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1. Introduction

Prof. Karl Strambach was the mathematician with a wide range of interests.
He was engaged in research in many different areas of mathematics (group
theory, differential geometry, etc.). Karl Strambah was one of the founders
of the biannual workshop “Groups and topological groups”. Since the 1970’s
GTG meetings are organized by different universities in Central Europe and
take place twice a year.

Karl Strambach was an unpretentious person in a life respecting and
appreciating work of usual people. He was a person of the World. He knew
many foreign languages, but the surprisingly melodious and beautiful Italian
language was the favourite for him. The fact is that for his scientific work
professor Strambach was very often in Italy. He even named one of his scientific
friends (Adriano Barlotti) his quasi-father.

Peter Plaumann was one of the closest of his friends. They knew each
other since student times.

Karl Strambach recalled with great gratitude the support which Peter
rendered to him.

Karl Strambach was a very good mathematician and friend. He was
kind and easy to communicate with. He always supported young scientists.
Prof. K. Strambach cooperated with many people from different countries (Hun-
gary, Italy, Germany, Czech Republic, Russia and others).
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Among his students were Gédbor P. Nagy and Agota Figula. His coop-
eration with Hungarian mathematicians was especially long and productive
and the result of this work has been marked: in November 2007 K. Strambach
became the honourable doctor of Debrecen university.



Mathematics was his life. Sometimes he was vulnerable as a child. But if
he was fascinated by a problem, he was strong and he thought about it day
and night. And he surely found a perfect solution.

2. Some Memories on Karl Strambach

The first time Heinrich Wefelscheid met Karl must have been in 1965 at the
conference “Fundamentals of Geometry” in Oberwolfach. At that time, the
old hunting lodge was still standing and because of the many participants,
most were housed in the nearby guest houses. These meetings were first led
by Emanuel Sperner and Friedrich Bachmann, Hans Freudenthal joined later.

The field: Fundamentals of Geometry is a continuation of the axiomatic
approach, as Hilbert did in his famous book of the same name in 1899 in contin-
uation of the thoughts of Euclid in an exemplary canonical manner. Expressed
more simply: take some (reasonable) mathematical axioms, which taken to-
gether must be consistent, and try to determine all mathematical structures
that fulfill this axiom system. Of course, this approach differs fundamentally
from mathematics based on rich basic assumptions, such as those found in
calculus, differential geometry, analytic numbers theory, and so on.

These meetings on the foundations of geometry took place annually,
bringing together, as it were, all the older and younger researchers who were
interested in it. Among the “old” would be to name: in addition to Friedrich
Bachmann, Hans Freudenthal, Emanuel Sperner of course, still Reinhold Bear
and Gilinther Pickert.

Helmut Karzel, Heinz Liineburg, Jakob Joussen, Johannes André, Hel-
mut Salzmann (PhD thesis supervisor of Karl), Giinter Ewald and Walter
Benz were the next generation, all of whom were already lecturers or shortly
before their habilitation. Then the “young” people like Manfred Meurer, Karl
Strambach, Peter Plaumann, Eberhard Schroder, Kay Sorensen, Dieter Betten,
Hermann Hahl, Rainer Léwen, Steffen Timm, Hans-Joachim Arnold, Wilhelm
Junkers, Martin Gotzky, Armin Herzer, Werner Heise, Hans-Joachim Kroll,
Heinz Wihling, William Kerby, Werner Leifiner, Irene Pieper-Seier, Werner
Seier, and Theo Grundhofer came. We to be excused, if we have not men-
tioned someone who should be mentioned.

Of course, this circle fluctuated. One of the main interests in the foun-
dations of geometry is, on the one hand, to find algebraic structures for geo-
metric structures, with which one can describe these geometries, if possible in
a clear manner, and vice versa. A variant of this approach is to determine the
structure itself, which has G as an automorphism group, backwards from the
automorphism group G of a mathematical structure.

After Sperner’s death in 1980, the geometry conferences in Oberwolfach
became rarer. But in 1974, the Karzel workshops at the Technical University
of Munich gained in importance. The geographical proximity of Munich to



Ttaly naturally led to an ever closer contact with the Italian colleagues (Adri-
ano Barlotti and Giuseppe Tallini, as well as Tullio Ceccherini-Silberstein and
Mario Marchi).

An especially close bond developed between Karl and the Barlotti family.
Karl loved the Italian way of life and the Italian language, which he spoke
fluently. There were many combinatoric conferences, held every two years by
different universities and generously supported by the provincial governments.

Since Volklein, who was student of Karl Strambach, has received a pro-
fessorship in Essen, Karl came frequently, often for several weeks, to represent
Volklein in lectures or to work as a guest professor. Karl usually lived in Hein-
rich Wefelscheid’s guest house of the Dierks von Zweck Foundation. Some of
Karl’s essays of the last ten years were conceived here.
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Karl was a restless spirit, almost always on the move. In fact, he traveled
constantly, to Palermo to Giovanni Falcone, to Debrecen to Agota Figula, to



Olomouc to Josef Mikes, to Kaliningrad to Olga Belova. One could have the
impression that he needed traveling to actively practice mathematics.
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3. Loops

Péter T. Nagy began joint research with Karl Strambach in the end of 80th.
At that time he worked in a research project with K. H. Hofmann on the
development of the theory of topological and analytical loops and P. T. Nagy
was interested in the differential-geometric theory of 3-webs.

