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Abstract1

The aim of this paper is to investigate different types of multi-integrals of finite variation and2

to obtain decomposition results.3
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1 Introduction7

In [23] was proved that a Banach space valued function is McShane integrable if and only if8

it is Pettis and Henstock integrable. That result has been then generalized to compact valued9

multifunctions Γ (see [20]), weakly compact valued multifunctions (see [6]) and bounded10

valued multifunctions (see [8]). Di Piazza and Marraffa [16] presented an example of a Pettis11

and variationally Henstock integrable function that is not variationally McShane integrable12

(= Bochner integrable in virtue of [18, Lemma 2]). It turns out that Fremlin’s theorem can13

be formulated for variational integrals if and only if the variation of the integral is finite in14

the following sense:15

sup

{∑
i

∥∥∥∥
∫

Ii

Γ

∥∥∥∥
h

: {I1, . . . , In} is a finite partition of [0, 1]
}

< +∞.16
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Finally, in the last section, using DL or Db conditions we are able to prove that the scalar17

integrability of a multifunction can be obtained as a translation of the Pettis integrability (The-18

orem 4.1), while its Henstock integrability under DL condition is obtained using Birkhoff19

integrability (Theorem 4.3), both results with integrals of finite variation.20

This article is the last in which Domenico Candeloro was able to cooperate and to give21

his personal contribution, always precious, and we want to dedicate it to him, in his memory.22

2 Preliminaria23

Throughout X is a Banach space with norm ‖ · ‖ and its dual X∗. The closed unit ball of X24

is denoted by BX . The symbol c(X) denotes the collection of all nonempty closed convex25

subsets of X and cb(X), cwk(X) and ck(X) denote respectively the family of all bounded,26

weakly compact and compact members of c(X). For every C ∈ c(X) the support function27

of C is denoted by s(·, C) and defined on X∗ by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each28

x∗ ∈ X∗. ‖C‖h = dH (C, {0}) := sup{‖x‖ : x ∈ C} and dH is the Hausdorff metric on the29

hyperspace cb(X). The map i : cb(X) → �∞(BX∗) given by i(A) := s(·, A) is the Rådström30

embedding (see, for example, [1, Theorem 3.2.9 and Theorem 3.2.4(1)], [14, Theorem II-19],31

or [28]).32

I is the collection of all closed subintervals of the unit interval [0, 1]. All functions33

investigated are defined on the unit interval [0, 1] endowed with Lebesgue measure λ and34

Lebesgue measurable sets L.35

A map Γ : [0, 1] → c(X) is called a multifunction. In the sequel, given a multifunction36

Γ : [0, 1] → c(X), we set DΓ (t) := diam (Γ (t)), for all t ∈ [0, 1]. We say that Γ satisfies37

the38

(Db-condition) if sup esst DΓ (t) < ∞;39

(DL-condition) if
∫ 1

0 DΓ (t)dt < +∞ (where
∫

denotes the upper integral).40

We recall that a multifunction Γ : [0, 1] → c(X) is said to be integrably bounded if there is41

a function h ∈ L1[0, 1] such that ‖Γ (t)‖h ≤ |h(t)| for almost all t ∈ [0, 1]. We have always42

DΓ (t) ≤ 2‖Γ (t)‖h . Hence, if Γ is integrably bounded, then Γ satisfies DL .43

If Γ (t) 
 0 for almost every t ∈ [0, 1], then ‖Γ (t)‖h ≤ DΓ (t) a.e. Each function44

g : [0, 1] → X , considered as a ck(X)-valued multifunction, trivially satisfies the Db45

property.46

We recall that if Φ : L → Y is an additive vector measure with values in a normed space47

Y , then the variation of Φ is the extended non negative function |Φ| whose value on a set48

E ∈ L is given by |Φ|(E) = supπ

∑
A∈π ‖Φ(A)‖, where the supremum is taken over all49

partitions π of E into a finite number of pairwise disjoint members of L. If |Φ| < ∞, then50

