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Abstract—The study of human behaviors in cognitive sciences
provides clues to understand and describe people’s personal and
interpersonal functioning. In particular, the temporal analysis of
behavioral dynamics can be a powerful tool to reveal events, cor-
relations and causalities but also to discover abnormal behaviors.
However, the annotation of these dynamics can be expensive in
terms of temporal and human resources. To tackle this chal-
lenge, this paper proposes a methodology to semi-automatically
annotate behavioral data. Behavioral dynamics can be expressed
as sequences of simple dynamical processes: transitions between
such processes are generally known as change-points. This paper
describes the necessary steps to detect and classify change-points
in behavioral data by using a dataset collected in a real use-
case scenario. This dataset includes motor observations from
children with typical development and with neuro-developmental
disorders. Abnormal movements which are present in such
disorders are useful to validate the system in conditions that are
challenging even for experienced annotators. Results show that
the system: can be effective in the semi-automated annotation
task; can be efficient in presence of abnormal behaviors; may
achieve good performance when trained with limited manually
annotated data.

Index Terms—Change-point; Human Behavior; Semi-
automated annotation

I. INTRODUCTION

In their most general definition, behaviors are defined as
“the internally coordinated responses to internal and/or exter-
nal stimuli” [1]. In humans, this translates to the individuals’
responses related to internal or perceived environmental stim-
uli, mediated by psychological states.

The study of such responses is carried out by psychology,
psychiatry, neurosciences, and, more in general, by cognitive
sciences, with the goal of providing clues about the inner
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Diderot, Sorbonne Paris Cité in Paris, France
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mechanisms of the human brain that underlie perceptual and
decisional processes [2]. While this knowledge can facilitate
the study of personal and interpersonal people’s function-
ing [3], it becomes particularly useful in the treatment of
complex psychopathologies where such mechanisms are dam-
aged [4]. Notably, such insights on human behaviors can also
be applied to the design of products, systems and devices we
use every day by making them easier, more comfortable and
less frustrating [5].

Computer science contributed to such studies not only as
a metaphor for innovative computational models [6] able to
describe cognitive processes but also with useful methods and
tools to capture and automatically or semi-automatically char-
acterize humans’ behaviors [7], [8]. However, automatic/semi-
automatic behavioral analysis is not straightforward since it
is unclear how observable behaviors should be measured and
characterized. The problem is made particularly difficult due
to the great behavioral heterogeneity that can characterize
humans’ responses, in particular during social interaction
in which individuals’ behaviors arise from interpersonal ex-
changes. Moreover, factors such as age, motor capabilities or
the presence of cognitive impairments can make the problem
even harder.

A. Human Behavior Characterization

Studies about observable human behaviors take advantage of
measurements of multi-modal characteristics [9] such as gait,
body poses, body movements, eye gaze, facial expressions,
speech, or turn-taking. All these measurements are derived
from signals acquired by a wide variety of sensors (micro-
phones, cameras, wearable sensors such as accelerometers
or gyroscopes). Thus, human behavioral responses can be
represented in terms of one or more synchronized, multi-
modal signals [10]. In this sense, human behaviors emerge
from a mixture of several (often hidden) factors and through
many communication channels [8]. For instance, the control
of continuous motor behaviors involves simple coordinated
movements of distinct joints as presented in [11]. Coordinating
such movements allows individuals to both complete complex
movements and skillfully adjust their balance to maintain
control (e.g., adjusting posture) [12].

In literature, the problem of characterizing humans’ behav-
iors has been approached mainly through three methodologies:
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– Manual annotation: trained human annotators carefully
label the observations according to a previously agreed
set of labeling criteria. Consistency between annotators
is verified through inter-rater reliability measures like the
Cohen’s kappa or the Intra-class Correlation Coefficient
(ICC) [13];

– Automated annotation: observed measurements are au-
tomatically processed according to a set of rules that
can be explicitly programmed or implicitly inferred from
data [14], [15];

– Semi-automated annotation: a subset of manually an-
notated measurements is employed as sample pattern into
an automated system that characterizes the remaining
observations accordingly [16], [17], [18].

Manual annotation fully relies on the human effort to
characterise and annotate observations. While it can achieve
an elevated degree of precision, it is extremely expensive
in terms of temporal and human resources demanded to the
human annotators. Recently, crowd-sourcing systems, such as
the Amazon’s Mechanical Turk, have been used to reduce such
costs. However, it is unclear if the annotation collected with
such systems would have the minimum quality required for
fine-grained human behavior analysis from a psychological
point of view. At the same time, ethical issues arise in the
case of analysis of sensitive data [19].

Fully automated annotation systems can be effective when
explicit rules are an adequate tool to achieve the requested
degree of performance; as an alternative, rules can be in-
ferred through clustering techniques able to reveal patterns
and recurrences in data. However, also in this case, a post-
processing revision by an expert is needed in order to interpret
and validate the discovered clusters.

In recent years, impressive performances have been
achieved through the use of deep neural networks [20], [21].
However, such performances are associated with the exploita-
tion of very large annotated training sets that, in the field
of behavioral analysis, may not be available. Furthermore,
such models are very complex and still difficult to interpret.
On the contrary, semi-automated annotation tries to combine
the benefits from both the automated and manual annotation
methodologies while minimizing their drawbacks. First, this
methodology tries to limit the human annotators’ effort in
labeling the data. Secondly, it attempts to develop models that
are easy to check and interpret for experts that are not neces-
sarily computer scientists. Although a manually annotated set
of observations is still required, reliable performance can be
obtained by using a set of data that is smaller than the one
required to train fully automated annotation systems.

In automated and semi-automated systems, complex behav-
iors are often modeled in terms of dynamical systems [22],
[23]. In particular, behavior dynamics can be expressed as
sequences of simple, stationary or quasi-stationary dynam-
ical processes, each one characterised by its own set of
parameters [24], [25], [26]. In this sense, complex behaviors
emerge as the switching over time among simple behavioral
classes [27]. A simplified model would consist of a finite
state machine in which states represent simple behaviors,
while transitions from state to state represent changes from

a behavioral class to another [28], [29]. In correspondence
with such state transitions, the parameters of the dynamical
system change in accord to the behavioral class involved in the
transition itself. For this reason, such transitions are generally
known as change-points [30], [31], [32], [33], [34].

