
Submitted 8 January 2020
Accepted 14 May 2020
Published 19 June 2020

Corresponding author
Marco Chiaramonte,
marco.chiaramonte01@unipa.it

Academic editor
María Ángeles Esteban

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.9299

Copyright
2020 Inguglia et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Salmo salar fish waste oil: Fatty acids
composition and antibacterial activity
Luigi Inguglia1,*, Marco Chiaramonte1,*, Vita Di Stefano1, Domenico Schillaci1,
Gaetano Cammilleri2, Licia Pantano2, Manuela Mauro1, Mirella Vazzana1,
Vincenzo Ferrantelli2, Rosalia Nicolosi1 and Vincenzo Arizza1

1 STEBICEF, University of Palermo, Palermo, Italy, Italy
2 Istituto Zooprofilattico della Sicilia ‘‘A.Mirri’’, Palermo, Italy, Italy
*These authors contributed equally to this work.

ABSTRACT
Background and aims. Fish by-products are generally used to produce fishmeal or
fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are
still poorly explored and characterized and more studies are needed to reveal their
potentiality. The goal of the present study was to qualitatively characterize and
investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste
samples and to evaluate the potential use of these compounds for treating pathogen
infections.
Methods. Salmo salar waste samples were divided in two groups: heads and soft tissues.
Fatty acids composition, and in particular the content in saturated (SAFAs), mono-
unsaturated (MUFAs) and Polyunsaturated (PUFAs) fatty acids, was characterized
through GC/MS Thermo Focus GC-DSQ II equipped with a ZB-5 fused silica capillary
tubes column. The antimicrobial activity of the salmonwaste oils was evaluated through
the Minimum Inhibitory Concentration assay and the antibiotics contamination was
determined by Liquid Chromatography with tandemMass Spectrometry (LC-MS/MS)
analysis. All experiments were done at least in triplicate.
Results. GC/MS analysis has shown the specific fatty acid composition of the salmon
waste oils and their enrichment inMUFAs and PUFAs, with special reference to omega-
3, -6, -7, -9 fatty acids. Furthermore, our study has highlighted the antimicrobial activity
of the fish waste oil samples against two Gram+ and Gram- bacterial strains.
Conclusions. These data confirm that the fish waste is still quantitatively and quali-
tatively an important source of available biological properties that could be extracted
and utilized representing an important strategy to counteract infective diseases in the
context of the circular economy.

Subjects Aquaculture, Fisheries and Fish Science, Food Science and Technology, Marine Biology,
Zoology
Keywords Waste oil, Polyunsaturated fatty acid, Minimum inhibitory concentration, Salmo salar,
Fish oil

INTRODUCTION
Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a
by-product. Anyway, fish wastes are an enormous potential source of useful molecules,
such as bioactive peptides, enzymes, antimicrobial components and polyunsaturated fatty
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acids (PUFA) (Ghaly et al., 2013). Despite their importance, fish wastes are still poorly
explored and characterized and more studies are needed to reveal their potential.

Polyunsaturated fatty acids (PUFAs) are key constituents of the cell membranes.
For this reason they are important regulators of the membrane fluidity, cell signalling,
gene expression and cellular functions, and also represent important substrates for lipid
mediators synthesis (Parolini, 2019). Low serum levels of ω-3 polyunsaturated fatty acids
(PUFAs) have been associated to an increased incidence of cardiovascular disease and
higher mortality rate. Furthermore, pre-clinical and clinical studies have shown that
the addition of ω-3 PUFAs to daily diet can prevent and attenuate lipid accumulation,
vascular inflammation and macrophage recruitment, which are among the major causes
of the atherosclerosis plaque formation process (García-Hernández et al., 2013; Corsi,
Momo Dongmo & Avallone, 2015; Yagi et al., 2017; Leshno et al., 2018). The American
Institute of Medicine, Food and Nutrition Board recommended daily Adequate Intakes
(AIs) of Omega-3s (Medicine, 2005) which, unfortunately, are often not met with the daily
diet.

