Ser1075 1 H-bond 

Arg232 Asp1134 2 H-bonds Arg232 Asp1134  1 H-bond 

Tyr243 Asp1074 1 H-bond Arg232 Asn1069 1 H-bond 

Arg246 Val1068 1 H-bond    

Lys236 Asp1074 1 H-bond + 1 salt bridge    
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As it can be noticed from the analysis of these MD simulations, FH peptide fulfils 

the crucial interactions with MG1 domain and only one key contact, Arg232-Asp1134, 
with TED domain. Therefore, based on this data it seems that FH peptide shows a 
preference for MG1 domain of C3b. However, this information should be further 
investigated through biological assays. 
 
 

5.3 Methods 
 
 

5.3.1 Crosslinking of C3b protein in PDB 2WII 
 

The PDB structure of C3b-FH complex (PDB ID: 2WII) presented two missing 
amino acids in positions 98 and 99 of C3b chain α’, that is serine and glutamate, 
respectively. For this purpose, “Crosslink proteins” tool by Schrödinger suite was used. 
Therefore, Lys97 and Lys100 were set as connection residues. All the other settings, such 
as inter-residue distance and average chosen monomer length, were maintained by 
default. The linker conformation prediction was based on PDB database by selecting 
“loop lookup from curated PDB”, and for energy calculation the implicit solvent was 
applied.  

 
 
5.3.2 Preparation of PDB structures 

 
In order to analyse the interactions between C3b domains and FH CCP1-4 

domains, it was necessary to prepare and optimise the three PDB structures available of 
C3b-FH complex, that is 2WII, 5O32 and 5O35. The bond orders were assigned for 
untemplated residues and known HET groups and hydrogens were added. Bonds to 
metals were broken, zero-order bonds between metals and nearby atoms were added and 
formal charges to metals and neighbouring atoms were corrected. Disulfide bonds were 
created and the water molecules beyond 5 Å from the het groups were deleted. The 
protonation and metal charge states were generated for ligands, cofactors and metals by 
using Epik [67] at pH 7.0 ± 2.0. Finally, the H-bonds were optimised by using PROPKA 
[67] at pH 7.0. 
 
 

5.3.3 Computational residue scanning on C3bR102G 
 
The PDB 2WII including the trimeric complex (C3b chain α’ and chain β and FH CCP1-
4) was used to perform a computational residue scanning by using the “Residue 
Scanning” tool of Schrödinger suite. For this purpose, Arg102 of C3b chain α’ was chosen 
for exploring its mutation to Gly, as for the mutant form of C3b. The stability and affinity 
of the protein complex were computed and the resulting structures were refined by 
selecting side-chain prediction with backbone minimization. 
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5.3.4 Molecular Dynamics simulations performed on C3b and FH systems 
 

In this work, ten MD simulations were run to explore the interactions stability and 
frequency within the systems under evaluation, by using the PDB 2WII. Indeed, the 
systems listed below were processed to perform MD simulations of 500 ns in duplicate: 

• WT C3b-FH complex; 
• WT C3b without FH protein; 
• Mutant C3bR102G without FH; 
• FH peptide without C3b protein; 
• WT C3b-FH peptide complex. 

 
For each system, the “system builder” tool by Schrödinger was applied. TIP3P [68] 

was used as a solvent model and the box shape was set as orthorhombic. The box size 
calculation method was selected as buffer and the box side distances were set as 10.0 Å, 
except for an MD simulation of WT C3b-FH complex where the box side distances were 
indicated by 12 Å. Finally, the force field OPLS3 [69] was applied. Each system was then 
used to run Molecular Dynamics simulations [70]. During the whole trajectories the 
number of molecules, the pressure and the temperature were maintained constant, 
whereas temperature and pressure were set 300 K and 1.01325 bar, respectively. Finally, 
the systems were relaxed before simulations. 
 
 

5.3.5 Metadynamics simulation on mutant C3bR102G in complex with FH 
CCP1-4 domains 
 
The system for the metadynamics simulation was built by using Desmond [70] for 

Schrödinger suite and choosing TIP3P [68] as a solvent model. The orthorhombic shape 
was selected for the simulation box, and the box size calculation method was selected as 
buffer with box side distances set by 10.0 Å. The system was neutralised by adding Na+ 
ions and the force field applied was OPLS3 [69].  

The metadynamics simulation was run by using Desmond as well and the 
collective variables selected were the dihedral angles Gly102 in C3b MG1 domain with 
a width of 5.0 degrees. During the trajectory, the number of molecules, the pressure and 
the temperature were maintained constant, whereas temperature and pressure were set 
300 K and 1.01325 bar, respectively. The height of the Gaussian potential was set 0.03 
kcal/mol with an interval of 0.09 ps. The simulation time was set 100 ns and the system 
was relaxed before running the simulation. 
 
 

5.3.6 Clustering of MD frames 
 

In order to retrieve the key contacts between the protein partners during the entire 
simulations, for each trajectory, the MD frames were clustered to identify the most 
abundant and representative frames to be analysed. Therefore, “Desmond trajectory 
clustering” tool by Schrödinger was used. For the RMSD matrix calculation the protein 
backbone was used, the frequency of frames analysis was set 10 and the hierarchical 
cluster linkage method as average. Finally, for each MD trajectory, 10 clusters were 
generated. 
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5.4 Conclusions 
 

The above-described work was performed at the School of Pharmacy and 
Pharmaceutical Sciences of Cardiff University (UK) under the supervision of Professor 
Andrea Brancale. All the collected and analysed data extracted from MD simulations 
suggested that the initially formulated hypothesis about the destabilising effect of 
C3bR102G mutation could be likely. Indeed, all the data above reported showed a certain 
instability at the expenses of TED domain suggesting that R102G mutation in MG1 
domain could decrease the stable contacts with TED domain. This fact could also cause 
movements of the TED region, that could indirectly affect and impair also the FH binding.  

The next step of this work will be a further investigation of this hypothesis at 
Cardiff University laboratories by synthesising the designed FH peptide and assaying it 
by performing biological assays. The results will allow validating the above-mentioned 
considerations and will provide crucial information about the potential activity of the 
designed peptide to discriminate the wild-type form of C3b from the single-base mutated 
C3bR102G associated to AMD disease. 

Finally, this work has been considering for a research article and it will be 
submitted to a scientific peer-reviewed journal. 
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CHAPTER SIX 
 

HOX-PBX-DNA COMPLEX – A methodology to design peptides 
potentially preventing HOX-PBX-DNA complex formation 
 
 

6.1 Introduction 
 

Development, evolution and physiopathological processes in bilaterian animals 
are very complex events and involve several key actors, such as HOX genes. These latter 
have been shown actively involved in the control of the final morphology of bilaterian 
animals [1, 2]. Indeed, both decrease and increase of HOX genes activity can often 
produce homeotic transformations resulting in the formation of a structure or organ in 
erroneous locations within the animal organism. HOX genes have reported three different 
levels of evolutionary conservation: 1) at a structural level, Hox genes are usually 
organised in complexes, reflecting their phylogeny and regulatory aspects of their 
expression [3, 4]; 2) at a molecular level, they all encode homeodomain transcription 
factors [5]; and 3) at a functional level, they trigger similar effects in most animals and 
can work in substitution of an orthologue in other species [6]. 

In the past, HOX genes were known as developmental genes, since in general 
mammals present 39 HOX genes that operate at a very early stage of the embryonic 
development by patterning the main embryonic anterior to posterior axis [7]. However, 
they also play key roles in adults [8], whereas the most known Hox gene functions in 
adults are the following ones: the maintenance of the hematopoietic stem cells (HSCs) 
[9], the specification of different blood cell lineages [10] and the regulation of tissue 
identity during implantation and the menstrual cycle [11]. Therefore, when the Hox genes 
become highly dysregulated and overexpressed, they have been reported associated with 
a wide range of both solid and haematological cancers [12]. 

 
In the last decades, the processes modulated by HOX genes have been extensively 

studied providing a substantial, although not exhaustive, analysis of them. For example, 
HOX genes have been shown to define cellular territories and establishing boundaries. 
Recent studies highlighted that HOX genes also contribute to organogenesis [13] by 
influencing a huge number of cellular functions such as differentiation, proliferation, 
migration or death [14]. Indeed, HOX proteins also regulate the transcriptional events, 
although the related molecular mechanisms are still poorly characterised, and a few HOX-
dependent gene regulatory networks have been understood.  
 

HOX proteins present two different and highly conserved portions: the 
hexapeptide (HX) motif and the homeodomain (HD). The HX motif establishes 
interactions with protein members of the PBC class, such as Pre-B-cell Leukemia 
Homeobox (PBX) proteins in humans and Extradenticle (Exd) in Drosophila [15], while 
the HD motif is the DNA-binding domain. The HD folds into a triple-helix structure, 
including the N-terminal arm binding the minor groove of DNA, and helix 3 (also named 
the recognition helix) contacting the DNA in the major groove. Amino acids in HOX HDs 
helices 1 and 3 have shown to be the most conserved, and some residues of the N-terminal 
arm and loops between the helices have been reported well conserved. Furthermore, the 
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conservation of HD sequences is highly shared among HOX proteins, raising the issue of 
how they employ functional specificity [16–18].  

 
Indeed, the homeodomain of HOX proteins does not exhibit high specificity for 

DNA, as it takes part in the molecular recognition by involving only five amino acids 
[19]. In this context, functional studies in the field of cancer and developmental biology 
highlighted that PBX proteins function as HOX co-factors [20–22], where PBX family 
members bind to HOX proteins 1-11 [23–25]. These proteins may establish a cooperative 
binding to DNA [26, 27] (figure 6.1), indicating that the interaction of HOX proteins to 
PBX proteins modifies the DNA-binding of HOX and contribute to a greater specificity 
[28]. Furthermore, the HOX co-factors play other key roles influencing transcriptional 
events, by recruiting the RNA polymerase II and III or transcriptional inhibitors like 
HDAC, and post-translational events, by fostering the entry of HOX proteins into the 
nucleus. 

 
Figure 6.1. HOXA9-PBX1-DNA complex retrieved from PDB 1PUF [29], where the orange structure is 
DNA bound to the Homeobox protein HOXA9 (light blue chain) and Pre-B-cell leukaemia transcription 
factor-1 PBX1 (purple chain) 
 

PBX genes are homologues of the Drosophila Extradenticle gene (Exd) and four 
different types of genes are encoded in the human genome (PBX1-4). Like the HOX 
genes, PBX genes also encode evolutionarily conserved homeodomains and other highly 
conserved regions [21]. PBX proteins also show two nuclear localization signals (NLSs) 
in the homeodomain and a nuclear export sequence (NES) [30–32].  

PBX proteins may participate in a DNA binding consensus through the formation 
of strong complexes with HOX1-11 proteins [26, 33, 34]. HOX-PBX interactions were 
shown to involve a highly conserved interaction mode between the HX motif of HOX 
and the three-amino acid loop extension (TALE) or three-amino acid insertion peptide of 
PBX, that lies between helices 1 and 2 of the homeodomain [23, 29, 34–38]. Experimental 
evidence highlighted that a full-length PBX1 protein alone is not able to trigger the 
transcription, but PBX1 amino acids 39 to 232 can specifically stop transcriptional 
activation [39, 40]. Furthermore, upon binding to a HOX protein, PBX switches from a 
transcriptional repressor to a transcriptional activator [41].  
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6.1.1 Hox minimal DNA-binding sequence  
 
In 1995, Knoepfler and Kamps [19] identified the minimal sequences that enable 

certain HOX proteins to bind cooperatively PBX1 protein. The deletion mutagenesis of 
HOXB8 and HOXA5 proteins allowed to identify the minimal required sequences to the 
PBX1 homeodomain and a short N-terminal homeodomain section. This minimal 
sequence was the conserved pentapeptide motif Y/F-P-W-M-R/K. 

Point mutational analysis of this pentapeptide sequence in HOX proteins 
highlighted that the residues tryptophan and methionine are crucial for the cooperative 
binding to PBX proteins but dispensable for DNA binding. Experimental evidence 
revealed that synthetic peptides including the wild-type pentapeptide abrogated the 
cooperative binding between multiple HOX proteins and PBX1, while a peptide with a 
mutation at the tryptophan residue did not produce binding abrogation. Moreover, 
peptides including the pentapeptide fostered the DNA binding of PBX1.  

In particular, mutations of Trp135 to phenylalanine (W135F) or alanine (W135A) 
performed on HOXB8 did not alter the DNA binding but completely abolished the 
cooperativity of HOXB8 with PBX1. On the other hand, Met136 had also been reported 
as an important but not essential amino acid, owing to its substitution to isoleucine 
(M136I) or alanine (M136A) did not alter the DNA binding properties but strongly 
disrupted the cooperativity of HOXB8 with PBX1. Therefore, both residues, Trp135 and 
Met136 were highlighted as crucial for the pentapeptide motif, although Trp135 showed 
greater importance [37]. This data was also enforced by the fact that tryptophan is the 
only shared amino acid among all Hox proteins pentapeptide sequences. Finally, Pro134 
of HOXB8 was found dispensable, because its substitution to leucine (P134L) did not 
alter both the DNA-binding and the cooperativity with PBX1. 

Thus, Knoepfler and Kamps assumed that the HOX pentapeptide motif stabilises 
the trimeric complex HOX-PBX1-DNA by bearing a portion of HOX protein surface that 
contacts with PBX1, and enhancing the DNA-binding in presence of PBX1 [19].  

However, the X-ray crystallographic structures of HOXB1–PBX1 and HOXA9–
PBX1 in presence of DNA revealed that the protein-protein-DNA contacts are stabilised 
by the interaction between HOX and PBX mediated no more by a pentapeptide sequence 
but a conserved hexapeptide sequence in Hox proteins [5, 23, 29, 36]. 

Indeed, in 1999 Piper et al. [23] compared PBX1-binding motifs in 80 HOX 
proteins yielding a consensus sequence that integrated the above-mentioned pentapeptide 
with a hydrophobic residue. Thus, the consensus identified hexapeptide motif of HOX 
proteins was  

φ-Y/F-P-W-M-K/R 
 

where φ stands for a hydrophobic residue. As above reported, tryptophan and methionine 
showed strict conservation that for example in the HOXB1–PBX1 structure can be due 
to several contacts mediated by these amino acids. 

 This hexapeptide is joined to the N-terminal arm of the homeodomain by a linker 
that exhibits different length and sequence among the HOX proteins and species. The 
authors demonstrated that this minimal Hox portion containing the hexapeptide and the 
homeodomain was able to cooperatively stabilise the DNA binding with PBX1. It could 
be also assumed that differences among HOX proteins in terms of PBX1-mediated DNA 
binding should work as a regulation mechanism to define different affinities of HOX-
PBX1 complexes for DNA. 
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The X-ray crystallographic structures of the ternary complex, HOX–PBX1–DNA 
(e.g. HOXA9 in PDB 1PUF, resolution: 1.90 Å; and HOXB1 in PDB 1B72, resolution: 
2.35 Å) revealed that the HOX protein and PBX1 establish contacts with opposite faces 
of the DNA, burying 2400 Å2 of protein and DNA surface area. The HOX hexapeptide 
mediates contacts with PBX1 within a hydrophobic pocket that is located between the 
three-amino acid insertion and helix 3 of the PBX1 homeodomain.  

PCR site-selection experiments performed by Piper et al. [23] allowed to identify 
the optimal HOXB1–PBX1 binding site on the 20 bp duplex DNA oligonucleotide, that 
is 5’-ATGATTGATCG-3’ [42]. The PDB structure solved by La Ronde-Le Blanc and 
Wolberger [29] revealed that the interactions between HOXA9 and PBX1 are mediated 
by the hexapeptide of HOXA9, consisting of the residues 196 to 201 with the sequence 
AANWLH bound to the PBX1 homeodomain. Amino acids 196 to 199 of HOXA9 
hexapeptide motif form a 310 helix, and this hexapeptide is connected to the HOXA9 
homeodomain through a flexible linker including 20 amino acids that exhibit a disordered 
structure in the trimeric complex. 

The main intramolecular interactions established by the hexapeptide residues are 
hydrophobic. In detail, the side chains of HOXA9 Trp199 inserts into a hydrophobic 
pocket of PBX1 consisting of the C terminus of helix 3, a handle between helices 3 and 
4, and the three–amino acid insertion (figure 6.2.A). The main interactions observed are 
established between the following amino acids of HOXA9 and PBX1: HOXA9 Trp199 
with its indole ring that forms van der Waals contacts with several PBX1 residues, such 
as Phe252 side chain in helix 1, Leu256 within the three–amino acid insertion, Pro259 
and Tyr260 following the TALE peptide, and Arg288 in helix 3. Furthermore, Trp199 is 
highly buried into the PBX1 binding pocket by forming a hydrogen bond between the 
indole nitrogen and the backbone carbonyl of PBX1 Leu256 (figure 6.2B).  
 