According to the level of details used to characterize the
observed behavior, three main techniques can be adopted:

– Global approaches: transitions among behaviors are
ignored. Observed measures are treated as part of a single
dynamical process characterized through comprehensive
statistical descriptors [35], [7];

– Slicing: as in global approaches, transitions are ignored
but behaviors are described by statistical descriptors of
a finite sequence of temporal slices of the observed
measures [36], [24], [37], [38];

– Local characterization: change-points are explicitly de-
tected and exploited to segment and characterize the
observed measures [39].

Global approaches achieve a rough characterization of hu-
mans’ behaviors, ignoring the details of their temporal evolu-
tion. Consequently, they can be very effective in revealing and
describing features that are stationary over time. In contrast to
the global approaches, local techniques may result in a finer
and detailed characterization of humans’ behaviors [40], [41].
Nonetheless, due to the inner stochastic nature of the behav-
ioral measurements, such characterization is more sensitive to
small fluctuations ascribable to noise and to the performance
of the sensors used to observe the behavior [42]. In this
sense, by considering time-slices of the observed behaviors,
slicing techniques may help to reduce or partially filter out
these fluctuations. As a consequence, a statistical description
of the behavior would reveal quasi-stationary features among
different slices. Such methodology can be particularly useful
to describe how observed behaviors evolve in time in a more
refined way. Notably, this technique can be used to study
first impressions and early events [37], to analyze long-term
scenarios [43] or to evaluate before-and-after effects [44] of
particular events [30].

On the other hand, local analysis of the observed mea-
surements can highlight breakpoints and transitions from one
behavior to another. Such change-points are a powerful tool
to segment the observations and reveal events, correlations,
causalities and synchronous phenomena, but also to discover
abnormal behaviors or delays in the expected behavioral
changes.

B. Scope of the Paper

The aim of this paper is the local characterization of behav-
ioral observations related to humans’ movements. In particular,
we focus on the detection and recognition of motor behavioral
transitions defined as changes in the temporal evolution of mo-
tor behaviors. We will propose a semi-automated annotation
system, tackling the change-point detection problem through
a general-purpose methodology that is suitable in presence
of heterogeneous behaviors for which no a-priori model is
available.
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Fig. 1. The behavioral signal is analyzed by a sliding window approach. For each temporal window
(
bi−[w2 ], bi+[w2 ]

)
, its description in terms of statistical

moments (µi,Σi, Si,Ki,∆i, ) is considered. This descriptor is fed as input to the SVM classifier that predicts the change-point class. Predictions for all
possible temporal windows are aggregated through the DBSCAN clustering method. The time frame related to the cluster centers corresponds to the estimated
change-points.

The main contributions of this paper are the characterization
of the behavioral signal through statistical moments-based
signatures, and the classification of change-points by Support
Vector Machines (SVMs) [45]. Similarly to the methods
in [46], [47], [48], we adopt a sliding window approach to
extract feature descriptors from the data, and we detect and
recognize change-points without any a-priori knowledge of
the behavioral models. In contrast to the methods mentioned
above, our feature descriptor embeds contextual information
about the transitions from one behavior to another. In this
way, our descriptor is not only able to fully characterize
the statistical property of the change-point inside the sliding
window, but also to take into account differences arising in
the signal before and after the change-point, capturing the
dynamics of the signal.

The methodology has been validated and tested in a real
use-case scenario: a manually annotated dataset of humans’
movements collected during an imitation task of a virtual
agent [49], [50] acting as a tightrope walker [51]. The dataset
involves behavioral observations from children with typical
development (TD) but also children with neuro-developmental
disorders (NDD): Autism Spectrum Disorder (ASD) and De-
velopmental Coordination Disorder (DCD). The presence of
abnormal movements [52], [53], [54], [55] from children
with NDD gives the possibility of validating the proposed
system in conditions that are challenging even for experienced
annotators.

The behaviors annotated in the tightrope walker dataset
are simple and quite stereotyped; however, their effective
automated or semi-automated annotation can be generalized
and transferred to a larger set of humans’ behaviors. Achieving
such effective annotation capabilities would result in fewer
human resources committed to the manual analysis of the data,
as well as on less time spent on this task.

In this paper, we want to demonstrate:
– The feasibility of the proposed approach in practical

applications and its effectiveness in detecting and classi-
fying change-points in humans’ movements;

– The efficacy and the limits of the system while tack-
ling abnormal behaviors, for instance when analyzing
behaviors of children affected by NDD;

– The impact of the size of the annotated training set
on the system performance to assess how many samples
the training procedure requires to still achieve valuable
results.

II. CHANGE-POINTS DETECTION

The assumption that the course of specific phenomena,
represented in terms of time-series, follows the same fixed

stationary process may not be realistic in several domains
such as economics, business, engineering, medicine and social
sciences. The discovery of specific time points in which the
properties of the time-series change is an attracting and well-
studied problem [30], [56], [57], [48], [34], [31], [32], [33].
A change-point is defined as the temporal boundary that
separates two sequences of observations originating from two
different statistical distributions. In this sense, change-point
detection can be achieved by analyzing the parameters of such
distributions.

Changes in the statistical moments of the distribution of
the observations can be interpreted as possible change-points.
Such changes can be particularly evident in the distribution
of characteristics related to the observed measurements such
as derivatives or energy spectra. Detection of change points
is useful in the modelling and prediction of time series, and
is found in application areas such as medical condition mon-
itoring, climate change detection, speech and image analysis,
and human activity analysis [30]. Detecting transitions based
on the statistical moment changes is useful for segmenting
motor activities, as for example the movement of an arm while
performing the action of greeting someone. This movement
can be broken down into atomic submovements [58], each of
which can be identified by means of change-points.

A simple but effective change-point detection method is the
CUSUM (cumulative sum) test [59], that involves the calcula-
tion of a cumulative sum of the observed characteristics: when
the value of the cumulative sum exceeds a certain threshold
value, a change-point has been detected.