Since differentiable 3-webs can be locally coordinatized using differen-
tiable local loops, Karl proposed developing interesting classes for smooth loops
using various differential geometric theories.

A loop is a non-associative generalization of the notion of a group. An
invertible multiplication together with the left and right division and a unit
element on a set is called a loop. The study of non-associative structures started
in the first decades of the last century motivated by the foundation of geometry,



particularly by the investigation of coordinate systems of non-Desarguesian
planes.

Later, W. Blaschke formulated a scientific project to investigate topolog-
ical questions of differential geometry, in particular topological local behavior
of foliations.

In the half century 1940-1990 the theory of loops became an independent
algebraic theory. The investigation of loops within the frame of topological
algebra, topological geometry and differential geometry gained importance by
the work of K. H. Hofmann, M. A. Akivis and L. V. Sabinin.

The basic idea of K. Strambach was to explore loops using the tools of
group theory and Lie theory, describing the multiplication of loops by the set
of left multiplication maps in the group generated by these maps, that is, con-
sidering the set of left multiplication maps as sections in a group, topologically
generated by the left multiplications. In the first years of the cooperation of
P. T. Nagy with K. Strambach, they systematically investigated one-
dimensional and two-dimensional loops as sections in the possible transfor-
mation groups. P. T. Nagy and K. Strambach constructed many interesting
examples which motivated them for the further research.

After the initial steps of their work, they devoted their study to the class
of left conjugacy closed loops, which can be given by invariant sections in the
group generated by their left multiplications, cf. [22]. These loops generalize
the previously introduced conjugacy closed loops, assuming only from one side
the invariance property of the corresponding section, just as the Bol condition
for loops is an asymmetric version of Moufang condition. P. T. Nagy and
K. Strambach studied the relationship of these loops to the common classes
of loops and discussed many classical loop constructions. For example, it was
proved that the proper topological left conjugacy closed loops on a connected
manifold, satisfying the the left Bol condition, are necessarily groups. The
isotopy classes of left conjugacy closed loops were investigated and it was
showed that the corresponding configurational condition in the 3-net has the
same importance in the geometry of 3-nets as the Reidemeister or the Bol
condition.

The main tool for further loop theoretical studies was the construction
of geodesic loops, defined by a linear connection on a manifold. Namely, the
parallel translation of a geodesic segment defines a natural local loop structure
on a manifold equipped with a linear connection. P. T. Nagy and K. Stram-
bach investigated the interesting algebraic properties of geodesic loops of linear
connections having a large group of affine automorphisms. In this way, the re-
lationship between affine symmetric spaces, smooth Bol and Moufang loops,
left distributive quasi-groups and differentiable 3-nets were explored, cf. [23].
P. T. Nagy and K. Strambach applied their method for the proof of analyticity
of smooth Moufang loops and left distributive quasi-groups with involutive left
multiplications, and also for the study of the Lie nature of the transformation
groups naturally associated with some classes of smooth binary systems and



3-nets. In addition, P. T. Nagy and K. Strambach investigated the power se-
ries extension of geodesic loops satisfying some weak associativity condition
and obtained the description of geodesic loops having Euclidean lines, either
as their geodesic lines, or as geodesic lines of their core.

After more than 10 years of intensive cooperation, a monograph [24] on
the theory of topological, differentiable, or analytical loops was published.
P. T. Nagy and K. Strambach conducted a parallel study of loops where the
multiplication, left and right division had topological, differentiable or analytic
properties. Using the analogous constructions, algebraic loops were also inves-
tigated. The most important assumption was that the group G topologically
generated by the left multiplications of a loop L is a Lie group. If H is the
subgroup of G stabilizing the unit element of L and o: G/H — G is the sharply
transitive section determined by the left multiplications of L then the loop can
be identified with the factor manifold G/H in such a way that the multiplica-
tion (z1H)-(xoH) = o(x1H)xoH on G/H corresponds to the multiplication of
L. P. T. Nagy and K. Strambach systematically investigated the generalization
of the opposite construction: for an arbitrary triple (G; H; o) of a Lie group
G, closed subgroup H and a sharply transitive section o: G/H — G a loop
multiplication is defined on G/H by the rule (z1H) - (xoH) = o(x1H)xoH
having the differentiability properties determined by the properties of o.

The main results of the book are related to the study of new constructions
of interesting classes of loops that satisfy various conditions of weak associativ-
ity, as well as the classification of related Lie algebraic, geometric, and group
theoretical structures. It was known that the theory of differentiable Moufang
loops can be classified by their tangential structures. Similarly, analytic Bol
local loops can be classified by Bol algebras, but a local Bol loop may not
necessarily be embedded into a global one. Therefore, the study of global dif-
ferentiable loops cannot be reduced to that of local loops. But the procedure
of examining suitable sections in Lie groups provide a very effective method
for classifying differentiable global loops.

The first part of the book is devoted to the investigation of differentiable
Bol loops and related algebraic and differential geometric structures: Bruck
loops, symmetric spaces and quasi-groups, classification of compact Bol loops
and loops with a compact group generated by left multiplications, etc. The
second part contains a systematic study of low-dimensional differentiable loops
and related structures.