Φ is called a measure of finite variation.51

If the measure Φ is defined only on I, the finite partitions considered in the definition of52

variation are composed by intervals. In this case we will speak of finite interval variation53

and we will use the symbol Φ̃, namely:54

Φ̃([0, 1]) = sup

{∑
i

‖Φ(Ii )‖: {I1, . . . , In} is a finite interval partition of [0, 1]
}

.55

If Y is a metric space, for example (cb(X), dH ), which is a near vector space in the sense56

of [28], and Φ : I → cb(X) is additive we consider in its interval variation the distance57

dH (Φ(A), {0}) instead of ‖Φ(A)‖.58
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Multi-integrals of finite variation

We recall here briefly the definitions of integrals involved in this article. A scalarly inte-59

grable multifunction Γ : [0, 1] → c(X) is Dunford integrable in a non-empty family60

C ⊂ c(X∗∗), if for every set A ∈ L there exists a set M D
Γ (A) ∈ C such that61

s(x∗, M D
Γ (A)) =

∫
A

s(x∗, Γ ) dλ, for every x∗ ∈ X∗.62

If M D
Γ (A) ⊂ X for every A ∈ L, then Γ is called Pettis integrable. We write it as (P)

∫
A Γ dμ63

or MΓ (A). We say that a Pettis integrable Γ : [0, 1] → c(X) is strongly Pettis integrable, if64

MΓ is an h-multimeasure (i.e. it is countably additive in the Hausdorff metric).65

A multifunction Γ : [0, 1] → cb(X) is said to be Henstock (resp. McShane) inte-66

grable on [0, 1], if there exists ΦΓ ([0, 1]) ∈ cb(X) with the property that for every ε > 067

there exists a gauge δ : [0, 1] → R
+ such that for each Perron partition (resp. partition)68

{(I 1, t1), . . . , (I p, t p)} of [0, 1] with Ii ⊂ [ti − δ(ti ), ti + δ(ti )] for all i ( i.e. δ–fine), we69

have70

dH

(
ΦΓ ([0, 1]),

p∑
i=1

Γ (ti )λ(Ii )

)
< ε. (1)71

If the gauges above are taken to be measurable, then we speak of H (resp. Birkhoff)-72

integrability on [0, 1]. If I ∈ I, then ΦΓ (I ) := ΦΓ χI [0, 1]. Finally if, instead of formula73

(1), we have74

p∑
i=1

dH (ΦΓ (Ii ), Γ (ti )λ(Ii )) < ε. (2)75

we speak about variational Henstock (resp. McShane) integrability on [0, 1]. In all the cases76

ΦΓ : I → cb(X) is an additive interval multimeasure.77

Thanks to the Rådström embedding, a multifunction Γ is “gauge” integrable (in one of78

the previous types) if and only if its image i ◦ Γ in l∞(BX∗) is integrable in the same way.79

A multifunction Γ : [0, 1] → cb(X) is said to be Henstock–Kurzweil–Pettis (or HKP)80

integrable in cb(X) if it is scalarly Henstock–Kurzweil (or HK)-integrable and for each I ∈ I81

there exists a set NΓ (I ) ∈ cb(X) such that s(x∗, NΓ (I )) = (H K )
∫

I s(x∗, Γ ) for every82

x∗ ∈ X∗. If an HKP-integrable Γ is scalarly integrable, then it is called weakly McShane83

integrable (or wMS).84

We recall that a function f : [0, 1] → R is Denjoy–Khintchine (DK) integrable ([25,85

Definition 11]), if there exists an ACG function (cf. [26]) F such that its approximate derivative86

is almost everywhere equal to f . A multifunction Γ : [0, 1] → cb(X) is Denjoy-Khintchine-87

Pettis (DKP) integrable in a non empty family C in cb(X), if for each x∗ ∈ X∗ the function88

s(x∗, ·) is Denjoy-Khintchine integrable and for every I ∈ I there exists CI ∈ C with89

(DK )
∫

I s(x∗, Γ ) = s(x∗, CI ), for every x∗ ∈ X∗.90

As regards other definitions of measurability and integrability that will be treated here and91

are not explained and the known relations among them, we refer to [3–7,9,10,13,17,21,31],92

in order do not burden the presentation.93
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3 Multimeasures of finite variation94