The change-point detection problem can be stated in terms
of a hypothesis test [60], [61] in which the null hypothesis H0

assumes the absence of a change-point at a specified time in
the time-series, while the alternative hypothesis H1 assumes
that there is one. Assuming that each observation in a time-
series originated from some distribution fully described by
a set of parameters θt with t ∈ [0, N) indicating time, the
hypotheses H0 and H1 can be formulated as follows:

H0 : θ0 = · · · = θp−1 = θp = θp+1 = · · · = θN−1 (1)
H1 : θ0 = · · · = θp−1 = θp 6= θp+1 = · · · = θN−1 (2)

where p represents the time when a change-point event occurs.
The key factor in the formulation of H1 is the inequality θp 6=
θp+1: at some point in the time-series, and precisely between
t = p and t = p + 1, the underlying distribution changes.
Consequently, the hypothesis H1 assumes the presence of two
different distributions characterized by the parameters θA and
θB respectively. When t ≤ p, θt = θA; whenever t > p,
θt = θB .
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According to this formulation, it is possible to define λ
as the ratio between the likelihoods associated with the two
hypotheses H0 and H1:

λ(t) =
L(H0|t)
L(H1|t)

. (3)

This likelihood-ratio can provide a general decision test to
classify observations in a sequence:{

if λ(t) > c do not reject H0

if λ(t) ≤ c reject H0

(4)

where c is a predefined threshold selected to obtain a spec-
ified significance level. Without going further into the de-
tails, likelihood-ratio based classification systems, such as the
Generalized likelihood ratio (GLR) [62] or the marginalized
likelihood ratio (MLR) [63], exploit this model by finding
suitable parameters that maximize the system capabilities of
detecting change-points in the observed measurements.

Non-parametric tests have also been developed for applica-
tions in which no prior knowledge about the observed process
distribution is available [64], [65]. Other statistical methods
use Bayesian prior distributions to incorporate time-dependent
information [30], [66].

Without being exhaustive, in recent years many machine
learning algorithms have been designed or adapted to the
change-point detection problem. Such methods usually employ
sliding windows of subsequent observations [46], [47], [48] to
reinforce their noise resistance or to capture smoothed tran-
sitions that otherwise could be difficult to detect. Under this
point of view, supervised approaches have been proposed [46],
[47], [67], [68], [69] to model the change-point detection
problem as a binary classification problem. In this case, the
goal is to discriminate between state transition sequences (i.e.,
observation sequences including the change-point) and within-
state sequences. Multi-class classifiers have been adopted to
solve the change-point estimation problem [30]. In that case,
the goal is the recognition of the type of detected change-point,
namely the kind of state transition that arises. Alternatively,
unsupervised learning algorithms have been proposed to dis-
cover patterns in unlabeled data. Subspace modelling [57], [70]
and graph-based technique [71], [72], [73], in particular, have
been used as clustering methods to detect change-points.

III. METHODOLOGY

We assume that humans’ behaviors are represented through
a multi-dimensional time-series B = {b1, b2, · · · , bT } where
each sample bt is a set of observations acquired at time
t ∈ [1, T ]. We adopt a sliding-window approach, such that W
subsequent observations {bi, bi+1, · · · , bi+W−1} centered in
bbW+i

2 c
are used to calculate a behavioral feature fbW+i

2 c
. By

applying this technique, we transform the time-series B into
the time-series F = {fbW2 c, fbW2 c+1, ...fT−bW2 c+1} where
each element fj is a feature vector extracted from the window
centered in the sample bj .

Provided with this feature representation, we apply a super-
vised classification technique to detect and recognize change-
points from the feature time-series F .

We assume the availability of a dataset annotated by an
expert in terms of change-points’ timestamp and class, in-
dicating with the latter the type of behavioral transition to
be found. Consequently, our goal will not be the recognition
of behaviors but the identification of transitions from one
behavior to another.

In particular, we consider the problem of jointly recognizing
among L different classes of change-points and detecting
the time when such change-points arise. We aim at solving
this problem without any a priori knowledge of the involved
behavior classes. This problem is difficult because: behavior
duration and type may largely change, there may be intra-
and inter-subjects variations in behaviors and, in general, the
transitions from one behavior to another are not abrupt.

We adopt a classifier that takes as input the feature de-
scriptor of a temporal window ft and provides as output the
predicted change-point class (a label between 1 and L) or
0 if no change-point has been detected. Since the behavior
duration varies, more subsequent windows may be recognized
as belonging to the same change-point class. To refine the pre-
diction step and estimate more precisely the instant when the
transition arises, we apply a clustering technique to aggregate
the predictions. The centroid of each of such clusters is used
as estimated change-point.

The framework we implemented is presented in Figure 1.
In the following, we provide more details about each of the
steps required to apply the above-described methodology.

A. Feature Extraction

A change-point represents a switch from a dynamical
system to another. Hence, in a change-point, the statistical
properties of the signal within a temporal window change.

In particular, given a set of subsequent observations
{bt−bW2 c, · · · , bt, · · · , bt+bW2 c} in a window of length W , we
characterize the signal within the window by its statistical
moments. The corresponding feature descriptor is defined as
ft = {µt,Σt, St,Kt ∆t} where: µt represents the mean value
(1st order moment), Σt is the covariance matrix (2nd order
moment), St and Kt represents the skewness and kurtosis of
the multivariate distribution as defined by [74] (3rd and 4th
order moments respectively). Moreover, the feature descriptor
includes the value ∆t, which is the difference between the
maximal and minimal values of the signal components and,
hence, describes the signal extension along with the various
components. It is also possible to include the median of the
signal values to make the descriptor more robust to outliers.

The feature descriptor is extended by including also other
statistical properties of the signal such as the statistical mo-
ments of the velocity, acceleration and jerk of the signal
(namely, the 1-st, 2-nd and 3-rd order derivatives of the signal)
to capture local information about the way the signal changes
over time [75], [76], [77].