After completing the book, P. T. Nagy and K. Strambach continued to
work together in the covering theory of topological loops [25] and in the theory
of loop extensions [26].

Their last joint work [27] was devoted to the memory of L. V. Sabinin,
who formulated a generalization of systems of geodesic loops defined by a lin-
ear connection on a manifold. They formulated an abstract version of Sabinin’s
theory of transitive families of diffeomorphisms. P. T. Nagy and K. Strambach



proved an isomorphism theorem for holonomy groups associated with a transi-
tive family of transformations, and studied how the automorphism group of a
transitive family affects the differential geometric properties and the algebraic
structure of loops defined by this family.

Agota Figula met Karl Strambach at the first time at University of De-
brecen in 1998 when Karl visited Péter T. Nagy to collaborate on loops. She
was a student of P. T. Nagy and had begun writing her diploma thesis on geo-
desic loops. Karl Strambach invited her to do scientific work at the Institute of
Mathematics in Erlangen. There she took part in the weekly organized “Kan-
didaten Seminar”. In the seminar K. Strambach, P. Plaumann, H. Kurzweil
gave interesting problem questions and their students presented their scientific
results. This relationship with K. Strambach was very fruitful and decisive for
her whole life.

The associative law forces that the product A\, of any two left transla-
tions of a group G is the left translation .. Also the identity (ab) tab = 1
holds for all elements a, b of a group G. For loops these behaviours change
radically. This observation led to a broader research of loops L in which either
for any two left translations A,, A, the product A\, Ap A, is again a left transla-
tion Aq(pqy Of L or the mapping = — [(ab) ' (a(bz))] is an automorphism of L.
The loops with the first property have been called (left) Bol loops, with the
second property left A-loops. Following the common research of P. T. Nagy
and K. Strambach, K. Strambach and A F igula initiated the investigation
and classification of the three-dimensional connected differentiable proper Bol
loops and left A-loops having a non-solvable Lie group G as the group topo-
logically generated by their left translations. The tangential objects of Bol
loops are in one-to-one correspondence to global simply connected symmetric
spaces, whereas those of left A-loops belong to affine reductive spaces, which
are essential objects in differential geometry. If the group G is an at most
nine-dimensional semi-simple Lie group, then the corresponding Bol loops L
are either simple, or isotopic to the direct products of Bruck loops of hyper-
bolic type or to Scheerer extensions of Lie groups by Bruck loops of hyperbolic
type. In [16] they determined all simple differentiable Bol loops L having the
direct product G; x G4 of two groups with simple Lie algebras as the group
topologically generated by their left translations such that the stabilizer of
the identity element of L is the direct product Hy x Hs with H; < G;. To
obtain this classification they used intersection-free factorizations of simple
Lie groups. The three-dimensional differentiable Bol and left A-loops L have
the connected component of the motion group of the three-dimensional hyper-
bolic or pseudo-Euclidean geometry as the group topologically generated by
the left translations and the set of the left translations of L induces on the
plane at infinity the set of left translations of a loop isotopic to the hyperbolic
plane loop. In [13] they seek a simple geometric procedure for an extension



of a loop realized as the image ¥* of a sharply transitive section in a sub-
group G* of the projective linear group PGL(n — 1,K) to a loop realized as
the image of a sharply transitive section in a group A = T” x C of affinities
of the n-dimensional space A, = K" over a commutative field K such that
T’ is a large subgroup of the affine translations and a(C) = G* holds for the
canonical homomorphism « : GL(n,K) — PGL(n,K). The given construc-
tion is applied to sharply transitive sections in unitary and orthogonal groups
SU,, (n,F) of positive index py over ordered pythagorean n-real fields F and in
unitary or orthogonal Lie groups of any positive index. In [14] we construct a
wide class of proper loops L which are semidirect products of groups of trans-
lations of an affine space A of dimension 2n over a commutative field K by
suitable subgroups I'y of GL(2n,K). In many cases the elements of L are affine
n-dimensional transversal subspaces of A. This representation of L depends
on the existence of a regular orbit in the hyperplane at infinity of A for the
group T'j. If the field K is a topological field then we obtain topological loops;
for real or complex numbers the constructed loops are analytic. For smooth
proper loops the group topologically generated by the left translations is a
Lie group, but the groups topologically generated by the right translations of
these loops are smooth groups having a normal Abelian subgroup of infinite di-
mension. Hence the groups topologically generated by all translations of these
analytic loops are smooth transformation groups of infinite dimension. To any
differentiable loop L one can associate an Akivis algebra which is realized in
the tangent space of L at the identity e € L and plays a similar role as the
Lie algebra in the case of a Lie group. The Akivis algebras of the constructed
smooth loops are semidirect products of Lie algebras which shows that there
are non-connected proper smooth loops having Lie algebras as their Akivis
algebras.

The topological, respectively differentiable loops which are realized on
compact manifolds are investigated by P. T. Nagy and K. Strambach in Sec-
tions 14 and 16 in [24]. In particular, in Section 16 the connected, simply con-
nected differentiable compact proper Bol loops are classified. All these loops
are either extended core loops of a pair (K, K1) of non-trivial simply connected
Lie groups K and K or a Scheerer extension of a simply connected compact
Lie group K by a Moufang loop or a Scheerer extension of an extended core
loop by a Moufang loop. The group topologically generated by their left trans-
lations are direct product of at least three factors (cf. Theorem 16.7, in [24,
p. 198]).

