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Abstract
In a recent paper, [1], Deguchi and Fujiwara claim that our results in [2]
are wrong, and compute what they claim is the square integrable vacuum of
their annihilation operators. In this brief note, we show that their vacuum is
not a vacuum at all, and we try to explain what is behind their mistake. We
also consider a very simple example clarifying the core of the problem.

I Introduction

The problem of quantizing dissipative systems, and the damped harmonic oscillator
(DHO) is not an easy task. There exist different approaches of very different kind.
In this short note we only concentrate on the Bateman’s approach, which is based
on the use of a virtual amplified oscillator (AHO), coupled with the DHO. In [3] the
authors claimed they can quantize the full system by using ladder operators which
look formally quite close to what one of us introduced some years ago under the name
of D pseudo-bosons, sce [4] for a review. The main idea in [3] is that the Bateman
Hamiltonian H can be written in a diagonal form, and that its eigenvectors can be
constructed acting on the vacuum of the lowering operators with powers of the raising
operators. However, in [2], we proved that their approach is only formal, meaning
with this that the objects they work with are intrinsically ill-defined. In fact, we
proved that the only vacuum of H is a Dirac delta distribution.

Recently, two of the three authors of [3] produced a new paper to show that our
main conclusion in [2] is wrong. In fact, this is not so, as it is extremely easy to show.
This is the content of Section III, which follows a section with a short review of our
results in [2]. In section IV we will propose a very simple example useful to clarify
what is going on.



II A short review

The classical equation for the DHO is ma + v& 4+ kx = 0, in which m,~y and % are
the physical positive quantities of the oscillator: the mass, the friction coefficient and
the spring constant. The Bateman lagrangian is

L = migy+ L (xy — ity) = kay, (1)

which other than the previous equation, produces also miy — vy + ky = 0, the
differential equation associated to the AHO. Introducing the conjugate momenta

Da ‘;ﬁ =my — 3y, and p, = 5z = mi + 1y, the Hamiltonian looks as
L 1 gl 7
H = pot +py§ = L= —papy + 5 (ypy = 2pe) + | k= 1 | 2y. (2)

By introducing the new variables x; and x5 through

1 1
T = E(l’l—i—l'z), y= E(m—@), (3)

L and H can be written as follows:

L= 5@} = 8) + S (@ahs — i) — (o} - 3)
and ) , . .
v i 2 2
H— ( 7 )__( __/.> Mt — a2,
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where p; = 8_9'01: mx1+§w2 and py, = 8_902 = mx2—§$1. By putting w* = pre by

we can further rewrite H as follows:

1 1 1 1 y
H= (2—p1 + Qmex%) - (2_]92 + 2mw2r§) - %(Pl@ + pay). (4)
To fix the ideas, we will restrict here to w? > 0.

Following [3] we impose the following canonical quantization rules between z; and
pr: [z, k] = 10,1, working in unit s = 1. Here T is the identity operator. This is
equivalent to the choice in [6]. Then we put

ap = ,/—xk—H

k = 1,2, which satisfy the canonical commutation rules: [a;, (IL] = 0,,1. Hence we
can write

pk, (5)

H = Hy+ Hy,
HO = W ((,Liil.a/l - (L;az) 9 (6)

iy
H[ = % (a1a2 — a{a;)
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which can be still be rewritten as

H = Hoy+ Hj,

Ho = W (BlAl — B2A2) s (7)
e

Hr = L (ByAy + ByAy + 1),
2m

which only depends on the pseudo-bosonic number operators N; = B;A;, [4]. Here

1 i

=—(a; —a = L —al +a
Al - \/5( 1 2)7 AQ \/5( 1+ 2)7 (8)
while 1 1
= —(al +ay s = —(a; + ab).
By = \/5( 1T az), B \/5( + as) (9)

These operators satisfy the following requirements:
[Aj, B| = 05,1, (10)

with B; # Al j=1,2.

This is exactly the same Hamiltonian found in [3], and it is equivalent to that
given in [5, 6] and in many other papers on this subject. In [3], the authors introduce
the vacuum for the annihilation operators A; and A, as the action of an unbounded
operator on the vacuum of a; and a;, and they construct new vectors out of this
vacuum, claiming that these vectors, all together, form a Fock basis with norm equal
to one. In [2] we proved that this is wrong and, in [1], the authors replied that their
results are correct, and provided an explicit expression of square integrable vacuum
for their annihilation operators.

The present note is intended to show that their results are (again) incorrect, using
a very direct argument. Then we explain the main weakness of their argument, dis-
cussing also a very simple example to clarify the situation. However, before doing this,
we state our main proposition proven in [2], which shows that no square-integrable
vacuum of the lowering operators can be found. We refer to [2] for the simple proof
of the result, for some useful comments, and for the analysis of the overdamped case,
w? < 0.

Proposition 1 There is no non-zero function poo(x1,z2) satisfying

Avpoo(1, 1) = Aspoo(z1,22) = 0.

Also, there is no non-zero function 1oo(x1,x2) satisfying

BI¢00($17 1‘2) = Bglﬂoo(%l,@) = 0.



IIT What is wrong with [1] and [3]

We begin this section by showing, with a direct computation, that the paper in [1]
contains an essential (and trivial) mistake, which makes all their results incorrect. To
avoid possible misunderstanding, we adopt their notation, with the only difference
that we keep A = 1 here.