Besides, the statistical moments of the signal curvature are
included too in the descriptor. The curvature locally measures
how fast a curve is changing direction at a given point. The
formal definition of curvature is C = |d~Td~s | where ~T is the unit
tangent of the curve and ~s is the arc length. In particular, for
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a three-dimensional signal b(t), where t indicates time, the
curvature measures the local magnitude of the acceleration
of a particle moving with unit speed along the curve and is
defined as C = ||b′(t)×b′′(t)||

||b′(t)||3 , where b′(t) and b′′(t) represent
1-st and 2-nd order of time derivatives respectively. For a one-
dimensional signal b(t), the curvature is simply defined as
C = b′(t)−b′′(t)

[1+(b′(t))2]
3
2

.

Contextual information, namely the properties of the signal
before time t − bW2 c and after time t + bW2 c, can help to
detect and recognize a change-point at time t, and hence a
transition from one behavior to another. As shown in Figure
2, it is possible to embed such contextual information into the
change-point descriptor ft by including the statistical moments
of the signal in bW2 c observations before and after the t-th
window. By doing in this way, for a k-dimensional signal, the
final descriptor ft has a size equals to 7 · (2k2 + 3k) + 3k. In
particular, for k = 1, the descriptor has a size equals to 38.

The size of the above-described feature vector is indepen-
dent of the number of considered observations W , namely the
size of the temporal window. However, the value of W can
have an impact on the descriptiveness of the feature vector, and
should be chosen by considering the sampling frequency and
the nature of the analyzed signal. Depending on the sampling
frequency, a small value of W can be too local and result in a
poor descriptor for the change-point detection problem. On the
contrary, a too-large value of W increases the risk of using
temporal windows that may contain more than one change-
point [48]. Our proposed methodology aims at considering
the case when no information is available about the duration
of each behavior. The selection of the best value for W can
be done empirically when an annotated dataset is available by
selecting the best classification model among the ones trained
by varying the value of W .

Fig. 2. Contextual information can be included in the descriptor extracted
from a temporal window of length W by computing the statistical moments
of the signal of the W

2
observations on the left and on the right side of the

temporal window itself.

B. Descriptor Classification

We need to recognize if a descriptor fj of the j-th window,
computed as described in Sec. III-A, is not a change-point or
is one of the L classes of possible behavior transitions. We
model the problem as a classification one.

We assume that a dataset manually annotated by experts
in the psychology field is available, and that annotators have
provided the time and the class of the change-points in the
behavioral time series.

We use the behavioral time series to extract a set of feature
descriptors. We associate to each feature descriptor a label that
depends on the available annotations.

When considering temporal windows of length W , there are
no more than W subsequent temporal windows including an
annotated time instant t. Intuitively, the descriptors associated
to some of such temporal windows might differ very little (for
example, subsequent temporal windows differ for only two
observations). Hence, there is the risk to associate two similar
descriptors with different labels, which may compromise the
classifier training.

The most straightforward strategy to avoid this issue would
be that of computing a feature descriptor for each window cen-
tered in the annotated change-point while avoiding to extract
descriptors for overlapping temporal windows. However, this
greatly limits the size of the training data, especially for rare
change-point classes, with an impact on the accuracy of the
classification model. Furthermore, this strategy strongly trusts
in the experts’ capabilities to precisely annotate change-points.
In real experimental scenarios, different experts may not fully
agree on the exact location of the change-point in the time
series. In practice, during the data annotation process, different
experts annotate independently the data and then discuss and
resolve any divergence in the annotation results. Inter-rater
reliability is in general measured by the Cohen’s Kappa. Such
kind of validation increases the cost for annotating data.

This suggests that a safer strategy is that of labelling in a
consistent way all feature descriptors extracted from windows
centered in observations that are close to the annotated change-
point. To this purpose, we set a threshold τ on the absolute
difference between the time of the central observation and
the annotated change-point. Consequently, the size of τ will
determine how many frames around the central observation
are labeled as change-points.

Another important issue to consider when dealing with
change-point classification is the nature of the resulting train-
ing set. Indeed, it is not unusual to deal with an unbalanced
dataset, namely dataset in which change-point classes are
not equally represented. This is especially true for the class
representing the within-state sequences [78], [79]. To account
for such issue it is important to apply a balancing procedure
such that the number of samples in each change-point class
becomes comparable. This has been achieved by performing
a random under-sampling of the within-state class.

Many algorithms, as Random Forests, Support Vector Ma-
chines or Neural Networks, are available to solve the presented
classification problem [80]. In this study, we focused on
the use of SVM based on Radial Basis Function due to
their flexibility and generalization abilities [81]. However, the
choice of the best classification algorithm depends on the
application and nature of dataset to be analyzed.

C. Change-Point Detection
As detailed in Sec. III-B, our classifier takes as input the

feature descriptor of a temporal window and provides a label
indicating if the center of the temporal window is a change-
point and, in this case, the class of the detected change-
point. During test, we apply a sliding window approach,
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meaning that we classify the feature descriptors of subsequent
temporal windows. Two neighbor windows will then differ
for two observations and their feature descriptor may not
greatly vary. Hence, the classifiers will likely output the same
predictions for close temporal windows. We adopt DBSCAN
[82] to aggregate the time instants of such predictions in
compact, separated clusters, without any overlap. Other clus-
tering algorithms need to know the number of clusters they
should compute, namely the number of change-points arising
in the time series. In contrast, DBSCAN is an algorithm
entirely based on the distances among samples (in our case,
time instants); clusters are computed from the neighborhood
relationships among the samples. DBSCAN is independently
executed on each set of time instants classified as belonging to
a specific change-point class. Then, the average value of the
time instants in each resulting cluster is calculated. Such time
instant corresponds to the predicted time when a change-point
occurred in the signal.

D. Baseline Method

To assess the system capabilities, we adopted the baseline
method introduced in the work of [7], which was devised for
one-dimensional signals. The baseline method computes the
second order derivative of the behavioral signal to measure
the concavity of the signal itself. The second order derivative
is then filtered by discarding all values below a threshold
σ. The threshold σ is set to the standard deviation of the
second derivative in the training data. The time instants of
the unsuppressed values are clustered by using the K-means
algorithm. The value K is set to the number of annotated
change-points in the analyzed sequence. The centers of the
found clusters are considered as predicted change-points. By
using a-priori knowledge of the order in which the behavioral
classes appear in the sequence, each detected change-point
is associated with a category. We note here that the baseline
method is simpler than the method we propose but is not fully
automatic because it requires a-priori knowledge of the number
of expected change-points and of the order in which behaviors
emerge over time.