Topological loops are compact if the group topologically generated by
their left translations is compact. The converse is not true already for differ-
entiable loops defined on the circle (cf. Section 18 in [24]). These loops have a
finite covering of the group PSL2(R) as the group topologically generated by
their left translations and the stabilizer of their identities has no non-trivial
compact subgroups. The differentiable one-dimensional loops can be classified
by pairs of real functions which satisfy a differential inequality containing these



functions and their first derivatives. In [15] K. Strambach and A. Figula de-
termined the functions satisfying this inequality explicitly in terms of Fourier
series. Moreover, they showed that any topological loop L homeomorphic to a
sphere or to a real projective space and having a compact-free Lie subgroup as
the stabilizer of the identity of L in the Lie group topologically generated by
all left translations is homeomorphic to the circle. Applying the investigation
of H. Scheerer, who has clarified for which compact connected Lie groups G
and for which closed subgroups H the natural projection G — G/H has a
continuous section o, in [18] K. Strambach and A. Figula proved that there
does not exist any connected topological proper loop homeomorphic to a quasi-
simple Lie group and having a compact Lie group as the group topologically
generated by its left translations. Similarly, any connected topological loop L
homeomorphic to the 7-sphere and having a compact Lie group as the group
topologically generated by its left translations is either the Moufang loop O
of octonions of norm 1 or the factor loop O/Z, where Z is the centre of O. In
contrast to this they gave a particular simple general construction for proper
topological loops such that the compact group generated by their left transla-
tions is direct product of at least 3 factors.

In [26] P. T. Nagy and K. Strambach thoroughly investigate a variation
of extensions which yields loops as extensions of groups by loops such that
these extensions are the most natural generalization of Schreier’s extension
theory for groups. These extensions of groups A by loops S are given by two
functional equations describing the action of S on A. In [17] K. Strambach and
A. Figula solved these equations for extensions of a group A by a weighted
Steiner loop S. Hence they obtained concrete description for all loops with
interesting weak associativity properties if the Steiner loop S induces only
the trivial automorphism on A. They showed that the (restricted) Fischer
groups and their geometry play an important role for loop extension with
right alternative property.

Locally compact connected topological non-Desarguesian translation pla-
nes have been a popular subject of geometrical research since the seventies of
the last century. These planes are coordinatized by locally compact quasifields
@ such that the kernel of @) is either the field R of real numbers or the field
C of complex numbers. The classification of topological translation planes A
was accomplished by reconstructing the spreads corresponding to A. In this
way D. Betten has determined all 4-dimensional planes having an at least 7-
dimensional collineation group. H. H&hl has classified the 8-dimensional topo-
logical translation planes admitting an at least 16-dimensional automorphism
group and coordinatizing by quasifields having the field C as their kernel.
N. Knarr has determined the 8-dimensional planes coordinatizing by semi-
fields having the field C as their kernel. The papers [10,11] are devoted to
the determination of the algebraic structure of the multiplicative loops for
these quasifields. A complete description of those multiplicative loops which



have either a normal subloop of dimension one or which contain the compact
subgroup SO2(R) or Spins(R) is given. P. T. Nagy and K. Strambach have
proved that the group G topologically generated by the left translations of the
2-dimensional proper multiplicative loops @* is the connected component of
GLy(R) but the group topologically generated by the right translations of Q*
has infinite dimension (cf. [24, Section 29, p. 345]).

with Agota Figula
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G. Falcone, K.Strambach and A.Figula found that the group G topologi-
cally generated by the left translations of the multiplicative loops @Q* of 4-
dimensional quasifields having the field C as their kernel is one of the following
groups: Spins(R) x R, Spinsg(R) x C, SL2(C) x R, GLy(C). The classification
of Hahl and Knarr shows that all these Lie groups are realized as the group
generated by the left translations of a multiplicative loop Q*. If G is the group
Spinz(R) x R, then Q* is associative and @ is either a proper Kalscheuer’s
near field or the skewfield of quaternions. P. Plaumann and K. Strambach have
showed that any locally compact 2-dimensional semifield is the field of complex
numbers (cf. 28, XI. 12.2 Proposition, p. 348]). G. Falcone, K. Strambach and
A. Figula proved that a 2-dimensional locally compact quasifield is the field
of complex numbers if and only if the multiplicative loop Q* contains a 1-
dimensional compact normal subloop. Using the Betten’s, Hahl’s and Knarr’s
classifications they determined the multiplicative loops of the quasifields which
coordinatize these translation planes. The multiplicative loops Q* of the proper
4-dimensional semifields having C as their kernels are direct products of R
and a compact loop K homeomorphic to the 3-sphere and the group gener-
ated by all translations of these loops @Q* are Lie groups, in contrast to the
2-dimensional quasifields. Also, the group generated by the left translations of
K has a remarkable structure: it is the group of complex (2 x 2) matrices the
determinants of which have absolute value 1.



