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Abstract

The purpose of this article is twofold. First of all, the notion of (D, E)-quasi basis is

introduced for a pair (D, E) of dense subspaces of Hilbert spaces. This consists of two

biorthogonal sequences {ϕn} and {ψn} such that
∑∞

n=0 〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 for all

x ∈ D and y ∈ E . Secondly, it is shown that if biorthogonal sequences {ϕn} and {ψn}
form a (D, E)-quasi basis, then they are generalized Riesz systems. The latter play an

interesting role for the construction of non-self-adjoint Hamiltonians and other physically

relevant operators.
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1 Introduction

A sequence {ϕn} in a Hilbert space H is called a generalized Riesz system if there exist an

orthonormal basis (from now on, ONB) Fe = {en} in H and a densely defined closed operator

T in H with densely defined inverse such that Fe ⊂ D(T ) ∩ D((T−1)∗) and Ten = ϕn, n =

0, 1, · · · . In this case (Fe, T ) is called a constructing pair for {ϕn}, [4, 8, 7]. Then, if we put

ψn := (T−1)∗en, n = 0, 1, · · · , Fϕ := {ϕn} and Fψ := {ψn} are biorthogonal sequences in H,

that is, 〈ϕn, ψm〉 = δnm, n,m = 0, 1, · · · .
The notion of generalized Riesz system is useful to investigate non-self-adjoint Hamiltonians

constructed from Fϕ and Fψ. More precisely, let Fϕ be a generalized Riesz system with a

constructing pair (Fe, T ) and define ψn as above. Then we consider the operators

Hα
ϕ := THα

e T
−1, Aα

ϕ := TAα
e T

−1 and Bα
ϕ := TBα

e T
−1,

together with

Hα
ψ := (T ∗)−1Hα

e T
∗, Aα

ψ := (T ∗)−1Aα
e T

∗ and Bα
ψ := (T−1)∗Bα

e T
∗,

where α = {αn} ⊂ C. Here

Hα
e :=

∞
∑

n=0

αnen ⊗ ēn, Aα
e :=

∞
∑

n=0

αn+1en ⊗ ēn+1, Bα
e :=

∞
∑

n=0

αn+1en+1 ⊗ ēn

are a self-adjoint Hamiltonian, the lowering operator and the raising operator for {en}, respec-
tively (if, x, y, z ∈ H, (y ⊗ z̄)x := 〈x, z〉y ).

Since Hα
ϕ ϕn = αnϕn, A

α
ϕϕn = αnϕn−1 (0 if n = 0) and Bα

ϕϕn = αn+1ϕn+1, n = 0, 1, · · · ,
it seems natural to call the operators Hα

ϕ , A
α
ϕ and Bα

ϕ the non-self adjoint Hamiltonian, and

the generalized lowering and raising operators for {ϕn}, respectively. Similarly, since Hα
ψψn =

αnψn, A
α
ψψn = αnψn−1 (0 if n = 0) and Bα

ψψn = αn+1ψn+1, the operators Hα
ψ , A

α
ψ , B

α
ψ are

called the non-self adjoint Hamiltonian, generalized lowering operator and raising operator for

{ψn} respectively.

Then, it is interesting to understand under what conditions biorthogonal sequences Fϕ and Fψ

are generalized Riesz system, which is what we will discuss in this paper.

Studies on this subject have been undertaken in [8, 9, 6, 7]. Here we want to explore this

question in a more general framework.

Let Dϕ and Dψ be the linear spans of the biorthogonal sequences Fϕ and Fψ, respectively,
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and define the subspaces D(ϕ) and D(ψ) in H by

D(ϕ) = {x ∈ H;
∞
∑

n=0

| 〈x, ϕn〉 |2 <∞},

D(ψ) = {x ∈ H;
∞
∑

n=0

| 〈x, ψn〉 |2 <∞}.

Clearly, Dψ ⊂ D(ϕ) and Dϕ ⊂ D(ψ). In [6], one of us has shown that if both Dϕ and Dψ

are dense in H (this case is called regular), then Fϕ and Fψ are generalized Riesz systems.

After that, in [7], it was proved that, if either Dϕ and D(ϕ), or Dψ and D(ψ), are dense in

H (the case is called semiregular), again Fϕ and Fψ are generalized Riesz systems. Hence we

will consider under what conditions Fϕ and Fψ are generalized Riesz systems when none of the

above conditions is satisfied. In [4], we have proved that this holds under the assumptions that

Fϕ and Fψ are biorthogonal and, at the same time, D-quasi bases, in the sense that

∞
∑

n=0

〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 , ∀x, y ∈ D,

where D is a dense subspace in H such that Fϕ∪Fψ ⊂ D ⊂ D(ϕ)∩D(ψ), with some additional

assumptions. In this paper we shall show that this result holds in a more general case. In

Section 3 we define the notion of (D, E)-quasi bases which is a generalization of D-quasi bases

as follows:

∞
∑

n=0

〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 , ∀x ∈ D, y ∈ E

where D and E are dense subspaces in H such that Dψ ⊂ D ⊂ D(ϕ) and Dϕ ⊂ E ⊂ D(ψ), and

we show in Theorem 3.2 that, under this condition, Fϕ and Fψ are generalized Riesz systems.

In Section 4, we shall investigate non-self adjoint Hamiltonians, generalized lowering and

raising operators constructed from (D, E)-quasi bases. This analysis can be relevant for concrete

physical applications, and extends what already deduced, for instance, in [3, 6, 2].

2 Preliminaries

In this section we review some results on generalized Riesz systems needed in the rest of the

paper. By Lemma 3.2, [7], we have the following
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Lemma 2.1. Let {ϕn} be a generalized Riesz basis with a constructing pair (Fe, T ). Then,

we have the following statements.

(1) T ∗ has a densely defined inverse and (T ∗)−1 = (T−1)∗.

