Abstract—Electric vehicles represent an optimal solution for the reduction of pollution in urban areas. In particular, the Fuel Cell (FC) technology is a promising solution especially for its charging times and zero CO₂ direct emissions. The paper addresses the design and performance study of an Interior Permanent Magnet Synchronous Machine (IPMSM) drive powered by fuel cell for automotive applications. The IPMSM drive is powered by the use of 5.5 kW FC unit and it is composed of two DC-DC power converters and one inverter. In detail, a test bench has been carried out for the evaluation of the performances of each IPMSM drive conversion stage. Moreover, in order to simulate automotive working conditions the European Standard Urban Driving Cycle (UDC) test is used in order to evaluate the performances of the electric drive. The experimental results are discussed in order to highlight the benefits and the adoption of possible solutions in order to improve the overall performances of the electric drive.

Keywords— Electric vehicles, hydrogen fuel cell, IPMSM drive.

I. INTRODUCTION

Climate changes and global warming issues are becoming fundamental for humanity since their effects will have a huge impact on the life quality of future generations. In the last decade, the environmental pollution topic has become a problem much discussed by the social and political communities since it generates economic and social costs. The overall transport section generates 30 % of total EU fuel emission and a doubling of energy consumption has been detected in 2018 respect to 2010 resulting in an increase in CO₂ emissions [1]. In this context, a possible solution in order to reduce environmental pollution is the adoption of hybrid and electric vehicles.

In the last few years, the scientific communities focused their efforts in the research of high performances drive technologies [2] and innovative energy storage systems [7]. The commercial hybrid and electric vehicles technologies are continuously rising [14]-[22] and they are based on the use of batteries and their main disadvantages are the low power density, long charge times and short life span. Moreover, the manufacturing of batteries requires chemical materials whose manufacture is a source of indirect CO₂ emissions.

The hydrogen FC technologies are interesting and alternative energy source devices that can be employed in automotive applications. In detail, an interesting study demonstrates that if the hydrogen is produced from natural gas or hydrocarbons fuel the CO₂ emissions can be reduced by 50% respect to conventional internal combustion engine (ICE) while when the hydrogen is produced by the use of renewable energy source the CO₂ emissions can be reduced by 90% [25]. In particular, the use of Polymer Electrolyte Membrane Fuel Cell (PEMFC) for automotive applications has been widely discussed by scientific literature and several improvements have been registered. In detail, several studies investigate and discuss the adoption of fuel cell technology in several kinds of vehicles such as motorcycle [26], hybrid-electric pedal-assisted cycles [27], city bus [28] and light urban electric vehicle [30]. This FC topology employs pure hydrogen for the generation of electrical energy and not requires reforming with consequent saving of utility costs. The main drawbacks of PEMFC consist of lower energy density and non-linear behaviour in dynamic working conditions respect the batteries. Generally, the use of PEMFC for practical applications is coupled with the use of other energy sources like batteries and supercapacitors.

In this paper, a prototype of IPMSM electric drive powered by the fuel cell has been assembled in order to emulate the powertrain of an electric vehicle. This work addresses the study of the IPMSM electric drive performances supplied by the use of PEMFC. In detail, the study described here represents the basis for a more complex study that involves the use of other energy sources (batteries and supercapacitors) for the optimal use of the energy onboard an electric vehicle with consequent benefits in terms of static and dynamic performances. For this purpose, a flexible test bench has been set up and the speed profile of the UDC test has been used to driving the IPMSM drive and simulate typical automotive load conditions. In particular, several experimental tests have been carried out in order to evaluate the performances of IPMSM drive powered by fuel cell. The study conducted allowed to evaluate not only the overall efficiency of the system analyzed in dynamic conditions but even of each energy conversion stage.

The paper is structured as follows: Section II described the structure of the IPMSM drive powered by the fuel cell and its main components, Section III describes the test bench used for the experimental characterization and Section IV presents and discusses the experimental results.

II. COMPONENTS OF THE IPMSM DRIVE POWERED BY FUEL CELL

Fig. 1 reports the schematic representation of IPMSM drive powered by the fuel cell.
In detail, a 5.5 kW FC Power Module composed of 40 cells produced by Nuvera is used. The hydrogen necessary for the operation of the Power Flow module is produced by using distilled water with conductivity less than 2 μS/cm. In detail, a generator of the DBS-Analytical Instruments NMH2-500 has been adopted. The hydrogen produced, subsequently is stored in 5 storage bottles of 40 litres at a pressure of 10 bar. A Teledyne Hastings 200 series flow meter is used in order monitoring the flow of hydrogen in the feed and it allows to samples the hydrogen flow time trend. The output voltage of FC Power Module is a function of the output current and, therefore, a step-up DC-DC converter (produced by Zahn Electronics) is employed in order to stabilize the output voltage at a value of 48 V.