IV. CASE STUDY

Motor behaviors can be defined by means of complex
schemas or, as presented in [58], atomic sub-movements. In
our methodology, we deal with the detection and recognition of
the times in which a sub-movement ends and/or starts. These
transitions can be defined as change-points.

To demonstrate the methodology introduced in this paper,
we propose its application to the analysis of children’s motor
behaviors data collected by [50] and [49] during an imitation
task where children had to reproduce the movements of a
virtual agent acting as a tightrope walker (TW) [51].

In [50], authors focused particularly on how participants
were able to imitate the TW and, eventually, perform a
perspective change to the point of view of the virtual agent.
As we will detail later, children’s behaviors were described
through time-series derived by their hand movements during
the imitation task. In [50], authors investigated the ability of

children in performing behavioral own-body-transformations
by exploiting manually annotated change-points. Experts an-
notated change-points to analyze and compare the behaviors
of TD children and children affected by NDD, specifically
ASD and DCD. Change-points were annotated through visual
analysis and filtered through shared consensus among the
annotators.

In [49], authors explored children’s behavioral imitation
abilities in terms of interpersonal synchronization and motor
coordination by exploiting the dataset in [50] through an
automated characterization of temporal slices of the interaction
with the virtual agent.

In this paper, we use the annotated data presented in [50]
to apply our methodology and automatically discover change-
points in the recorded behavioral signals. We use the data
collected with TD children to train and test our system. Then,
we use the data collected with children affected by ASD
or DCD disorders to further investigate the potentiality and
the limits of the proposed methodology. In the following, we
provide more details about the considered scenario, the data
used to asses our method, and the implementation details.

A. Experimental protocol

Authors of [51] used a colour movie of a computer-
generated female tightrope walker (TW) to investigate whether
individuals, under spontaneous conditions and without explicit
instruction, embody another person’s behavior. They designed
a motor paradigm focusing on elementary mimicry to inves-
tigate, from the body posture, how individuals act together,
focusing in particular on the achievement of own-body trans-
formations, from an embodied, ego-centered viewpoint to a
disembodied, hetero-centered viewpoint.

The studies in [49] and [50] extended the paradigm of the
TW to adapt it to the study of children’s behaviors by adjusting
the size of the virtual character, giving it a cartoon-like aspect
of a child. Fig. 3 shows an image of the TW in the front-facing
orientation: the artificial TW projected on the wall stands on
a rope and keeps its balancing by carrying a bar that, over
time, it tilts laterally to its right or left. The TW’s bar tilts
have a maximum amplitude of 51◦ and a maximum duration
of 3.2s (mean duration: 2.7s). Tilts on the right or left are
performed in random order 7 times. Children were provided
with a wooden bar and invited to mimic the TW’s behaviors
by rotating their bar accordingly. To elicit perspective taking,
two kinds of sequences were alternated 7 times: in the first
type of sequence, the TW walks after the participant, by back-
facing her/him; in the second type, the TW walks towards
the participant, by front-facing her/him. In the first case, the
participant can simply imitate the TW; in the second case,
an effective imitation from the participant implies a mental
rotation from the point of view of the TW.

Authors of [49] and [50] found behavioral differences in
these tasks between TD children and ASD, DCD children.
Children with such deficits, in particular, can experience
difficulties with fine motor control abilities, producing gross,
clumsy or uncoordinated movements [83]. Hence, we expect
that the change-point detection and recognition in behavior
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Fig. 3. The image shows the real-life projected Tightrope walker used in
[49]. Images on the left and on the right show the TW while tilting its bar to
the left and to the right.

time series of ASD and DCD subjects will be harder than in
TD subjects considering the behavioral differences between
these subject groups [84], [85]. In particular, we suppose the
system will have more difficulties in dealing with ASD than
DCD subjects.

Although for each frame participant’s bar and the tightrope
walker’s bar angles are recorded, as well as the timing of
the frame, and both the participant’s and the TW’s head
inclinations, in this paper we have only dealt with the de-
tection and the recognition of the change-points related to the
movement angles of the participant’s bar. The data of [50] are
not simulated and they were produced in a real setup defined
by psychologists. As mentioned above and due to the diversity
of the developmental levels of the children participating in the
study, we consider these data quite challenging and worthy of
study.

B. Dataset

During each experimental session, videos of the participants
were automatically and continuously recorded for offline anal-
ysis by a RGB-D sensor located in front of them, a Microsoft
Kinect1. This sensor was used to estimate 3D poses of the
participant (in terms of 3D skeletal data) at a frame-rate of
about 25 fps. The angle of the child’s bar tilt is calculated
using the inclination of the 3D line passing through the two
3D points representing the child’s hands.

The dataset includes experiments from 85 children imitating
the TW. According to the experimental protocol, each experi-
ment is composed by 7 sequences; however, only 70 children
had completed all the planned sessions. Of these 70 children,
30 are TD, 14 DCD and 26 ASD.

Overall, the dataset adopted in this paper includes 490 bar
tilts sequences of which 210 are of TD children, 98 of DCD
children and 182 of ASD children.

Fig. 4 shows the signals measured during an experimental
session. In particular, it shows the measured tilt angles in

1Microsoft Kinect website: https://developer.microsoft.com/en-
us/windows/kinect

degrees of the bar of one of the participants (the blue line) and
of the TW (the orange line) over time. As shown in the figure,
the child’s bar is initially in a horizontal position where the tilt
angle is equal to 0◦. Then, for 7 times, the bar is moved and
the tilt angle increases (decreases) till reaching a peak value.
Later on, the tilt angle decreases (increases) till reaching again
the value 0 (bar in horizontal position).

