Abstract—The aim of this work is the characterization of a dynamic wireless charging system low power prototype and the validation of a simplified mathematical model of the employed double D coils. The difference between a single receiver and a dual receiver system is also shown, highlighting how the last one can significantly reduce the costs of the charging infrastructure.

Keywords—wireless charging, inductive power transfer, dynamic charging.

I. INTRODUCTION

The development of the Electrical Vehicles (EVs) can give a strong contribution to the reduction of the global CO₂ emissions but it is slower than it should be for a profitable effect. The answer can be found in the lack of charging infrastructures in several countries and in the so-called range-anxiety developed by consumers. As a matter of fact, EVs should have higher powerful battery packs in order to be competitive with the traditional internal combustion engine vehicles in terms of autonomy but it obviously implies higher costs for the EVs.

Wireless systems based on the Inductive Power Transfer (IPT) can be a suitable solution [1]. They are based on the inductive coupling between two coils, one connected to the main grid, conventionally named as primary side and the other one mounted on the chassis of the EV (secondary side) [2]. In order to maximize the power transfer, a compensation network, typically a bench of capacitors, is connected to each side coil. Different compensation configurations are possible, as shown in [3]. The primary side is connected to the grid through a power converter able to deliver an alternate voltage guaranteeing the resonance between the coil and the compensation net. At the secondary side, a rectified is interposed between the receiver and the load represented by the battery pack [4].

This structure can be employed for both static and dynamic applications. Static wireless charging represents an advantage in terms of facilities and safety for the user thanks to the lack of physical connections and cables [5]. The dynamic one, for which the primary side is composed by more transmitters distributed on the road, enables the battery charging during the ordinary running of the vehicle. For this reason, it could be also a way to reduce the size of storage system and the total cost of the vehicle, of which about 30% is represented by the cost of battery. Literature shows different wireless charging systems, characterized by different coil topologies, different converters and numerous control strategies used for different purposes [6-9]. Of course, the main purpose is the efficiency maximization [10-11].

For this reason, it is useful to have as accurate as possible models for a careful system design. The core of wireless transmission systems is the inductive coupling between the coils, for which many of the models are based on magnetostatic and magnetodynamic analyzes [12]. This kind of models often use finite element analysis, which even if it is extremely accurate and a valid method to well characterize the behavior of coils, the requirement of computational efforts is high. For this reason, in this paper a simplified mathematical model is presented and experimentally validated. Besides it also highlights how the use of a double receiver in a dynamic wireless charging system can reduce the cost of the entire charging infrastructure.

II. WIRELESS TRANSFER SYSTEM DESIGN

A. Inductive Coupling

The core of the IPT (Inductive Power Transfer) systems is the inductive coupling between the coils. Among the many typologies of antennas, Double-D (DD) coils are preferred for their reduced edge effects and for the high coupling effects for the same length of the material used if compared to other types such as planar circular ones [13].

The presented model is based on the principle of superposition for which the entire coil can be seen as a set of linear conductors. The geometrical construction of both transmitter and receiver coils is carried out, in Matlab environment, through the implementation of a matrix with dimensions (N+1×3), whose elements represent the extreme space coordinates of the N linear conductors composing the antenna, linked by a continuity constrain. In fig. 1, the geometric structure of two coupled DD coils is shown.

![Fig. 1: Geometric structure of the coupled DD coils](image-url)
В алгоритме, принимая во внимание $V_i(m)$, которое является потенциалом на середине i-го элемента, и $\Delta l_{ij} \cdot l_i \cdot \cos(\alpha)$, что является i-м элементом проекции на j-го. Угол α определяется через разницу между a_i и a_j, образованный i-м элементом и j-м элементом с общей направлением.

$$iV_{ii} = \frac{l}{4\pi} \left(2L_Arc \sinh \frac{L}{r} - 2\sqrt{l^2 + r^2 + 2r} \right) \tag{4}$$

$$iV_{ji} = \int \frac{L_i}{2} V_j \cdot dI_i \cong V_j(i_m) \Delta l_{ij} \tag{5}$$

Тогда, селективную индуктивность можно вычислить как в (6) при помощи матрицы iV размерностью $(i \times j)$, в которых элементы представляют собой вклады потенциальных векторов, действующие на каждый линейный провод.

$$L = \frac{\mu}{I} \sum_{I=1}^{N} iV_{i,j} \tag{6}$$

Значение рассчитанной селективной индуктивности для единичной DD катушек равно $5,68 \times 10^{-3}$ Гн, в то время как для серий DD катушек, использованных в качестве двойного приемника, оно равно $11,26 \times 10^{-3}$ Гн.

По всему сказанному выше, взаимная-индуктивность вычисляется через каждый вклад потенциала i-го элемента на одну из катушек и j-го элемента на другую катушку. В этом случае, после симуляции перемещения приемной антенны на передающей катушке, с использованием переменной Y-мисаля였, между катушками. Тенденции взаимной индуктивности для обоих одиночных приемников и двойного приемника приведены на рисунке 3.