 
(A) 
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(B) 

Figure 6.2. (A) Binding pocket surface (grey surface) of PBX1 protein (purple chain) surrounding Trp199 
of HOXA9 (light blue chain) hexapeptide retrieved from PDB 1PUF [29]; (B) Amino acids composing 
PBX1 binding pocket (purple residues and chain) surrounding HOXA9 Trp199 
 

Leu200 backbone nitrogen of the HOXA9 hexapeptide establishes van der Waals 
contacts in the binding pocket of PBX1 with Ly292 and a hydrogen bond with Tyr260 
hydroxyl group. Finally, His201 of HOXA9 hexapeptide forms a hydrogen bond with 
Lys292 of PBX1.  

Furthermore, mutational studies performed by Piper et al. [23] on PBX1 were 
performed on the hexapeptide-contacting residues Leu252 and Pro259, that were 
substituted to alanine resulting in the disruption of the interactions with the hexapeptide 
in vitro and in a yeast two-hybrid assay [43]. Moreover, deletion assays involving the 
three–amino acid insertion, that should destabilise the binding pocket, abrogated the 
cooperative binding of PBX1 with HOX proteins [44]. On the other hand, the deletion of 
the HOX hexapeptide caused the disappearance of cooperative interactions between 
PBX1 and HOX proteins [19, 34, 45].  

 
Although the 3D ternary structures HOX-PBX-DNA are available, the high level 

of functional redundancy among the several HOX proteins and some issues associated 
with the design of effective small molecule inhibitors of HOX-PBX interaction have 
made difficult the drug discovery process for this PPI. An accepted strategy is to target 
HOX and PBX binding interface, due to the presence of highly conserved residues 
especially in HOX proteins hexapeptide and for the hydrophobic nature of PBX proteins 
binding pocket. In the last decades, a small molecule inhibitor of this interaction was 
identified. However, its KD was in the micromolar range (65 µM) and it was neglected 
for further experimental assays or clinical trials [46]. In the last years, several peptides 
have been designed based on the hexapeptide consensus motif of HOX proteins, to act as 
a competitive antagonist of HOX-PBX binding [47]. The most frequently used peptide 
among these is HXR9, an 18-amino acid peptide containing the hexapeptide sequence 
together with nine arginine residues, that promote cellular uptake by endocytosis with the 
sequence WYKWMKKAARRRRRRRRR. 

The peptide HXR9 was first shown to be cytotoxic to melanoma cell lines and 
primary melanoma cells and registered a reduction of B16F10 murine melanoma tumours 
growth in an orthotropic model [48]. Other experimental studies reported that HXR9 was 
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able to inhibit the growth of several tumour types in mouse xenograft models, including 
non-small cell lung [49], breast [50], ovarian [50], and prostate cancer [51], and 
mesothelioma [52], melanoma [53], and meningioma [54].  

Recently, another peptide was identified based on modifications of HXR9 
sequence, i.e. the HTL001 peptide [55] with the sequence 
WYPWMKKHHRRRRRRRRR, that was tested in cancer cells representative of 14 
different malignancies, in human and animal cancer tissues. This peptide demonstrated 
selective toxicity for cancer cells and safety for normal cells. To date, human clinical 
trials are ongoing to test the efficacy and safety of this novel peptide. 

Although the two above-mentioned peptides showed efficacy to inhibit this PPI 
under study, the mechanism associated with HOX-PBX inhibition and the resulting cell 
death is still to be fully elucidated. Generally, in most solid tumours cell death is mediated 
by apoptosis [48, 50–52, 56]. 

 
The work herein described was based on the design of novel peptides including 

non-standard amino acids potentially binding PBX1 and inhibit HOX-PBX1 interaction. 
For this purpose, Molecular Dynamics simulations and MM-GBSA (Molecular 
Mechanics – Generalised Born Surface Area) calculations were exploited and 
computational non-standard residue scanning of the consensus hexapeptide motif was 
performed. First of all, an MD simulation of 200 ns was performed on the ternary complex 
HOXA9-PBX1-DNA with high-quality resolution (PDB ID: 1PUF, resolution: 1. 90 Å) 
to retrieve the key interactions and residues. Then, other two MD were run, one including 
HOXA9 hexapeptide (196-AANWLH-201) and another including the patented core 
peptide HTL001 without polyarginine coil in complex with PBX1-DNA complex to 
calculate ΔGbinding average values that were used as a reference for the next MD 
calculations. 

Then, HOXA9 hexapeptide was processed by a point mutational scanning using 
a non-natural amino acids database populated by the Swiss Institute of Bioinformatics 
[57, 58]. The mutations were selected according to ΔΔGaffinity and ΔΔGstability and were 
further explored by applying MD simulations and MM-GBSA calculations. All those 
residues reporting ΔGbinding average value lower compared to those of HOXA9 
hexapeptide and HTL001 peptide were chosen for the next steps of the work. Thus, the 
selected mutations were combined providing overall twelve combinatorial peptides. 
These peptides in turn were used to run other MD simulations and MM-GBSA 
calculations. Finally, eleven of the initial twelve peptides presented lower ΔGbinding values 
in comparison with HOXA9 hexapeptide and HTL001 peptide. Therefore, these eleven 
peptides are been considering to follow-up this study through peptide synthesis at Cardiff 
University to be experimentally assayed in order to check their putative ability of HOX-
PBX1 interaction inhibition. All the steps of the above-described workflow are 
summarized in Scheme 6.1. 
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Scheme 6.1. Overview of the computational workflow performed to identify the eleven combinatorial 
peptides potentially inhibiting HOX-PBX1 cooperative binding  
 
 

6.2 Results and discussion 
 
 

6.2.1 Molecular Dynamics simulation of HOXA9-PBX1-DNA complex 
 

The first step of this work was a molecular dynamics simulation of the trimeric 
complex HOXA9-PBX1-DNA through Desmond in Schrödinger suite [59]. For this 
purpose, the currently available PDB structure with the lowest resolution of 1.90 Å was 
used (PDB ID: 1PUF), in order to analyse and identify the most stable interactions ant 
involved residues for both proteins. The simulation time was set 200 ns and the complex 
stability was then investigated by observing the RMSD plot (plot 6.1), that showed a 
stable behaviour of the system. 
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Plot 6.1. RMSD plot of HOXA9-PBX1-DNA MD simulation of 200 ns 
 

Then energy, temperature, pressure and volume were monitored during the whole 
trajectory and table 6.1 reports the related average energy values. 
 
Table 6.1. Energy values of HOXA9-PBX1-DNA complex monitored during the MD simulation 

 Average Std. Dev. Slope (ps-1) 
Total energy (kcal/mol) -95014.430 116.847 0.000 
Potential energy (kcal/mol) -116315.750 89.630 0.000 

 
The system showed to be stable, hence it was further processed to retrieve the 

most frequent interactions established between the two proteins HOX and PBX. 
Therefore, MD frames were clustered into 10 groups, whereas the frames representative 
for the most abundant clusters were: frame 880 (representative for 63 frames), frame 60 
(representative for 34 frames), frame 540 (representative for 28 frames), frame 360 
(representative for 22 frames), and frame 270 (representative for 15 frames). 
 

These frames were analysed to identify the most stable and frequent interactions 
during the trajectory and table 6.2 reports the residues involved for both proteins 
considering HOXA9 hexapeptide residues and PBX1 contacting region. 
 
Table 6.2. Most stable and frequent interactions between HOXA9 hexapeptide and PBX1 homeodomain 
proteins retrieved from MD simulation 

HOXA9 residue PBX1 residue Interaction type 
Trp199 Ser257 1 H-bond 
Trp199 Leu256 1 H-bond 
Trp199 Tyr291 Pi-Pi stacking 
Trp199 Tyr260 Pi-Pi stacking 
Leu200 Tyr260 1 H-bond 
Ala197 Asn258 1 H-bond 

 
As it can be observed, Trp199 showed the majority of the interactions with PBX1 

residues. This data was consistent with information from literature highlighting this 
tryptophan [19] as the fundamental residue. 
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6.2.2 MD simulations of HOXA9 hexapeptide and HTL001 peptide core in 
complex with PBX1 

 
In order to collect more data about the binding mode of PBX1 in complex with 

the minimal active HOXA9 hexapeptide sequence, an MD simulation of 200 ns was 
performed by using the PDB 1PUF including HOXA9, PBX1 and DNA, where HOX 
protein was modified by deleting all those amino acids not included into the hexapeptide 
196-AANWLH-201. Protein and ligand RMSD plot of the trajectory was analysed by 
registering the trend illustrated in plot 6.2 together with the interaction diagram and the 
bar chart in figure 6.3A-B. 
 

 
Plot 6.2. PBX1 protein and HOXA9 hexapeptide RMSD plot during MD trajectory 
 

 
(A) 

 
(B) 

Figure 6.3. (A) HOXA9 hexapeptide interaction diagram during MD simulation; (B) Bar chart of protein-
ligand interaction occurrences during MD simulation 
 

To date, the patented peptide clinically employed HTL001 has been shown to act 
against PBX1 protein by preventing HOX-PBX cooperative binding [55]. In detail, 
HTL001 peptide sequence incorporates the hexapeptide WYKWMK responsible for the 
binding affinity with PBX proteins. 

Therefore, PDB 1PUF was used for another MD simulation of 200 ns, whereas 
HOXA9 hexapeptide was substituted and minimised to reproduce the HTL001 
hexapeptide sequence (WYKWMK) in complex with PBX1 and DNA. Then PBX1 
protein and HTL001 hexapeptide RMSD values were monitored during the entire 
trajectory and they are reported in plot 6.3. Finally, figure 6.4A-B shows the ligand 
interaction diagram and the bar chart of protein-ligand interaction occurrences. 
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Plot 6.3. PBX1 protein and HTL001 hexapeptide RMSD plot during MD trajectory 

 

 
(A) 

 
(B) 

Figure 6.4. (A) HTL001 hexapeptide interaction diagram during MD simulation; (B) Bar chart of protein-
ligand interaction occurrences during MD simulation 
 

In order to quantitatively evaluate the interaction between HOXA9 and HTL001 
hexapeptides with PBX1 and DNA, MM-GBSA were calculated for both MD simulations 
by reporting the ΔGbinding average values presented in table 6.3. Thus, these results were 
used as a reference for the next steps of this work to compare MM-GBSA outputs of the 
designed peptides below described. 
 
Table 6.3. MM-GBSA calculation results of MD simulations performed on HOXA9 and HTL001 
hexapeptides in complex with PBX1 protein and DNA 

 HOXA9 HEXAPEPTIDE HTL001 HEXAPEPTIDE 
ΔGbinding average -58.1922 kcal/mol -53.6882 kcal/mol 
ΔGbinding Std. Dev. 8.99 8.53 
ΔGbinding range -84.6286 to -34.1107 kcal/mol -78.0904 to -28.9169 kcal/mol 

 
 

6.2.3 Design of a potential non-standard PBX1-binding hexapeptide 
 

As above described, experimental evidence [19, 23] highlighted the consensus 
HOX hexapeptide sequence φ-Y/F-P-W-M-R/K (where φ is a hydrophobic residue) [23], 
necessary for the cooperative binding to PBX proteins and to increase specificity for 
DNA. Based on this information from literature and from the above described 
computational data, it was possible to design a peptide motif including the key amino 
acid tryptophan as follows: 
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X1-X2-X3-W-X4-X5 

 
where X stands for any non-standard amino acid in order to generate peptides different 
from those patented (HXR9 and HTL001) including standard amino acids.  
 
For this purpose, a database of amino acids consisting of non-natural residues, 
“SwissSidechain”, was downloaded from the Swiss Institute of Bioinformatics website 
[57]. SwissSidechain is a structural and molecular mechanics database of 200 non-natural 
amino-acid side chains (both D and L conformations), that can be used to study in silico 
their insertion into natural peptides or proteins. Non-natural side chains were useful in 
this work in order to potentially increase ligand binding affinity. Indeed, HOXA9 
hexapeptide and HTL001 peptide were used as a reference to identify peptides with 
ameliorated PBX-binding affinity by mutating standard amino acids with non-natural 
residues. This non-standard amino acids database designed by Gfeller et al. [58] 
demonstrated very good reliability based on a comparison between predicted and 
experimental binding free-energies for a BCL9 peptide targeting beta-catenin. These 
results indicated that such non-natural residues can be used to design novel protein-
protein inhibitors. During the design process of this database, Gfeller et al. focused their 
attention on amino acid side chains with structural information known from the Protein 
Data Bank (PDB) [60] as well as commercially available amino acids. Non-natural amino 
acids that could cause modifications of the backbone (such as β-homo, cyclic or aromatic 
backbones, or proline derivatives) were neglected, since they are more likely to perturb 
the overall conformation of peptides or proteins and are therefore less amenable to 
molecular modelling studies. This resulted in a total of 200 non-natural side chains, 
among which 141 residues were present in the PDB. Hence all these non-standard 
residues were collected and downloadable from a .nsr file including parameter and 
topology data [58].  

Therefore, this database was downloaded and uploaded in Schrödinger tool 
“Manage non-standard amino acids” and joined with the non-natural residue library 
already available in the Schrödinger suite, achieving overall 220 non-standard amino 
acids. Then point mutations were performed on HOXA9-PBX1-DNA complex (PDB 
1PUF) by running “Residue scanning” tool for each of the five X amino acids present in 
the designed peptide motif and corresponding to Ala196, Ala197, Asn198, Leu200 and 
His201 of HOXA9 protein, while maintaining Trp199 due to its relevance for PBX 
binding [37].  

After running mutational calculations, for each X residue of the designed peptide 
four non-standard amino acids were selected for further analysis. These amino acids were 
chosen according to the following criteria: 

1. Lowest difference values between mutated and wild-type complexes free energies 
of affinity (ΔΔGaffinity) tuning a cut-off of at least -3.0 kcal/mol; 

2. Lowest difference values between mutated and wild-type complexes free energies 
of stability (ΔΔGstability); 

3. Commercial availability of the non-standard amino acids. 
 
The first criterion was applied because according to Beard et al. [61] the predicted 

affinities computed with Schrödinger suite can be considered reliable when they report a 
difference of at least 3 kcal/mol between wild-type and mutant. On the other hand, 
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ΔΔGstability was considered reliable if negative, without setting a cut-off because of the 
lack of a well-defined secondary structure for the wild-type HOXA9 hexapeptide. Hence, 
it should be expected that mutations should not significantly affect the ΔΔGstability of the 
peptide. 

In table 6.4 the selected non-standard amino acids are depicted, whereas X1, X2, 
X3, X4 and X5 amino acids provided respectively 119, 10, 52, 35 and 5 acceptable 
mutations, but for simplicity only the best four were selected to proceed with according 
to the three above listed criteria owing to the other acceptable mutations reported edge 
ΔΔGaffinity values. 
 
Table 6.4. Non-standard amino acids selected from residue scanning calculations according to the above-
described selection criteria 

Corresponding 
HOXA9 aa Substitution ΔΔGaffinity ΔΔGstability 

ALA196 

CIR 

 
 

-45.128 kcal/mol -0.816 kcal/mol 

ALC 

 
 

-18.704 kcal/mol -4.095 kcal/mol 

MTR 

 
 

-17.088 kcal/mol -3.208 kcal/mol 

CTE 

 

-15.008 kcal/mol -5.778 kcal/mol 

ALA197 

BIF 

 

-12.892 kcal/mol -3.615 kcal/mol 

TBP 

 
 

-8.133v -3.556 kcal/mol 
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HRG 

 

-6.681 kcal/mol -9.341 kcal/mol 

CIR 

 

-5.075 kcal/mol -2.606 kcal/mol 

ASN198 

MOT 

 

-7.505 kcal/mol -13.303 kcal/mol 

0BN 

 

-6-051 kcal/mol -10.151 kcal/mol 

KYN 

 

-6.041 kcal/mol -5.511 kcal/mol 

GBU 

 

-5.867 kcal/mol -0.688 kcal/mol 

LEU200 

PBF 

 
 

-51.368 kcal/mol -3.302 kcal/mol 

CP3 

 
 

-11.929 kcal/mol -1.106 kcal/mol 
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QU4 

 
 

-11.415 kcal/mol -4.372 kcal/mol 

ANT 

 
 

-11.134 kcal/mol -1.353 kcal/mol 

HIS201 

ILX 

 
 

-11.562 kcal/mol -1.371 kcal/mol 

HIL 

 
 

-10.330 kcal/mol -2.198 kcal/mol 

DPP 

 
 

-4.195 kcal/mol -1.029 kcal/mol 

HRG 

 
 

-4.018 kcal/mol -5.686 kcal/mol 

 
 

6.2.4 MD simulations of point mutated HOXA9 peptides and MM-GBSA 
calculations 

 
Each of these point mutated HOXA9 peptide-PBX1-DNA complexes were further 

processed to run MD simulation of 200 ns per each to explore the binding stability. The 
RMSD plots were observed for all the complexes but they are not reported in this 
manuscript due to spatial needs. These systems showed good stability and low oscillations 
of the RMSD plots. Therefore, MM-GBSA were computed during the whole trajectories 
of each protein-protein complex in order to compare the ΔGbinding average values to the 
ΔGbinding of the wild-type system, i.e. HOXA9 hexapeptide (ΔGbinding-HOXA9 = -58.1922 
kcal/mol), and HTL001 core peptide (ΔGbinding-HTL001 = -53.6882 kcal/mol). All those 
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mutations presenting ΔGbinding average values lower than the above-mentioned ones were 
further processed for the next steps of the work. In table 6.5 MM-GBSA values are listed 
for each mutated peptide. 
 