The role of PUFAs as pro- or anti-inflammatory molecules has been largely discussed
(Fischer & Weber, 1983; Heidel et al., 1989; Hawkes, James & Cleland, 1992; Moreno, 2009;
Simonetto et al., 2019). Lipid mediators derived from the ω-6 PUFA are involved in
inflammation at different stages. For example, the ω-6 PUFA arachidonic acid is the
precursor of prostaglandins, thromboxanes and pro-inflammatory leukotrienes. Instead,
ω-3 PUFAs exhibit anti-inflammatory properties by competing with ω-6 PUFAs, altering
the membrane phospholipid amount of arachindonic acid and reducing the production
of pro-inflammatory eicosanoids. Furthermore, ω -3 PUFAs promote the resolution of
inflammation through the synthesis of lipid mediators, including resolvins, protectins and
maresins, which are known to be ‘‘specialized pro-resolving mediators’’ (SPMs) (Serhan,
2014).

PUFAs and free fatty acids (FFA) have also been studied for their antimicrobial activity
which is characterized by a broad spectrum of activity and the lack of classical resistance
mechanisms (Desbois & Smith, 2010; Desbois, 2012; Desbois & Lawlor, 2013). In a recent
paper (Chanda et al., 2018), different hypothesis were proposed as PUFAs antimicrobial
mode of action which include disruption of intercellular communication, interruption of
ATP production, alteration of membrane properties, disruption of fatty acids synthesis,
affecting the electron transport system and increasing the number of membrane pores
(Zheng et al., 2005; Carballeira, 2008). In addition, as explained elsewhere (Desbois &
Smith, 2010), FFAs can also impair Staphylococcus aureus skin colonization through
stratum corneum acidification (Fluhr et al. 2001; Takigawa et al., 2005). FFAs may also
impair the expression of virulence factors, which are necessary for the establishment of
infection, and inhibit the cell-to-cell signalling, thus preventing initial bacterial adhesion
and subsequent biofilm formation.

Marine organisms are a very important source of antimicrobial agents (Richards et al.,
2001; Schillaci et al., 2010; Schillaci et al., 2013; Spinello et al., 2018; Vazzana et al., 2018;
Núñez Acuña et al., 2018) and, among them, the PUFAs are normally present at high levels
in Salmo salar (Linder, Fanni & Parmentier, 2005; Morais et al., 2009). Different studies
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have shown the antimicrobial activity of the salmon PUFAs against Gram-positive bacteria
due to their specific components such as eicosapentaenoic acid (Desbois, Mearns-Spragg
& Smith, 2009; Desbois & Lawlor, 2013), docosahexaenoic acid (Coonrod, 1987; Feldlaufer
et al., 1993; Gladyshev et al., 2009), γ-linolenic acid (Asthana et al., 2006) and dihomo-
γ-linolenic acid (Feldlaufer et al., 1993).

It is well known that among fishes farmed in Europe, the Atlantic salmon (Salmo salar)
is one of the most important aquaculture species. Norway, Scotland and Ireland are the
three major producers of salmon, which, in Europe, represents an important resource in
terms of production and economic value. Fish waste from salmon can reach up to 40% of
the total weight of the animal and is mainly composed of bones, head and offal.

Even if the most important source of fatty acids is the adipose tissue interspersed in
the muscular fibers, it is still possible to obtain valuable quantities of PUFAs from the fish
waste due to their large amount. Furthermore, the possibility to use the fish leftovers and
to produce, from them, high value products, represents an important step in the circular
economy.

Thus, the aim of the present research was to characterize, by qualitative point of view,
and to investigate, for the first time, the antimicrobial effects of the fish oil extracted from
the market salmon waste through an unbiased approach regard fishing or farming source
and condition. Furthermore the potential use of these compounds, for treating Gram +
and Gram- bacterial infections, was evaluated through the determination of minimum
inhibitory concentrations against S. aureus and Pseudomonas aeruginosa, two relevant
pathogens cause of polymicrobial infections (Serra et al., 2015) and included in the global
priority list of antibiotic-resistant bacteria from WHO/OMS (Tacconelli et al., 2017). In
addition, we tried to understand if the antimicrobial activity could be due to any chemical
contaminants present in the samples.