4. Karl’s Work in Palermo

The collaboration that Karl Strambach carried on for more than 30 years in
Palermo began in 1984, when he met Claudio Bartolone at the NATO Ad-
vanced Study Institute conference Rings and Geometry in Istanbul. In 1979
C. Bartolone had published a paper “A remark on the projectivities of the pro-
jective line over a commutative ring” on the projective mappings of the line
over a commutative ring which Karl found interesting. One year later they
started a project, that consisted in the classification of imprimitive groups of
transformations, acting sharply m-transitively on the system of imprimitivity,
and sharply n-transitively on each block. Clearly, the project had its origin in
the characterization of sharply 2-transitive groups as groups I' of affine map-
pings x — xa + b of a (left) near-domain, which was still a very stimulating
area at that period.

A near-domain is a set (D, +,*) endowed with two binary operations,
such that (D,+) is a loop, (D*,x) is a group, and the one-side distributive
law a * (b + ¢) = a b+ a * ¢ is fulfilled. For more than 40 years, many
mathematicians looked for a near-domain which was not a near-field, that
is, a near domain where (D,+) is a group. In fact, finite near-domains are
near-fields, algebraic near-domains are near-fields, topological near-domains
are near-fields. The answer came only in 2014 when E. Rips, Y. Segev, and
K. Tent constructed a sharply 2-transitive infinite group without a non-trivial
Abelian normal subgroup, thus proving that there exist near-domains which
are not a near-fields.

The collaboration that begun in Istanbul ended up in a deep friendship
and in the training of a series of scholars, among whom was G. Falcone. As the
manuscript was growing, the young collaborators began to feel the necessity of
proving their work with a publication, thus in 2004 (sic!) they came out with
the first one [1], and, after five years, with a second one [2]. In the first one,
they showed that the case where m > 2 has only few cases. In 2012, during
a Research in pairs period at Oberwolfach, K. Strambach and G. Falcone
proved that, with m = 2, such finite transformation groups exist only for
n = 2. Thus, the investigation can be confined to the case of what we called
a (2,2)-group, which can be illustrated as follows: let 2 be a set operated on
imprimitively by a group G, in such a way that the stabilizer Ga of a block A
acts sharply 2-transitive on A, that G/N is sharply 2-transitive on the system
of imprimitivity €, that is, the set of blocks, where N is the inertia group, that
is, the normal subgroup that leaves each block invariant, and, finally, that G
is sharply transitive on the set A := {(Py, P») € Q% : Ap, # Ap,}. Algebraic
(2, 2)-transformation groups had been characterized in 2009 [2]. In this paper,
they exhibit an interesting class of examples where the group G has a non-
Abelian, regular, subgroup T of translations: for an algebraically closed field
k of characteristic p > 0, this group is defined on the set (k1)3 x k. by the



multiplication
(1'17 T2,T3, 1) * (y17 Y2,Y3, 1)

1 2 2
= <$1 + Y1+ Yo + ix?’y§ , Ty + Yo + 2hys w3 + y3>
and (21, 2o, 3, 1)0000) = (0’ +2py, pP*+Py, brs). This group operates on
the points («, 3) of the affine plane as follows:

2 1 2
(a,B) — <351 +a” t*Pa + §$§p(ay3)p , o3 + ay) .

Other interesting classes of examples come from the construction of affine
mappings « — za + b on the ring R of dual numbers R = {a +¢b : a,b €
L, €2 = 0}, where L is a not necessarily commutative field, as the group of
such affine mappings is an imprimitive transformation group on the set R,
which is a (2,2)-group. Thus, with L the skew-field of Hamilton quaternions,
we find the locally compact (2, 2)-transformation group G, acting on a eight-
dimensional space €, of affine mappings of the line over the (non-commutative)
real algebra of dual quaternions eg = {a + be : a,b € H, €2 = 0} over the
skew-field of quaternions H (cf. Clifford, Study). For a,b € ey, a invertible,
the group of affine mappings {x — za + b} of ey is a 16-dimensional locally
compact topological (2, 2)-transformation group with eight-dimensional inertia
subgroup consisting of the mappings {z +— x(1 + be) + de}. The only other
locally compact (2, 2)-transformation groups have been classified in [8]:

1. there is one family of four-dimensional groups, parametrized by a nonzero
real number s, which give deformations of the group of affine mappings
over the dual numbers over R, which is obtained for s = 1;

2. there is one family of eight-dimensional groups, parametrized by a real
number s and an integer number n > 0, and for s = n = 1 one obtains
the group of affine mappings of the affine line over the algebra of dual
numbers over the complex field.

The general situation was clarified in a paper [9], where the authors introduced
(partial) paradual rings and proved that R = (R,Ug) is a partial paradual
near-ring if and only if the group I'gz of its affine mappings x +— za + b is a
(2, 2)-transformation group: let R(+,-) be endowed with a binary operation +
and a partial binary operation - : R x S — R, where S is a subset of R. The
authors say that R = (R, S) is a right partial near-ring with identity 1 € S, if

(a) (R,+) is a not necessarily commutative group with neutral element 0;
(b) S is closed with respect to the restriction of - at S x S;

(c) r(s182) = (rs1)se for all r € R and s1,s2 € 5,

(d) (r1 +72)s=r1s+res forall 1,79 € Rand s € S;

(e) Is=sand rl =7 for all s € S and r € R.