Table 6.5. Data results from MM-GBSA calculations of MD trajectories performed on point mutated 
HOXA9 peptides in complex with PBX1 and DNA 

 X1 = ALA196 MUTATION X2 = ALA197 MUTATION X3 = ASN198 MUTATION 
ΔGbinding average 

CIR 

-68.1064 kcal/mol 

BIF 

-52.5114 kcal/mol 

MOT 

-51.3925 kcal/mol 
ΔGbinding Std. Dev. 9.19 8.23 9.77 

ΔGbinding range -91.4424 to -33.6024 
kcal/mol 

-77.3444 to -25.9087 
kcal/mol 

-79.7187 to -21.3466 
kcal/mol 

ΔGbinding average 

MTR 

-58.3419 kcal/mol 

TBP 

-59.0603 kcal/mol 

0BN 

-59.1051 kcal/mol 
ΔGbinding Std. Dev. 7.37 9.34 8.71 

ΔGbinding range -85.6739 to -35.5824 
kcal/mol 

-80.7314 to -31.1314 
kcal/mol 

-82.4310 to -27.3523 
kcal/mol 

ΔGbinding average 

ALC 

-59.6952 kcal/mol 

HRG 

-54.3707 kcal/mol 

KYN 

-56.4406 kcal/mol 
ΔGbinding Std. Dev. 7.39 9.34 7.35 

ΔGbinding range -78.3738 to -26.9511 
kcal/mol 

-85.1600 to -24.8071 
kcal/mol 

-75.4170 to -28.6690 
kcal/mol 

ΔGbinding average 

CTE 

-56.3011 kcal/mol 

CIR 

-57.6592 kcal/mol 

GBU 

-55.1339 kcal/mol 
ΔGbinding Std. Dev. 7.55 8.88 7.97 

ΔGbinding range -80.4156 to -29.7472 
kcal/mol 

-81.7311 to -26.2628 
kcal/mol 

-77.5916 to -30.5304 
kcal/mol 

 X4 = LEU200 MUTATION X5 = HIS201 MUTATION   
ΔGbinding average 

PBF 

-68.1857 kcal/mol 

ILX 

-48.9087 kcal/mol   
ΔGbinding Std. Dev. 8.44 8.81   

ΔGbinding range -95.1687 to -39.7321 
kcal/mol 

-74.3783 to -20.2857 
kcal/mol   

ΔGbinding average 

CP3 

-64.6802 kcal/mol 

HIL 

-50.3148 kcal/mol   
ΔGbinding Std. Dev. 9.49 9.03   

ΔGbinding range -89.3192 to -34.0239 
kcal/mol 

-79.2197 to -22.2265 
kcal/mol   

ΔGbinding average 

QU4 

-61.8016 kcal/mol 

DPP 

-55.6169 kcal/mol   
ΔGbinding Std. Dev. 10.53 11.48   

ΔGbinding range -88.4144 to -33.9895 
kcal/mol 

-91.1993 to -22.9813 
kcal/mol   

ΔGbinding average 

ANT 

-63.3043 kcal/mol 

HRG 

-57.0861 kcal/mol   
ΔGbinding Std. Dev. 8.50 9.46   

ΔGbinding range -87.5841 to -35.9672 
kcal/mol 

-86.8681 to -27.0434 
kcal/mol   

 
All these peptides showed to establish frequently the crucial interactions with 

Trp199, although not all of them presented ΔGbinding average values lower than those of 
HOXA9 and HTL001 hexapeptides in complex with PBX1 and DNA. Indeed, for 
position X1 of the designed hexapeptide the first three amino acids, CIR, MTR and ALC, 
showed better ΔGbinding average values, for position X2 only residue TBP reported good 
ΔGbinding average value, for position X3 only the second non-standard amino acid 0BN 
was considered for further analysis, for X4 all the four amino acids showed good ΔGbinding 
average values, and finally, for X5 none of the four non-natural amino acids was suitable 
to be used for the next steps. 
 
 

6.2.5 HOXA9 combinatorial peptides generation and related MD simulations 
and MM-GBSA calculations 

 
The above-described MM-GBSA calculations were used to select only those non-

standard amino acids mutations that reported ΔGbinding average values lower compared to 
the reference ones (ΔGbinding-HOXA9 average: -58.1922 kcal/mol and ΔGbinding-HTL001 
average: -53.6882 kcal/mol). Therefore, these non-natural residues were combined based 
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on the designed peptide motif (X1-X2-X3-W-X4-X5) by employing HOXA9 hexapeptide 
scaffold, thus getting twelve combinatorial peptides, as listed below. Only tryptophan and 
histidine were maintained. 

 
1. CIR – TBP – 0BN – Trp – PBF – His  
2. CIR – TBP – 0BN – Trp - CP3 – His  
3. CIR – TBP – 0BN – Trp - QU4 – His  
4. CIR – TBP – 0BN – Trp – ANT – His  
5. ALC – TBP – 0BN – Trp – PBF – His  
6. ALC – TBP – 0BN – Trp – CP3 – His  
7. ALC – TBP – 0BN – Trp – QU4 – His  
8. ALC – TBP – 0BN – Trp – ANT – His  
9. MTR – TBP – 0BN – Trp – ANT – His  
10. MTR – TBP – 0BN – Trp – CP3 – His  
11. MTR – TBP – 0BN – Trp – QU4 – His  
12. MTR – TBP – 0BN – Trp – ANT – His  

 
These combinatorial peptides in complex with PBX1 protein and DNA were 

processed to create systems in order to perform MD simulations of 200 ns per each 
complex. Indeed, twelve MD were run and the RMSD values were plotted for each 
ternary DNA-protein-peptide complex, as depicted in table 6.6, while table 6.7 shows the 
bar charts of protein-ligand interactions and the plots illustrating the frequency of 
interactions occurrences during the trajectories. The analysis of these RMSD plots 
confirmed the stability of the simulated systems. Furthermore, the bar charts and the 
interaction frequency plots highlighted that the twelve designed combinatorial peptides 
met most of the key interactions previously identified from PDB structure analysis and 
MD simulations of HOXA9 protein, HOXA9 hexapeptide and HTL001 peptide with 
PBX1.  
 
Table 6.6. RMSD plots of HOXA9 combinatorial peptides in complex with PBX1 protein and DNA 

 
First Peptide  

Second Peptide 

 
Third Peptide  

Fourth Peptide 
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Fifth Peptide  

Sixth Peptide 

 
Seventh Peptide  

Eighth Peptide 

 
Ninth Peptide  

Tenth Peptide 

 
Eleventh Peptide  

Twelfth Peptide 
 
Table 6.7. On the left column, the bar charts of protein-ligand interactions for the twelve HOXA9 
combinatorial peptides; on the right column, the plots illustrating the frequency of interactions occurrences 
between HOXA9 combinatorial peptides and PBX1 protein 
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Finally, MM-GBSA calculations were performed and the results are reported in 
table 6.8. Even for these peptides, the resulting ΔGbinding average values were compared 
to those retrieved from MD simulations of HOXA9 and HTL001 hexapeptides in 
complex with PBX1 and DNA. Only the sixth peptide showed a higher ΔGbinding average 
value, hence it was not considered for further studies. 
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Table 6.8. Data results from MM-GBSA calculations of combinatorial peptides MD trajectories 
 First Peptide Second Peptide Third Peptide 
ΔGbinding average -79.6771 kcal/mol -61.8602kcal/mol -68.0795 kcal/mol 
ΔGbinding Std. Dev. 10.18 12.72 10.63 
ΔGbinding range -104.585 to -38.2615 kcal/mol -99.0013 to -30.7190 kcal/mol -98.3690 to -29.5313 kcal/mol 
 Fourth Peptide Fifth Peptide Sixth Peptide 
ΔGbinding average -64.6664 kcal/mol -81.8766 kcal/mol -55.1927 kcal/mol 
ΔGbinding Std. Dev. 7.53 7.44 10.09 
ΔGbinding range -87.5689 to -30.1013 kcal/mol -101.5164 to -45.3623 kcal/mol -85.5158 to -22.5652 kcal/mol 
 Seventh Peptide Eighth Peptide Ninth Peptide 
ΔGbinding average -62.8885 kcal/mol -71.9163 kcal/mol -74.0909 kcal/mol 
ΔGbinding Std. Dev. 9.19 9.19 11.42 
ΔGbinding range -89.1247 to -19.4438 kcal/mol -101.6790 to -44.4808 kcal/mol -105.5444 to -32.2303 kcal/mol 
 Tenth Peptide Eleventh Peptide Twelfth Peptide 
ΔGbinding average -60.2167 kcal/mol -65.0198 kcal/mol -68.3222 kcal/mol 
ΔGbinding Std. Dev. 9.56 8.24 8.13 
ΔGbinding range -89.0633 to -28.6783 kcal/mol -89.3709 to -36.2812 kcal/mol -95.3406 to -42.1593 kcal/mol 

 
An interesting aspect is that these peptides showed a specific binding behaviour 

during the trajectories, whereas the tryptophan amino acid was kept stuck within the 
hydrophobic pocket of PBX1 during all the twelve MD simulations. Moreover, 
substitutions in position X1 of the designed peptides included non-standard amino acids 
with hydrophobic side chains, as required from the consensus HOX hexapeptide. These 
amino acids in position X1 showed also to stack their side chain into the DNA minor 
groove by establishing pi-stacking contacts with the nitrogenous bases. This fact 
suggested that the contacts between combinatorial peptides and DNA should contribute 
to stabilise the complex PBX1-peptide-DNA. Table 6.9 depicts the combinatorial 
peptides binding modes with PBX1 protein and DNA. 
 
Table 6.9. Binding mode of the twelve combinatorial peptides in complex with PBX1 protein and DNA 
during MD simulations of 200 ns. Yellow-dotted lines stand for hydrogen bonds and blue-dotted lines are 
pi-stacking 

 
First Peptide 

 
Second Peptide 

 
Third Peptide 

 
Fourth Peptide 
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Fifth Peptide 

 
Sixth Peptide 

 
Seventh Peptide 

 
Eighth Peptide 

 
Ninth Peptide 

 
Tenth Peptide 

 
Eleventh Peptide 

 
Twelfth Peptide 

 
Finally, it was considered that both proteins, HOX and PBX, are involved into 

transcriptional events, therefore physicochemical properties of these combinatorial 
peptides, such as PSA and logPo/w, were computed and table 6.10 reports the related 
values about the twelve designed peptides, to check their ability to permeate cells. 
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Table 6.10. PSA and logPo/w values of the twelve combinatorial peptides 
PEPTIDES PSA logPo/w 

1 CIR-TBP-0BN-TRP-PBF-HIS 302.15 3.2 

2 CIR-TBP-0BN-TRP-CP3-HIS 310.38 2.6 

3 CIR-TBP-0BN-TRP-QU4-HIS 322.80 2.0 

4 CIR-TBP-0BN-TRP-ANT-HIS 307.47 3.3 

5 ALC-TBP-0BN-TRP-PBF-HIS 300.04 6.1 

6 ALC-TBP-0BN-TRP-CP3-HIS 284.52 6.0 

7 ALC-TBP-0BN-TRP-QU4-HIS 297.08 5.4 

8 ALC-TBP-0BN-TRP-ANT-HIS 250.48 5.9 

9 MTR-TBP-0BN-TRP-PBF-HIS 276.41 4.3 

10 MTR-TBP-0BN-TRP-CP3-HIS 268.43 5.4 

11 MTR-TBP-0BN-TRP-QU4-HIS 280.80 4.8 

12 MTR-TBP-0BN-TRP-ANT-HIS 260.87 6.0 

 
 

6.3 Methods 
 
 

6.3.1 Preparation of HOXA9-PBX1-DNA complex 
 

The 3D trimeric complex of HOXA9-PBX1-DNA was downloaded from the 
Protein Data Bank [60] (PDB ID: 1PUF) and imported in Schrödinger suite to optimise 
the structure by using “Protein preparation” tool [62]. The bond orders for untemplated 
residues were assigned by using known HET groups based on their SMILES strings in 
Chemical Component Dictionary. Hydrogens were added to the structure, eventual bonds 
to metals were broken, zero-order bonds between metals and nearby atoms were added 
and formal charges to metals and neighbouring atoms were corrected. Disulfide bonds 
between two sulfurs, if they were close to each other, were created and water molecules 
beyond 5.0 Å from any of the HET groups, including ions, were deleted. Then, 
protonation and metal charge states for the ligands, cofactors and metals were generated 
[63, 64]. Finally, PROPKA [64] was run under pH 7.0 to optimise hydroxyl, Asn, Gln 
and His states using ProtAssign. 
 
 

6.3.2 HOXA9 hexapeptide residues scanning using non-standard 
“SwissSidechain” amino acids 

 
The “SwissSidechain” database of non-natural amino acids was downloaded from 

the Swiss Institute of Bioinformatics website [57], imported into the “Residue Scanning” 
tool of Schrödinger suite and, together with 20 non-standard amino acids already present 
in this tool, was used to perform point mutations on HOXA9 residues (Ala196, Ala197, 
Asn198, Trp199, Leu200 and His201) by using PDB 1PUF. The stability and affinity 
were computed for each of these mutations and the resulting structures were refined by 
selecting side-chain prediction with backbone minimization. 
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6.3.3 MD simulations of PBX1-DNA in complex with HOXA9 protein, 
HOXA9 hexapeptide, HTL001 core peptide, point mutated peptides and 
combinatorial peptides 

 
In this work overall thirty-five Molecular Dynamics simulations of 200 ns per 

each were performed. All of them were run by applying the following settings. The 
systems were created using the “System builder” tool of Schrödinger suite. TIP3P [65] 
was selected as a solvent model and the orthorhombic shape box was chosen. The selected 
box size calculation method was buffer and the box side distances were set 10 Å. The 
force field OPLS3 [66] was applied and the system was neutralized by adding Na+ ions. 
The outputs were further processed by performing MD simulations of 200 ns using 
Desmond [65]. The number of atoms, the pressure and the temperature were maintained 
constant for the entire trajectories. Pressure and temperature were set 1.01325 bar and 
300 K, respectively. Finally, the systems were relaxed before starting simulations. 
 
 

6.3.4 MM-GBSA calculations of the complexes used to perform MD 
simulations 

 
The MD outputs of HOXA9 hexapeptide, HTL001 core peptide, point mutated 

HOXA9 peptides and combinatorial peptides in complex with PBX1 protein and DNA 
were used to compute MM-GBSA calculations through the command line. For this 
purpose, the Python script “thermal_mmgbsa.py” was run. 

Overall thirty-four MM-GBSA calculations were performed and data are reported 
in the “Results and discussion” section. 
 
 

6.4 Conclusions 
 

This work was conducted at the School of Pharmacy and Pharmaceutical Sciences 
of Cardiff University under the supervision of Professor Andrea Brancale. The above-
described steps performed by applying computational tools led to the identification of 
eleven peptides whose design was based on experimental data [5, 19, 23, 29, 36, 37] and 
computational results. The related MD simulations of these peptides in complex with 
PBX1 protein and DNA reported promising results analysing the binding mode of these 
combinatorial peptides, the predicted ΔGbinding average values and the physicochemical 
properties. These peptides will be synthesised at Cardiff University laboratories and 
assayed to investigate their potential efficacy about preventing HOX-PBX1 cooperative 
binding in cancer cells to tackle several kinds of malignancies associated in some cases 
with decrease or increase of HOX gene activity.  