(2) Let ψn := (T−1)∗en, n = 0, 1, · · · . Then, {ϕn} and {ψn} are biorthogonal and (T−1)∗

is a densely defined closed operator in H with densely defined inverse T ∗. Hence {ψn} is a

generalized Riesz basis with a constructing pair (Fe, (T
−1)∗).

(3) D(ϕ) ∩D(ψ) is dense in H.

Next, for any ONB {en} in H and a sequence {ϕn} in H, we introduce the operators T 0
ϕ,e,

Tϕ,e and Te,ϕ as follows:

T 0
ϕ,e := the linear operator defined by T 0

ϕ,een = ϕn, n = 0, 1, · · · ,

Tϕ,e :=

∞
∑

n=0

ϕn ⊗ ēn,

Te,ϕ :=

∞
∑

n=0

en ⊗ ϕ̄n.

Similarly we can introduce, for the set {ψn} in Lemma 2.1, the operatorsT 0
ψ,e, Tψ,e and Te,ψ.

These operators had a role in [7] and will also be relevant here. By Lemmas 2.1, 2.2 in [7] we

get the following

Lemma 2.2. (1) Tϕ,e is a densely defined linear operator in H such that

Tϕ,e ⊇ T 0
ϕ,e and T 0

ϕ,een = Tϕ,een = ϕn, n = 0, 1, · · · .

(2) D(Te,ϕ) = D(ϕ) and (T 0
ϕ,e)

∗ = T ∗
ϕ,e = Te,ϕ.

(3) T 0
ϕ,e is closable if and only if Tϕ,e is closable if and only if D(ϕ) is dense in H. If this

holds, then

T̄ 0
ϕ,e = T̄ϕ,e = (Te,ϕ)

∗. (2.1)

Furthermore, by Lemmas 2.3 and 2.4 in [7] we have

Lemma 2.3. Let Fϕ and Fψ be biorthogonal sequences in H. Suppose that D(ϕ) is dense

in H. Then we have the following
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(1) T̄ϕ,e has an inverse and T̄−1
ϕ,e ⊆ Te,ψ = (Tψ,e)

∗.

(2) The following (i), (ii) and (iii) are equivalent:

(i) Dφ is dense in H.

(ii) T̄ϕ,e has a densely defined inverse.

(iii) T ∗
ϕ,e(= Te,ϕ) has a densely defined inverse.

If this holds, then T−1
e,ϕ = (T̄−1

ϕ,e)
∗.

(3) For the operators Tψ,e and Te,ψ the same results as in (1) and (2) hold.

By [7], Theorem 3.4, we also get

Theorem 2.4. Let Fϕ and Fψ be biorthogonal sequences in H, and let Fe be an arbitrary

ONB in H. Then the following statements hold:

(1) Suppose that both Dϕ and Dψ are dense in H. Then Fϕ (resp. Fψ) is a generalized

Riesz basis with constructing pairs (Fe, T̄φ,e) and (Fe, T
−1
e,ψ) (resp. (Fe, T̄ψ,e) and (Fe, T

−1
e,φ)),

and T̄φ,e (resp. T̄ψ,e) is the minimum among constructing operators of the generalized Riesz

basis Fϕ (resp. Fψ), and T
−1
e,ψ (resp. T−1

e,φ) is the maximum among constructing operators of Fϕ

(resp. Fψ). Furthermore, any closed operator T (resp. K) satisfying T̄φ,e ⊂ T ⊂ T−1
e,ψ (resp.

T̄ψ,e ⊂ K ⊂ T−1
e,φ) is a constructing operator for Fϕ (resp. Fψ).

(2) Suppose that D(φ) and Dφ are dense in H. Then Fϕ (resp. Fψ) is a generalized

Riesz basis with a constructing pair (Fe, T̄φ,e) (resp. (Fe, T
−1
e,φ)) and the constructing operator

T̄φ,e (resp. T−1
e,φ) is the minimum (resp. the maximum) among constructing operators of Fϕ

(resp. Fψ).

(3) Suppose that D(ψ) and Dψ are dense in H. Then Fψ (resp. Fϕ) is a generalized

Riesz basis with a constructing pair (Fe, T̄ψ,e) (resp. (Fe, T
−1
e,ψ)) and the constructing operator

T̄ψ,e (resp. T−1
e,ψ) is the minimum (resp. the maximum) among constructing operators of Fψ

(resp. Fϕ).

Theorem 2.4 shows how the problem stated in Introduction (under what conditions biorthogo-

nal sequences Fϕ and Fψ are generalized Riesz systems) can be solved in the case when either

Dϕ andD(ψ) orDψ andD(ϕ) are dense inH. But, this problem has not been solved completely

in case that both Dϕ and Dψ are not dense in H, which is what is interesting for us here. We

will see how the operators Tϕ,e, Te,ϕ, Tψ,e and Te,ψ will be relevant in our analysis, together
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with the (D, E)-quasi bases we will define in the next section. This result is a generalization of

the one obtained in [4].

3 (D, E)-quasi bases
In this section we extend the notion of D-quasi bases by introducing a second dense subset E of

the Hilbert space H, and we relate these new families of vectors to generalized Riesz systems.

Definition 3.1 Let Fϕ and Fψ be biorthogonal sequences in H and let D and E be dense

subspaces such that Dψ ⊆ D ⊆ D(ϕ) and Dϕ ⊆ E ⊆ D(ψ). Then ({ϕn}, {ψn}) is said to be a

(D, E)-quasi basis if
∞
∑

k=0

〈x, ϕk〉 〈ψk, y〉 = 〈x, y〉

for all x ∈ D and y ∈ E .

It is clear that any (D,D)-quasi basis is a D-quasi basis in the sense of [1].

Example 1:– A very simple example of a (D, E)-quasi basis can be constructed as follows.

Let {en} be an ONB for H. Let αn an unbounded sequence of positive real numbers having 0

as limit point. To be more concrete, let us take

αn =

{

1
n

if n is even

n if n is odd.