A. Di Bartolo, G. Falcone and K. Strambach denoted by Ug the group of
invertible elements of the monoid S. Notice that, if S = R, then R = (R, R)
is a right near-ring.

If R = (R, Ug) is a partial near-ring with identity 1 and the set I = R\Ug
is an ideal of MR, then MR is local, R\Ug is the maximal ideal of B8 and R/ is
a near-field.

Let R = (R, Ug) be a right partial near-ring with identity. The group

' ={yur:z—au+r:ueclUg,reR}

of affine mappings of R is the semidirect product 'y = M XT = {vy, = po7r
ty € M, 7, € T} of its translations subgroup T = {7, = v1,, : * — x+r,7 € R}
by its multiplications subgroup M = {, = Yu,0 : © — zu,u € Ur}.

The group 'y acts imprimitively on the points of R, taking as blocks
the cosets of I in the additive group of R. The set of mappings N = {7144,y :
x,y € I} is a normal subgroup of I'sz, which is the inertia subgroup of the
system of imprimitivity of I'y; defined by R/I.

The set of mappings H = {y144, : © € I,y € R} is a normal subgroup
of I'yy, such that ' /H fixes a point X, and acts sharply transitively on the
blocks not containing Xj.

If the multiplicative group of R/ acts sharply transitively on I'\{0}, then
'y is a (2,2)-transformation group. Accordingly, we define a (partial) near-
ring with identity 1, such that I = R\Ug is an ideal and the multiplicative
group of R/T acts sharply transitively on I\{0}, a (partial) paradual near-ring.

On the other hand, if a group G is such that G = M x T, where T acts
sharply transitively on the points and M = G is the stabilizer of the point
0e€T,if J<Tisnormal in G, and M acts sharply transitively on T\J by
conjugation, then, fixing an element ¢ in 7'\ J and denoting by k the element of
M such that s = %+, the addition of & = (T, T\J) given by the multiplication
in T and the partial multiplication of R given, for any ¢t € T and any s € T\J
by t*s = t*s| turn R into a partial near-ring, such that G is isomorphic to the
group of affine mappings of the affine line over R and the set T'\.J consists of
the invertible elements Ur of R. If G is a (2, 2)-transformation group, then R
is paradual.

Since G. Falcone and K. Strambach proved in Oberwolfach (2012) that,
if G is a finite (2,2)-transformation group, then G = T x Gx, where T is a
normal subgroup of G acting regularly, and is either an elementary Abelian
group of order p®" or the direct product of r copies of a cyclic group of order
p?, the investigation was reduced to the near-fields obtained as the quotient
R/I, G. Falcone will always remember the big efforts made in Milano 2014
with the seven Zassenhaus exceptional near-fields, but it was two years later
in Palermo that he and K. Strambach realized that, more generally, for any
paradual near-ring R with maximal ideal I and the corresponding near-field
L = R/I, there exists a not necessarily commutative field F, an isomorphism



¢ : L* — F*, and an anti-homomorphism ~ : L* — Aut(F}), fulfilling

P21 + 22)y" 12 = §(21)y ") 4 p(20)y7 ("),

such that R ~ L x F with the addition
(z1,91) + (z2,92) = (331 +x2,y1 +y2 + ‘1’(5517372)),

and with the multiplication

(z1,y1)(z2,92) = ($1$2,y1¢(9€2) + (1) (Yo 1) B(a2) + \I/(xlva))

for a multiplicative factor system ¥ : L x L — F fulfilling ¥(1,¢) = (¢, 1) =
U(0,t) = ¥(t,0) = 0, and an additive factor system ® : Ly x Ly — Fy,
fulfilling

O(zq, 22)P(x3) + V(a1 + 22, 23) = P(r123, 2223) + U(21,23) + U(22,23).

In the case of a finite paradual near-ring R = L x F, with L near-field,
F ~ GF(p"), from the isomorphism ¢ : L* — F* we infer that L = F and
that the epimorphism ¢ : L* — F* is ¢(z) = 2, with ged(t,p” — 1) = 1.
Moreover, by the theorem of Zassenhaus, the multiplicative group of R splits
over the normal subgroup (14 1) 3 (1, y), and the multiplicative factor system
U is a coboundary, that is, ¥(xy,x9) = o(x122)0(x1) Lo (xe) L, for a suitable
function o : L* — R*.

Thus, we can say that, if R is a finite paradual near-ring, I is its maximal
ideal, and L = R/I ~ GF(p"), then R := R; ¢ = L x L with the addition

(w1,91) + (22,92) = (351 +x2,y1 +y2 + ‘I’($17JU2)>,

o +ab—(z1+w2)?
p )
—Pq (1, xg)pnfl, where ®; is the factor system of the Witt extension

where U(x1,z9) is either zero, or ®q(x1,x2) = or

11— — Wy — W, — 1,

and with the multiplication (x1,y1)(z2,y2) = (581562, y1xo + zfl y2> where 0 <
I < n. The near-ring R is a ring if and only if [ = 0.