In [1] the authors introduce a;, as in (5) and use it to introduce new operators @;
and 6§ as follows

1
(Cll F a%) ) ay = E <:FCLI + (12) )

Sl -

and 1 1
-t L ( i ) o ( T)
a; = ay tas, as = +a; +aq) .
1= A" 2 2=/ 17T Gy
Comparing these formulas with (8) and (9), we see that these are closely related to
our operators A; and B;. It may be worth noticing that these definitions should be

clarified, due to the presence of the + and F in the formulas. For this reason, we
prefer to call, for instance,

a,_ = % (a1 —a§> = % [\/?(xl — 1) + \/g(ail + 81)] .

Now, it is trivial to check that their proposed vacuum, see formula (27) in [1],

—_ mw mw
@0,0(1’1, IQ) = W?eXP {_T(ﬁ + x%)} :

does not obey @, -9, o(71,72) = 0. In fact, we get

51,—@07()(1'1, sz) = —V/Mw Ty @0,0(3717 1;2),

Hence, @ (21, r2) is not the vacuum of, at least, @ _, contrarily to what they claim.
In other words, unfortunately their computations are wrong.

ITI.1 More comments on [1] and [3]

However, in view of their relevance for a deeper understanding of what is going on,
we would like to add some remarks on the mathematical weakness of the two papers
[1] and [3]. The first remark is related to the operator e®X they introduce, where
X = ayay + alal. They use e?X to define the vacuum of their a; via its action on the
vacuum of the a;: if ;|0 >= 0, j = 1,2, their claim is that, calling |0 >= **|0 >,
then @;|0 >>= 0, j = 1,2. Their argument is based on the fact that a; = e**a;e %,
for suitable choices of 6, and on the formal result: @;|0 >= e’*a;e %0 >=
¢’ a;]0 >= 0. However the authors do not consider the fact that e’X is unbounded,
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and it can easily happen that |0 > does not belong to the domain of efX, D(eX),

and therefore it is not granted that eX|0 > makes any sense. This will be clarified
in the simple example given in the next section.

In formula (16) of [1] they consider the scalar product < xy,x3]0 >, calling this
result ¢go(z1,22). The obvious problem is that, also in connection to our previous
remark, |0 > is not necessarily an element in the Hilbert space, and therefore the
scalar product is not, most likely, well defined. This kind of problems are scattered
everywhere in the paper, and not properly considered. The only attempt to clarify
the situation is in the introduction of the sets B and K as the bra and ket spaces for
the (a;, aj)—system, respectively, and their counterparts B and K. The point is that
these sets are only vaguely introduced, while no mathematical detail is given at all
(they talk of an improper inner product, without any clarification).

We end this list of comments by noticing a last serious mathematical inaccuracy.
The operators a; and a;r are defined on the sets B and K, the authors claim, (again,
giving no mathematical definition for these sets). And they conclude that the vectors
in (20) of [1] are elements of K. It is not clear why it should be true, firstly because
we should understand how K is defined to prove what they say. And secondly, since
it is well known that unbounded operators can easily map a dense subspace of an
Hilbert space into a different space. Hence it is not enough to know that a; and az
are defined on IC to conclude that, say, aj fe K forall felk.

More comments could be given. However, we prefer to produce in the next section
a simple example which clarifies that strange things may happen, when unbounded
operators are involved in the analysis of some physical system.

IV A pedagogical example

Let x and p be the position and momentum operators, [z, p] = i1, and ¢ = \%(z%—ip)

the related annihilation bosonic operator. We know that [c,cf] = 1, and it is easy
to find the vacuum of ¢, cpo(z) = 0, since it must satisfy the differential equation
¢h(z) = —xzpo(z). This is because p = —i-L. Hence po(z) = Ne /2 with N a
suitable normalization. It is clear that og(z) € £*(R). It is also well known that no
square-integrable vacuum exists for ¢/ = \/Lﬁ(:c—ip), since the solution of ci)y(z) = 0 is
proportional to /2. Of course, we could still try to work with 1o(z) in some different
Hilbert space, introducing some metric on £*(R) and working with a different scalar
product, in order to have ¢y(x) square integrable. But this would modify the notion
of the adjoint, and therefore 1g(x) needs not to be the vacuum of this new adjoint of
c, ct.

Going back to our original problem, let us consider the operator T = T (EHE?)
This operator is unbounded, invertible, and (formally) self-adjoint. We want to show
that working with 7" as if it was a bounded operator creates, as in [3] and [1], para-
doxes. Hence, from now on, we will work formally, paying no attention to domains

of operators and see that something strange happens.



First of all, it is easy to check that

1
t=—(c+c)=TeT™.

V2

Now, defining ®o(z) = T'po(x), we should have, similarly to what is done in [1] and

3],
12 ®g(z) = (Tl ) (Tpo(z)) = T cpo(z) = 0.

Hence ®g(x) should satisty z ®g(z) = 0. But the only function which solves this
equation is @y(z) = 0, which is not compatible with the existence of T~ and with
the fact that @o(z) # 0. Of course, a non trivial solution does exist, but only in a
distributional sense: ®o(z) = N'6(x).

This simple example shows what is going on with the DHO, and should clarify
the role of unbounded operators and of distributions in this context.
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