Let Tx =
∑∞

n=1 αn 〈x, en〉 en be defined on the domain

D(T ) =

{

x ∈ H :
∞
∑

k=0

(2k + 1)2|(x, e2k+1)|2 <∞
}

.

The operator T is unbounded, selfadjoint, invertible with inverse T−1 is defined as T−1y =
∑∞

n=1 α
−1
n 〈x, en〉 en on the domain

D(T−1) =

{

y ∈ H :

∞
∑

k=1

(2k)2|(y, e2k)|2 <∞
}

.

Both D(T ) and D(T−1) are dense subspaces of H and they are different as one can easily check.

Let us set ϕn = Ten and ψn = T−1en, n ∈ N. The ϕn = αnen, while ψn = T−1en = α−1
n en.
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Moreover D(ϕ) = D(T ), D(ψ) = D(T−1). Then we have

∞
∑

n=0

〈x, ϕn〉 〈ψn, y〉 =
∞
∑

n=0

〈x, αnen〉
〈

α−1
n en, y

〉

= 〈x, y〉 .

Thus, (Fϕ,Fψ) is a (D(ϕ), D(ψ))-quasi basis.

Example 2:– Let H0 = p2+x2 be (twice) the self-adjoint Hamiltonian of a one-dimensional

harmonic oscillator. We consider H0 to be the closure of the operator acting in the same way

on the Schwartz space S(R), and T = 11 + p2, which is an unbounded self-adjoint operator

defined on D(T ) =W 2,2(R), the Sobolev space of functions having first and second order weak

derivative in L2(R). The operator T = H0 + 11 − x2 is unbounded, invertible with bounded

inverse T−1. The eigensystem of H0 is well known:

H0en(x) = (2n+ 1)en(x), en(x) =
1√

2nn!π1/2
Hn(x) e

−x2/2

n ≥ 0, where Hn(x) is the n-th Hermite polynomial. Moreover,

H0f =
∞
∑

n=0

(2n+ 1)(en ⊗ ēn)f =
∞
∑

n=0

(2n+ 1)(f, en)en, ∀f ∈ S(R). (3.1)

It is easy to see that en(x) ∈ D(T ) so that we can define ϕn(x) = (Ten)(x) and ψn(x) =

(T−1en)(x). We get

ϕn(x) = (2 + 2n− x2)en(x), ψn(x) =
1

2

∫

R

e−|x−y| en(y) dy.

These functions are respectively eigenvectors of H = TH0T
−1 and H†, with eigenvalue 2n+ 1.

Some computations show that, for instance,

H = H0 − 2

(

11 + 2x
d

dx

)

G ⋆ .

Here G(x) is the Green function of T , G(x) = 1
2
e−|x|, and (G ⋆ f)(x) =

∫

R
G(x− y)f(y)dy, for

all f(x) ∈ L2(R). Of course we can rewrite H as follows: H = H0 − 2(11 + 2ixp)G⋆, which is

manifestly non self-adjoint.

The sets Fϕ and Fψ are biorthogonal and form a (D(T ),H)-quasi basis, since

∞
∑

k=0

〈f, ϕk〉 〈ψk, g〉 = 〈f, g〉 ,

7



for all f(x) ∈ D(T ) and g(x) ∈ L2(R).

Let Fϕ and Fψ be biorthogonal sequences. Suppose that Fϕ is a generalized Riesz system

with constructing pair (Fe, T ). We put ψTn := (T−1)∗en, n = 0, 1, · · · . Then Fψ and FT
ψ := {ψTn }

are biorthogonal sequences, but Fψ does not necessarily coincide with FT
ψ . For this reason we

will call the constructing pair (Fe, T ) natural for the biorthogonal sequences Fϕ and Fψ if

Fψ = FT
ψ . If Dϕ is dense in H, then (Fe, T ) is automatically natural for Fϕ and Fψ.

The next theorem, which is the main result of this paper, shows that the notion of (D, E)-
quasi basis is intimately linked to that of generalized Riesz system.

Theorem 3.2 Let (Fϕ,Fψ) be a biorthogonal pair and D and E be dense subspaces in H such

that Dψ ⊆ D ⊆ D(ϕ) and Dϕ ⊆ E ⊆ D(ψ). Then the following statements are equivalent:

(i) (Fϕ,Fψ) is a (D, E)-quasi basis.
(ii) For any ONB Fe = {en} in H, Fϕ is a generalized Riesz system with a natural con-

structing pair (Fe, T ) satisfying D(T ∗) ⊇ D and D(T−1) ⊇ E .
(iii) For any ONB Fe = {en} in H, Fψ is a generalized Riesz system with a natural con-

structing pair (Fe, K) satisfying D(K∗) ⊇ E and D(K−1) ⊇ D.

If the statement (i) holds, then we can take (Te,ψ⌈E)−1 and (Te,ϕ⌈D)−1 as T and K in (ii)

and (iii), respectively. If Dϕ is not dense in H, then Te,ψ does not have an inverse, but Te,ψ⌈E
has an inverse.

Proof – Take arbitrary x ∈ D and y ∈ E . Since x ∈ D(Te,ϕ) = D(ϕ) and y ∈ D(Te,ψ) = D(ψ),

we have

〈x, y〉 =

∞
∑

n=0

〈x, ϕn〉 〈ψn, y〉 =
∞
∑

n=0

〈x, Tϕ,een〉 〈Tψ,een, y〉

=

∞
∑

n=0

〈Te,ϕx, en〉 〈en, Te,ψy〉 = 〈Te,ϕx, Te,ψy〉 ,

which implies that

(Te,ψ⌈E)−1 ⊆ (Te,ϕ⌈D)∗ and (Te,ϕ⌈D)−1 ⊆ (Te,ψ⌈E)∗. (3.2)

Now we put T := (Te,ψ⌈E)−1. Since D(T ) = Te,ψ⌈ED(Te,ψ⌈E) ⊇ Te,ψ⌈EE ⊇ Te,ψ⌈EDϕ = De

and D((T−1)∗) = D((Te,ψ⌈E)∗) ⊇ D((Te,ϕ⌈D)−1) = Te,ϕ⌈DD(Te,ϕ⌈D) ⊇ Te,ϕ⌈DDψ = De, it

follows that T is a densely defined closed operator in H with densely defined inverse such that
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e ⊆ D(T ) ∩D((T−1)∗). Furthermore, we have

Ten = (Te,ψ⌈E)−1Te,ψ⌈Eϕn = ϕn,

(T−1)∗en = (Te,ψ⌈E)∗en = Tψ,een = ψn, n = 0, 1, · · · .