Change-points in [50] were manually identified by expert
annotators by analyzing children’s movements (see supple-
mentary materials in [50]) and considering: the starting time of
the bar movement; the time when the tilt angle reaches its peak
value; the time of the end of the bar movement. Hence, three
different change-point classes have been annotated. Although
each sequence was composed of 7 tilt movements, experts
found that, due to an ambiguous stimulus, the 6th tilt was
consistently not reliable enough to be used for the analysis of
the children’s imitation capabilities. Therefore, we kept only 6
tilts as meaningful and each sequence of angles was annotated
with 18 change-points (6 for each change-point class).

Annotating change-points in the signals acquired with ASD
and DCD children is a complex activity even for psychia-
trists [49]. Figs. 5 and 6 show examples of the tilt angle
signal measured with a DCD and a ASD child respectively.
As shown in the figures, the signals are less smoothed than the
ones acquired with TD children. This is probably due to the
difficulty of these children in replicating/imitating the TW’s
movements.

Overall, for the 3 different classes of change-points, the
data include 8820 annotated change-points in the tilt angle
sequences collected with all the 70 children. In particular, 3780
of these change-points are annotated in sequences collected
with TD children.

C. Implementation details

Before extracting the feature descriptors, we applied a
smoothing filter on each sequence and, in particular, we used
the Savitzky-Golay filter. Then, z-score normalization was
applied to the data. Finally, our system has been trained
considering the 3780 change-points manually annotated in the
TD children data.

As discussed in Sec. III-B, to train our model it is neces-
sary to associate each feature vector with a label indicating
whether a change-point occurs in the considered window and,
eventually, the type of change-point. This labeling task can be
a challenging activity that can be performed through different
strategies.

It is possible to label as change-point only the window
in which the central frame has been annotated as change-
point; otherwise, it is possible to annotate as change-point
all the windows such that the distance between the annotated
change-point and the central observation is below a threshold
τ . Two different values of τ have been tested: τ = {0, 2}
The maximum threshold τ = 2 was empirically chosen
according to the frame rate and the scale of the event that
we want to detect, while the window size was chosen among
W = {15, 31, 61}.
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We trained SVMs with a 1-vs-1 strategy for the 3 change-
point classes and the additional within-state, background class
by using Radial Basis Function (RBF) kernel[86].

Then we aggregated the positive predictions by applying
the DBSCAN algorithm. The minimum number of samples in
each cluster was set to 3. This value varies according to the
application and the scale of the event to be detected.

During test, we adopted a sliding window approach and
classified all windows with a stride equal to 1. Sliding win-
dow stride value defines the number of frames skipped in
between adjacent sliding window scans. All experiments were
performed in cross-subject validation.

V. EXPERIMENTAL RESULTS

To validate our system, we conducted a series of exper-
iments by using the previously described tightrope walker
database. In particular, as already disclosed, we focused on:

– The evaluation of the performance of the system in
detecting and recognizing change-points in behaviors of
TD children. Performance metrics computed in this case
can be seen as measures from a best-case scenario since
the signals representing children’s behaviors are smooth
and readable (see Fig. 4). The method was compared
against a baseline method presented in [7].

– The efficacy and the limits of the system in presence
of NDD. In this particular case, the system deals with
abnormal signals that are not easy to be labeled even for
expert annotators (see Figs. 5 and 6);

– The trade-off between training set size and achieved
system performances.

To assess the system capability of precisely detecting
change-points, we measured the F1-Score, the Mean Absolute
Error (MAE), the Missing Rate (MR) and the Precision (P )
achieved by our system.
• The F1-score is computed for the (binary) detection

problem. In this way, all feature vectors that are classified
as belonging to one of the change-point classes are con-
sidered as positive cases. The vectors that are classified as
within-state sequences are considered as negative cases.
The F1-score is defined as:

F1 = 2 · P ·R
P +R

(5)

where P indicates the precision value and R stands for
recall, and measures the proportion of true positives with
respect to the number of annotated positive samples.

• The Mean Absolute Error (MAE) measures the average
absolute difference between the time instant when a
change-point has been detected and the time instant when
the change-point has been annotated. Time is expressed
as frame number (data have been collected with a frame
rate equals to 25). MAE is computed only for the valid
detection. A detected change-point is considered valid if
its distance to the annotated change-point in terms of
number of frames is lower than 100.

• The Missing Rate (MR) is defined as the percentage
of annotated change-points that are not detected by our
system.

• The precision (P ) is defined as the proportion of true
positives with respect to all positive predictions made by
our system.

Metric: F1-score MR % MAE P
S-SW(15, 0) 0.880 ± 0.07 21.0 ± 2.7 4.44 ± 1.16 0.800 ± 0.11
S-SW(15, 2) 0.900 ± 0.07 14.0 ± 2.4 4.00 ± 1.13 0.850 ± 0.10
C-SW(15, 0) 0.940 ± 0.05 13.8 ± 4.2 4.41 ± 1.34 0.910 ± 0.08
C-SW(15, 2) 0.945 ± 0.03 14.0 ± 4.0 4.50 ± 1.30 0.910 ± 0.10
S-SW(31, 0) 0.940 ± 0.05 4.0 ± 6.7 4.39 ± 1.55 0.930 ± 0.07
S-SW(31, 2) 0.942 ± 0.08 4.2 ± 6.4 4.25 ± 1.60 0.932 ± 0.06
C-SW(31, 0) 0.946 ± 0.05 4.3 ± 6.5 4.40 ± 1.79 0.940 ± 0.06
C-SW(31, 2) 0.950 ± 0.05 3.4 ± 5.0 4.07 ± 1.64 0.938 ± 0.07
S-SW(61, 0) 0.948 ± 0.04 4.1 ± 4.8 4.65 ± 1.71 0.940 ± 0.06
S-SW(61, 2) 0.947 ± 0.07 4.2 ± 4.4 4.63 ± 1.80 0.943 ± 0.06
C-SW(61, 0) 0.950 ± 0.08 4.1 ± 4.5 4.45 ± 1.20 0.942 ± 0.04
C-SW(61, 2) 0.950 ± 0.05 3.9 ± 5.1 4.58 ± 1.67 0.940 ± 0.05
Baseline M. 0.71 14.0 9.38 0.62

TABLE I
THE TABLE REPORTS THE PERFORMANCE OF OUR SYSTEM (C-SW) WITH
τ = 2 AND τ = 0 ON SEQUENCES COLLECTED FROM TD CHILDREN. THE

FIRST NUMBER INDICATES THE VALUE OF THE VARIABLE W .