We begin with a known fact.95

Lemma 3.1 If f : [0, 1] → R is the Denjoy–Khintchine integrable and the interval variation96

of its integral is finite, then f Lebesgue integrable.97

Proof Let F be the Denjoy–Khintchine primitive of f : [a, b] → R. Then F is an ACG98

function and, according to [26, Theorem 15.8], F is continuous on [a, b]. So F satisfies99

the condition (N) of Lusin on in [a, b] (see [26, Theorem 6.12]). Since F is also BV, an100

application of [26, Theorem 6.15] gives that F is also AC on on [a, b]. So f is Lebesgue101

integrable. 
�102

Theorem 3.2 Let Φ : I → cb(X) be the DKP-integral of Γ : [0, 1] → cb(X). If103

supx∗∈BX
˜〈x∗, Φ〉([0, 1]) < ∞, then Γ is weakly McShane integrable in cb(X) and Gelfand104

integrable in cw∗k(X∗∗). If Φ̃([0, 1]) < ∞, then Φ is strongly Pettis integrable in cb(X).105

Proof By Lemma 3.1 Γ is wMS-integrable in cb(X). According to [8, Theorem 3.2] it is106

Gelfand integrable in cw∗k(X∗∗). Denote the Gelfand integral by Ψ .107

Assume now that Φ̃([0, 1]) < ∞. If {Ii : i ∈ N} is a sequence of non-overlapping108

subintervals of [0, 1], then109 ∑
i

‖Φ(Ii )‖h ≤ Φ̃([0, 1]) < ∞110

and so, due to the completeness of cb(X) under Hausdorff distance, the series
∑

i Φ(Ii ) is111

convergent in cb(X).112

But for each x∗ ∈ X∗ the function s(x∗, Ψ ) is a measure and so
∑

i s(x∗, Φ(Ii )) =113

s(x∗, Ψ (
⋃

i Ii )). Since the sum of
∑

i Φ(Ii ) is uniquely determined, we have114

Ψ

(⋃
i

Ii

)
=

∑
i

Φ(Ii ) ∈ cb(X) .115

It follows that Ψ is σ -additive (in the Hausdorff metric) on the algebra J generated by I.116

Hence, also i ◦ Ψ is σ -additive on J. But ĩ ◦ Ψ ([0, 1]) = Ψ̃ ([0, 1]) = Φ̃([0, 1]) < ∞ and117

so due to [15, Proposition I.15], i ◦ Ψ restricted to J is strongly additive.118

It is a consequence of [27] or [15, Theorem I.5.2] that i ◦Ψ is a measure on the σ -algebra119

of Borel subsets of [0, 1]. But i ◦ Ψ (E) = 0, provided Lebesgue measure vanishes on E and120

consequently, i ◦ Ψ is measure on L. Since i(cb(X)) is a closed cone also Ψ is a measure in121

the Hausdorff metric of cb(X) and therefore Γ is strongly Pettis integrable on L. 
�122

Corollary 3.3 If Γ : [0, 1] → c(X) is Pettis integrable in cb(X), MΓ is its indefinite Pettis123

integral and |MΓ |([0, 1]) < ∞, then Γ is strongly Pettis integrable.124

Proof It is easily seen that due to the finite variation of MΓ , the multifunction Γ takes a.e.125

bounded values. Without loss of generality we may assume that Γ : [0, 1] → cb(X). We126

have M̃Γ ([0, 1]) ≤ |MΓ |([0, 1]) < ∞ and so we may apply Theorem 3.2. 
�127

Under stronger assumptions one obtains stronger results. We proved in [8] the following128

Theorem 3.4 Let Γ : [0, 1] → cb(X) be Henstock (or H) integrable and let ΦΓ be its129

Henstock (H)-integral. If Φ̃Γ [0, 1] < ∞, then Γ is McShane (Birkhoff) integrable.130
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Multi-integrals of finite variation

Finally, we can formulate the characterization of variationally McShane integral in terms of131

the variational Henstock integral.132

Theorem 3.5 A multifunction Γ : [0, 1] → cb(X) is variationally McShane integrable if133

and only if it is variationally Henstock integrable and the interval variation of the Henstock134

integral is finite.135

Proof We need to prove only that each vH-integrable multifunction Γ : [0, 1] → cb(X) with136

integral of finite interval variation is variationally McShane integrable. We know already137

from Theorem 3.2 that Γ is Pettis integrable. Since i ◦ Γ is vH-integrable it is strongly138

measurable. If MΓ is the Pettis integral of Γ , then i ◦ MΓ is a measure of finite variation and139

i ◦ MΓ (I ) = (vH)
∫

I i ◦ Γ . It follows that i ◦ Γ is Bochner integrable. Now we may apply140

[5, Proposition 3.6] to obtain variational McShane integrability of Γ . 
�141

In case of vector valued functions f : [0, 1] → X , by the properties of the Pettis and142

the Bochner integrals, it follows at once that if f is strongly measurable, Pettis integrable143

and its Pettis integral has finite variation, then f is Bochner integrable. The next result is the144

multivalued version of this result.145

Theorem 3.6 Let Γ : [0, 1] → cb(X) be Bochner measurable, Pettis integrable, and its146