Thus, Fϕ is a generalized Riesz system with a natural constructing pair (Fe, T ). Furthermore,

we have D(T−1) = D(Te,ψ⌈E) ⊇ E and by (3.1) D(T ∗) ⊇ D(Te,ϕ⌈D) ⊇ D. Thus (i) ⇒ (ii).

In a similar way, setting K = (Te,ϕ⌈D)−1, we can show that Fψ is a generalized Riesz system for

a natural constructing pair (Fe, K) satisfying D(K∗) ⊇ E and D(K−1) ⊇ D. Thus (i) implies

(iii).

(ii) ⇒ (i) Take arbitrary x ∈ D and y ∈ E . Since
∞
∑

k=0

〈x, ϕk〉 〈ψk, y〉 =
∞
∑

k=0

〈x, Ten〉
〈

(T−1)∗en, y
〉

=

∞
∑

k=0

〈T ∗x, en〉
〈

en, T
−1y

〉

=
〈

T ∗x, T−1y
〉

= 〈x, y〉 ,

it follows that (Fϕ,Fψ) is a (D, E)-quasi basis. Similarly we can show (iii)⇒ (i). This completes

the proof. �

For D-quasi basis, we have the following

Corollary 3.3 Let Fϕ and Fψ be biorthogonal sequences and D be a dense subspace in H such

that Dϕ ∪Dψ ⊆ D ⊆ D(ϕ) ∩D(ψ). Then the following statements are equivalent:

(i) (Fϕ,Fψ) is a D-quasi basis.

(ii) For any ONB Fe = {en} in H, Fϕ is a generalized Riesz system with a natural con-

structing pair (Fe, T ) satisfying D(T ∗) ∩D(T−1) ⊇ D.

(iii) For any ONB Fe = {en} in H, Fψ is a generalized Riesz system with a natural con-

structing pair (Fe, K) satisfying D(K∗) ∩D(K−1) ⊇ D.

If (i) holds, then we can take (Te,ψ⌈D)−1 and (Te,ϕ⌈D)−1 as T in (ii) and K in (iii), respectively.

By Theorem 3.2, if (Fϕ,Fψ) is a (D, E)-quasi basis, then, for any ONB Fe = {en},
(Te,ψ⌈E)−1 and (Te,ϕ⌈D)∗ are constructing operators for the generalized Riesz system Fϕ such

that (Te,ψ⌈E)−1 ⊆ (Te,ϕ⌈D)∗, and (Te,ϕ⌈D)−1 and (Te,ψ⌈E)∗ are constructing operators for the

generalized Riesz system Fψ such that (Te,ϕ⌈D)−1 ⊆ (Te,ψ⌈E)∗.
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Remark. For a biorthogonal pair (Fϕ,Fψ) it is clear that Dψ ⊆ D(ϕ) and Dϕ ⊆ D(ψ).

What is not clear is whether Dϕ ⊆ D(ϕ) and Dψ ⊆ D(ψ). For this reason it may be more

convenient to work, in some concrete cases, with (D, E)-quasi bases rather than with D-quasi

bases.

Let Fϕ be a generalized Riesz system with constructing pair (Fe, T ). We discuss now

when there exists a sequence Fψ in H and subspaces D and E in H such that Fϕ and Fψ are

biorthogonal and define a (D, E)-quasi basis:

Proposition 3.4 Let Fϕ be a generalized Riesz system with a constructing pair (Fe, T ). Then

(Fϕ,FT
ψ ) is a (D(T ∗), D(T−1))-quasi basis and T =

(

Te,ψT ⌈D(T−1)

)−1
, (T−1)∗ =

(

Te,ϕ⌈D(T ∗)

)−1
.

Proof – It is clear that (Fϕ,FT
ψ ) is a (D(T ∗), D(T−1))-quasi basis. Furthermore, since Ten =

ϕn, n = 0, 1, · · · , we have

Tϕ,e ⊆ T,

which implies that

T ∗ ⊆ Te,ϕ.

Hence we have

T ∗ = Te,ϕ⌈D(T ∗).

Thus we have

(T ∗)−1 =
(

Te,ϕ⌈D(T ∗)

)−1
.

Since (T−1)∗en = ψTn , n = 0, 1, · · · , we can similarly show T =
(

Te,ψT ⌈D(T−1)

)−1
. This completes

the proof. �

Next we consider when there exists a subspace D in H such that (Fϕ,FT
ψ ) is D-quasi basis.

Proposition 3.5 Let Fϕ be a generalized Riesz system with constructing pair (Fe, T ). Suppose

that Fe ⊂ D(T ∗T ) ∩ D(T−1(T−1)∗). Then (Fϕ,FT
ψ ) is a (D(T ∗) ∩ D(T−1))-quasi basis and

T =
(

Te,ψT ⌈D(T ∗)∩D(T−1)

)−1

, (T−1)∗ =
(

Te,ϕ⌈D(T ∗)∩D(T−1)

)−1

.

Proof – We denote for simplicity ψT by ψ. At first, we show that D(T−1) ∩ D(T ∗) is a core

for T−1. Take an arbitrary x ∈ D(T ). Let |T | =
∫∞
0
λdET (λ) be the spectral resolution of

the absolute |T | := (T ∗T )1/2 of T . Then we have TET (n)x ∈ D(T ∗) ∩ D(T−1), n = 0, 1, · · ·
and limn→∞ TET (n)x = Tx. Furthermore, take an arbitrary y ∈ D(T−1). Then y = Tx
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for some x ∈ D(T ) and we have limn→∞ TET (n)x = Tx = y and limn→∞ T−1(TET (n)x) =

limn→∞ET (n)x = x = T−1y. Thus D(T−1) ∩D(T ∗) is a core for T−1.