![Fig. 2: Double receiver coil structure](image)

В табл.1 представлены геометрические характеристики катушек. Для двойного приемника катушка состоит из двух идентичных катушек, расположенных друг от друга на расстоянии 80 см, как показано на рис. 2.

<table>
<thead>
<tr>
<th>Transmitter/single receiver</th>
<th>Length</th>
<th>Dimensions</th>
<th>Wire Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double receiver</td>
<td>32,96 m</td>
<td>196 cm × 29 cm</td>
<td>2.5 mm²</td>
</tr>
</tbody>
</table>

Благодаря дискретизации DD катушки в конечное число проводников, становится возможным оценить каждый вклад потенциала, и затем вычислить селективную и взаимную индуктивность по принципу суперпозиции.

Флюс Φ связанный с системой может быть вычислен следующим образом:

$$\Phi(B) = \int_S \vec{B} \cdot dS = \mu \int_S \vec{H} \cdot dS \tag{1}$$

где B - магнитное поле, H - магнитное поле, μ - магнитная проницаемость и S - интегрирующая поверхность, затем применяя Stocks, (1) может быть переформулирован в:

$$\mu \int_S \vec{H} \cdot dS = \mu \int_S \vec{V} \cdot d\vec{r} \tag{2}$$

в котором l - контур поверхности и V - потенциал вектора. Каждый элемент катушки, имея длину L, радиус r и текущий ток I может быть рассмотрен независимо, и затем можно вычислить потенциал вектора в точке $P(x,y)$ следующим образом:

$$V(P) = \frac{l}{4\pi} \left(\text{Arc sinh} \frac{x + L}{y} - \text{Arc sinh} \frac{x - L}{y} \right) \tag{3}$$

Этот выражение должно быть интегрировано по всей катушке. Натурально, только те провода, для которых скалярный продукт между генерированным потенциалом и индуцированным элементом не равен нулю, могут взаимодействовать друг с другом.

Потенциальный вектор относится к середине i-го элемента и он вычисляется на поверхности в порядке, не участвующем в текущем распределении и в результате внутреннего потенциала вектора. Это выражение может быть сформулировано как в (4) и (5). Натурально, для оценки самопотенциала, точно формула (4) может быть применена, в то время как вычисление потенциала в результате действия j-го элемента на i-го элемента приближается, как показано в (5), в порядке упрощения алгоритма, принимая во внимание $V_i(m)$, который является потенциалом на середине i-го элемента, и $\Delta l_{ij} \cdot l_i \cdot \cos(\alpha)$, что является i-м элементом проекции на j-го. Угол α определяется через разницу между a_i и a_j, образованный i-м элементом и j-м элементом с общей направлением.

$$iV_{ii} = \frac{l}{4\pi} \left(2L_Arc \sinh \frac{L}{r} - 2\sqrt{l^2 + r^2 + 2r} \right) \tag{4}$$

$$iV_{ji} = \int \frac{L_i}{2} V_j \cdot dI_i \cong V_j(i_m) \Delta l_{ij} \tag{5}$$

Тогда, селективная индуктивность можно вычислить как в (6) при помощи матрицы iV размерностью $(i \times j)$, в которых элементы представляют собой вклады потенциальных векторов, действующие на каждый линейный провод.

$$L = \frac{\mu}{I} \sum_{I=1}^{N} iV_{i,j} \tag{6}$$

Значение рассчитанной селективной индуктивности для единичной DD катушки равно $5,68 \times 10^{-3}$ Гн, в то время как для серий DD катушек, использованных в качестве двойного приемника, оно равно $11,26 \times 10^{-3}$ Гн.

По всему сказанному выше, взаимная-индуктивность вычисляется через каждый вклад потенциала i-го элемента на одну из катушек и j-го элемента на другую катушку. В этом случае, после симуляции перемещения приемной антенны на передающей катушке, с использованием переменной Y-мисаля였, между катушками. Тенденции взаимной индуктивности для обоих одиночных приемников и двойного приемника приведены на рисунке 3.

![Fig. 3: Mutual inductance trend for single receiver (a) and double receiver (b) ![Fig. 3: Mutual inductance trend for single receiver (a) and double receiver (b)](image)
B. Compensation Networks and Power Converters

In order to maximize the power transfer, a compensation network is needed on both primary and secondary side and a Series Compensation is chosen in order to avoid the dependence of the resonant frequency with the mutual inductance which is variable. By choosing a resonant working frequency equal to 100 kHz, the compensation network is equal to 4.6×10^{-8} F for a single antenna.

At the primary side, by starting from a DC source, the alternate current at the resonant frequency is delivered to the dynamic inductive coupling equipped by the compensation network, previously described, thanks to an H-Bridge converter. At the secondary side, another H-bridge converter, employed as a diode rectifier, is interposed between the receiver system and the load, in this case equal to a 10 Ω resistance. The block scheme, shown in fig. 4, is implemented in PLECS environment. Simulations results will be shown in paragraph IV, compared with the experimental results.