Pettis integral has finite variation. Then Γ is integrably bounded.147

Proof Since Γ is Bochner measurable, it is a.e. limit of simple multifunctions. It follows that148

i ◦Γ is strongly measurable. Let us assume that Y := span(i ◦Γ ([0, 1])) is a closed separable149

subspace of �∞(BX∗). Then, we follow the proof of [12, Proposition 3.5]. If ex∗ ∈ B�∞(BX∗ )∗150

is defined by 〈ex∗ , g〉 := g(x∗) for every g ∈ �∞(BX∗), then the set B := {ex∗ |Y : x∗ ∈151

BX∗ } ⊂ BY ∗ is norming. By the Pettis integrability of Γ the family Zi◦Γ ,B := {〈ex∗ , i ◦ Γ 〉 :152

x∗ ∈ BX∗ } = {s(x∗, Γ ) : x∗ ∈ BX∗ } is uniformly integrable. Consequently, i ◦ Γ is a Pettis153

integrable function. Moreover, i((P)
∫

A Γ dλ) = (P)
∫

A i ◦ Γ dλ for every A ∈ L (see the154

proof of [12, Proposition 3.5]). By the assumption the variation of (P)
∫

i ◦ Γ dλ is finite155

and so i ◦ Γ is Bochner integrable. Consequently, Γ is integrably bounded. 
�156

Then by [5, Proposition 3.6] (formulated for cb(X)-valued multifunctions) and Theorem 3.6157

we get the following158

Proposition 3.7 Let Γ : [0, 1] → cb(X) be a scalarly measurable multifunction. Then the159

following conditions are equivalent:160

1. Γ is variationally McShane integrable;161

2. i(Γ ) ∈ L1(λ, �∞(BX∗));162

3. Γ is Bochner measurable and integrably bounded;163

4. Γ is Bochner measurable, Pettis integrable, and its Pettis integral has finite variation.164

Proof It is an immediate consequence of Theorem 3.6 if we proceed analogously to [5,165

Proposition 3.6]. 
�166

4 Decompositions167

In the study of the integrability of multifunctions it is important to decompose a multifunction168

as a sum of a selection that is integrable in the same sense and a multifunction that is integrable169

in a stronger sense than the original one (see for example [5–8,18,19,24]). Using Db or DL170

conditions we are able to extend decomposition results and to write integrable multifunctions171

as a translation of a multifunction with its integral of finite variation.172
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Theorem 4.1 Let Γ : [0, 1] → c(X) be integrable in cb(X) (cwk(X) or ck(X)) in the sense173

of one of the scalarly defined integrals. If Γ possesses at least one selection integrable in the174

same way, then the following conditions are equivalent:175

1. Γ satisfies the DL-condition (or Db condition);176

2. Γ = G + f , where f is a properly integrable selection of Γ , G is Pettis integrable in177

cb(X) (cwk(X) or ck(X)) and
∫ 1

0 DG(t) dt < ∞ (and G is bounded). In particular the178

indefinite integral of G is of finite variation.179

Proof Assume that Γ is DP-integrable. Due to [8, Theorem 3.5] Γ = G + f , where G is180

Pettis integrable, f is Denjoy integrable and G satisfies the condition DL. It is obvious that181

the Pettis integral of G is of finite variation. 
�182

We observe that in Theorem 4.1 the multifunctions are arbitrary, in particular they may183

take weakly locally compact values that do not contain any line, but the thesis is still the184

same.185

Remark 4.2 Unfortunately, even if G : [0, 1] → ck(X) is a positive multifunction that is186