At second, we show that D(T−1)∩D(T ∗) is a core for T ∗. Take an arbitrary y ∈ D(T ∗). Let

|T ∗| =
∫∞
0
λdET ∗(λ) be the spectral resolution of the absolute |T ∗| := (TT ∗)1/2 of T ∗. Then it

follows thatET ∗(n)y = T (T ∗|T ∗|−2ET ∗(n)y) ∈ D(T−1)∩D(T ∗), n = 0, 1, · · · , limn→∞ET ∗(n)y =

y and limn→∞ T ∗ET ∗(n)y = T ∗y. Thus D(T−1) ∩D(T ∗) is a core for T ∗.

At third, we show that Dϕ ⊆ D(T−1)∩D(T ∗) ⊆ D(ϕ)∩D(ψ) and Dψ ⊆ D(T−1)∩D(T ∗) ⊆
D(ϕ) ∩D(ψ). It is clear that ϕn = Ten ∈ D(T−1). Furthermore, since Fe ⊆ D(T ∗T ), we have

〈Tx, ϕn〉 = 〈Tx, Ten〉 = 〈x, T ∗Ten〉

for all x ∈ D(T ). Hence we have ϕn ∈ D(T ∗). Thus Dϕ ⊆ D(T−1) ∩ D(T ∗). And since

ψn = (T−1)∗en(= (T ∗)−1en), we have ψn ∈ D(T ∗). Furthermore, since Fe ⊆ D(T−1(T−1)∗), we

have
〈

(T−1)∗y, ψn
〉

=
〈

(T−1)∗y, (T−1)∗en
〉

=
〈

y, T−1(T−1)∗en
〉

for all y ∈ D((T−1)∗). Hence we have ψn ∈ D(T−1). Thus Dψ ⊆ D(T−1) ∩ D(T ∗). We show

D(T−1) ∩D(T ∗) ⊆ D(ϕ) ∩D(ψ). Indeed, take an arbitrary y ∈ D(T−1) ∩D(T ∗). Since

∞
∑

k=0

| 〈y, ϕk〉 |2 =
∞
∑

k=0

| 〈y, T ek〉 |2 =
∞
∑

k=0

| 〈T ∗y, ek〉 |2 = ‖T ∗y‖2

and ∞
∑

k=0

| 〈y, ψk〉 |2 =
∞
∑

k=0

|
〈

T−1y, ek
〉

|2 = ‖T−1y‖2,

we have y ∈ D(ϕ) ∩D(ψ).

Finally, we show that (Fϕ,FT
ψ ) is a (D(T ∗)∩D(T−1))-quasi basis and T =

(

Te,ψ⌈D(T ∗)∩D(T−1)

)−1

,

(T−1)∗ =
(

Te,ϕ⌈D(T ∗)∩D(T−1)

)−1

. Since

∞
∑

k=0

〈x, ϕk〉 〈ψk, y〉 =

∞
∑

k=0

〈x, Tek〉
〈

(T−1)∗ek, y
〉

=

∞
∑

k=0

〈T ∗x, ek〉
〈

ek, T
−1y

〉

=
〈

T ∗x, T−1y
〉

= 〈x, y〉
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for all x, y ∈ D(T ∗) ∩ D(T−1), it follows that (Fϕ,FT
ψ ) is a (D(T ∗) ∩ D(T−1))-quasi basis.

Furthermore since T−1 ⊆ Te,ψ and D(T−1) ∩D(T ∗) is a core for T−1, we have

T−1 = T−1⌈D(T ∗)∩D(T−1) = Te,ψ⌈D(T ∗)∩D(T−1),

which implies that T = (Te,ψ⌈D(T ∗)∩D(T−1))
−1. Furthermore since Tϕ,e ⊆ T and D(T−1)∩D(T ∗)

is a core for T ∗, we have

T ∗ = T ∗⌈D(T ∗)∩D(T−1) = Te,ϕ⌈D(T ∗)∩D(T−1),

which implies that (T ∗)−1 = (Te,ϕ⌈D(T ∗)∩D(T−1))
−1. This completes the proof. �

4 Physical operators constructed from (D, E)-quasi bases
In this section, extending what was discussed recently for instance in [3, 6, 2], we investi-

gate some physical operators constructed from (D, E)-quasi bases. Let (Fϕ,Fψ) be a (D, E)-
quasi basis. As shown in Theorem 3.2, Fϕ is a generalized Riesz system with constructing

pairs (Fe, (Te,ψ⌈E)−1) and (Fe, (Te,ϕ⌈D)∗) for any ONB Fe = {en} such that (Te,ψ⌈E)−1 ⊆
(Te,ϕ⌈D)∗, and {ψn} is a generalized Riesz system with constructing pairs (Fe, (Te,ϕ⌈D)−1) and

(Fe, (Te,ψ⌈D)
∗) such that (Te,ϕ⌈D)−1 ⊆ (Te,ψ⌈E)∗. Here we put, to keep the notation simple,

T = (Te,ψ⌈E)−1 or (Te,ϕ⌈D)∗,
K = (Te,ϕ⌈D)−1 or (Te,ψ⌈E)∗.

For a generalized Riesz system Fϕ with constructing pair (Fe, T ) we can define a non-self-adjoint

Hamiltonian Hα
ϕ := THα

e T
−1, a generalized lowering operator Aα

ϕ := TAα
e T

−1 and a general-

ized raising operator Bα
ϕ := TBα

e T
−1. Similarly, for a generalized Riesz system {ψn} with a

constructing pair (Fe, K) we define a non-self-adjoint Hamiltonian Hα
ψ := KHα

e K
−1, a gener-

alized lowering operator Aα
ψ := KAα

eK
−1 and a generalized raising operator Bα

ψ := KBα
e K

−1.