The IPMSM drive is composed of:
- a DPS 30-A inverter (Automotion Inc.), whose nameplate data are summarized in Table I;
- a commercial 6 poles, three-phase IPMSM (Magnetic S.r.l., type BLQ-40, Italy) with interior Smco magnets, whose nameplate data are summarized in Table II;
- a Magtrol hysteresis brake (Model HD-715-8NA), connected to the shaft of the motor and used as a mechanical load for the IPMSM. The brake can be controlled in real-time through a digital dynamometer controller (Magtrol DSP6001) or with Labview® environment. The dynamometer controller provides the torque and speed signals that can be acquired with other acquisition systems;
- a PC with dSpace® based electrical drive user interface, which allows performing the real-time control of the proposed system.

In order to adapt the output DC voltage of the Zahn Electronics DC-DC power converter to the input DC voltage of the DPS 30-A DC-AC inverter, a further RT-9.310 step-up DC-DC converter is used. The main data of RT-9.310 step-up DC-DC converter are summarized in Table III.

Table I DPS 30-A Inverter Nameplate Data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated DC voltage [V]</td>
<td>310</td>
</tr>
<tr>
<td>Phase current peak [A]</td>
<td>30</td>
</tr>
<tr>
<td>Phase current (rms) [A]</td>
<td>21</td>
</tr>
<tr>
<td>Output power peak [kW]</td>
<td>6.5</td>
</tr>
<tr>
<td>PWM frequency[kHz]</td>
<td>2-20</td>
</tr>
</tbody>
</table>

Table II IPMSM Nameplate Data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage [V]</td>
<td>132</td>
</tr>
<tr>
<td>Current [A]</td>
<td>3.6</td>
</tr>
<tr>
<td>Rated mechanical speed [rpm]</td>
<td>4000</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table III RT-9.310 DC-DC Power Converter Nameplate Data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated input DC voltage [V]</td>
<td>48</td>
</tr>
<tr>
<td>Output DC voltage [V]</td>
<td>310</td>
</tr>
<tr>
<td>Rated power [kW]</td>
<td>3</td>
</tr>
<tr>
<td>Output power peak [kW]</td>
<td>7</td>
</tr>
</tbody>
</table>

III. Test Bench

In order to simulate the typical working condition of an electric drive used in automotive applications, the speed profile of the standard European Standard UDC test (Fig. 2) is considered to driving the IPMSM drive.
The speed profile of UDC test is scaled on the base of the rated speed of IPMSM. A Field Oriented Control (FOC) strategy, schematically reported in Fig. 3, has been experimentally implemented in dSpace® control board in order to control the IPMSM drive [28].

The acquisition of measurement signals is implemented in a virtual instrument on Labview® environment where the sample rate is imposed equal to 50 kS/s. Since the measurement must be synchronized with the applications of speed profile, the synchronization between the dSpace® control board of the IPMSM drive and the virtual instrument is necessary. For this purpose, a NI DAQ 9401 acquisition module has been used in order to acquire a trigger digital signal generated by the dSpace® control board. The NI DAQ 9401 acquisition module has the following features: eight digital input channels, 5 V/TTL signal level, simultaneous sampling mode, 100 ns update rate. From the acquired signals the input power and output power of Zahn Electronics step-up DC-DC converter are calculated.

B. Measurement equipment of subsystem 2

Also for subsystem 2, the National instruments modules and Labview® programming environment have been chosen. The acquisition system consists of a programmable data acquisition board NI cDAQ-9172 equipped with several acquisition modules NI. In detail, two NI DAQ 9215 acquisition modules are used for the acquisition of the torque, speed and current signal. A NI DAQ 9225 acquisition module is used for the acquisition of the IPMSM drive input voltage. The NI DAQ 9225 has four analogue input channels, simultaneous sampling mode, sampling frequency \(f_s = 1.613 \text{–} 50 \text{ kS/s} \), ADC delta-sigma, 24-b resolution, and input ranges of \(\pm300 \text{ V} \). The current is sensed by the use of a non-inductive Fluke A40B Precision AC Current Shunt of 0.04 \(\Omega \) and nominal current equal to 22 A. The schematic representation of the measurement circuit is reported in Fig. 4.
electric power and the output mechanical power. The measurements were performed after the calibration of the dynamometer and by controlling the temperature and humidity of the test laboratory.