Finally, this work has been considering for a research article that soon will be sent 
to a scientific peer-reviewed journal. 

 
 



 165 

References – Chapter Six 
 
1.  Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body 

patterning. Nat Rev Genet 6:893–904. https://doi.org/10.1038/nrg1726 
2.  Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201. 

https://doi.org/10.1016/0092-8674(94)90290-9 
3.  Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560. 

https://doi.org/10.1242/dev.001065 
4.  Mallo M, Alonso CR (2013) The regulation of Hox gene expression during animal development. 

Development 140:3951–3963. https://doi.org/10.1242/dev.068346 
5.  Gehring WJ, Qian YQ, Billeter M, et al (1994) Homeodomain-DNA recognition. Cell 78:211–

223. https://doi.org/10.1016/0092-8674(94)90292-5 
6.  McGinnis N, Kuziora MA, McGinnis W (1990) Human Hox-4.2 and Drosophila Deformed 

encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63:969–976. 
https://doi.org/10.1016/0092-8674(90)90500-E 

7.  Holland PW, Booth HAF, Bruford EA (2007) Classification and nomenclature of all human 
homeobox genes. BMC Biol 5:47. https://doi.org/10.1186/1741-7007-5-47 

8.  Morgan R (2006) Hox genes: a continuation of embryonic patterning? Trends Genet 22:67–69. 
https://doi.org/10.1016/j.tig.2005.11.004 

9.  Lebert-Ghali C-E, Fournier M, Dickson GJ, et al (2010) HoxA cluster is haploinsufficient for 
activity of hematopoietic stem and progenitor cells. Exp Hematol 38:1074-1086.e5. 
https://doi.org/10.1016/j.exphem.2010.07.006 

10.  Alharbi RA, Pettengell R, Pandha HS, Morgan R (2013) The role of HOX genes in normal 
hematopoiesis and acute leukemia. Leukemia 27:1000–1008. 
https://doi.org/10.1038/leu.2012.356 

11.  Xu B, Geerts D, Bu Z, et al (2014) Regulation of endometrial receptivity by the highly expressed 
HOXA9, HOXA11 and HOXD10 HOX-class homeobox genes. Hum Reprod 29:781–790. 
https://doi.org/10.1093/humrep/deu004 

12.  Quinonez SC, Innis JW (2014) Human HOX gene disorders. Mol Genet Metab 111:4–15. 
https://doi.org/10.1016/j.ymgme.2013.10.012 

13.  Hombría JC-G, Lovegrove B (2003) Beyond homeosis—HOX function in morphogenesis and 
organogenesis. Differentiation 71:461–476. https://doi.org/10.1046/j.1432-0436.2003.7108004.x 

14.  Sánchez-Herrero E (2013) Hox Targets and Cellular Functions. Scientifica (Cairo) 2013:1–26. 
https://doi.org/10.1155/2013/738257 

15.  Mann RS, Chan S-K (1996) Extra specificity from extradenticle: the partnership between HOX 
and PBX/EXD homeodomain proteins. Trends Genet 12:258–262. https://doi.org/10.1016/0168-
9525(96)10026-3 

16.  Hayashi S, Scott MP (1990) What determines the specificity of action of Drosophila 
homeodomain proteins? Cell 63:883–894. https://doi.org/10.1016/0092-8674(90)90492-W 

17.  Berger MF, Badis G, Gehrke AR, et al (2008) Variation in Homeodomain DNA Binding 
Revealed by High-Resolution Analysis of Sequence Preferences. Cell 133:1266–1276. 
https://doi.org/10.1016/j.cell.2008.05.024 

18.  Noyes MB, Christensen RG, Wakabayashi A, et al (2008) Analysis of Homeodomain 
Specificities Allows the Family-wide Prediction of Preferred Recognition Sites. Cell 133:1277–
1289. https://doi.org/10.1016/j.cell.2008.05.023 

19.  Knoepfler PS, Kamps MP (1995) The pentapeptide motif of Hox proteins is required for 
cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by 
Pbx1. Mol Cell Biol 15:5811–5819. https://doi.org/10.1128/MCB.15.10.5811 

20.  Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291:193–206. 
https://doi.org/10.1016/j.ydbio.2005.10.032 

21.  Longobardi E, Penkov D, Mateos D, et al (2014) Biochemistry of the tale transcription factors 
PREP, MEIS, and PBX in vertebrates. Dev Dyn 243:59–75. https://doi.org/10.1002/dvdy.24016 

22.  Peifer M, Wieschaus E (1990) Mutations in the Drosophila gene extradenticle affect the way 
specific homeo domain proteins regulate segmental identity. Genes Dev 4:1209–1223. 
https://doi.org/10.1101/gad.4.7.1209 

23.  Piper DE, Batchelor AH, Chang C-P, et al (1999) Structure of a HoxB1–Pbx1 Heterodimer 
Bound to DNA. Cell 96:587–597. https://doi.org/10.1016/S0092-8674(00)80662-5 

24.  Brendolan A (2005) A Pbx1-dependent genetic and transcriptional network regulates spleen 



 166 

ontogeny. Development 132:3113–3126. https://doi.org/10.1242/dev.01884 
25.  Allen TD, Zhlp Y-X, Hawley TS, Hawley RG (2000) TALE Homeoproteins as HOX11-

Interacting Partners in T-cell Leukemia. Leuk Lymphoma 39:241–256. 
https://doi.org/10.3109/10428190009065824 

26.  Chan S-K, Jaffe L, Capovilla M, et al (1994) The DNA binding specificity of ultrabithorax is 
modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78:603–
615. https://doi.org/10.1016/0092-8674(94)90525-8 

27.  van Dijk MA, Murre C (1994) extradenticle Raises the DNA binding specificity of homeotic 
selector gene products. Cell 78:617–624. https://doi.org/10.1016/0092-8674(94)90526-6 

28.  Phelan ML, Rambaldi I, Featherstone MS (1995) Cooperative interactions between HOX and 
PBX proteins mediated by a conserved peptide motif. Mol Cell Biol 15:3989–3997. 
https://doi.org/10.1128/MCB.15.8.3989 

29.  LaRonde-LeBlanc NA (2003) Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide 
and DNA recognition anterior to posterior. Genes Dev 17:2060–2072. 
https://doi.org/10.1101/gad.1103303 

30.  Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of Extradenticle by 
competing nuclear import and export signals. Genes Dev 13:935–945. 
https://doi.org/10.1101/gad.13.8.935 

31.  Stevens KE, Mann RS (2007) A Balance Between Two Nuclear Localization Sequences and a 
Nuclear Export Sequence Governs Extradenticle Subcellular Localization. Genetics 175:1625–
1636. https://doi.org/10.1534/genetics.106.066449 

32.  Saleh M, Huang H, Green NC, Featherstone MS (2000) A Conformational Change in PBX1A Is 
Necessary for Its Nuclear Localization. Exp Cell Res 260:105–115. 
https://doi.org/10.1006/excr.2000.5010 

33.  Merabet S, Hudry B, Saadaoui M, Graba Y (2009) Classification of sequence signatures: a guide 
to Hox protein function. BioEssays 31:500–511. https://doi.org/10.1002/bies.200800229 

34.  Johnson FB, Parker E, Krasnow MA (1995) Extradenticle protein is a selective cofactor for the 
Drosophila homeotics: role of the homeodomain and YPWM amino acid motif in the interaction. 
Proc Natl Acad Sci 92:739–743. https://doi.org/10.1073/pnas.92.3.739 

35.  Joshi R, Passner JM, Rohs R, et al (2007) Functional Specificity of a Hox Protein Mediated by 
the Recognition of Minor Groove Structure. Cell 131:530–543. 
https://doi.org/10.1016/j.cell.2007.09.024 

36.  Passner JM, Ryoo HD, Shen L, et al (1999) Structure of a DNA-bound Ultrabithorax–
Extradenticle homeodomain complex. Nature 397:714–719. https://doi.org/10.1038/17833 

37.  Shen W-F, Chang C-P, Rozenfeld S, et al (1996) Hox Homeodomain Proteins Exhibit Selective 
Complex Stabilities with Pbx and DNA. Nucleic Acids Res 24:898–906. 
https://doi.org/10.1093/nar/24.5.898 

38.  Joshi R, Sun L, Mann R (2010) Dissecting the functional specificities of two Hox proteins. Genes 
Dev 24:1533–1545. https://doi.org/10.1101/gad.1936910 

39.  Knoepfler PS, Lu Q, Kamps MP (1996) Pbx1-Hox Heterodimers Bind DNA on Inseparable Half-
Sites That Permit Intrinsic DNA Binding Specificity of the Hox Partner at Nucleotides 3’ to a 
TAAT Motif. Nucleic Acids Res 24:2288–2294. https://doi.org/10.1093/nar/24.12.2288 

40.  Lu Q, Kamps MP (1997) Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-
Pbx1 generates unique DNA-binding specificities at nucleotides predicted to contact the N-
terminal arm of the Hox homeodomain – demonstration of Hox-dependent targeting of E2a-Pbx1 
in vivo. Oncogene 14:75–83. https://doi.org/10.1038/sj.onc.1200799 

41.  Saleh M, Rambaldi I, Yang X-J, Featherstone MS (2000) Cell Signaling Switches HOX-PBX 
Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases 
and Histone Acetyltransferases. Mol Cell Biol 20:8623–8633. 
https://doi.org/10.1128/MCB.20.22.8623-8633.2000 

42.  Chang CP, Brocchieri L, Shen WF, et al (1996) Pbx modulation of Hox homeodomain amino-
terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 
16:1734–1745. https://doi.org/10.1128/MCB.16.4.1734 

43.  Lu Q, Kamps MP (1996) Structural determinants within Pbx1 that mediate cooperative DNA 
binding with pentapeptide-containing Hox proteins: proposal for a model of a Pbx1-Hox-DNA 
complex. Mol Cell Biol 16:1632–1640. https://doi.org/10.1128/MCB.16.4.1632 

44.  Peltenburg LT, Murre C (1997) Specific residues in the Pbx homeodomain differentially 
modulate the DNA-binding activity of Hox and Engrailed proteins. Development 124:1089–98 



 167 

45.  Chang CP, Shen WF, Rozenfeld S, et al (1995) Pbx proteins display hexapeptide-dependent 
cooperative DNA binding with a subset of Hox proteins. Genes Dev 9:663–674. 
https://doi.org/10.1101/gad.9.6.663 

46.  Ji T, Lee M, Pruitt SC, Hangauer DG (2004) Privileged scaffolds for blocking protein–protein 
interactions: 1,4-disubstituted naphthalene antagonists of transcription factor complex HOX–
PBX/DNA. Bioorg Med Chem Lett 14:3875–3879. https://doi.org/10.1016/j.bmcl.2004.05.068 

47.  Morgan R, Sohal J (2007) Field of the Invention The present invention relates to molecules which 
impair PBX-dependent. 2007: 

48.  Morgan R, Pirard PM, Shears L, et al (2007) Antagonism of HOX/PBX Dimer Formation Blocks 
the In vivo Proliferation of Melanoma. Cancer Res 67:5806–5813. https://doi.org/10.1158/0008-
5472.CAN-06-4231 

49.  Plowright L, Harrington KJ, Pandha HS, Morgan R (2009) HOX transcription factors are 
potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). 
Br J Cancer 100:470–475. https://doi.org/10.1038/sj.bjc.6604857 

50.  Morgan R, Boxall A, Harrington KJ, et al (2012) Targeting the HOX/PBX dimer in breast cancer. 
Breast Cancer Res Treat 136:389–398. https://doi.org/10.1007/s10549-012-2259-2 

51.  Morgan R, Boxall A, Harrington KJ, et al (2014) Targeting HOX transcription factors in prostate 
cancer. BMC Urol 14:17. https://doi.org/10.1186/1471-2490-14-17 

52.  Morgan R, Simpson G, Gray S, et al (2016) HOX transcription factors are potential targets and 
markers in malignant mesothelioma. BMC Cancer 16:85. https://doi.org/10.1186/s12885-016-
2106-7 

53.  Errico MC, Felicetti F, Bottero L, et al (2013) The abrogation of the HOXB7/PBX2 complex 
induces apoptosis in melanoma through the miR-221&amp;222-c-FOS pathway. Int J Cancer 
133:879–892. https://doi.org/10.1002/ijc.28097 

54.  Ando H, Natsume A, Senga T, et al (2014) Peptide-based inhibition of the HOXA9/PBX 
interaction retards the growth of human meningioma. Cancer Chemother Pharmacol 73:53–60. 
https://doi.org/10.1007/s00280-013-2316-5 

55.  Primon M, Hoffman E, Pandha HS, Morgan R (2016) HTL001, a novel inhibitor of HOX/PBX 
binding, is highly cytotoxic to prostate and breast cancer cells. Eur J Cancer 69:S133. 
https://doi.org/10.1016/S0959-8049(16)32994-X 

56.  Shears L, Plowright L, Harrington K, et al (2008) Disrupting the Interaction Between HOX and 
PBX Causes Necrotic and Apoptotic Cell Death in the Renal Cancer Lines CaKi-2 and 769-P. J 
Urol 180:2196–2201. https://doi.org/10.1016/j.juro.2008.07.018 

57.  Database of non-standard amino acids. https://www.swisssidechain.ch/. Accessed 27 Jul 2020 
58.  Gfeller D, Michielin O, Zoete V (2012) Expanding molecular modeling and design tools to non-

natural sidechains. J Comput Chem 33:1525–1535. https://doi.org/10.1002/jcc.22982 
59.  (2006) SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. Association 

for Computing Machinery, New York, NY, USA 
60.  Protein Data Bank. https://pdb101.rcsb.org. Accessed 21 May 2020 
61.  Beard H, Cholleti A, Pearlman D, et al (2013) Applying Physics-Based Scoring to Calculate Free 

Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes. PLoS One 
8:e82849. https://doi.org/10.1371/journal.pone.0082849 

62.  Madhavi Sastry G, Adzhigirey M, Day T, et al (2013) Protein and ligand preparation: parameters, 
protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. 
https://doi.org/10.1007/s10822-013-9644-8 

63.  Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, 
and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous 
solution. J Comput Aided Mol Des 24:591–604. https://doi.org/10.1007/s10822-010-9349-1 

64.  Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: Consistent 
Treatment of Internal and Surface Residues in Empirical p K a Predictions. J Chem Theory 
Comput 7:525–537. https://doi.org/10.1021/ct100578z 

65.  Mark P, Nilsson L (2001) Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models 
at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w 

66.  Harder E, Damm W, Maple J, et al (2016) OPLS3: A Force Field Providing Broad Coverage of 
Drug-like Small Molecules and Proteins. J Chem Theory Comput 12:281–296. 
https://doi.org/10.1021/acs.jctc.5b00864 

 



 168 

CHAPTER SEVEN 
 

Ras-RasGRF1 INTERACTION – Insights for the optimisation of 
a patented α-helix-shaped peptide 
 
 

7.1 Introduction 
 

Drug addiction is a chronic disease affecting the brain and associated with high 
relapse rates and compulsive drug use. Among several psychotropic drugs, cocaine is a 
powerfully addictive stimulant drug derived from the leaves of the coca plant native in 
South America. Although cocaine can be used for medical purposes, such as local 
anaesthesia for some surgeries, it causes strongly negative consequences due to large use. 
Indeed, in 2020 it has been registered the incidence of 16.8% of cocaine abuse in 26-aged 
people and over in the US [1]. Exposure to abuse substances such as cocaine provokes 
intense and long-lasting memories of well-being, that are crucial in the transition from 
recreational drug-taking to compulsive and uncontrolled drug use [2, 3]. It has been 
demonstrated that drug relapse following drug abstinence depends on learned 
associations between drug-paired cues and the rewarding effects of these drugs, that 
persistently elicit drug-seeking behaviours [4, 5].  

Increasing evidence demonstrates that cocaine alters dopamine (DA) levels of 
neurotransmission in brain circuits related to the control of movement and reward to exert 
their molecular and behavioural effects [6–8]. 

Normally, dopamine recycles back into the dopaminergic neurons, interrupting 
the signal between neurons. In this context, cocaine prevents dopamine from being 
recycled, causing cocaine heap formation within the space between two nerve cells, 
blocking their normal communication. These large amounts of dopamine generate a 
vicious cycle in the brain’s reward circuit, by strongly reinforcing drug-taking 
behaviours. These latter are caused by an adaptation mechanism to the excess of 
dopamine generated by cocaine, that makes nerve cells less sensitive to dopamine. As a 
result, people take stronger and more frequent doses in an attempt to feel the same effect 
and to obtain rewarding feeling.  
 