But we don’t know whether these operators are even densely defined or not. Suppose that Dϕ

is dense in H. Then, since Hα
ϕ ϕn = αnϕn, A

α
ϕϕn = αnϕn−1 (0 if n = 0) and Bα

ϕϕn = αn+1ϕn+1,

it is clear that Hα
ϕ , A

α
ϕ and Bα

ϕ are densely defined, but since Dψ is not necessarily dense in

H, the operators Hα
ψ , A

α
ψ and Bα

ψ need not being densely defined. Therefore, we first inves-

tigate when Dϕ or Dψ are dense inH under the assumption that (Fϕ,Fψ) is a (D, E)-quasi basis.
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Before going forth, we shortly discuss an example which is the leading model for the objects

we are dealing with and which allows an explicit computation of all involved operators.

Example 3:– Let H0 = p2 + x2 be the self-adjoint Hamiltonian introduced in Example

2 above, and let T be the following multiplication operator: (Tf)(x) = (1 + x2)f(x), for

all functions f(x) ∈ D(T ) = {g(x) ∈ L2(R) : (1 + x2)g(x) ∈ L2(R)}. T is an unbounded

self-adjoint operator, invertible with bounded inverse T−1.

As seen in (3.1), H0 has the formHα
e where α = {2n+1, n ∈ N} and {en} is the orthonormal

basis constructed from the Hermite polynomials. To simplify notations, we will omit here

explicit reference to α.

If we identify K with T−1, straightforward computations show that

Hϕ = p2 + Vϕ(x) +
4ix

1 + x2
p, Hψ = p2 + Vψ(x)−

4ix

1 + x2
p,

where Vϕ(x) = x2+2 (1−3x2)
(1+x2)2

and Vψ(x) = x2− 2
1+x2

. Notice that, because of the relation between

T and K, Hϕ = H∗
ψ, even if this is not evident from our explicit formulas. From a physical

point of view both Hϕ and Hψ can be seen as a modified version of the harmonic oscillator

where an extra potential is added, going to zero as x−2, and the manifestly non self-adjoint

terms ± 4ix
1+x2

p appear. These Hamiltonians can be factorized as follows: Hϕ = 2BϕAϕ+11 and

Hψ = 2BψAψ + 11, where

Aϕ =
1√
2

(

x− 2x

1 + x2
+ ip

)

, Bϕ =
1√
2

(

x+
2x

1 + x2
− ip

)

,

while

Aψ =
1√
2

(

x+
2x

1 + x2
+ ip

)

, Bψ =
1√
2

(

x− 2x

1 + x2
− ip

)

.

All these operators formally collapse to c = 1√
2
(x+ ip) or to c† = 1√

2
(x− ip) for large x. It is

also interesting to observe that Bϕ = A∗
ψ and Aϕ = B∗

ψ

The two vacua of Aϕ and Aψ, corresponding to the lower eigenvectors of Hϕ and Hψ

respectively, can be easily obtained by solving the differential equations Aϕϕ0(x) = 0 and

Aψψ0(x) = 0. The solutions we find in this way coincide with those we find introducing

ϕn(x) = (Ten)(x) =
1√

2n n! π1/2
(1 + x2)Hn(x)e

−x2/2,

and

ϕn(x) = (Ken)(x) =
1√

2n n! π1/2

Hn(x)

1 + x2
e−x

2/2,

13



see Example 2. Incidentally, it is clear that en(x) ∈ D(T ). Of course, en(x) ∈ D(K) since

D(K) = L2(R).

The last point we want to consider here concerns the density of Dϕ and Dψ in L2(R). More

concretely, we will check that Fϕ is total in D(T ) and that Fψ is total in D(K) = L2(R). In

fact, let f(x) ∈ D(T ) be such that 〈f, ϕn〉 = 0 for all n. Hence 0 = 〈f, ϕn〉 = 〈Tf, en〉, so that

Tf = 0 and, since Tf ∈ D(K), f(x) = 0 a.e. in R. Similarly we can prove that, if g(x) ∈ L2(R)

is such that 〈g, ψn〉 = 0 for all n, then g(x) = 0 a.e. in R.

We come now back to investigate more general situations.

Proposition 4.1. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then, we have the follow-

ing statements.

(1) D⊥
ϕ ⊆ D(ϕ), where D⊥

ϕ is an orthogonal complement of Dϕ in H.

(2) If D ∩D⊥
ϕ is dense in D⊥

ϕ , then Dϕ is dense in H.

Similar results hold for Fψ.

Proof – (1) For x ∈ D⊥
ϕ , we have

〈Tϕ,een, x〉 = 〈ϕn, x〉 = 0

for any ONB Fe in H and n = 0, 1, · · · . Since Fe is a core for T̄ϕ,e by Lemma 2.2, we have

x ∈ D(T ∗
ϕ,e) = D(Te,ϕ) = D(ϕ).

(2) For any x ∈ D⊥
ϕ , there exists a sequence {xn} ⊆ D ∩ D⊥

ϕ such that limn→∞ xn = x.

Since (Fϕ,Fψ) is a (D, E)-quasi basis, we have

〈x, y〉 = lim
n→∞

〈xn, y〉

= lim
n→∞

∞
∑

k=0

〈xn, ϕk〉 〈ψk, y〉 = 0

for all y ∈ E . Hence we have x = 0. Thus Dϕ is dense in H. �

Proposition 4.2. Let (Fϕ,Fψ) be a biorthogonal pair such that D(ϕ) and D(ψ) are dense

in H. Then we have the following

(1) (Fϕ,Fψ) is a (D(ϕ), E)-quasi basis for some dense subspace E in H such that Dϕ ⊆ E ⊆
D(ψ) if and only if Dϕ is dense in H. If this is true, (Fϕ,Fψ) is a (D(ϕ), Dϕ)-quasi basis.