Pettis integrable and its integral is of finite variation, the multifunction G may not satisfy187

the DL condition. To see it let X = �2[0, 1] and let {et : t ∈ (0, 1]} be its orthonormal188

system. If G(t) := conv{0, et/t}, then s(x, G) = 0 a.e. for each separate x ∈ �2[0, 1]189

and so the integral and its variation are equal zero. However, diam{G(t)} = 1/t and so190

the DL-condition fails. Moreover, G is not Henstock integrable. Indeed, let δ be any gauge191

and {(I1, t1), . . . , (In, tn)} be a δ-fine Perron partition of [0, 1]. Assume that 0 ∈ I1, then192

t1 ≤ |I1|. Hence λ(I1)/t1 ≥ 1 for t1 > 0 and so
∥∥∥∑

i≤n
ei
ti

λ(Ii )

∥∥∥ ≥ 1. Consider now the193

multifunction given by H(t) := conv{0, et }, where X is as above. We are going to prove194

that H is Birkhoff-integrable. Given ε > 0, let n ∈ N be such that 1/
√

n < ε and δ be any195

gauge, pointwise less than 1/n. If {(I1, t1), . . . , (Im, tm)} is a δ-fine partition of [0, 1] and196

{J1, . . . , Jn} is the division of [0, 1] into closed intervals of the same length, then197 ∥∥∥∥∑
i≤m

eiλ(Ii )

∥∥∥∥ =
∥∥∥∥∑

i≤m

∑
k≤n

eiλ(Ii ∩ Jk)

∥∥∥∥ =
∥∥∥∥∑

k≤n

∑
i≤m

eiλ(Ii ∩ Jk)

∥∥∥∥198

=
(∑

k≤n

∑
i≤m

λ(Ii ∩ Jk)
2
)1/2

≤ 1/
√

n < ε .199

[We apply here the inequality
∑

i a2
i ≤ (∑

ai
)2. For each fixed k ≤ n we take as ai the200

number λ(Ii ∩ Jk)]. If δ is measurable, then we get Birkhoff integrability of H .201

Some additional results will be given now, in order to get decompositions with gauge inte-202

grable multifunctions.203

Theorem 4.3 Let Γ : [0, 1] → cwk(X) satisfy DL-condition, and assume that Γ is H-204

integrable (or H-integrable). Then we have Γ = G + f , where f ∈ SH(Γ ) ( f ∈ SH (Γ ))205

is arbitrary and G is an abs-Birkhoff integrable multifunction. In particular the integral of206

G has finite variation. If Γ is Bochner measurable, then G is also variationally Henstock207

integrable.208

Proof Assume that Γ is H-integrable. It is known (see [20, Theorem 3.1]) that Γ has an H-209

integrable selection f . Thanks to [31, Theorem 4], both i ◦Γ and f are Riemann-measurable.210

So, if G := Γ − f , it is clear that i ◦ G is Riemann-measurable too. Moreover, thanks to the211
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DL-condition, the function t �→ ‖i ◦G(t)‖ is integrably bounded, i.e.
∫ 1

0‖i ◦G(t)‖dt < +∞212

since ‖i ◦ G(t)‖ = sup{‖u‖X : u ∈ G(t)} = sup{‖v − f (t)‖X : v ∈ Γ (t)} ≤ diam(Γ (t)).213

So, i ◦ G is Riemann-measurable and integrably bounded, which means that i ◦ G (and so214

G) is absolutely Birkhoff integrable, thanks to [11, Theorem 2].215

Assume now that Γ is H -integrable. Then, according to [8, Theorem 3.5] Γ = G + f ,216

where G is Birkhoff integrable. By the assumption G satisfies the DL-condition. Hence again217

the function t �→ ‖i ◦G(t)‖ is integrably bounded. Consequently, i ◦G is absolutely Birkhoff218

integrable and hence also G. The vH-integrability of G follows from [2, Corollary 4.1], since219

G is Pettis integrable. 
�220

A similar result can be given also for Birkhoff integrable functions Γ : [0, 1] → cwk(X):221

the proof is essentially the same but instead of [20] we invoke [5, Theorem 3.4].222

Proposition 4.4 Let Γ : [0, 1] → cwk(X) satisfy DL-condition, and assume that Γ is223