MATERIALS AND METHODS
Salmon sample collection, storage and fish oils extraction
Ten animals were collected from small fish markets of Palermo (Italy) and utilized for
the experiments. The animal size is the commercial size (about 2 years old and 3–5 Kg).
Raised farm and feed composition are not available. Salmon wastes were transported at
+4 ◦C to the laboratory for the analysis. Fish wastes were divided into two groups which
comprise heads and soft tissues that were homogenized and stored at −20 ◦C until the
time of analysis. Homogenate samples were diluted in distilled water (1:1) and heated at
90 ◦C for 1 h, to coagulate proteins and increase oil release from samples. This method,
well established and utilized, was chosen for simplicity and laboratory cost effectiveness.
After heat treatment, the homogenate was filtered to obtain the liquid fraction that was
centrifuged at 10,000 g a 4 ◦C to separate the aqueous fraction from the liposoluble
component corresponding to the fish oil.
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GC/MS analysis and identification of the components of Salmo salar
PUFAs
Fatty acids were analyzed using GC-MS method after extraction and hydrolysis of
triacylglycerols. 0.1 g of oil samples were diluted in 1 ml of n-heptane and manually
agitated for 10 s, followed by the addition of 0.1 ml of 2N KOH in MeOH solution and
mixed in a vortex. When the solution turned clear, 500 µl of upper phase, containing fatty
acid methyl esters was diluted with n-heptane to a final volume of 1 ml. For the separation
and analysis of the fatty acid methyl esters, Thermo Scientific ISQTM 9000 Quadrupole
GC-MS System in EI (Electron Ionization) mode, working in full scan was used. The
capillary column used was a ZB-WAX (30 m × 0.25 mm i.d., film thickness 0.25 µm,
(Phenomenex, Italy). The oven temperature was programmed so that column temperature
started at 80 ◦C, increased at 15 ◦C/min to 250 ◦C and held for 8 min under isothermal
conditions. Helium was used as the carrier gas at a flow rate of one mL/min. A sample
of 1 µl was injected with a split ratio of 1:100. Mass spectroscopy conditions: The ion
source temperature was 260 ◦C, the MS transfer line temperature was 265 ◦C and injector
temperature was 250 ◦C. Ionization voltage was 70 eV and the mass range scanned was
35–550 m/z. Using Thermo Scientific Xcalibur Data system software for Windows peak
areas were determined and identified by comparison of retention times with those of a
FAMEs standard mix (Supelco 37 Component FAME Mix, CRM47885 Sigma-Aldrich)
separated under the same chromatographic conditions. Triplicate analyses were prepared
for each dried sample, and analysed FAMEs were expressed in percentage.

Samples extraction and LC-MS/MS analysis
Samples were subjected to extraction and antibiotics determination (Quinolonics,
Fluoroquinolonics, Penicillins, Tetracyclines, Macrolides, Sulfamidic and Sulfonamides)
following the protocol reported in a previous paper (Cammilleri et al., 2019b). The analyses
were performed on a Thermo Fischer UHPLC system (Thermo Fisher Scientific, California,
USA) consisting of an ACCELA 1250 quaternary pump and an ACCELA autosampler. A
Thermo Scientific Hypersil Gold reversed-phase UHPLC column (50 mm, 2.1 mm ID,
1.9 µm) was used for the chromatographic separation. The LC eluents were water (A) and
acetonitrile (B), containing 0.1% (v/v) formic acid. The gradient started with 95% eluent
A for 1.0 min, a linear variation to 10% A in 6.0 min; these conditions were maintained
for 3.0 min. The system returned to 95% A in 0.5 min and was re-equilibrated for 5 min.
The column temperature was 30 ◦C and the sample temperature was kept at 6 ◦C. The
flow rate was 0.4 ml/min and the injection volume was 5 µl. A triple quadrupole TSQ
Vantage (Thermo Fisher Scientific, California, USA) in positive electrospray ionization
mode (ESI) mass spectrometer was used. The product ion scans of each analyte were
performed by direct infusion (10 µl/min) of 1 mg l−1 individual standard solutions with
the built-in syringe pump through a T-junction, mixing with the blank column eluate
(200 µL/min). The ESI parameters optimized were as follows: capillary voltage 4.5 kV;
capillary temperature 310 ◦C; vaporizer temperature 150 ◦C; sheath and auxiliary gas
pressure were fixed at 40 and 15 (arbitrary unit), respectively. The collision gas was argon
at 1.5 mTorr and peak resolution of 0.7 FWHMwas used on Q1 and Q3. The scan time for
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each monitored transition was 0.02 s and the scan width was 0.02 m/z. Acquisition data
were recorded and elaborated using Xcalibur TM version 2.1.0.1139 software from Thermo.
The method was validated according to the parameters described by EU Commission
Decision 2002/657/EC. All experiments were done at least in triplicate.