(2) (Fϕ,Fψ) is a (D, D(ψ))-quasi basis for some dense subspace D in H such that Dψ ⊆
D ⊆ D(ϕ) if and only if Dψ is dense in H. If this is true, (Fϕ,Fψ) is a (Dψ, D(ψ))-quasi basis.
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Proof – (1) Suppose that (Fϕ,Fψ) is a (D(ϕ), E)-quasi basis for some dense subspace E in

H such that Dϕ ⊆ E ⊆ D(ψ). Take an arbitrary x ∈ D⊥
ϕ . By Proposition 4.1, (1) we have

x ∈ D(ϕ). Since ({ϕn}, {ψn}) is a (D(ϕ), E)-quasi basis, we have

〈x, y〉 =
∞
∑

k=0

〈x, ϕk〉 〈ψk, y〉 = 0

for all y ∈ E , which implies that x = 0. Hence Dϕ is dense in H.

Conversely suppose that Dϕ is dense in H. Then we show that (Fϕ,Fψ) is a (D(ϕ), Dϕ)-quasi

basis. Indeed, take arbitrary x ∈ D(ϕ) and y ∈ Dϕ. Then, y =
∑n

j=0 αjϕj for some αj ∈ C,

j = 0, 1, · · · , n, and we have

∞
∑

k=0

〈x, ϕk〉 〈ψk, y〉 =
∞
∑

k=0

〈x, Tϕ,eek〉 〈Tψ,eek, y〉

= 〈Te,ϕx, Te,ψy〉

=

n
∑

j=0

ᾱj 〈Te,ϕx, Te,ψϕj〉

=
n

∑

j=0

ᾱj 〈x, Tϕ,eej〉

=

〈

x,

n
∑

j=0

αjϕj

〉

= 〈x, y〉 .

(2) This is shown similarly to (1).

�

Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Let r := {rn} ⊂ R; 1 ≤ rn, n = 0, 1, · · · and
we put

ϕr := {rnϕn},

ψ 1

r

:=

{

1

rn
ψn

}

.

Then, (ϕr, ψ 1

r

) is a biorthogonal pair satisfying

Dψr
= Dψ ⊆ D(ϕr) ⊆ D(ϕ),

Dϕr
= Dϕ ⊆ E ⊆ D(ψ) ⊆ D(ψ 1

r

),
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where

D(ϕr) :=

{

x ∈ H;
∞
∑

k=0

r2k| 〈x, ϕk〉 |2 <∞
}

and D(ψ 1

r

) :=

{

x ∈ H;
∞
∑

k=0

1

r2k
| 〈x, ψk〉 |2 <∞

}

.

Then we have the following

Proposition 4.3. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis and there exists a sequence

r := {rn} ⊂ R such that 1 ≤ rn, n = 0, 1, · · · and D(ϕr) ⊆ D and D(ϕr) is dense in H. Then,

Dϕ is dense in H and (Fϕ,Fψ) is a (D(ϕ), Dϕ)-quasi basis.

Proof – Since D(ϕr) ⊆ D, it follows that (ϕr, ψ 1

r

) is a (D(ϕr), E)-quasi basis, which implies

by Proposition 4.2 that Dϕr
= Dϕ is dense in H. �

We next consider the case that Dϕ and Dψ are not necessarily dense in H.

Proposition 4.4. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then there exists an ONB

Ff := {fn} in H such that Tf ,ϕ⌈D is a positive self-adjoint operator in H and (Ff , Tf ,ϕ⌈D) is

a constructing pair for the generalized Riesz system Fϕ. Furthermore, (Ff , (Tf ,ϕ⌈D)−1) is a

constructing pair for the generalized Riesz system Fψ.

Proof – By Theorem 3.2, (Te,ϕ⌈D)∗ is a constructing operator for the generalized Riesz system

Fϕ and any ONB Fe = {en} in H. Let Te,ϕ⌈D = U |Te,ϕ⌈D| be the polar decomposition of

Te,ϕ⌈D. Since Te,ϕ⌈D has a densely defined inverse, U is a unitary operator on H. Here we put

fn = U∗en, n = 0, 1, · · · . Then it follows that {fn} is an ONB in H and

|Te,ϕ⌈D|fn = |Te,ϕ⌈D|U∗en = (Te,ϕ⌈D)∗en = ϕn, n = 0, 1, · · · ,

which implies that (Ff , |Te,ϕ⌈D|) is a constructing pair for Fϕ. Hence,

Tϕ,f ⊆ |Te,ϕ⌈D| ⊆ Tf ,ϕ,

and so Tf ,ϕ⌈D = |Te,ϕ⌈D|. This completes the proof. �

Similarly we have the following

Proposition 4.5. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then there exists an ONB

Fg := {gn} in H such that Tg,ψ⌈E is a positive self-adjoint operator in H and (Fg, Tg,ψ⌈E) is
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a constructing pair for the generalized Riesz system Fψ. Furthermore, (Fg, (Tg,ψ⌈E)−1) is a

constructing pair for the generalized Riesz system Fϕ.

We now consider a CCR-algebra-like structure for non-self-adjoint Hamiltonians, general-

ized lowering and raising operators by taking a good domain for their operators. For that the

notion of unbounded operator algebras is relevant, [10, 5, 11]. Let D be a dense subspace in a

Hilbert space H. We denote by L(D) the set of all linear operators from D to D. Then L(D)

is an algebra equipped with the usual operations: X + Y , αX and XY .

Theorem 4.6. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis, and Ff = {fn} and Fg = {gn}
in Proposition 4.4 and Proposition 4.5. Here we denote by Tϕ the constructing operator Tf ,ϕ⌈D
of Fϕ and Tψ the constructing operator Tg,ψ⌈E of Fψ. Then we have the following

(1) If Hα
f D ⊆ D for some α = {αn} ⊂ C, then the linear span of TϕD is dense in H and

the non-self-adjoint Hamiltonian TϕH
α
f T

−1
ϕ for Fϕ is contained in L(TϕD).