Cocaine short-term effects include extreme happiness and energy, mental 
alertness, hypersensitivity to light, sound, and touch, irritability and paranoia. On the 
other hand, cocaine long-term effects depend on the method of use: by snorting it appears 
loss of smell, nosebleeds, frequent runny nose, and problems with swallowing; by 
smoking cocaine causes cough, asthma, respiratory distress, and a higher risk of 
infections like pneumonia; by consuming by mouth it generates severe bowel decay from 
reduced blood flow; finally by needle injection there is a higher risk for contracting HIV, 
hepatitis C, and other bloodborne diseases, skin or soft tissue infections, as well as 
scarring or collapsed veins [9]. 
 

In the brain, addictive drugs exploit cellular mechanisms and signalling pathways 
involved in normal learning and memory processes contributing to high rates of relapse 
[10–13]. In the last two decades, Ras-ERK signalling pathway has been identified as 
involved in both the acute and long-term effects of cocaine by performing different 
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experiments, that mimic drug addiction in humans, resulting in the alteration of ERK-
mediated signalling in specific brain regions. Although the molecular mechanism on basis 
of the effects of most abused substances on ERK signalling and the drug-mediated 
behavioural changes are still unclear, they span across locomotor activity/sensitization, 
drug self-administration, and conditioned place preference (CPP). The CPP refers to a 
learning procedure in which a biologically potent stimulus is paired with a previously 
neutral stimulus used to measure the motivational effects of objects or experiences [14, 
15, 24–27, 16–23]. 
 

Intracellular ERK (extracellular signal-regulated kinases) signalling has been 
characterised to respond to extracellular signals and regulate cell proliferation, 
differentiation, survival, and death [28–30]. For example, once activated by growth 
factors or neurotrophins, the tyrosine kinase receptors recruit Ras (rat sarcoma protein) 
family G-proteins by sequentially triggering the activation of Raf (rat fibrosarcoma 
protein), MEK (mitogen-activated protein kinase) and ERK (figure 7.1). Thus, the 
phosphorylated activated ERK form can translocate to the nucleus [31], and 
phosphorylate a ternary complex factor (Elk-1, ETS like-1 protein) [32, 33]. This 
complex in turn can associate with serum response factor and foster the transcription of 
the immediate early gene (IEG) related to neuroadaptation [34–36].  
 

 
Figure 7.1. Ras-ERK activation cascade [37] 
 

To date, there is no effective treatment for drug addiction. Therefore, 
understanding the neurobiological aspects behind substance abuse effects can provide 
crucial insights for developing potential therapeutic strategies tackling drug addiction. 
Indeed, the designed pharmacological inhibitors of MEK, the kinase upstream of ERK, 
played a crucial role in investigating lasting experience- and drug-dependent alterations 
in behavioural plasticity associated with ERK cascade. 

The only MEK inhibitor able to penetrate the blood-brain barrier was SL327, but 
it was not administered to humans, owing to the toxicity and the relatively low IC50 (0.18-
0.22 µM toward MEK1 and MEK2, respectively) [11, 14, 43–49, 15–17, 38–42]. It has 
been demonstrated that MEK inhibition prevents conditioned place preference (CPP) to 
cocaine and amphetamine [11, 14, 16, 50]. In addition, other studies highlighted Ras-
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ERK cascade dependence in drug-seeking during exposure to cocaine-associated 
cues/contexts following the acquisition of self-administration [15, 49, 51–56]. 

In this context, Ras proteins act as binary switches in signalling pathways by 
cycling between inactive GDP- and active GTP-bound states [57]. Kinetic studies 
highlighted that the activation of Ras protein, proceeding from the conversion of Ras-
GDP to Ras-GTP, initiates through the recruitment of the guanine nucleotide exchange 
factors (GEFs), such as Son of sevenless protein (Sos) and Ras guanine nucleotide-
releasing factor 1 (RasGRF1) [58–63], that catalyse GDP release and allow its 
replacement by GTP [64–69]. Then, the GTP molecule binds to this complex promoting 
the release of GEF protein [70]. 
 

The region of Sos and RasGRF1 proteins, that is required for Ras-specific 
nucleotide exchange activity, exhibits a Ras exchanger motif (Rem) domain of about 450 
amino acids and a Cdc25 homology domain [71–75]. In addition, Sos requires allosteric 
activation through a second Ras-binding site that bridges the Rem and Cdc25 domains 
[76, 77]. When Sos is activated, the helical hairpin of its Cdc25 domain inserts between 
two flexible regions of Ras, Switch 1 and Switch 2, causing Ras conversion to the 
transient state by opening the nucleotide-binding site of Ras for GDP release [72] (figure 
7.2). After this event, Ras can promptly accommodate and bind GTP into the nucleotide-
binding site, thus exhibiting its activate state. Therefore, a potential strategy to inhibit 
Ras-GEF interaction should be targeting the open – or transient – state of Ras protein by 
designing peptides able to bind the nucleotide-exchange region. 
 

 
Figure 7.2. Inactive and transient state of Ras protein. On the left, Ras protein (red chain; PDB ID: 1XD2) 
bound to GDP (grey ligand in stick format) exhibits its inactivate state, where Switch 1 region (highlighted 
by a yellow circle) is close; on the right, after binding to a guanine nucleotide-exchange factor (Sos helical 
hairpin fragment in this picture, blue chain) Ras (green chain; PDB ID: 1XD2) experiences a transient state, 
where the Switch 1 region is open to accommodate the GEF α-helix 
 

In 2006, Freedman et al. [78] performed nucleotide-exchange assays to monitor 
the release rate of fluorescently labelled GDP from Ras in presence and absence of 
nucleotide exchange factor [62, 79]. The authors built a construct of RasGRF1 that spans 
residues 1028 to 1262, i.e. RasGRF1 Cdc25 domain, by using computational techniques 
to predict the secondary structure and aligning the RasGRF1 sequence to Sos [70, 72, 80, 
81]. The rate of GDP release from Ras in the presence of RasGRF1 Cdc25 domain was 
50 ± 10 x 10-4 s-1 for 1 µM exchange factor [78] and was significantly higher than the 
intrinsic rate of nucleotide release by isolated Ras, i.e. 1.8 ± 0.2 x 10-4 s-1. 
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In contrast to Sos, which requires Ras binding to the allosteric site for activity, the 
Cdc25 domain of RasGRF1 is active on its own [62, 70, 76, 77]. The structure of the 
Cdc25 domain of RasGRF1 is very similar to that of Sos, registering 30% of sequence 
identity between the two Cdc25 domains. The orientation and conformation of the 
RasGRF1 helical hairpin resemble that of Sos in its active form with an RMSD value of 
2.3 Å for the helical hairpins after superposition on the Cdc25 domain core. Moreover, 
distance difference matrices demonstrated that the main differences between RasGRF1 
and Sos in its inactive form have been identified into the helical hairpin, even in this case 
confirming that RasGRF1 Cdc25 domain is more similar to active Sos [78]. 
 
 

7.1.1 Mutational studies on Sos 
 

Due to the lack of a Ras-RasGRF1 complex structure, it was useful starting from 
the analysis of Ras-Sos complex data available in literature. 

Performed mutagenesis studies shed light on three regions of Ras crucial for the 
activation of the protein, i.e. the switch 1 region (amino acids 25–40), the switch 2 region 
(amino acids 57–75), and a short region spanning amino acids 100–110 [82–91]. 

In 1998, Boriack-Sjodin et al. [72] determined the crystal structure of human Ras 
in complex with Sos Cdc25 domain, highlighting more than 30 amino acids involved in 
interactions. These contacts with Sos are mainly mediated by the switch 1 and switch 2 
regions of Ras [72] and are essentially hydrophobic, polar and charge-charge bonds. Hall 
et al. [92] performed site-directed mutagenesis to deeply investigate these contacts. The 
results shed light on the hydrophobic pocket consisting of residues Ile825, Leu872 and 
Phe929 of Sos protein that embed the side chain of Tyr64 of Ras into a hydrophobic 
contact. Indeed, the contribution of Tyr64 of Ras was explored by applying a mutation to 
alanine (Y64A). The result was a reduction of at least 50-fold in the apparent binding 
affinities of Ras for Sos, but did not provide significant nucleotide dissociation. Then, the 
authors performed another binding assay by using wild-type Ras and mutated Phe929 of 
Sos to alanine (F929A). The Sos mutant reported a decrease of more than 50-fold in 
binding affinity for Ras. This data indicated that Tyr64 and Phe929 mediate hydrophobic 
contacts crucial for the formation of a stable Ras-Sos complex. 

On the other hand, polar and charged interactions showed to be not so essential 
for the binding affinity of Ras for Sos. Indeed, alanine mutations on Sos residues 
Glu1002, Thr935 and Arg826 exerted a low impact on Ras binding and activation.  
Furthermore, the mutation of Ala59 of Ras to glycine (A59G) did not significantly affect 
the GDP-dissociation rate, displaying more than 50% of the inhibitory effect on Sos-
catalysed GTP dissociation.  
 

Finally, the contribution of two Ras amino acids involved into the region switch 
1 were investigated: Tyr32 of Ras that established hydrophobic contacts with Lys939 of 
Sos, and Tyr40 of Ras that mediated stacking interaction with His911 of Sos. 

Tyr32 and Tyr40 of Ras were mutated to Ser (Y32S) and Ala (Y40A), 
respectively. Both mutations decreased the binding of Sos to Ras and accelerated the rate 
of intrinsic GDP/ GTP exchange, suggesting that these residues are important for Ras-
Sos recognition and the nucleotide stabilization. Consistent with these results, mutations 
of Sos Lys939 and His911 to alanine (K939A and H911A, respectively) also caused a 
reduction Ras-Sos binding. Furthermore, the Y40A mutation had no significant effect on 
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Sos-catalysed guanine nucleotide exchange, whereas the disruption of the contact 
between Tyr32 of Ras and Lys939 of Sos reduced the sensitivity of Ras to the exchange 
activity of Sos [72]. 
 
 

7.1.2 Targeting Ras-GEFs interaction by using hydrogen-bond surrogates  
 

Several efforts have been reported in the literature to design and identify Ras 
inhibitors to block the nucleotide exchange. However, to date, the scientific knowledge 
on ERK signalling in drug addiction has not been translated into clinical treatments due 
to the lack of drugs with relatively low IC50 values, toxicity and ability to efficiently cross 
the blood-brain barrier [93].  

One of the first compounds identified to inhibit Ras activity was the Sulindac 
together with its derivatives [94, 95]. Sulindac is an NSAID that demonstrated to directly 
inhibit Raf activation mediated by Ras protein in vitro [96]. However, relatively high 
concentrations of Sulindac and its derivatives (10-50 µM) were necessary to achieve the 
desired biological effects, thus indicating a lack of potency. 

Another identified compound was MCP1 [97], that together with its derivatives 
was able to inhibit Ras-Raf interaction and Ras activation of Raf [98–100]. However, as 
for Sulindac and derivatives, these compounds also lacked potency and need further 
modifications to overcome this issue.  

Several computational approaches on Ras protein highlighted novel potential 
ligand-binding pockets that allowed to identify lead Ras inhibitory compounds for further 
development [101, 102]. An example of these lead compounds is Kobe0065 identified 
through an in silico screening approach performed by Shima et al. [103]. The compound 
Kobe0065 and its derivative Kobe2602 demonstrated to bind the inactive state of Ras and 
inhibit Ras-Raf interaction with a rough IC50 value of 10 µM and the Sos-catalysed 
nucleotide exchange.  
 

In 2016, Papale and colleagues at Cardiff University designed and generated an 
active cell-penetrating peptide, the peptide RB3, based on the interaction between Ras 
and a GEF protein, i.e. RasGRF1, able to attenuate the activation of Ras-ERK signalling 
cascade in vivo [104]. 

The cell-penetrating peptides have been shown to be promising for the treatment 
of neuropsychiatric disorders, especially for the low reported toxicity and tolerability 
[105, 106]. Although their biological activity spans a micromolar range, they usually 
show a potential advantage, due they are able to partially disrupt protein-protein 
interactions without preventing the enzymatic activity. Furthermore, cell-penetrating 
peptides can dissolve rapidly in water solvents, unlike several molecules with high 
molecular weights that need organic solvents. 
 

The peptide RB3 was designed by using molecular graphics tools, on the basis of 
the ternary complex consisting of Ras in its transient state bound to Sos Cdc25 domain 
and Ras in its inactive state complexed with a GDP molecule (PDB ID: 1XD2) [77]. The 
Cdc25 domain of Sos involved in this ternary complex was compared to the crystal 
structure of RasGRF1 Cdc25 domain (PDB ID: 2IJE). The peptide sequence (portion 
1173–1203 of the CDC25 domain) includes an α-helix – from Met1181 to Glu1191 – 
crucial for the GDP exchange activity on Ras proteins, linked to two loops – from 
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Pro1173 to Gly1180 and from Gly1192 to Asn1203. Below the sequence of peptide RB3 
is shown and Figure 7.3 depicts the 3D structure of the following peptide RB3 sequence. 
 

GRKKRRQRRR – PPCVPYLGMYLTDLVFIEEGTPNYTEDGLVN 
TAT sequence                   RasGRF1 interacting region 

 

 
Figure 7.3. Peptide RB3 structure including an α-helix – from Met1181 to Glu1191 – linked to a loop – 
from Pro1173 to Gly1180 – and another loop – from Gly1192 to Asn1203. 
 

Moreover, the research group of Cardiff University added to the peptide RB3 
sequence a portion of the HIV TAT protein known to exhibit a translocating behaviour 
[107]. In this way, the final structure of the cell-penetrating peptide was created able to 
cross the cell membranes and the blood-brain barrier [108]. 
Then, the peptide RB3 was tested in an ex-vivo model of acute striatal brain slices to 
investigate its inhibitory potential on ERK phosphorylation after stimulation with 
100 µM glutamate. The result was a significant reduction of ERK activity with an IC50 of 
6 µM. 

To deeply explore the effect of peptide RB3 on Ras-ERK signalling pathway, 
Papale and colleagues investigated whether RB3 may also affect the phosphorylation of 
two well-characterised ERK substrates, (Ser10)-acetylated (Lys14) histone H3 (pAc-H3) 
and S6 ribosomal protein, (pS6, Ser235/236 specific site) [109–111]. Even in this case, 
the peptide was effective in decreasing the phosphorylation of Ac-H3 with an IC50 of 
5.2 µM and pS6 levels with an IC50 of 3.69 µM [104]. 
 

In the light of the above, this peptide was patented [112] and it was selected to 
enter a further compound optimisation process, to get stronger biological activity. In the 
next steps, the adopted approaches are described.  

First, MD simulations were performed on Ras-Sos, Ras-RasGRF1 and Ras-
peptide RB3 complexes to identify the most stable and frequent interactions between 
protein partners. In this context, the peptide RB3 exhibited a misfolding behaviour, 
whereas the helical hairpin corresponding to RasGRF1 interacting region lost helicity 
propensity generating instability within the system. For this purpose, the peptide HBS3, 
a compound reported in the literature [93, 113], was used as a reference to collect more 
data addressing the modifications to peptide RB3 structure.  

The peptide HBS3 is a synthetic α-helix, that was designed to target the Sos-
interacting region of Ras. Indeed, its structure was essentially based on Sos sequence able 
to bind Ras protein. Interestingly, this peptide showed a preference for nucleotide-free 
Ras with KD = 28 µM compared to Ras-GDP reporting KD = 158 µM. Moreover, the 
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peptide HBS3 reduced the nucleotide exchange in vitro and modestly ERK activation in 
cells [93, 113]. 

The peptide HBS3 structure depicted in figure 7.4 has been designed to mimic the 
α-helix conformation of Sos-interacting region by applying a hydrogen bond surrogate 
(HBS) approach. This approach has been developed especially for modulating 
biomolecular interactions, such as protein-protein contacts, through small molecular 
weight protein secondary structure mimetics, when designing small molecules could be 
a very challenging strategy [114–120]. 
 