This was a short survey of what was just one half of the contribution
given by Karl Strambach to the academic training of G. Falcone, who can-
not help but mention in what follows one of the many results contained in
the monograph [7]. While climbing the stairs of the Erlangen Mathematics
Institute in Bismarckstrae 1 1/2, Karl asked G. Falcone whether connected
algebraic groups where every connected subgroup was normal always have one-
dimensional commutator subgroups. This led G. Falcone to a broad project,
funded by DFG STR97/9-1, focused on the concept of chains, that is, con-
nected algebraic groups with a unique connected algebraic subgroup for any



dimension. The smallest commutative chain is the Witt group 20,, and the
smallest non-commutative chain is the group J2(F") of matrices of the form

1 =z Y
0 1 a2 |,
0 O 1

which J. Dieudonné found of some interest. The authors of the paper [7] gen-
eralized this group to the n-dimensional unipotent algebraic group J,,, of max-
imal nilpotent class n, having the following linear representation

1 2 z1 - : v Tp-1
P P D
1 Ty I : T Thoo
p’ p’ p’
My _1(xo,...,xp—1) = Lz Tp_3
1

with Giovanni Falcone
2012, Oberwolfach, Germany

These examples answered in the negative the question that K. Strambach
posed to G. Falcone about twenty years ago. Finally, on October 7th, 2016,
Karl sent to G. Falcone his contribution to an introductory note to an edited
volume [12] and asked him to check the details, because he was not very well.

5. Elementary Geometry and Geodesics

In differential geometry affine connections and metric tensors play a central
role. An affine connection on a connected differentiable manifold M generates
geodesics, and M endowed with a system S of geodesics may be considered
as an incidence geometry (M, S) with the geodesics as lines. Following Klein’s



point of view the study of transformation groups of M related to metric tensors,
affine connections or of transformation groups leaving S invariant has been a
research area of great importance for more than hundred years.

The group I' of diffeomorphisms of M leaving the system S of geodesics
invariant, i.e., the group of geodesic transformations, is a Lie group of dimen-
sion < n? + 3n if M has dimension n. The group © of affine transformations
leaving an affine connection V invariant as well as the group 2 of isometries
leaving the metric tensor g of an Riemannian manifold invariant are closed Lie
subgroups of I'.

If M is Riemannian and V is the unique affine connection compatible
with g then one has 2 < © < T'. In order to find the relations between the
groups {2, © and I" one needs geometric properties of the manifold M. For
instance, if M is a Riemannian manifold then the group 2 of isometries is
compact. If M itself is compact then 2 = © is a compact Lie group.

For a 2-dimensional differentiable manifold M E. Beltrami had already
derived an Abelian differential equation having as coefficients expressions in
the Christoffel symbols of an affine connection V such that its solutions are lo-
cal geodesics for V. If, in particular, the coefficients of this differential equation
are constant, then its solutions can be obtained explicitly.

For a suitable system S of curves the Beltrami differential equation allows
one to decide whether there exists an affine connection V on M such that S
consists of global geodesics with respect to V. Thoroughly investigated systems
of differentiable curves occur as lines of 2-dimensional topological affine planes.

This motivated G. Gerlich to ask for which such planes M there exists an
affine connection V generating the lines of M and to study when there exists
a Riemannian metric such that V is its associated connection. He has shown
that the validity of Desargues’ theorem is essential for the existence of V. The
only important non-Desarguesian exceptions are the Moulton planes.

The affine connections with this property are classified for the Griinwald
planes as well as for the Moulton planes. Moreover, the groups of isometries
and of affine transformations are determined. It turns out that in the Moulton
planes M for any dimension 0 < n < 4 there exists in the collineation group
I' a subgroup © of dimension n such that © is the group of affine mappings
with respect to an affine connection having I' as the group of geodesic trans-
formations. There is even an affine connection for M such that the group © of
affine mappings coincides with the group I' of geodesic transformations.

The Euclidean plane, Grinwald’s models of the real affine plane and the
affine Moulton planes are the only known examples of differentiable R?-planes
in which the group of geodesic transformations can coincide with the group of
affine transformations.

J. Mikes and K. Strambach (see [19]) have shown that the real affine
plane (with straight lines or as a Griinwald model of the real affine plane) is the
only generalized shift R2-plane (this class forms a generalization of translation
planes) such that their lines are geodesics with respect to an affine connection



V, the components of which can be calculated. Among the generalized Moulton
planes only the Moulton planes themself admit affine connections V such that
their lines are geodesics with respect to V. Moreover, all such connections V
can be classified.

E. Beltrami has shown that a differentiable curve is a local geodesic with
respect to an affine connection V precisely if it is a solution of an Abelian
differential equation having as coefficients expressions in Christoffel symbols
associated with V, the use of differential geometry for study of RZ-planes
having differentiable curves as lines started only 2000 by G. Gerlich.

G. Gerlich asked for which R?-planes A with differentiable lines there
exists an affine connection V generating the lines of A and for affine planes A
with an at least three-dimensional collineation group he proved that V exists if
and only if A is either Desarguesian or a Moulton plane. Moreover it is shown
that the differentiable lines of a generalized shift R2-plane A are geodesics with
respect to an affine connection V precisely if A is either the Euclidean plane
or a Griinwald model of the real affine plane.

The extension of the investigation from R2Z-planes to geometries on R™
having as lines a system S of curves such that any two different points are
incident with precisely one curve of S turns out to be surprisingly difficult as
one can see in Gerlich’s papers, where, for example, D. Betten created a theory
of 3-dimensional topological incidence geometries.