Minimum inhibitory concentration determination
Minimum inhibitory concentrations (MICs) of the fish oils from Salmo salar, head and
muscle, were evaluated using an already described micromethod (Schillaci et al., 2010;
Schillaci et al., 2013; Schillaci et al., 2014). A series of solutions were prepared with a range
of concentrations from 50 to 0.75 % v/v (obtained by two-fold serial dilution). The serial
dilutions were made in Mueller-Hinton Broth (MHB) in a 96-wells plate, starting from a
stock solution of 1 mg/mL in NaCl 0.9% w/v. To each well, 10 µL of a bacterial suspension
from a 24 h culture containing ∼106 cfu/mL was added.

The plate was incubated at 37 ◦C for 24 h; after this time, the MICs were determined
by a microplate reader (Glomax Multidetection System TM297 Promega, Milano Italy)
as the lowest concentration of compound whose Optical Density (OD), read at 570 nm,
was comparable with the negative control wells (broth only, without inoculum). Positive
controls are instead the growth control, bacterial inoculum in the medium without any
inhibitor. The antimicrobial properties were determined on Gram-positive bacterial
reference strains Staphylococcus aureus (ATCC 25923; ATCC 6538) and on Gram-negative
strains Pseudomonas aeruginosa (ATCC 15442; ATCC 9027). Each assay was performed in
triplicates and repeated at least twice.

RESULTS
Salmo salar waste oils characterization by GC/MS analysis
The fish oil fatty acid compositions extracted from head and soft tissue were characterized,
qualitatively, by GC/MS. The analysis, whose results are listed in Tables 1A and 1B, showed
the salmon fatty acid composition and the percentage of the different unsaturated (UFAs)
and saturated fatty (SFAs) acids both in the head and in the soft tissue respect to the total.
In particular, the fish waste oil from the heads was composed of the 84% of UFAs and the
16% of SFAs while the fish waste oil from the soft tissue was composed of 83% of UFAs
and the 17% of SFAs.

Among the unsaturated fatty acids, the GC/MS has highlighted the presence of the
monounsaturated acids ω-9 oleic (C18:1 19), which percentages were of 53.58% in the
head oil and 39.47% in the soft tissue oil, ω-9 gondoic (C20:1 111), which percentages
were of 5.75%, in the head oil and 4.02% in the soft tissue oil and ω-7 Palmitoleic (C16:1
19), 3.24% in the head oil and 1.39% in the soft tissue oil. The polyunsaturated acids were
mainly composed of ω-3 α-Linolenic (C18:3 19,12,15 ), 5.91% in the head oil and 4.46%
in the soft tissue oil and ω-6 Linoleic (C18:2 19,12), 15.43% in the head oil and 14.56% in
the soft tissue oil.

The saturated fatty acids (SFA) represented the remaining part of the lipid fraction
constituted by myristic acid (C14:0), 2.28% in the head oil and 2.56% in the soft tissue oil,
palmitic acid (C16:0), 11.44% in the head oil and 9.57% in the soft tissue oil and stearic
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Table 1 Salmo salar fatty acid characterization. Fatty acid composition of the oil extracted from wastes
of Salmo salar head samples (A) and soft tissue samples (B). Values are reported as relative percentages
and are means±standard deviations. All experiments were done at least in triplicate.

(A) Salmon head oil

IUPAC NAME ω-Group R.T. RELATIVE%±D.S.