IV. EXPERIMENTAL RESULTS

The IPMSM drive has been driven by the use of UDC speed profile. Furthermore, in order to evaluate the performances of the system under load working condition, a load torque profile has been applied by the use of Magtrol hysteresis brake. In detail, a 0.5 Nm constant value of load torque has been applied. The torque load profile has been defined according to the speed profile and it is applied during the time intervals where the speed is different than zero in order to avoid locked rotor working condition with consequently high values of absorbed current by the IPMSM drive. Moreover, in order to perform a filtering action and eliminate the presence of noise in the acquired quantities, an average of the samples acquired every 1 s was carried out. Fig. 5 reports the mechanical speed profile and load torque of IPMSM drive acquired during the experimental test.

In the trend of input electric power, some oscillations have been detected. This behaviour can be attributed to the dynamic behaviour of the IPMSM drive.

From the acquired samples of input and output electrical quantities of the Zhan DC-DC converter, the instantaneous powers and consequently the active powers have been calculated. In detail, Fig. 6-Fig. 7 report the trends of the DC-DC conversion stage input active power and the DC-DC conversion stage output active power. The trends of input and output powers of the DC-DC conversion stage follow the UDC speed profile applied.

In the same way, the input and output active powers of IPMSM drive have been calculated from the samples of electrical quantities acquired by the use of measurement equipment of subsystem 2. Fig. 8-Fig. 9 report the trends of the IPMSM drive input active power and the IPMSM drive output active power. Even in this case, the trends of the active powers follow the speed profile of the UDC applied. In the trend of input electric power, some oscillations have been detected. This behaviour can be attributed to the dynamic behaviour of the IPMSM drive.

Starting from the values of active powers detected, the efficiency of each conversion stage has been calculated. For instance, Fig. 10-Fig. 12 report the efficiency of the Zhan DC-DC converter, the efficiency of the IPMSM drive and the total efficiency of the IPMSM drive powered by fuel cell, respectively.
In detail, the efficiency of DC-DC conversion stage presents high value when the electric drive works under load, while lower values of efficiency have been detected when the speed of the IPMSM drive is equal to zero. Similar behaviour has been detected for RT-9.310 DC-DC power converter but with slightly smaller values respect to the previous DC-DC conversion stage. The efficiency values of the IPMSM drive increases as the load increases in terms of speed and torque. This result can be attributed to the IPMSM efficiency typical behaviour that presents the highest values near to the nominal working condition. The overall efficiency of the IPMSM drive powered by the fuel cell presents values higher respect than typical efficiency values of the ICE power train. In detail, satisfactory values of the overall efficiency are obtained in correspondence of the highest working load condition. Therefore, from the experimental results obtained it is possible to assert that higher values of the efficiency can be obtained by employing DC-DC power converter with nominal power size optimized respect the nominal power of the electric drive. Furthermore, additional energy sources like battery and supercapacitors can be adopted in order to improve the dynamical behaviour of the IPMSM drive and obtain optimal use of the energy available by the fuel cell. Fig. 13 reports the trend of hydrogen flow detected during the UDC test.

The hydrogen flow presents a peak value at the time instant of 140 s where the IPMSM drive works with the highest load condition. The instantaneous hydrogen flow has been integrated respect the time of the test and an overall hydrogen consumption of 0.179 m³ has been detected.

V. CONCLUSIONS

The paper presents an experimental analysis on the performances of an IPMSM drive powered by fuel cell prototype. In detail, the IPMSM drive has been driving by the use of UDC speed profile in order to simulate the typical working load conditions of the automotive applications. The experimental investigations carried out allowed to detect the efficiency trends of each energy conversion stage of the IPMSM drive powered by fuel cell. In particular, the overall efficiency of the system analyzed can be improved by optimal sizing of the DC-DC conversion stages respect the nominal power of IPMSM drive. In future work, additional energy source, like batteries and supercapacitor, will be considered in order to improve the dynamic performances of the IPMSM drive powered by fuel cell and define a smart use of the energy available by the fuel cell.

ACKNOWLEDGMENT

This work was financially supported by PON R&I 2015-2020 “Propulsione e Sistemi Ibridi per velivoli ad ala fissa e rotante – PROSIB”, CUP no:B66C18000290005, by H2020-ECSEL-2017-1-IA-two-stage “first and european sic eightinches pilot line REACTION”, by Prin 2017-Settore/Ambito di intervento: PE7 linea C -Advanced power-7 trains and -systems for full electric aircrafts, by PON R&I 2014-2020 -AIM (Attraction and International Mobility), project AIM1851228-1 and by ARS01_00459-PRJ-0052 ADAS+ “Sviluppo di tecnologie e sistemi avanzati per la sicurezza dell'auto mediante piattaforme ADAS”.

REFERENCES