(2) If Hα
g E ⊆ E for some α = {αn} ⊂ C, then the linear span of TψE is dense in H and

the non-self-adjoint Hamiltonian T−1
ψ Hα

g Tψ for Fψ is contained in L(TψE).
Here Hα

f and Hα
g are the standard Hamiltonians for the ONB Ff and Fg, respectively.

Proof – (1) Since D is a core for Tϕ and Tϕ has the inverse, TϕD is dense in H. By assumption,

it is clear that TϕH
α
f T

−1
ϕ ∈ L(TϕD).

(2) This is shown similarly to (1). �

Next, to consider the generalized lowering and raising operators defined by (D, E)-quasi
bases, we assume that

0 ≤ α0 < αn < αn+1 and αn+1 ≤ αn + r, n = 1, · · · , for some r > 0. (4.1)

Then we have the following

Theorem 4.7. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis, and Tϕ, Tψ, Ff = {fn} and

Fg = {gn} as in Theorem 4.6. Then we have the following statements.

(1) Suppose that D∞(Hα
f ) := ∩n∈ND((Hα

f )
n) ⊆ D and Tf ,ϕD

∞(Hα
f ) is dense in H. Then

(Ff , T
0
ϕ := Tf ,ϕ⌈D∞(Hα

f
)) is a constructing pair for Fϕ and the non-self-adjoint Hamiltonian

H0
ϕ := T 0

ϕH
α
f (T

0
ϕ)

−1 for Fϕ, the generalized lowering operator A0
ϕ := T 0

ϕA
α
f (T

0
ϕ)

−1 for Fϕ and

the generalized raising operator B0
ϕ := T 0

ϕB
α
f (T

0
ϕ)

−1 for Fϕ are contained in L(T 0
ϕD

∞(Hα
f )).
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(2) Suppose that D∞(Hα
g ) ⊆ E and Tg,ψD

∞(Hα
g ) is dense in H. Then (Fg, T

0
ψ := Tg,ψ⌈D∞(Hα

g ))

is a constructing pair for Fψ and the non-self-adjoint Hamiltonian H0
ψ := T 0

ψH
α
g (T

0
ψ)

−1 for Fψ,

the generalized lowering operator A0
ψ := T 0

ψA
α
g (T

0
ψ)

−1 for Fψ and the generalized raising opera-

tor B0
ψ := T 0

ψB
α
g (T

0
ψ)

−1 for Fψ are contained in L(T 0
ψD

∞(Hα
g )).

Proof – At first, we show that (Ff , T
0
ϕ) is a constructing pair for Fϕ. Since D(T 0

ϕ) ⊇
D∞(Hα

f ) ⊇ Ff , T
0
ϕ is a densely defined closed operator in H. Furthermore, since T 0

ϕ ⊆ Tϕ =

Tf ,ϕ⌈D and Tϕ has the inverse, T 0
ϕ has the inverse. By assumption, we have

D((T 0
ϕ)

−1) ⊇ T 0
ϕD(T 0

ϕ) ⊇ T 0
ϕD

∞(Hα
f ) = Tf ,ϕD

∞(Hα
f ),

which implies that T 0
ϕ has a densely defined inverse. Furthermore, we have the following

T 0
ϕfn = Tϕfn = ϕn, n = 0, 1, · · · .

Hence we have (Fϕ, T
0
ϕ) is a constructing pair for Fϕ.

Next we consider the non-self-adjoint Hamiltonian H0
ϕ for Fϕ, the generalized lowering

operator A0
ϕ for Fϕ and the generalized raising operator for B0

ϕ for Fϕ. Since we have

(Hα
f )

nx =

∞
∑

k=0

αnk 〈x, fk〉 fk, x ∈ D((Hα
f )

n),

(Aα
f )

nx =

∞
∑

k=0

αk+1αk+2 · · ·αk+n 〈x, fk+1〉 fk, x ∈ D((Aα
f )

n),

(Bα
f )

nx =
∞
∑

k=0

αk+1αk+2 · · ·αk+n 〈x, fk〉 fk+1, x ∈ D((Bα
f )

n),

it follows that

x ∈ D((Hα
f )

n) iff

∞
∑

k=0

α2n
k | 〈x, fk〉 |2 <∞,

x ∈ D((Bα
f )

n) iff

∞
∑

k=0

(αk+1 · · ·αk+n)2| 〈x, fk+1〉 |2 <∞,

x ∈ D((Bα
f )

n) iff

∞
∑

k=0

(αk+1 · · ·αk+n)2| 〈x, fk〉 |2 <∞.
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By (4.1), we have

∞
∑

k=0

α2n
k+1| 〈x, fk+1〉 |2 ≤

∞
∑

k=0

(αk+1 · · ·αk+n)2| 〈x, fk+1〉 |2

≤
∞
∑

k=0

(αk + (n− 1)r)2n| 〈x, fk〉 |2,

and

∞
∑

k=0

α2n
k | 〈x, fk〉 |2 ≤

∞
∑

k=0

(αk+1 · · ·αk+n)2| 〈x, fk〉 |2

≤
∞
∑

k=0

(αk + nr)2n| 〈x, fk〉 |2.

Hence it follows that x ∈ D((Hα
f )

n) iff x ∈ D((Aα
f )

n) iff x ∈ D((Bα
f )

n), which implies that

D∞(Hα
f ) = D∞(Aα

f ) = D∞(Bα
f ). Furthermore, it is clear that H0

ϕ, A
0
ϕ, B

0
ϕ ∈ L(T 0

ϕD
∞(Hα

f )).

This completes the proof.

(2) This is shown similarly to (1).

�

Conclusions

This paper continues our (joint, and separate) analysis of biorthogonal sets of vectors of dif-

ferent nature, and their interest in quantum mechanics. In particular, we have shown that the

extension of the notion of D-quasi basis can be technically useful and may be of some interest

in applications. However, more should be done, mainly on this aspect, and we plan to focus

more on physics in a future paper.
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