C14:0 Myristic acid – 10.10 2.28± 0.04
C16:0 Palmitic acid – 10.84 11.44± 0.16
C16:119 Palmitoleic acid ω-7 10.91 3.24± 0.24
C18:0 Stearic acid – 11.52 2.34± 0.12
C18:119 Oleic acid ω-9 11.56 53.58± 0.72
C18:219,12 Linoleic acid ω-6 11.70 15.43± 0.37
C18:319,12,15 α-Linolenic acid ω-3 11.89 5.91± 0.10
C20:1111 Gondoic acid ω-9 12.34 5.75± 0.99

(B) Salmon soft tissue oil

IUPAC NAME ω-Group R.T. RELATIVE%
±D.S.

C14:0 Myristic acid – 9.59 2.56± 0.29
C14:119 Myristoleic acid – 9.74 0.03±0.01
C15:0 Pentadecanoic acid – 10.05 0.14±0.12
C16:0 Palmitic acid – 10.33 9.57±0.38
C16:119 Palmitoleic acid ω-7 10.49 1.39±1.59
C16:219,12 9,12-Hexadecadienoic acid – 10,65 0.13±0.06
C17:0 Margaric acid – 10.73 0.2±0.03
C17:1110 cis-10- Heptadecenoic acid ω-7 10.80 0.16±0.14
C17:118 Heptadecenoic ω-9 10.85 0.13±0.04
C18:0 Stearic acid – 10.95 0.54±0.6
C18:119 Oleic acid ω-9 11.05 39.47±2.57
C18:219,12 Linoleic acid ω-6 11.25 14.56±0.19
C18:2112,15 12,15-Octadecanoic acid ω-3 11,38 0.09±0.01
C18:316,9,12 γ -Linolenic acid ω-6 11,45 2.13±3.49
C18:319,12,15 α-Linolenic acid ω-3 11,50 4.46±3.2
C18:416,9,12,15 Stearidonic acid ω-3 11,62 0.59±0.5
C20:0 Eicosanoic acid – 11,81 2.25±3.36
C20:1111 Gondoic acid ω-9 11,87 4.02±3.45
C20:218,11 8,11-Eicosenoic acid – 12,01 0.58±0.91
C20:2111,14 cis-11,14-Eicosadienoic acid ω-6 12,06 1.27±0.84
C20:318,11,14 8,11,14-Eicosatrienoic acid ω-6 12,16 0.39±0.26
C20:3111,14,17 11,14,17-Eicosatrienoic acid ω-3 12,28 0.82±0.08
C20:418,11,14,17 all-cis 8,11,14,17-Eicosatetraenoic acid – 12,36 1.53±0.80
C20:515,8,11,14,17 Eicosapentaenoic acid (EPA) ω-3 12,45 1.90±1.42
C22:0 Docosanoic acid – 12,63 1.57±2.64
C22:1113 Erucic acid ω-9 12,69 3.33±2.88

(continued on next page)
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Table 1 (continued)

(B) Salmon soft tissue oil

IUPAC NAME ω-Group R.T. RELATIVE%
±D.S.

C22:2113,16 cis-13,1 6-Docosanoic acid ω-6 12,99 0.26±0.12
C22:514,7,10,14,16 4,7,10,13,16-Docosapentaenoic acid ω-6 13,34 0.45±0.61
C22:517,10,13,16,19 Clupanodonic acid (OPA) – 13,51 2.03±1.17
C22:614,7,10,13,16,19 Docosahexaenoic acid (DHA) ω-3 13,65 2.78±2.04
C24:0 Tetracosanoic acid 13,75 0.12±0.10
C24:1115 Nervonic acid ω-9 13,88 0.29±0.24

Table 2 Salmon waste oils antibacterial activity. Antimicrobial activity (MIC) of the fish oil extracted
from salmon head and soft tissue samples against two Gram+ and Gram- bacterial strains. Values are ex-
pressed as volume percentages (%v/v).

MIC (%v/v)

Bacterial strains Soft tissue Head

P. aeruginosa ATCC 9027 12.5 25Gram-
P. aeruginosa ATCC15442 12.5 25
S. aureus ATCC 6538 12.5 25

Gram+
S. aureus ATCC 25923 12.5 25

acid (C18:0), 2.34% in the head oil and 0.54% in the soft tissue oil. Furthermore, eicosanoic
acid (C20:0) and docosanoic acid (C22:0) were detected only in the soft tissue oils with the
relative ratios of 2.25% and 1.57% respectively.