Birkhoff integrable. Then we have Γ = G + f , where f is any Birkhoff integrable selection224

of Γ , and G is an abs-Birkhoff integrable multifunction. In particular the integral of G has225

finite variation.226

Question 4.5 Assume that f : [0, 1] → X is Birkhoff integrable and the classical variation227

of the indefinite integral is finite. Is f absolutely Birkhoff integrable? That is, do we have228 ∫ 1

0‖ f (t)‖ dt < ∞? A partial answer is contained in [11, Corollary 2].229

Another way, does there exist a Birkhoff integrable f that is scalarly equivalent to zero230

and
∫ 1

0‖ f (t)‖ dt = ∞? Recall that G from Remark 4.2 is not Birkhoff integrable.231

Fremlin proved that a Birkhoff integrable function is properly measurable in the Talagrand232

sense. It is known that f is Talagrand integrable if and only if f is properly measurable and233 ∫ ‖ f ‖ dλ < ∞. Then, it is known that f is absolutely Birkhoff integrable if and only234

if it is Riemann measurable and
∫ ‖ f ‖ dλ < ∞ if and only if f is Birkhoff integrable235

and
∫ ‖ f ‖ dλ < ∞. Thus, if f is absolutely Birkhoff integrable, then f is also Talagrand236

integrable. The converse result fails by [22, Example 3C] (where a function f : [0, 1] →237

�∞(N) is shown, which is Talagrand but not even McShane integrable).238

It is also possible to obtain decompositions where the multifunction G turns out to be varia-239

tionally McShane integrable, as follows.240

Proposition 4.6 Let Γ : [0, 1] → cwk(X) satisfy DL-condition, and assume that Γ is241

Bochner measurable. Then we have Γ = G + f , where f is any strongly measurable242

selection of Γ , and G is a variationally McShane integrable multifunction.243

Proof Let f be any strongly measurable selection of Γ , and set G = Γ − f . Then clearly244

G is Bochner measurable. Moreover, since Γ satisfies the DL condition and f is a selection245

from Γ , i ◦ G is integrably bounded. Then i ◦ G is strongly measurable and integrably246

bounded, and therefore variationally McShane integrable. Of course this implies that also G247

is integrable. 
�248

Proposition 4.7 If Γ : [0, 1] → cwk(X) is Henstock (H, variationally Henstock, Pettis,249

McShane, Birkhoff) integrable, then Γ cannot be, in general, written as G + f , where G is250

variationally McShane integrable and f is integrable in the same way as Γ .251

Proof Take f as in [16]; then f is vH and Pettis integrable, but not Bochner integrable. Let252

Γ = conv{0, f (t)}, then Γ is vH-integrable, Pettis but not Bochner integrable, as shown in253
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[5, Example 4.7]. By [5, Theorem 4.3 (a) and (c)], then Γ is also McShane integrable and254

then Birkhoff integrable, since Γ is Bochner measurable. Following the same motivations of255

[6, Remark 5.4] the multifunction G = Γ − f is not variationally McShane integrable. 
�256

Almost nothing is known on possible decompositions of a Pettis integrable multifunctions.257

We have only the following negative result:258

Example 4.8 Let Γ : [0, 1] → cwk(X) be Pettis integrable. Assume that MΓ (L) is not259

relatively compact in the Hausdorff metric. Then Γ cannot be represented as Γ = G + f ,260

where G is McShane integrable and f is a Pettis integrable selection of Γ . In such a case261

i ◦ Γ is not Pettis integrable.262

Proof Suppose that such a decomposition exists. Then, since G is McShane integrable, the263

function i ◦ G is also McShane integrable and consequently it has relatively norm compact264

range.That is however equivalent to the norm relative compactness of MG(L) in dH . But then265

G can be approximated by simple functions (see [30, Theorem 2.3]). Since the integral of f is266

norm relatively compact (because Lebesgue measure is perfect) also f can be approximated267

by simple functions in the Pettis norm (see [29, Theorem 9.1]). As a result the multifunction Γ268

can be approximated by simple multifunctions, which is impossible, since its range MΓ (L) is269

not relatively compact in the Hausdorff metric. (see [30, Theorem 2.3]). The non-integrability270

of i ◦Γ is a consequence of perfectness of Lebesgue measure. Indeed, the range of the integral271

of a Pettis integrable function on [0, 1] (or on any perfect measure space) is norm relatively272

compact ([24, 3J]). 
�273
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