If one tries to extend the characterization of differentiable shift spaces
having as lines geodesics with respect to an affine connection starting with a
Griinwald plane, then one also meets with great difficulties. Namely, J. Mikes
and K. Strambach showed that for at least 3-dimensional differentiable shift
spaces S, generalizing in a natural way the 2-dimensional shift spaces corre-
sponding to Grinwald planes, there exists no affine connection V such that the
lines of S are geodesics of V. This is surprising since there exist n-dimensional
shift spaces if the derivatives of their generating functions are homeomorphisms
of R.

In contrast to a shift space the set of all images of the system of curves
arising by shifting the argument from a Griinwald curve C under the translation
group of R™ is a system of geodesics with respect to a natural affine connection
if and only if C is a curve corresponding to parabolas in a suitable coordinate
system.

J. Mikes and K. Strambach [20] have proved that an n-dimensional differ-
entiable shift space S, for which in case n = 2 there exists an affine connection
if S is a Griinwald plane, does not admit for n > 3 affine connection. In con-
trast to this the set of all images of the system of curves arising by shifting
the argument from a Griinwald curve C under the translation group of R” is a
system of geodesics with respect to a metrizable affine connection if and only
if C is a curve corresponding to parabolas in a suitable coordinate system.

Let C be a curve in R™ which is described by a set of differentiable strictly
monotone and surjective functions. The aim of this line of research is to study



under which conditions all images of C under a group € of affine transforma-
tions containing all translations of R™ are geodesics with respect to an affine
connection V. If Q coincides with the group 7' of affine translations, then in
this case we already obtain concrete informations on the components of the
affine connection V and about the form of the functions describing the curves
C. If the groups (2 are semidirect products of the translation group 7' of R"”
with groups consisting of many dilations, then we determine explicitly the
components of V and the form of the curves C, the images of which under Q
consists of geodesics with respect to V.

The authors paid special attention to curves C in the 3-dimensional affine
space and to the translation group Q = T in R3. In this case the form of
the curves C was determined, the components of V were calculated as well
as the components of the curvature and Weyl tensor. Moreover, they were
able to decides when V yields a flat or metrizable space and to calculate the
corresponding metric tensor. In the proofs the solutions of Ricatti and Abelian
differential equation play an important role. For this reason one can explicitly
describe the solutions of Abelian differential equations which are derivatives
of strongly monotone and surjective function on R.

In [21] J. Mike$ and K. Strambach have determined the form of curves C
in R™ corresponding to strictly monotone functions as well as the components
of affine connections V for which any image of C under a compact-free group
of affinities containing the translation group is a geodesic with respect to V.

O. Belova, J. Mikes with K. Strambach (see [3]) have investigated Hjelm-
slev geometries ‘H having a representation in a complex affine space C", the
lines of which are given by entire functions. Since, it is possible to define nat-
ural complex affine connections V, the notion of a geodesic is also available. If
the lines of H are geodesics with respect to V then a detailed classification of
them as well as of the corresponding geometries is obtained. Generalizations
of complex Griinwald planes play a main role in the classification. Since in the
considered geometries the set of lines is invariant under the translation group
of C", O. Belova, J. Mikes and K. Strambach classified all complex curves C in
C™ given by entire functions as well as the connections V such that all images
of C under the translation group of C™ consist of geodesics with respect to V.

Actually O. Belova, J. Mikes and K. Strambach studied how in R", for
a system S of differentiable curves which is invariant under the semidirect
product of the translation group with an (n — 1)-dimensional real algebraic
split torus, the conditions for the forms of curves of S to be geodesics or
almost geodesics differ. In contrast to systems .S consisting of geodesic curves,
systems S consisting of almost geodesics constitute a wide class. Hence the
paper arising on this subject contains tricky calculations.

Within the frame of this research O. Belova, J. Mikes and K. Strambach
wanted to determine differentiable affine planes and n-dimensional differen-
tiable shift spaces the lines of which are almost geodesics with respect to
an affine connection with constant coefficients. In the case of affine planes



O. Belova, J. Mikes and K. Strambach have paid the special attention to non-
Desarguesian planes and in the case of differentiable shift spaces the authors
have concentrated to such differentiable shift spaces with lines which are not
parabolas. Also, for the analogous systems as treated in [21] J. Mikes and
K. Strambach have determined the form of curves C for which any image of
C under a compact-free group of affinities containing the translation group is
an almost geodesic with respect to an affine connection V. Furthermore, the
authors tried to transport the notion of almost geodesics to complex manifolds
and investigate with this tool Hjelmslev geometries having a representation in
a complex affine space C™, the lines of which are given by entire functions.
The goal of authors is a classification of Hjelmslev geometries H, the lines of
which are almost geodesics with respect to a complex affine connection V. The
investigations and calculations are not easy, but some goals have been achieved
in [4-6].

A

with Josef Mikes,
2015, Olomouc, Czech Republic

with Olga Belova and Josef Mikes,
2013, Kaliningrad, Russia



6. Afterword

In October 2016 Karl Strambach passed away in Erlangen suddenly and un-
expectedly.

Karl Strambach was kind and sociable, relaxed and lively, and completely
unpretentious. He was deeply rooted in the cultural traditions of Europe.

We are grateful to the destiny that has given to us the luck to communi-
cate and to work with such person.

We really miss him.
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