 
Figure 7.4. Structure of peptide HBS3 [114]  
 

The HBS approach is based on the helix-coil transition theory for peptides, 
whereas α-helices composed of a few amino acids are expected to be essentially unstable 
due to a low nucleation probability [121, 122]. This approach is expected to overwhelm 
the intrinsic nucleation propensities of the amino acids by providing upstream a 
preorganization of the residues, that causes the helix formation initialization [123, 124].  
Indeed, in a general α-helix, a hydrogen bond between the carbonyl group of the ith amino 
acid residue as acceptor and the amine group of the (i + 4)th amino acid residue as donor 
stabilises and nucleates the helical structure. Based on this evidence, the HBS strategy 
for artificial α-helices generation involves the replacement of one of the main chain 
hydrogen bonds with a covalent linkage [114, 125]. Indeed, to mimic the C=O · · · H-N 
hydrogen bond as closely as possible, a covalent bond of the type C=X–Y–N is included, 
where X and Y are usually carbon atoms, that would be part of the ith and the (i + 4)th 
residues. 
 

In detail, the analysis of peptide RB3 α-helix highlighted that the first amino acid 
implicated into the helix H-bonds ensemble does not establish a traditional hydrogen 
bond with the (i+4)th amino acid, while it forms a contact with the (i+3)th amino acid, 
by creating the so-called 310-helix illustrated in figure 7.5 [126]. 
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Figure 7.5. Example of 310-helix formation between ith amino acid and (i+3)th amino acid [126] 
 

A 310-helix is a type of secondary structure observed in proteins and polypeptides. 
It is more tightly wound than the traditional α-helix with hydrogen bonds within the 
backbone formed between residues ith and (i+3)th. The term 310-helix is owed to its 
structure, consisting of three residues per turn and 10 atoms between hydrogen bond 
donor and acceptor. The 310-helix is usually observed at the termini of α-helices and play 
important roles as nucleation sites for helix formation during protein folding [126, 127]. 
 

Therefore, peptide RB3 was modified by creating a C-C bond between the first 
amino acid (Tyr1178) and the fourth residue (Met1181), hereafter peptide 310-HBS RB3, 
and the related performed MD simulation highlighted a stable peptide helical 
conformation during the whole trajectory. 

Then, computational alanine scanning was run to identify and analyse the most 
promising mutations to be considered. These mutations were further combined into the 
peptide 310-HBS RB3 structure to get several combinatorial peptides. Thus, these latter 
were investigated to retrieve the calculated ΔG values for each couple Ras-combinatorial 
peptide. Finally, eighteen combinatorial peptides were selected and they will be 
synthesised and tested at Cardiff University laboratories. Scheme 7.1 lists the steps of the 
workflow in detail described in the next sections. 
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Scheme 7.1. Overview of the computational workflow performed to identify 18 combinatorial peptides 310-
HBS potentially inhibiting Ras-GEF interaction  
 
 

7.2 Results and discussion 
 
 

7.2.1 Computational alanine scanning of Sos binding interface and RasGRF1 
and Sos binding regions alignment  

 
In order to deeply explore and identify the hot spot residues of Sos Cdc25 domain 

(i.e. from position 924 to 957), all the six available PDB structures of Ras-Sos complex 
(PDB IDs: 1XD2, 1BKD, 1NVW, 1NVV, 1NVU and 1NVX) were examined by using 
Robetta computational interface alanine scanning tool [128, 129]. Robetta is a tool 
(released by the Department of Biopharmaceutical Sciences and California Institute for 
Quantitative Biomedical Research of the University of California in San Francisco) that 
was specifically created for predicting energetically important amino acid residues in 
protein-protein interfaces. In table 7.1 the highest ΔΔG of the alanine mutations on Sos 
binding interface amino acids are reported. 
 
 



 177 

Table 7.1. Predicted ΔΔG values of the alanine mutations on Sos binding interface amino acids retrieved 
by Robetta Computational Interface Alanine Scanning 

 ΔΔG (kcal/mol) 

Sos aa 1XD2 1BKD 1NVW 1NVV 1NVU 1NVX 

Phe929 1.54 1.48 1.64 3.00 1.53 1.47 

Thr935 2.97 1.59 1.11 n.a. 3.13 3.11 

Lys939 n.a. n.a. n.a. 4.21 n.a. n.a. 

Glu942 n.a. n.a. 1.10 n.a. n.a. n.a. 

Asn944 2.51 2.63 2.35 2.66 2.63 2.70 

n.a. = not available 
 

These predicted data were in accordance with mutational studies performed by 
Hall et al. [92], whereas Phe929, Thr935 and Lys939 were highlighted as Sos interacting 
hot spots. In detail, from the computational alanine scanning Phe929 and Thr935 were 
shared by most of the six PDB complexes as hot spots, while Lys939 resulted from the 
PDB 1NVV analysis. As it can be seen, at the same time, this computational tool pointed 
out another Sos hot spot not previously identified by Hall et al., Asn944, that was shared 
from all the six PDB complexes. Another hot spot on Glu942 was retrieved from PDB 
1NVW.  

These identified hotspots both from biological assays [92] and computational 
alanine scanning were considered equally important for the following steps and were used 
for comparison to RasGRF1 amino acids in order to investigate similarities between the 
two GEFs sequences (RasGRF1 and Sos). Therefore, for this purpose PDB 1XD2 
including Sos in complex with Ras protein was chosen for the low resolution, while the 
only available PDB structure of RasGRF1 Cdc25 domain (PDB ID: 2IJE) was used. 
However, the latter PDB was from mus musculus as organism. Hence, before proceeding 
with the protein structure alignment between Sos and RasGRF1 Cdc25 domains, a 
FASTA alignment was performed considering human and murine RasGRF1 sequences 
through Protein BLAST sequence alignment tool [130, 131] (released by the National 
Center for Biotechnology Information in Bethesda, MD). The resulted overall identity 
was 83.22%, whereas within the RasGRF1 region involved into Ras binding (i.e. from 
residue 1173 to 1203 of mouse sequence) the only detected difference was between 
Ala1198 for human and Val1187 for mouse, as illustrated in figure 7.6. These two amino 
acids exhibit side chains with very similar chemical properties, thus the PDB 2IJE was 
considered suitable for proceeding with this study. 

 
Figure 7.6. FASTA sequence alignment between RasGRF1 interacting region from two different 
organisms (homo sapiens and mus musculus) 

 
Therefore, both PDB protein structures (2IJE and 1XD2) were aligned through 

the “Protein Structure Alignment” tool of Schrödinger suite and the result is depicted in 
figure 7.7. As can be seen, the two binding regions of Sos and RasGRF1 are perfectly 
aligned. 
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Figure 7.7. Superposition of PDB 2IJE, including RasGRF1 binding region (pink chain), and PDB 1XD2, 
including Sos binding region (green chain) in complex with Ras protein (purple chain) 
 

Below a portion of this sequence alignment of Cdc25 domains involved in Ras 
binding is illustrated in figure 7.8. 

 
Figure 7.8. FASTA sequence alignment between Sos and RasGRF1 regions able to bind Ras protein 
 

The amino acids for RasGRF1 corresponding to Sos hot spots are reported in table 
7.2. As it can be seen, the pairs Thr935-Thr1184 and Glu942-Glu1191 share the same 
amino acid, while Phe929 and Tyr1178 both present hydrophobic side chains, and 
Asn944 and Thr1193 share polar uncharged side chains. Only Lys939 and Phe1188 are 
very different amino acids, whereas lysine shows an electrically charged side chain, while 
phenylalanine exhibits a hydrophobic side chain. These correspondingRasGRF1 amino 
acids were then considered for the next steps of the analysis. 
 
Table 7.2. Correspondences of Sos hot spot residues identified through biological assays [92] and 
computational alanine scanning to RasGRF1 amino acids highlighted by performing protein structures 
alignment 

Sos aa Corresponding RasGRF1 aa 

Phe929 Tyr1178 

Thr935 Thr1184 

Lys939 Phe1188 

Glu942 Glu1191 

Asn944 Thr1193 
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7.2.2 MD simulations of Ras-Sos complex 
 
The first step of the work was a molecular dynamics simulation of Ras-Sos 

complex. For this purpose, PDB 1XD2 was chosen and the simulation was run for a short 
time of 50 ns to observe and identify the most stable interactions and investigate the 
importance of the computationally predicted hot spots not reported in the literature, i.e. 
Glu942 and Asn944. The stability of the system was monitored during the entire 
trajectory, thus registering the RMSD plot depicted in Plot 7.1 and the average energy 
values reported in table 7.3. 

 
Plot 7.1. RMSD plot of MD simulation performed on Ras-Sos complex (PDB 1XD2) 
 
Table 7.3. Energy values monitored during the MD simulation performed on Ras-Sos complex 

 Average Std Dev Slope (ps-1) 
Total energy (kcal/mol) -245540.879 202.747 -0.003 

Potential energy (kcal/mol) -304042.948 157.237 -0.003 

 
Then, the MD frames were clustered and only the frames representative of the 

most abundant clusters were considered for further analysis, i.e. frame 780 (15 frames), 
frame 820 (13 frames), frame 660 (12 frames) and frame 120 (11 frames). 

These four frames were analysed to identify the interactions between Ras and Sos 
proteins, that were further observed during the whole trajectory to investigate the related 
stability. Finally, table 7.4 shows the most stable interactions between the two proteins 
retrieved from MD analysis. Among the above mentioned five Sos hot spots shown in 
table 7.2, four of these residues established stable interactions with Ras during the 
simulation, i.e. Phe929, Thr935, Glu942 and Asn944. 
 
Table 7.4. Stable interactions between Ras and Sos protein retrieved from MD simulation 

Ras aa Sos aa Interaction type 
Tyr64 Phe929 Hydrophobic 
Gln61 Thr935 1 H-bond 
Ala59 Thr935 1 H-bond 
Ser17 Glu942 1 H-bond 
Ala18 Glu942 1 H-bond 
Tyr32 Asn944 2 H-bonds 
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7.2.3 MD simulations of Ras-RasGRF1 complex 
 
As previously described, the comparison between Sos interacting region and 

RasGRF1 Cdc25 domain highlighted five amino acids of RasGRF1 protein as putative 
key amino acids to be investigated, due to their correspondence to Sos hot spots positions. 
Therefore, in order to explore this insight, an MD simulation of Ras-RasGRF1 complex 
was performed by setting 500 ns as simulation time through Schrödinger suite [132]. The 
protein-protein complex was generated by using the previous aligned structures between 
PDBs 1XD2 and 2IJE. In this way, RasGRF1 interacting region (residues 1173 to 1203) 
was positioned within the binding pocket of Ras protein through performing a 
superimposition on Sos chain that was subsequently deleted. The complex was coarsely 
minimised and the MD was run. The output was analysed and the stability of the system 
was checked through the RMSD plots (plot 7.2) and the energy, temperature, pressure 
and volume values, that were monitored during the entire trajectories (average energy 
values in table 7.5).  
 

 
Plot 7.2. RMSD plot of MD simulation performed on Ras-RasGRF1 complex 
 
Table 7.5. Energy values monitored during the MD simulation of Ras-RasGRF1 complex 

 Average Std Dev Slope (ps-1) 
Total energy (kcal/mol) -104242.151 27.814 0.000 

Potential energy (kcal/mol) -129311.366 98.456 0.000 

 
The trajectory was clustered using “Desmond trajectory clustering” tool of 

Schrödinger suite by setting 10 clusters to be generated. Then only the MD frames 
representative for the most abundant clusters were considered for further analysis, that is 
frame 2800 (322 frames), frame 650 (54 frames), frame 1110 (57 frames), frame 3620 
(31 frames) and frame 40 (30 frames). The most stable interactions between Ras and 
RasGRF1 were observed and they are reported in table 7.6. As it can be observed, most 
of these interactions are similarly established between Ras and the corresponding Sos 
amino acids (refer to table 7.2) during the MD simulation. It provides interesting 
information to go forward with this work. 
 
Table 7.6. The most stable interactions between Ras and RasGRF1 highlighted from MD trajectory analysis 

Ras aa RasGRF1 aa Interaction type 
Ser17 Glu1191 1 H-bond 
Ala18 Glu1191 1 H-bond 
Tyr32 Gly1192 1 H-bond 
Ala59 Thr1184 1 H-bond 
Gln61 Tyr1178 1 H-bond 
Gln61 Thr1184 1 H-bond 
Tyr64 Tyr1178 Pi-Pi stacking 
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7.2.4 MD simulations of Ras-peptide RB3 complex 
 

After collecting information about interactions between Ras and its GEFs (Sos 
and RasGRF1) other MD simulations were performed to explore the binding mode and 
the established contacts between Ras and the patented peptide RB3.  

The core sequence of this peptide (without TAT portion) refers to RasGRF1 
residues from 1173 to 1203, that is PPCVPYLGMYLTDLVFIEEGTPNYTEDGLVN. 
Therefore, the complex Ras-RasGRF1 was used and all the residues not belonging to RB3 
sequence were deleted. Thus, this new complex Ras-peptide RB3 was processed by 
running two MD simulations of 500 ns each. The RMSD plots (plot 7.3A-B) were 
generated and even energy, temperature, pressure and volume were monitored during the 
trajectories (average energy values in table 7.7) to check the stability of the systems. 
 

 
(A)  

(B) 
Plot 7.3. RMSD plot of first (A) and second (B) MD simulations performed on Ras-peptide RB3 complex 
 
Table 7.7. Energy values monitored during the MD simulations of Ras-peptide RB3complex 

 First MD Second MD 
 Average Std Dev Slope (ps-1) Average Std Dev Slope (ps-1) 

Total energy (kcal/mol) -174665.918 157.936 0.000 -173436.77 105.470 0.000 
Potential energy (kcal/mol) -212782.659 119.298 0.000 -90540.589 80.692 0.000 

 
The RMSD plots revealed a certain instability of the systems, ranging from about 

2.7 to 6. On the contrary energy, temperature, pressure and volume exhibited stable 
values. Then, the MD frames of both simulations were grouped into ten clusters for each 
and the frames representative for the most abundant clusters were considered for further 
analysis, as follows: 

• First MD à frame 390 (114 frames), frame 2340 (160 frames), frame 1400 (69 
frames), frame 3590 (19 frames), frame 3720 (17 frames) and frame 4270 (117 
frames); 

• Second MD à frame 3610 (176 frames), frame 4800 (30 frames), frame 2660 (51 
frames), frame 620 (54 frames), frame 120 (22 frames), frame 1280 (135 frames) 
and frame 2240 (23 frames). 

 
The interactions were analysed and observed during both trajectories to retrieve the 

most frequent and stable ones and the results are reported in table 7.8. 
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Table 7.8. The most stable interactions between Ras and peptide RB3 highlighted from MD trajectories 
analysis 

First MD Second MD 
Ras aa RB3 aa Interaction type Ras aa RB3 aa Interaction type 
Tyr40 Asp1185 1 H-bond Tyr40 Asp1185 1 H-bond 
Tyr40 Phe1188 Pi-Pi stacking Tyr40 Phe1188 Pi-Pi stacking 
Tyr32 Gly1192 1 H-bond Glu31 Gly1192 1 H-bond 

Gln61 Tyr1182 1 H-bond Arg149 Glu1198 1 H-bond + 
1 salt bridge 

   Gln25 Gly1192 1 H-bond 

 
The two MD simulations shared only two interactions, i.e. one hydrogen bond 

between Tyr40 of Ras and Asp1185 of peptide RB3 and a pi-pi stacking between the 
aromatic ring of Tyr40 side chain of Ras and the other aromatic ring of Phe1188 side 
chain of peptide RB3. Furthermore, all the other interactions retrieved from the MD 
simulations were not very stable during the entire trajectories. Thus, by visually exploring 
both simulations an important behaviour of peptide RB3 α-helix appeared: a portion of 
the α-helix (from Met1181 to Thr1184) started to lose helicity propensity after about 50-
60 ns of simulation resulting in a misfolding behaviour. As a result, the two above 
mentioned most frequent and stable interactions shared by both simulations from MD 
analysis were involved into the folded region of the peptide, i.e. the residues from 
Asp1185 to Glu1191 not exhibiting the misfolding. Figure 7.9 illustrates the misfolding 
of RB3 α-helix after 50 ns of the first MD simulation. 
 

 
Figure 7.9. Frame from first MD simulation after 50 ns depicting peptide RB3 losing helicity propensity 
in the portion from Met1181 to Thr1184; the purple chain stands for Ras protein, while the pink chain is 
peptide RB3 
 

Therefore, a strategy to overcome this issue was implemented by applying the 
hydrogen-bond surrogate approach, that had already provided experimental evidence of 
success [93, 113–120]. Thus. the peptide RB3 was processed by modifying the structure. 
First, two portions of the peptide were deleted, i.e. the residues belonging to the two loops 
of the peptide, owed they showed to lack crucial interactions according to literature data 
(e.g. mutational studies [72, 92]) and the MD simulations of Ras-RasGRF1, as it can be 
seen from table 7.6. Thus, residues 1171 to 1177 and 1194 to 1203 were considered not 
important and deleted from the structure. Then, the analysis of the α-helix highlighted 
that Tyr1178, the first amino implicated into the helix H-bonds ensemble, does not 
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establish a traditional hydrogen bond with the (i+4)th amino acid, while it forms a contact 
with the (i+3)th amino acid, by creating the so-called 310-helix [126]. 
 