Antimicrobial activity of the Salmo salar fish waste oils
The antimicrobial activity of the oils extracted from the fish waste, both the head and
the soft tissue, was evaluated through the determination of the MIC values against two
reference strains of Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacteria.
Table 2 summarizes the results of the experiment in which the antimicrobial efficacy the
fish waste oils has been determined. In fact, the fish oils extracted from the head and
from the soft tissue were shown to inhibit the growth of the tested microorganisms at a
concentration of 25% (v/v) and 12.5% (v/v) respectively.

Antibiotics contaminants evaluation
To assess the possibility of antibiotics contaminants in the fish waste oil samples, an
LC-MS/MS was performed. The validation of the method produced satisfactory results
in terms of linearity (r2 > 0.996 for all the analytes examined), accuracy and precision
of intra-day and inter-day analysis, with relative standard deviation (RSD) values within
10%. The trueness values obtained were in the range of 86–92%. The residues of antibiotics
found in the samples examined are shown in Table 3.

Among 53 antibiotics tested, both types of sample examined showed the simultaneous
presence of 4 antibiotics classes, Quinolonics, β-lactams, Macrolides and Sulfonamides
while Fluoroquinolons and Sulfamidics were highlighted only in the head oil sample.
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Table 3 Antibiotics contaminants determination in salmon waste oil. LC-MS/MS antibiotics determi-
nation in the fish oil extracted from salmon head and soft tissue samples. Values are expressed as g/Kg.
N/D, not detected.

Functional groups Antibiotic Head oil
(µg/Kg)

Soft tissue
oil (µg/Kg)

Sulfaguanidine 6.48 6.54
Sulfonamide

Sulfamerazine N/D 0.72
Ofloxacin 2.32 N/D
Ciprofloxacin 3.85 N/D
Lomefloxacin 1.83 N/D

Fluoroquinolon

Enrofloxacin N/D 0.17
Sulfamidic Sulfachinossalin 2.19 N/D
Quinolon Nalidixic Acid 2.04 1.97

Oleandomycin 4.58 4.83
Macrolides

Tylosina 4.48 N/D
Penicillin G 9.29 31.29
Penicillin V N/D 50.73
Oxacillin N/D 34.34

β-lactam

Nafcillin 21.31 151.04

No tetracycline residues were found. β-lactams were found to be present at the highest
concentrations.

DISCUSSION
Despite its potential value, fish waste actually represents a significant cost for fish industries
andmarkets. This hugemass is normally discarded but could represent an important source
of bioactive compounds for pharmaceutical, cosmetic, nutrition and biotechnological
applications. Molecules such as proteins (i.e., enzymes and collagen), lipids, protein
hydrolysates, astaxanthin, chitin (Caruso, 2015) can be extracted and utilized. Fish oil,
enriched in Polyunsaturated Fatty Acids (PUFAs), is still another important source of high
quality bioactive molecules that could be extracted from the fish waste.