III. SYSTEM REALIZATION AND EXPERIMENTAL VALIDATION

A. System components

The simulated DD coils are realized manually in copper wire (fig. 5) and the self-inductance value is measured thanks to an RLC Meter. It is equal to 5.7×10^{-3} H, verifying the model obtained value. The compensation networks are realized by the employment of a PET capacitors bench as reported in fig. 6.

The proposed H-Bridge converters are built in laboratory. The IRFB4410 power N-Channel MOSFETs [14] have been chosen as switches. To drive the 4 N-Channel MOSFETs of the converter, the HIP4081A driver [15] is used. For a proper operation, an external Bootstrap circuit is needed. For the experimental tests the primary side H-Bridge is controlled by the use of Arduino Due Shield, programmed to send two PWM signals phase-shifted of an angle equal to 90° with a fixed duty cycle equal to 50% and frequency equal to the resonance one of the system. The secondary side converter is used as a diode rectifier. In fig. 6 a single converter is shown.

B. Experimental tests

An aluminum track was made to constrain the passage of a trolley on which the secondary side of the system is mounted at a height of 6 cm. The trolley is driven by a controlled prime motor to ensure a constant speed equal 0.1 m / s.

Three tests were carried out. The first static test was conducted with a single receiver in the absence of misalignment to verify correct system operation. Subsequently, at the previously indicated speed, two dynamic tests were carried out. The first one with a single receiver, the second one with a double receiver. The load in all cases is equal to 10 Ω.

In fig. 7 the test bench is shown. It consists on the dynamic wireless transfer system and on the following instrumentation:

- DC power supply 30V 10A;
- differential voltage probes;
- Current probes;
- Primary side oscilloscope;
- Secondary side oscilloscope;
- Electronic load 0-60V / 0-60A.

Then the input and output quantities have been acquired. The results are discussed in the next section.
IV. RESULTS

The first static test carried out shows how the model is close to the real behavior of the system. In fig. 8 (a) it is possible to notice in red the AC output current, in green the AC output voltage and in blue the load voltage, while in fig. 8 (b) the oscilloscope acquisition of the same quantities is shown. (5V/div for the AC signals, 3V/div for DC yellow signal).

In fig. 9 it is possible to notice the voltage and the current on the load in the case of a single receiver. In (a) the simulation results show in blue the voltage trend and in red the current and in (b) the oscilloscope acquisition (1s/div) shows in yellow the voltage trend and in red the current one. In both, the current is scaled up by a factor equal to 5.

In fig. 10 the voltage and the current on the load for a double receiver are shown. In (a) the simulation results show in blue the voltage trend and in red the current and in (b) the oscilloscope acquisition (2s/div) shows in yellow the voltage trend and in red the current one. In both, the current is scaled up by a factor equal to 5.

It is possible to notice how the waveforms of voltage and current on the load with the presence of the double receiver formed by two DD coils identical to the transmitter and placed in series at the distance d is equivalent to the waveforms that would occur if a single receiver swiped over two transmitters placed at distance d.

This means that by the use of a double receiver configuration whose distance between the coils is equal to d, it is possible to replicate the same waveforms by placing transmitters with a distance greater than d.
In this way, thanks to the reduction of the number of transmitters per km of road, it is possible to reduce significantly the costs of the entire dynamic charging infrastructure.

V. CONCLUSIONS

In this paper a low power prototype of a dynamic double receiver IPT system for electric vehicle is presented. A simplified mathematical model for the DD coils design is described. It is based on the superposition principle which allows the coils to be discretized into a finite number of linear conductors to calculate the self-inductance and mutual inductance values by considering the vector potential induced by each element. This model has been experimentally validated and it has been shown that unlike complex finite element analyzes, this model lends itself well to a simplified design of coils.

The entire dynamic wireless charging system is studied in simulation and each part made in laboratory. Experimental tests were curried on showing how the model of the entire system created in simulation is close to real behavior. It was also shown how through the use of a double receiver it is possible to reduce the number of transmitters and therefore make significantly lower the costs of the charging infrastructure.

ACKNOWLEDGMENT

This work was financially supported by PON R&I 2015-2020 “Propulsione e Sistemi Ibridi per velivoli ad ala fissa e rotante – PROSIB”, CUP no:B66C18000290005, by H2020-ECSEL-2017-1-IA-two-stage “first and european sic eightinches pilot line-REACTION”, by Prin 2017-Settore/Ambito di intervento: PE7 linea C - Advanced power-trains and -systems for full electric aircrafts, by PON R&I 2014-2020 - AIM (Attraction and International Mobility), project AIM1851228-1 and by ARS01_00459-PRJ-0052 ADAS+ “Sviluppo di tecnologie e sistemi avanzati per la sicurezza dell’auto mediante piattaforme ADAS”.

REFERENCES

[14] IFR4410 N-Channel MOSFET Datasheet, online available.