Hence, an MD simulation of 500 ns was performed on Ras protein in complex 
with the peptide RB3 modified by deleting the two loops and creating a covalent C-C 
bond between the carbonyl oxygen of Tyr1178 backbone and the amine hydrogen of 
Met1181 backbone, hereafter termed peptide 310-HBS RB3 (figure 7.10).  
 

 
Figure 7.10. Peptide 310-HBS RB3 including a covalent C-C bond (green bond) between the carbonyl 
oxygen of Tyr1178 backbone and the amine hydrogen of Met1181 backbone 
 

The analysis of output revealed a stable trend for the α-helicity issue of the 
peptide, that held its folded conformation. Even the RMSD plot (plot 7.4) showed certain 
stability of the system, whereas only the first portion (until about 120 ns of the simulation) 
was not so stable, thus it was not considered for the analysis. On the other hand, the 
second part of the plot showed a stable trend, so those frames were analysed to retrieve 
information about the most stable interactions. Then, energy, temperature, pressure and 
volume of the system were monitored during the whole trajectory (average energy values 
in table 7.9). 

 
Plot 7.4. RMSD plot of MD simulation on Ras protein in complex with peptide 310-HBS RB3 
 
Table 7.9. Energy values monitored during the MD simulation of Ras in complex with peptide 310-HBS 
RB3 

 Average Std Dev Slope (ps-1) 
Total energy (kcal/mol) -62709.783 97.463 0.000 

Potential energy (kcal/mol) -77348.359 74.132 0.000 

 
The MD frames were then grouped into ten clusters, where the frames 

representative for the most abundant clusters are the following ones: frame 4560 (107 
frames), frame 3790 (33 frames), frame 3110 (199 frames), frame 3460 (35 frames), 
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frame 380 (73 frames) and frame 1170 (30 frames). The interactions of these frames were 
observed and collected into table 7.10 to identify the most stable and frequent contacts 
between Ras protein and peptide 310-HBS RB3. 
 
Table 7.10. The most stable interactions between Ras and peptide 310-HBS RB3 highlighted from MD 
trajectory analysis 

Ras aa Peptide 310-HBS RB3 aa Interaction type 
Gln61 Gly1180 1 H-bond 
Gln61 Thr1184 1 H-bond 
Ala59 Thr1184 1 H-bond 
Tyr40 Asp1185 1 H-bond 
Tyr40 Phe1188 Pi-Pi stacking 
Tyr32 Glu1191 1 H-bond 
Tyr32 Thr1193 1 H-bond 
Tyr32 Gly1192 1 H-bond 
Ser17 Glu1191 1 H-bond 

 
This new designed peptide RB3 showed to establish some of the key interactions 

identified from the previous MD simulation between Ras and RasGRF1 proteins (table 
7.6) and other contacts with Ras amino acids highlighted as key residues from mutational 
studies [92], showing the potential for binding Ras protein. 

Finally, MM-GBSA calculations were performed to get the ΔGbinding of the 
complex Ras- peptide 310-HBS RB3 that was measured by -79.6995 kcal/mol. In this way, 
this value was used as a reference for the peptide optimisation process, as it will be 
described in the next sections.  
 
 

7.2.5 Computational residue scanning of the peptide 310-HBS RB3 and MD 
simulations of point-mutated peptides 

 
In order to optimise the structure of the peptide 310-HBS RB3, a computational 

residue scanning was performed on the amino acids composing the peptide by using the 
“Residue scanning” tool of Bioluminate [133]. The aim was to identify the most 
promising mutations in terms of ΔΔGaffinity and ΔΔGstability. For this purpose, only 
mutations reporting both ΔΔGaffinity and ΔΔGstability values below -3 kcal/mol were 
considered according to Beard et al. work [133]. Table 7.11 reports sixteen identified 
mutations to be considered for the next steps of this work. 
 
Table 7.11. Computational residue scanning results on the peptide 310-HBS RB3 highlighting sixteen 
promising mutations 

Peptide 310-HBS RB3 aa Mutation ΔΔGaffinity ΔΔGstability 

Thr1184 
Arg -19.17 -3.67 

Met -8.17 -3.18 

Asp1185 

Trp -12.56 -7.64 

Tyr -9.19 -3.49 

Phe -8.26 -4.26 

Leu -7.77 -12.61 

Phe1188 Arg -9.55 -4.12 
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Phe1188 His -8.25 -8.75 

Ile1189 Met -3.59 -4.08 

Glu1190 His -3.29 -4.13 

Glu1191 

Ile -6.97 -4.68 

Leu -5.16 -3.79 

Val -4.71 -4.08 

Thr -4.32 -4.27 

Thr1193 
Arg -3.85 -5.84 

Gln -3.56 -5.86 

These sixteen mutations were used to create as many point-mutated peptides 
complexed with Ras protein that underwent MD simulations. The trajectory time was set 
100 ns per each system, since this timeframe was considered suitable to detect potential 
misfolding of the peptides. Indeed, the previously described MD simulations on the wild-
type peptide RB3 exhibited misfolded conformation by losing α-helicity after about 50-
60 ns of simulation. All the point-mutated peptides were able to keep the helical 
conformation, thus MM-GBSA calculations were computed and the related ΔGbinding 
values are reported below in table 7.12. The stability of the systems was investigated by 
analysing the RMSD plots per each complex, resulting in suitable stationary shape for 
each system. However, the plots are not reported herein for spatial needs. Furthermore, 
energy, temperature, pressure and volume were ensured to be stable during the whole 
trajectories. 
 
Table 7.12. MM-GBSA calculation results based on MD simulations of sixteen point-mutated peptides 310-
HBS RB3 in complex with Ras protein 

 First Peptide Second Peptide Third Peptide 
Point mutation T1184R T1184M D1185W 
ΔGbinding average -89.5064 kcal/mol -92.7657 kcal/mol -103.5006 kcal/mol 
ΔGbinding Std. Dev. 12.50 15.53 8.90 
ΔGbinding range -128.5163 to -55.496 kcal/mol -134.2373 to -39.5118 kcal/mol -126.2946 to -73.3538 kcal/mol 
 Fourth Peptide Fifth Peptide Sixth Peptide 
Point mutation D1185Y D1185F D1185L 
ΔGbinding average -102.5021 kcal/mol -94.8370 kcal/mol -82.0725 kcal/mol 
ΔGbinding Std. Dev. 22.23 8.34 9.26 
ΔGbinding range -145.438 to -40.6732 kcal/mol -120.1250 to -52.3853 kcal/mol -109.1876 to -32.6282 kcal/mol 
 Seventh Peptide Eighth Peptide Ninth Peptide 
Point mutation F1188R F1188H I1189M 
ΔGbinding average -87.4886 kcal/mol -69.5804 kcal/mol -83.1178 kcal/mol 
ΔGbinding Std. Dev. 11.60 15.23 10.89 
ΔGbinding range -120.3205 to -57.755 kcal/mol -111.448 to -24.9385 kcal/mol -122.6298 to -44.9273 kcal/mol 
 Tenth Peptide Eleventh Peptide Twelfth Peptide 
Point mutation E1190H E1191I E1191L 
ΔGbinding average -73.3614 kcal/mol -78.6476 kcal/mol -95.1115 kcal/mol 
ΔGbinding Std. Dev. 12.64 11.67 12.89 
ΔGbinding range -110.7906 to -39.815 kcal/mol -115.3326 to -43.7585 kcal/mol -140.5009 to -49.6646 kcal/mol 
 Thirteenth Peptide Fourteenth Peptide Fifteenth Peptide 
Point mutation E1191V E1191T T1193R 
ΔGbinding average -94.4207 kcal/mol -84.5016 kcal /mol -90.1769 kcal/mol 
ΔGbinding Std. Dev. 10.69 12.71 10.85 
ΔGbinding range -121.235 to -58.7509 kcal/mol -116.5146 to -47.4814 kcal/mol -119.8724 to -59.7230 kcal/mol 
 Sixteenth Peptide   
Point mutation T1193N   
ΔGbinding average -97.1463 kcal/mol   
ΔGbinding Std. Dev. 11.88   
ΔGbinding range -127.145 to -53.4326 kcal/mol   
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As previously mentioned, the ΔGbinding of the complex between Ras and the wild-

type peptide 310-HBS RB3 (-79.6995 kcal/mol) was used as a reference to select the most 
promising mutations associated to ΔGbinding values lower than the reference one. In the 
light of the above, from MM-GBSA results (reported in table 7.12) only three mutated 
peptides showed higher ΔGbinding values. Hence, the related mutations (F1188H, E1190H 
and E1191I) were neglected. On the contrary, the other thirteen mutations were 
considered for creating combinatorial peptides, as described in the next section. 
 
 

7.2.6 Combinatorial peptides 310-HBS RB3 creation and MD simulations 
 

The most promising mutations on peptide 310-HBS RB3 were combined each 
other to get overall 48 mutated peptides as below listed in table 7.13. 
 
Table 7.13. Combinatorial peptides designed based on computational alanine scanning performed on 
peptide 310-HBS RB3 

Combinatorial peptides 
1. YLGMYLRWLVRMELGR 
2. YLGMYLMWLVRMELGR 
3. YLGMYLRYLVRMELGR 
4. YLGMYLMYLVRMELGR 
5. YLGMYLRFLVRMELGR 
6. YLGMYLMFLVRMELGR 
7. YLGMYLRLLVRMELGR 
8. YLGMYLMLLVRMELGR 
9. YLGMYLRWLVRMEVGR 
10. YLGMYLRYLVRMEVGR 
11. YLGMYLRFLVRMEVGR 
12. YLGMYLRLLVRMEVGR 
13. YLGMYLMWLVRMEVGR 
14. YLGMYLMYLVRMEVGR 
15. YLGMYLMFLVRMEVGR 
16. YLGMYLMLLVRMEVGR 
17. YLGMYLRWLVRMETGR 
18. YLGMYLRYLVRMETGR 
19. YLGMYLRFLVRMETGR 
20. YLGMYLRLLVRMETGR 
21. YLGMYLMWLVRMETGR 
22. YLGMYLMYLVRMETGR 
23. YLGMYLMFLVRMETGR 
24. YLGMYLMLLVRMETGR 

25. YLGMYLRWLVRMELGN 
26. YLGMYLMWLVRMELGN 
27. YLGMYLRYLVRMELGN 
28. YLGMYLMYLVRMELGN 
29. YLGMYLRFLVRMELGN 
30. YLGMYLMFLVRMELGN 
31. YLGMYLRLLVRMELGN 
32. YLGMYLMLLVRMELGN 
33. YLGMYLRWLVRMEVGN 
34. YLGMYLRYLVRMEVGN 
35. YLGMYLRFLVRMEVGN 
36. YLGMYLRLLVRMEVGN 
37. YLGMYLMWLVRMEVGN 
38. YLGMYLMYLVRMEVGN 
39. YLGMYLMFLVRMEVGN 
40. YLGMYLMLLVRMEVGN 
41. YLGMYLRWLVRMETGN 
42. YLGMYLRYLVRMETGN 
43. YLGMYLRFLVRMETGN 
44. YLGMYLRLLVRMETGN 
45. YLGMYLMWLVRMETGN 
46. YLGMYLMYLVRMETGN 
47. YLGMYLMFLVRMETGN 
48. YLGMYLMLLVRMETGN 

 
The resulting peptides were complexed with Ras protein and the systems were 

processed by running MD simulations of 100 ns each to investigate helix conformational 
stability. All the trajectories were then observed by generating RMSD plots and energy, 
temperature, pressure and volume were monitored to ensure the outputs reliability. The 
related data are not reported herein for spatial needs. Finally, MM-GBSA calculations of 
the MD simulations were computed. Thus, all those combinatorial peptides not 
responding to the following criteria were neglected: 1) ΔGbinding value higher than the 
reference one (-79.6995 kcal/mol), and 2) loses of helical conformation. Finally, overall 
eighteen combinatorial peptides resulted in promising ΔGbinding values and exhibited 
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helicity. Table 7.14 reports the MM-GBSA results of the most promising combinatorial 
peptides. Hence, they were considered to be processed through biological assays. 
 
Table 7.14. MM-GBSA calculation results based on MD simulations of 310-HBS combinatorial peptides 
not misfolded during the simulations in complex with Ras protein and with ΔGbinding values lower than the 
reference one (-79.6995 kcal/mol) 

 First Peptide Third Peptide Eleventh Peptide 
Peptide sequence YLGMYLRWLVRMELGR YLGMYLRYLVRMELGR YLGMYLRFLVRMEVGR 
ΔGbinding average -83.4644 kcal/mol -96.8031 kcal/mol -91.3915 kcal/mol 
ΔGbinding Std. Dev. 9.00 9.84 11.55 
ΔGbinding range -117.5361 to -55.065 kcal/mol -123.0108 to -52.3826 kcal/mol -119.6650 to -61.3426 kcal/mol 
 Twelfth Peptide Fifteenth Peptide Sixteenth Peptide 
Peptide sequence YLGMYLRLLVRMEVGR YLGMYLMFLVRMEVGR YLGMYLMLLVRMEVGR 
ΔGbinding average -92.4942 kcal/mol -79.7912 kcal/mol -92.5403 kcal/mol 
ΔGbinding Std. Dev. 10.15 14.46 7.93 
ΔGbinding range -129.871 to -56.4907 kcal/mol -112.9407 to -41.4205 kcal/mol -116.2758 to -65.178 kcal/mol 
 Eighteenth Peptide Nineteenth Peptide Twentieth Peptide 
Peptide sequence YLGMYLRYLVRMETGR YLGMYLRFLVRMETGR YLGMYLRLLVRMETGR 
ΔGbinding average -100.3350 kcal/mol -102.6262 kcal/mol -88.7131 kcal/mol 
ΔGbinding Std. Dev. 14.21 11.01 13.50 
ΔGbinding range -137.525 to -65.4195 kcal/mol -130.8724 to -62.6852 kcal/mol -125.0219 to -50.9362 kcal/mol 
 Twenty-third Peptide Twenty-fourth Peptide Twenty-fifth Peptide 
Peptide sequence YLGMYLMFLVRMETGR YLGMYLMLLVRMETGR YLGMYLRWLVRMELGN 
ΔGbinding average -85.5260 kcal/mol -82.3122 kcal/mol -97.2416 kcal /mol 
ΔGbinding Std. Dev. 11.35 10.37 14.17 
ΔGbinding range -117.7259 to -42.841 kcal/mol -116.0259 to -40.5661 kcal/mol -133.3342 to -60.1542 kcal/mol 
 Twenty-ninth Peptide Forty-second Peptide Forty-third Peptide 
Peptide sequence YLGMYLRFLVRMELGN YLGMYLRYLVRMETGN YLGMYLRFLVRMETGN 
ΔGbinding average -86.5622 kcal/mol -89.5885 kcal/mol -123.4975 kcal/mol 
ΔGbinding Std. Dev. 11.67 10.32 20.97 
ΔGbinding range -124.698 to -56.4707 kcal/mol -128.7509 to -60.0016 kcal/mol -161.4939 to -75.9053 kcal/mol 
 Forty-fourth Peptide Forty-fifth Peptide Forty-eighth Peptide 
Peptide sequence YLGMYLRLLVRMETGN YLGMYLMWLVRMETGN YLGMYLMLLVRMETGN 
ΔGbinding average -96.3137 kcal/mol -86.0366 kcal/mol -91.7996 kcal/mol 
ΔGbinding Std. Dev. 17.98 13.60 9.51 
ΔGbinding range -137.9689 to -57.812 kcal/mol -124.0792 to -53.760 kcal mol -122.7787 to -60.8432 kcal/mol 

 
 

7.3 Methods 
 
 

7.3.1 Protein preparation 
 

The 3D structures of Ras-Sos complex (PDB IDs: 1XD2, 1BKD, 1NVW, 1NVV, 
1NVU and 1NVX) and RasGRF1 protein (PDB ID: 2IJE) were downloaded from Protein 
Data Bank [134] and imported in Schrödinger suite to optimise the structure by using 
“Protein preparation” tool [135]. The bond orders for untemplated residues were assigned 
by using known HET groups based on their SMILES strings in Chemical Component 
Dictionary. Hydrogens were added to the structure, eventual bonds to metals were broken, 
zero-order bonds between metals and nearby atoms were added and formal charges to 
metals and neighbouring atoms were corrected. Disulfide bonds between two sulfurs, if 
they were close to each other, were created and water molecules beyond 5.0 Å from any 
of the HET groups, including ions, were deleted. Then, protonation and metal charge 
states for the ligands, cofactors and metals were generated [136, 137]. Finally, PROPKA 
[137] was run under pH 7.0 to optimise hydroxyl, Asn, Gln and His states using 
ProtAssign. 
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7.3.2 MD simulations of Ras protein in complex with Sos, RasGRF1, peptide 
RB3 and the designed 310-HBS peptides  

 
In this work overall sixty-nine MD simulations were performed, as follows: one 

MD simulation of 500 ns for Ras-Sos complex, one MD simulation of 500 ns for Ras-
RasGRF1 complex, two MD simulations of 500 ns for Ras in complex with the wild-type 
peptide RB3, one MD simulation of 500 ns for Ras in complex with the peptide 310-HBS 
RB3, sixteen MD simulations of 100 ns for Ras complexed with the point-mutated 310-
HBS peptides and forty-eight MD simulations of 100 ns for Ras in complex with the 
combinatorial 310-HBS peptides. 