A. Evaluation of the performances of the system

A leave-one-subject-out protocol has been employed to
validate the presented system using sequences collected from
TD children: for each subject, we trained a model with the
samples from all the other subjects; samples from the excluded
subject were used as test set. The protocol has been repeated
using three different window lengths (W = 15, W = 31
and W = 61) and two different descriptors: a simple one
(S-SW) resuming the statistical properties of the signal in
each window, and an extended one (C-SW) able to include
contextual information considering bW2 c observations before
and after each temporal window, as discussed in III-A. Average
performances were compared between them and against a
baseline method.

Table I shows the results that we obtained by varying W and
τ . For each metric, computed as average over the per-subject
predictions, we report the average value and the standard
deviation. As shown in the table, the performance obtained
by setting τ = 0 are slightly inferior to those obtained by
setting τ = 2.

The table also shows that all variants of the proposed
method (C-SW and S-SW) outperform the baseline method
in all the selected performance metrics. As for the impact
of the window size W on the system performances, while
the F1-Score and the precision (P ) do not change much, the
amount of missing rate (MR) and the mean average error
(MAE) slightly increase when increasing the window size
suggesting that the value of W can affect the general reliability
of the system in terms of accuracy in localizing the change-
points. Consequently, a meaningful choice of the window
length would be a compromise of 31 frames (W = 31). Since
the system captures data at 25 fps, a value of W equals to
31 turns out to process temporal windows slightly larger than
1 second. Finally, the table shows that embedding contextual
information into the descriptor (C-SW) tends to improve the
system performances.
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Fig. 4. The blue line represents the tilt angle of a TD child’s bar. The orange line represents the reference tilt angle of the TW’s bar. The red arrows indicate
the movement phases that the child performs during the emulation of the TW. The transition from one phase to another is a change point.

Fig. 5. The blue line represents the tilt angle of a DCD child’s bar. The
process of the change-points detection is not a simple activity: although in
the plot is possible to identify some patterns of child’s bar movements, it is
still challenging to precisely detect and recognize the time when a movement
startsends.

Fig. 6. The blue line represents the tilt angle of a ASD child’s bar movements.
The precise detection and recognition of change-points in movements of ASD
children is an even more complex activity than the one present in the DCD
plot.

Finally, we analysed the change-point class recognition
capabilities of the system. Table II reports the confusion
matrix for the change-point classes “Start”, “Peak”, “End” and
“Background”. In particular, the Background class represents
the within-state class. The confusion matrix highlights that the
system is able to correctly detect and recognize change-point
classes with a good degree of reliability.

T vs. P (TD) Start Peak End Background
Start 94.96% 0.08% 0.16% 4.78%
Peak 0.25% 93.30% 1.09% 5.36%
End 0.16% 0.13% 92.20% 7.51%
Background 0.02% 0.03% 0.06% 99.88%

TABLE II
THE TABLE SHOWS THE CONFUSION MATRIX FOR THE CHANGE-POINT
CLASSIFICATION PROBLEM ON BEHAVIORAL DATA FROM CHILDREN IN

TYPICAL DEVELOPMENT.

B. Efficacy and limits in presence of abnormal behaviors

We investigated how the system deals with data coming
from abnormal behaviors. Therefore, from the tightrope walker
database, we selected the data of children with NDD. As
already pointed out in Sec. IV, annotating such kind of
behavioral signals is challenging even for experts, hence, any
system, automated or semi-automated, able to help and speed-
up this process is especially important. In any case, due to
such difficulties, we expect a drop in the performance of our
system.

Average performances of the system were obtained by train-
ing it with TD data only, using the most effective parameter set
previously found. Then, the obtained model has been tested
with data from children with NDD. As a consequence, we
asked to the system an important ability of generalization and
abstraction from the training sample set.

Metric: F1-score MR % MAE P
TD 0.95 ± 0.050 3.4 ± 5.0 4.07 ± 1.64 0.94 ± 0.069
DCD 0.91 ± 0.001 4.2 ± 0.3 4.38 ± 0.15 0.88 ± 0.002
ASD 0.82 ± 0.002 6.5 ± 3.0 5.20 ± 0.14 0.73 ± 0.030

TABLE III
THE TABLE REPORTS THE PERFORMANCE OF OUR SYSTEM

(C − SW (W = 31)) ON SEQUENCES COLLECTED FROM THREE GROUPS
OF CHILDREN: TD, ASD AND DCD.

Table III compares the performance achieved by our system
(C-SW (W = 31)) for the three groups of children: TD,
DCD and ASD. We conducted an analysis of the recognition
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performances of the system in presence of NDDs. Table IV
and V report the confusion matrices on the change-point
classes predicted by the classifier on behavioral data from
children with DCD and ASD, respectively. Such confusion
matrices highlight that the system is still able of distinguishing
the change-points from the background class, whilst the recog-
nition performances of the change-point classes deteriorate,
especially when analysing ASD children data.

Overall, as highlighted also by [49], the system perfor-
mances decay on NDD children data, highlighting the difficul-
ties the system has in analysing such data. The performances
deterioration show a correspondence with the examined patho-
logical groups: since DCD is a deficit on fine motor control
skills, observations from DCD children are less precise than
the ones collected from TD children because anomalous move-
ments are introduced; in ASD children performances got worst
as effect of motor control and social interaction deficits, that
manifest themselves in more abnormal and erratic movements.

C. Trade-off between training set size and system perfor-
mances

Finally, we have investigated how the size of the training
set affects the performance of our model. Using a cross-
subject validation protocol, we have trained our classifier with
a variable number of subjects varying within {5, 10, . . . , 95}%
of the total number of TD children. As shown in Fig. 7, by
varying the percentage of subjects in the training set, the MAE
value decreases. This result clearly shows that a wider training
set allows for a more precise localization of the change-points.
In a similar way, the MR value also decreases. Finally, while
the F1-score keeps growing while increasing the size of the
training set, the precision value has an inflection and starts to
grow again after the 80% of the subjects are used for training
purposes. Overall, with small dataset size, the system exhibits
high recall but is not precise yet. By increasing the size of the
training set, the precision value increases as well.