Salmo salar fish waste can represent up to 30–50% of the total weight of the animal
(Torrissen et al., 2011; He, Franco & Zhang, 2011; Opheim et al., 2015; Dinh et al., 2018). It
is well known that the salmon oil has important features in terms of PUFAs and is a rich
source of omega-3 fats. In our study we have confirmed the presence of PUFAs in the fish
waste both in the oil extracted from head and soft tissues and we have shown how these
PUFAs are characterized by the presence of omega-3 and omega-6 fatty acids (Tables 1A
and 1B). The most abundant omega-3 found in the fish waste oil was the linolenic acid,
which represent 5.91% in head oil and 4.46% in soft tissue oil. The α-Linolenic acid is really
important in the human diet due to its role as substrate for the synthesis of eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), which confer unique biophysical properties
to cell membranes and are necessary for tissue functions (Burdge & Calder, 2006). Linoleic
acid was found to be the most abundant omega-6 fatty acid both in head oil (15.43% ±
0.47%) and in soft tissue oil (14.56% ± 0.19%). This fatty acid is known for its important
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physiological role, as a constituent of acylglycosyl ceramides, in maintaining the integrity
of the water permeability barrier of the skin (Sanders, 2016). The omega-6 linoleic acid
is also the precursor of the arachidonic acid, which, in turn, is the major precursor of
the eicosanoids, such as prostaglandins, thromboxanes, prostacyclins, leukotrienes and
anandamides, which control a large number of physiological processes. Furthermore,
arachidonic acid regulates the membrane fluidity, modulates the function of specific
membrane proteins involved in cellular signalling and act maintaining cell and organelle
integrity and vascular permeability (Tallima & El Ridi, 2018). Arachidonic acid also affects
neuronal excitability and synaptic transmission through acting on voltage-gated ion
channels and the accumulation of unesterified arachidonic acid compromises cell survival
via induction of apoptosis. Omega-9 oleic acid was themost abundant fatty acid found both
in the head oil (53.58%± 0.72) and in soft tissue oil (39.47%± 2.57%). This molecule, that
is a monounsaturated fatty acid, has been shown to exert many biological functions such
as regulation of plasma lipid and lipoprotein concentrations, modification of coagulation
properties, improvement of glucose homeostasis, and attenuation of inflammation and
oxidative stress (Lopez et al., 2010). Furthermore oleic acid has been shown to inhibit
tumour cell proliferation in a dose- and time-dependent manner, inducing cell cycle
G0/G1 arrest, increasing the apoptosis and the expression of p53 and cleaved caspase-3,
and decreasing the expression of CyclinD1 and Bcl-2 (Jiang et al., 2017).

Fatty acids also exert an important role against microorganism infections. Pathogenic
agents can cause infections in different ways, such as through the production of virulence
factors and biofilms formation, (Beceiro, Tomás & Bou, 2013; Schroeder, Brooks & Brooks,
2017). In vitro and in vivo studies have demonstrated that omega-3 fatty acids, and in
particular linolenic acid and its derivatives, used alone or in combination with conventional
antibiotics, possess antimicrobial properties (Chanda et al., 2018). Omega-6, -7, -9 fatty
acids, such as γ-linolenic, linoleic, arachidonic, palmitoleic and oleic acids, their ethyl esters
and methyl esters, were also shown to be effective against various microorganisms (Huang,
George & Ebersole, 2010). The mechanism of action that would explain the antimicrobial
properties of fatty acids could be the alteration of cell membrane hydrophobicity, charge
and integrity, which result in electron leakage and subsequent cell death (Desbois & Smith,
2010; Lopez-Romero et al., 2015; Calo et al., 2015). Furthermore fatty acids can contribute
to bacterial death through cell lysis, inhibition of enzyme activity, impairment of nutrient
uptake and the generation of lethal oxidation products (Desbois & Smith, 2010).

In our research, the antimicrobial properties of the salmon head and soft tissue waste
oils were tested against two important Gram positive and Gram negative pathogens and the
results showed a MIC of 25% and 12.5% (v/v) respectively (Table 2). These data seem to
indicate that the fish oil extracted from the waste is still active against testedmicroorganisms
and can act independently from the bacterial wall type. Furthermore, the antimicrobial
activity of the waste oil extracted from the salmon soft tissue seems to be more efficient
than head oil against the two bacterial strains utilized. This difference could be probably
due to the different fatty acid composition of the two tissue sources (Tables 1A and 1B). In
fact, comparing the fatty acids composition in the two samples, SUFAs, MUFAs and PUFAs
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were highest in the oil extracted from soft tissue. These data seem to be in accordance with
similar results obtained in other fishes (Li, Sinclair & Li, 2011; Hong et al., 2015).