All of them were run by applying the same MD settings. The systems were created 
using the “System builder” tool of Schrödinger suite. TIP3P was selected as a solvent 
model and the chosen box shape was orthorhombic. The selected force field was OPLS3 
[138]. The selected box size calculation method was buffer, the box side distances were 
set 10 Å and the system was neutralized by adding Na+ ions. The outputs were further 
processed by performing MD simulations choosing the simulation time as above reported. 
The number of atoms, the pressure and the temperature were maintained constant for the 
entire trajectories. Pressure and temperature were set 1.01325 bar and 300 K, respectively. 
Finally, the systems were relaxed before starting the simulation. 
 
 

7.3.3 MD frames clustering 
 

In order to retrieve the key contacts between the protein partners during the entire 
simulations, for each above described MD simulation the frames were clustered to 
identify the most representative cluster centroids for the MD to be analysed. Therefore, 
“Desmond trajectory clustering” tool by Schrödinger was used. For the RMSD matrix 
calculation the protein backbone was used, the frequency of frames analysis was set 10 
and the hierarchical cluster linkage method as average. Finally, for each MD trajectory 
ten clusters were generated. 
 
 

7.3.4 Computational residue scanning of peptide 310-HBS RB3 in complex 
with Ras 

 
The peptide 310-HBS RB3 in complex with Ras (PDB ID: 1XD2) was used to 

perform a computational residue scanning by using the “Residue Scanning” tool of 
Schrödinger suite to perform point mutations on the peptide residues. The stability and 
affinity were computed for each of these mutations and the resulting structures were 
refined by selecting side-chain prediction with backbone minimization. 
 
 

7.3.5 MM-GBSA calculations of all the complexes used to perform MD 
 

The MD outputs of Ras protein in complex with the peptide 310-HBS RB3, the 
point-mutated peptides and the combinatorial peptides were used to compute MM-GBSA 
calculations through the terminal. For this purpose, the Python script 
“thermal_mmgbsa.py” was used. 
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Overall thirty-five MM-GBSA calculations were performed and data are reported 
in the above “Results and discussion” section. 
 
 

7.4 Conclusions 
 

The workflow above reported describes the optimisation process of the patented 
peptide RB3 [112]. This peptide has been reported blocking the Ras-ERK signalling 
pathway by targeting the interaction between Ras protein and guanine nucleotide 
exchange factors [104]. The computational workflow was performed at the School of 
pharmacy and pharmaceutical sciences of Cardiff University (UK) under the supervision 
of Professor Andrea Brancale. The applied approaches allowed to identify eighteen 
peptides based on the peptide RB3 structure, including amino acids mutations and an 
artificial construct, the hydrogen bond surrogate, to stabilise the helical conformation of 
the peptides. These molecules will be synthesised and assayed by performing the same 
tests that allowed to identify the peptide RB3 at Cardiff University, i.e. the 
phosphorylation rate of ERK and two well-characterised ERK substrates, (Ser10)-
acetylated (Lys14) histone H3 and S6 ribosomal protein [109–111], will be measured. 

The results of the biological screening will provide crucial information about the 
potential of these designed peptides in inhibiting Ras activation, thus preventing 
molecular effects and drug-seeking behaviours associated with cocaine abuse. 

Finally, this work has been considering for a research article that soon will be sent 
to a scientific peer-reviewed journal. 
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CHAPTER EIGHT 
 

Conclusions 
 

 
In the past decades, targeting protein-protein interactions (PPI) was considered a 

hardly challenging strategy for a drug discovery programme. Thus PPIs were often 
assumed as undruggable targets [1,2] because of hard problems associated with them, 
such as the lack of well-defined and deep pockets [3,4], shallow and flat interfaces, 
discontinuous interacting epitopes dislocated over the protein surfaces [5] and too wide 
binding regions (1200-2000 Å2) [6]. 

Nonetheless, in recent years the Medicinal Chemistry frontiers have been 
changing and PPIs have gained popularity amongst the scientific community due to their 
key roles in such a huge number of diseases associated with protein-protein deregulations, 
in a wide range of medical areas, such as oncology [7–11], cancer immunotherapy [12], 
tropical infectious diseases [13], neurological disorders [14], heart failure [15], 
inflammation and oxidative stress [16].  

It is believed that the overall biological complexity in higher organisms, especially 
in humans, is due not only to a relatively greater number of genes but particularly because 
human proteins generate more intricate protein networks [17,18]. Indeed, about 650,000 
PPIs have been identified within the human organism [19,20], whereas only 20,000 
protein genes code them [16]. A single organism may include more than one interactome 
representing different tissue types, biological states, etc. Thanks to recent advances in the 
field of genomics and proteomics and the development of large-scale high-throughput 
experiments, some of these networks have been discovered and characterised, resulting 
in the production of a large volume of data which has aided in the uncovering of PPIs 
[21]. The complete elucidation of all interaction networks within the cell may improve 
our understanding of numerous diseases, providing key information for the development 
of novel therapeutics with significant implications for science [22]. Furthermore, 
conserved protein interactomes across organisms have meant important findings 
associated with their evolutionary relationships, providing insights into their previously 
unknown dependencies. Therefore, the elucidation of PPIs especially within the 
interaction networks is a hot point in biological research, and it may lead to enhanced 
approaches for drug discovery [23,24]. 

Until recently, PPIs were determined by experimental evidence through 
techniques specifically developed to target a small group of interactions. However, recent 
genomic techniques have allowed to carry out high-throughput experiments, which to 
date may exhaustively explore all possible interactions of an entire genome. The model 
organism of election used for functional proteomics characterisation is the 
Saccharomyces cerevisiae, also referred to as baker’s yeast, whose genomic sequence 
was totally elucidated in 1996 [25]. This discovery has allowed determining whole PPI 
maps applying several methods including yeast two-hybrid [26,27], such as affinity 
purification/mass spectrometric identification methods an others [28–31], and indirect 
large-scale approaches, like synthetic lethal analysis [32] and correlated mRNA 
expression profile [33]. 

However, these methods present several limitations in terms of high costs and 
labour- and time-wasting. Moreover, when comparing data generated from different 
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small- or large-scale studies, such as high-confidence experiments or high-throughput 
studies, significant interstudy discrepancies have been detected [23,34]. Furthermore, the 
data from biological experiments often may include false positives, where proteins are 
shown erroneously or not correctly correlated with each other [23,34]. Therefore, further 
confirmations of the interactions are often useful in applying other methods.  

A large number of computational methods have been successfully applied to 
evaluate, validate, and deeply analyse the experimentally determined protein 
interactomes. In this context, a high number of computational tools and techniques have 
been developed, such as methods developed to construct interaction databases, automated 
data mining techniques to extract relevant information about potential interactions from 
PPI databases [23], quantum mechanics and molecular mechanics (QM/MM) to study the 
electronic properties, simulate chemical reactions, and calculate spectra [35–37], and all-
atom, united-atom and coarse-grained MD simulations [38–43] including 
explicit/implicit solvent models to simulate temporal and spatial scales of inter- and 
intramolecular interactions [44–46]. These techniques have allowed to explore protein 
interaction networks and the related functional features and predict novel PPIs by learning 
from known interactions [21]. 
 
 This PhD thesis has reported the use of some computational techniques as 
valuable tools to explore protein-protein interfaces, identifying their hot spot residues, 
selecting small molecules and designing peptides with the aim of inhibiting the studied 
PPIs. 
 Indeed, a success story of In Silico approaches to PPI study has been reported in 
Chapter 2, where MD simulations, docking and pharmacophore screenings led to the 
identification of a set of PPI modulators. Among these, two molecules, RIM430 and 
RIM442, registered good inhibitory activity with IC50 values even within the nanomolar 
range against the interaction between MUC1 and CIN85 proteins in cancer disease. 

Chapter 3 describes how the computational techniques herein used are crucial for 
the generation and rationalisation of three interaction models of NLRP3PYD-ASCPYD 
complex, a host-guest system not available as solved structure and otherwise not 
accessible for drug design [47]. Based on these protein-protein models it was possible to 
identify and select potential inhibitors of the analysed PPI involved in inflammatory 
diseases. 
 Chapter 4 reports a study where computational tools allowed to identify a 
potentially druggable region on the surface of SARS-CoV-2 Spike protein, the N-terminal 
portion, registering the highest number of calculated hot spots compared to the other 
interacting regions over the protein surface, and highlighting a small binding pocket able 
to accommodate functional groups of the ligands. Therefore, based on these insights it 
was possible to identify potential inhibitors of the interaction between Spike protein and 
the host ACE2 receptor that will be assayed in the cellular environment. 
 In Chapter 5, MD simulations were exploited to investigate intramolecular 
modifications as a consequence of a point mutation on C3b protein (R102G), by exploring 
variations in the stability of the key interactions between C3b and FH protein in patients 
affected by AMD disease. 
 Finally, Chapter 6 and 7 describe two similar computational methodologies, based 
essentially on computational alanine scanning and MD simulations, to design peptides. 
For HOX-PBX complex non-standard amino acids were employed to optimise a patented 
peptide structure by including non-natural amino acids potentially able to inhibit HOX-
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PBX cooperative binding to DNA against several forms of cancer. For Ras-RasGRF1 
complex, the computational techniques shed light on a group of designed helix-shaped 
peptides embedded with the hydrogen bond surrogate approach between the amino acid 
i and the amino acid i+3 for targeting and inhibiting the studied PPI to tackle cocaine 
abuse relapses.  
 Although all the herein exploited techniques are based on predictive calculations 
and need experimental evidence to confirm the findings, the results and molecular 
insights retrieved and collected show the potential of this field of applications in 
Medicinal Chemistry, guaranteeing labour- and time-saving to the research groups. On 
the other hand, computing ability, improved algorithms and fast-growing data sets are 
rapidly fostering advances in multiscale molecular modelling, providing a powerful 
emerging paradigm for drug discovery. It means that more and more research efforts will 
be done to invest in novel and more precise computational techniques and fine-tune the 
currently employed methodologies [46]. 
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ABSTRACT 
 

Molecular Dynamics (MD) has become increasingly popular due to the 
development of hardware and software solutions and improvement in algorithms, that 
allowed researchers to scale up calculations in order to speed up them. MD simulations 
are usually used to address protein folding issues or protein-ligand complex stability 
through energy profile analysis over time. In recent years, the development of new tools 
able to deeply explore Potential Energy Surface (PES) allowed researchers to focus on 
the dynamic nature of binding recognition process and binding-induced protein 
conformational change. Moreover, modern approaches have demonstrated to be 
effective and reliable in calculating some kinetic and thermodynamic parameters behind 
the host-guest recognition process. Starting from all of these considerations, several 
efforts have been made in order to integrate MD within the virtual screening process in 
drug discovery. Knowledge retrieved from MD can be, in fact, exploited as a starting 
point to build pharmacophores or docking constraints in the early stage of the screening 
campaign as well as to define key features, in order to unravel hidden binding modes 
and help the optimisation of the molecular structure of a lead compound. Based on these 
outcomes, researchers are nowadays using MD as an invaluable tool to discover and 
target previously considered undruggable binding sites, including protein-protein 
interactions and allosteric sites on protein surface. As a matter of fact, the use of MD 
has been recognised as vital in the discovery of selective protein-protein interaction 
modulators. The use of a dynamic overview on how the host-guest recognition occurs 
and of the relative conformational modifications induced, allow researchers to optimise 
small molecules and small peptides capable to tightly interact within the cleft between 
the two proteins. 

In this review we point to present the most recent applications of MD as 
integrated tool to be used in the rational design of small molecules or small peptides 
able to modulate undruggable targets, such as allosteric sites and protein-protein 
interactions. 
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ABSTRACT 
 

NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) 
activation has been linked to several chronic pathologies, including atherosclerosis, 
type-II diabetes, fibrosis, rheumatoid arthritis, and Alzheimer’s disease. Therefore, 
NLRP3 represents an appealing target for the development of innovative therapeutic 
approaches. A few companies are currently working on the discovery of selective 
modulators of NLRP3 inflammasome. Unfortunately, limited structural data are 
available for this target. To date, MCC950 represents one of the most promising 
noncovalent NLRP3 inhibitors. Recently, a possible region for the binding of MCC950 
to the NLRP3 protein was described but no details were disclosed regarding the key 
interactions. In this communication, we present an in silico multiple approach as an 
insight useful for the design of novel NLRP3 inhibitors. In detail, combining different 
computational techniques, we propose consensus-retrieved protein residues that seem to 
be essential for the binding process and for the stabilization of the protein–ligand 
complex. 
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ABSTRACT 
 

Coronavirus Disease 2019 (COVID-19) has spread out as a pandemic threat 
affecting over 2 million people. The infectious process initiates via binding of SARS-
CoV-2 Spike (S) glycoprotein to host Angiotensin-converting enzyme 2 (ACE2). The 
interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, 
promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus 
representing a promising target for therapeutic intervention. Herein, we present a 
computational study aimed at identifying small molecules potentially able to target 
RBD. Although targeting PPI remains a challenge in drug discovery, our investigation 
highlights that interaction between SARS-CoV-2 RBD and ACE2 PD might be prone to 
small molecule modulation, due to the hydrophilic nature of the bi-molecular 
recognition process and the presence of druggable hot spots. The fundamental objective 
is to identify, and provide to the international scientific community, hit molecules 
potentially suitable to enter the drug discovery process, preclinical validation and 
development. 
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ABSTRACT 
 

The Polycomb Repressive complex 2 (PRC2) maintains a repressive chromatin 
state and silences many genes, acting as methylase on histone tails. This enzyme was 
found overexpressed in many types of cancer. In this work, we have set up a Computer-
Aided Drug Design approach based on the allosteric modulation of PRC2. In order to 
minimize the possible bias derived from using a single set of coordinates within the 
protein-ligand complex, a dynamic workflow was developed. In details, molecular 
dynamic was used as tool to identify the most significant ligand-protein interactions 
from several crystallized protein structures. The identified features were used for the 
creation of dynamic pharmacophore models and docking grid constraints for the design 
of new PRC2 allosteric modulators. Our protocol was retrospectively validated using a 
dataset of active and inactive compounds, and the results were compared to the classic 
approaches, through ROC curves and enrichment factor. Our approach suggested some 
important interaction features to be adopted for virtual screening performance 
improvement. 
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ABSTRACT 
 

To date, SARS-CoV-2 infectious disease, named COVID-19 by the World 
Health Organization (WHO) in February 2020, has caused millions of infections and 
hundreds of thousands of deaths. Despite the scientific community efforts, there are 
currently no approved therapies for treating this coronavirus infection. The process of 
new drug development is expensive and time-consuming, so that drug repurposing may 
be the ideal solution to fight the pandemic. In this paper, we selected the proteins 
encoded by SARS-CoV-2 and using homology modeling we identified the high-quality 
model of proteins. A structure-based pharmacophore modeling study was performed to 
identify the pharmacophore features for each target. The pharmacophore models were 
then used to perform a virtual screening against the DrugBank library (investigational, 
approved and experimental drugs). Potential inhibitors were identified for each target 
using XP docking and induced fit docking. MM-GBSA was also performed to better 
prioritize potential inhibitors. This study will provide new important comprehension of 
the crucial binding hot spots usable for further studies on COVID-19. Our results can be 
used to guide supervised virtual screening of large commercially available libraries. 
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