The experimental results, however, highlight how the system
needs just the 30% of the total number of subjects to achieve
a 90% of the F1-score.

T vs. P (DCD) Start Peak End Background
Start 92.50% 0.21% 0.21% 7.00%
Peak 0.00% 92.50% 0.63% 6.77%
End 0.21% 0.21% 86% 13.34%
Background 0.03% 0.03% 0.06% 99.86%

TABLE IV
THE TABLE SHOWS THE CONFUSION MATRIX ON THE PREDICTED

CHANGE-POINT CLASSES WHEN ANALYSING BEHAVIORAL DATA FROM
CHILDREN WITH DEVELOPMENTAL COORDINATION DISORDER (DCD).

T vs. P (ASD) Start Peak End Background
Start 88.00% 0.38% 0.25% 10.77%
Peak 0.76% 86.00% 0.12% 12.54%
End 0.88% 0.63% 83.00% 14.00%
Background 0.04% 0.05% 0.06% 99.00%

TABLE V
THE TABLE SHOWS THE CONFUSION MATRIX ON THE PREDICTED

CHANGE-POINT CLASSES WHEN ANALYSING BEHAVIORAL DATA FROM
CHILDREN WITH AUTISM SPECTRUM DISORDER (ASD).

Fig. 7. The plots are obtained by varying the percentage of TD subjects in the
training set. The plots show trend and standard deviation of: Mean Absolute
Error (MAE), Missing Rate (MR), F1-score and Precision values.

VI. DISCUSSION

Experiments on data from children with TD show the ef-
fectiveness of the system in detecting and identifying change-
points (F1 ≈ 0.95) against the background and among three
classes. Behavioral data from children with DCD and ASD
have been exploited to verify the reliability of the system
facing abnormal movements. Despite an expected decrease in
performances, the system is still able to obtain an acceptable
recognition rate in accord to the particular NDD analysed
(DCD, F1 ≈ 0.91 and ASD, F1 ≈ 0.82).

Table I reports the performance of our semi-automated
annotation system on sequences collected from TD Children.
Such results show that the use of a sliding window approach
to extract features from data is successful in detection and
recognition of change-points without a-priori knowledge of
the behavioral models. Experiments testing different window
lengths show the need of choosing a window size W that takes
into account the signal sampling rate and the dynamics of the
behaviors that should be modeled.

The adopted signal characterization includes a set of sta-
tistical features of the signal within a temporal window, and
demonstrated the capability of describing change-points and,
hence, the transition from a motor behavior to another. We
presented, in particular, two different descriptors: a simple one
called S-SW that resumes the statistical properties of the signal
in each window and an extended one, C-SW, able to include
contextual information before and after each temporal window.

Results in Table I focus on experiments that employ such
descriptors, varying the values of W and τ . The best resulting
configuration in terms of F1-score, MR, and MAE, exploiting
the proposed dataset, is the one that takes into account con-
textual information, namely the descriptor C-SW with τ = 2.
While showing the efficacy of the proposed approach for
modeling change-points, such results also underline the more
general importance of including contextual information: the
descriptor should not only include a statistical characterization
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of the point and its window, but should also include informa-
tion describing its closest surrounding area.

The feasibility and the effectiveness of the proposed ap-
proach in detecting and classifying change-points are also
confirmed by the plot in Fig. 7. Indeed, through an analysis
of the impact of the training set size on the performances of
the system, we found that it is possible to achieve an F1-score
of 90% by supplying a 30% of the number of subjects in the
sample set. Consequently, it is possible to conceive in future
works focusing on behavior analysis and understanding, the
use of a semi-automated annotation methodology based on
the proposed system: in datasets similar to the one exploited
in this work, it is possible to hypothesize a reduction of the
70% of the effort spent on the annotation of the whole dataset.

The proposed system, in fact, has not the ambition of
operating in real-time or as a fully automated change-point
annotation system, but as a convenient, semi-automated offline
tool for psychologists, psychiatrists, computer scientists, cog-
nitive scientists and other practitioners working on behavior
understanding, affective computing, social robotics or, more
in general, human-machine interaction, that need an efficient
tool for annotating behavioral observations. After the manual
annotation of a small, randomized set of behavioral data, the
presented system can be employed to complete the annotation
of the whole dataset. However, according to the degree of
reliability requested by the behavioral analysis, and due to
the not negligible presence of errors, especially in case of
behavioral anomalies or NDD, the detected change-points
should always be reviewed by expert annotators. Despite these
limits, the use of the developed system would result in a
fast and efficient workflow for the annotation of behavioral
observations.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a system aimed at the detection
and recognition of change-points in behavioral data related to
humans’ movements. In particular, the proposed methodology
has been used to implement a semi-automated annotation
system able of achieving a fine, local characterization of
behavioral observations. While general purpose, the system
has been tested using a database of behavioral data collected
during an imitation experiment involving interactions between
children and a virtual avatar acting as a tightrope walker. Such
behavioral data have been exploited to evaluate the general
performances of the system and its reliability.

While the developed system has been imagined as a general
purpose tool, it has been tested on a single human behavior
dataset that focuses on children movements. Consequently,
more experiments with other humans’ movements datasets are
needed to confirm the overall extent of such performances.
Future works will focus also on testing the system while
exploiting other modalities, such as gazing or eye direction,
able to describe the human engagement’s evolution. At the
same time, the presented tool will be extended to support
different, synchronized modalities. Such extension will also
account for the different sampling rates of the multi-modal
sensors used to capture human behaviors, such as skeleton data

from RGB-D cameras and gaze information from eye trackers
(usually faster than RGB-D). The study of more informative
features remain in any case an interesting topic for future
investigations.

We will also further focus on domain-adaptation techniques
to transfer the system ability of classifying TD data onto NDD
data. Finally, we have the ambition of enlarging the testing
domains of the presented framework beyond the analysis of
human activities by considering, for instance, the analysis of
physical, astronomical or financial observations.
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