Our research was performed through an unbiased approach regard fishing or farming
source and condition. However, it is legitimate to ask whether farming conditions, and
in particular fish diet, could alter the fish oil composition. Recently studies have shown
that alternative salmon feeds can increase the salmon oil concentration but not, at least
completely, its composition (Ruyter et al., 2019; Bruni et al., 2020)

Almost the totality of the Salmon sold in Italian fish markets is produced through
aquaculture methods. The importance of food safety is crucial for fish farm and the
potential hazards include dangerous chemicals and microorganisms. The former could be
accumulated by the fish, especially in their fat tissues, from the aquaculture environment,
the feed and residues from veterinary prophylaxis, the latter are represented by parasites,
viruses and bacteria that may be harmful for humans (Fairgrieve & Rust, 2003; Estévez et
al., 2018; Ben Hamed et al., 2018;Gjessing et al., 2019; Feist et al., 2019). In addition seafood
produced through aquaculture can be contaminated by different types of toxic substances
from natural and/or anthropogenic origins due to both indirect and direct pollution
from continental human activities (Fremy & Bordet, 2002; Chiesa et al., 2019; Quiñones
et al., 2019; Heldal et al., 2019). Aquaculture fish management practices can represent an
important stressing factor for fishes, in particular for salmon, and could result in high
mortalities leading to significant economic loss for producers (Wilson et al., 2009; Sudheesh
et al., 2012; Overton et al., 2019). In fact, stressors like handling, stripping of brood stock,
antimicrobial treatments, vaccination, temperature, crowding, starvation and transport
can result in an increase of a number of diseases evaluable through the measure of the
levels of cytokines, heat shock proteins (HSP), corticosteroid hormones, immunoglobulin
and immune cells levels, haematological parameters (Gabriel & Akinrotimi, 2011; Cordero
et al., 2016; Rehman et al., 2017; Parisi et al., 2017; Chiaramonte et al., 2019; Cammilleri et
al., 2019a; Inguglia et al., 2020; Vazzana et al., 2020). Moreover, salmon, which are usually
farmed in crowded conditions, are easily targeted by infective pathologies (Poppe, Barnes
& Midtlyng, 2002; Håstein, 2004; Bang-Jensen, Gu & Sindre, 2019). Over the past years,
fish farms, and in particular that of salmon, have increased their productivity in parallel
with the growth of the use of substances used to prevent and treat microbial and bacterial
disease, such as antibiotics (Miranda, Godoy & Lee, 2018). Wemust say that other solutions
are being tried, such as vaccines and immunostimulants (Eslamloo et al., 2017; Meza et
al., 2019; Xue et al., 2019; Chalmers et al., 2020), in order to limit the use of antibiotics
(Gravningen, Sorum & Horsberg, 2019) but they still remain a largely utilized solution
expecially in Non-European countries. Specific data about antibiotics in the aquaculture
industry are not easy to report due to the different current laws of the involved countries.
For this reason data are often unavailable or unattainable (Heuer et al., 2009; Romero,
Gloria & Navarrete, 2012;Miranda, Godoy & Lee, 2018). However, based on available data,
the qualities and quantities of the used antibiotics are variable. For example, among the
world countries with the highest rates of aquaculture antibiotic use (Van Boeckel et al.,
2015) there are Chile and Vietnam. In Norway, the antibiotics amount used in aquaculture,
decreased enormously in the last years but still present, is of 1g/ton of farmed Salmon while
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in Vietnam the utilized amount is of 700 g/ton of farmed shrimp (Smith, 2008; Bang-Jensen,
Gu & Sindre, 2019).

Considering this information, we performed the LC-MS/MS analysis to exclude the
involvement of aquaculture contaminants in the biological antibacterial activity of the
fish waste oil (Table 3). The analysis has shown the presence of traces of molecules that,
anyway, are considerably under the maximum residue limits indicated by European law
(REGULATION, 2009; Commission Regulation (EU), 2009). Furthermore, the small drug
amounts highlighted by the experiment would not seem explain the MIC values observed.
However, we cannot completely exclude the hypothesis of a contribute of this molecules
to the antibacterial properties of the fish waste oil and further analysis are needed to totally
exclude this possibility.

CONCLUSIONS
The present research have shown, through GC-MS analysis, the specific composition of the
fish waste oil extracted from different discarded parts of the Salmo salar present in Italian
fish markets. The analysis has also highlighted the oil enrichment in polyunsaturated fatty
acids and, among them, in omega-6, -7 and -9 fatty acids. In addition, theMIC experiments
have revealed the antibacterial activity of the extracted Salmon waste oil

These data confirm that the fish waste is still quantitatively and qualitatively an important
source of available biological properties that could be extracted and utilized representing an
important strategy to counteract infective diseases in the context of the circular economy.
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