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Abstract

CD38 and CD49d are associated negative prognosticators in
chronic lymphocytic leukemia (CLL). Despite evidence that
both molecules are involved in interactions occurring between
CLL and normal cells in the context of CLL-involved tissues, a
functional link is still missing. Using gene expression profiles
comparing CD38+CD49d+ versus CD38�CD49d� CLL cells, we
showed overexpression of the CCL3 and CCL4 chemokines in
cells from the former group. These chemokines were also up-
regulated by CD38 signals in CLL; moreover, CCL3 was
expressed by CLL cells from bone marrow biopsies (BMB) of
CD38+CD49d+ but not CD38�CD49d� cases. High levels of
CCR1 and, to a lesser extent, CCR5, the receptors for CCL3 and
CCL4, were found in CLL-derived monocyte-macrophages.
Consistently, CCL3 increased monocyte migration, and CD68+

macrophage infiltration was particularly high in BMB from
CD38+CD49d+ CLL. Conditioned media from CCL3-stimulated
macrophages induced endothelial cells to express vascular cell
adhesion molecule-1 (VCAM-1), the CD49d ligand, likely
through tumor necrosis factor A overproduction. These
effects were apparent in BMB from CD38+CD49d+ CLL, where
lymphoid infiltrates were characterized by a prominent
meshwork of VCAM-1+ stromal/endothelial cells. Lastly,
CD49d engagement by VCAM-1 transfectants increased
viability of CD38+CD49d+ CLL cells. Altogether, CD38 and
CD49d can be thought of as parts of a consecutive chain of
events ultimately leading to improved survival of CLL cells.
[Cancer Res 2009;69(9):4001–9]

Introduction

The life and death economy of cells is mediated by a balanced
net of events ruled by surface receptors, adhesion molecules, and
soluble factors, among other parameters. This holds true for
chronic lymphocytic leukemia (CLL) cells, which derive a relevant

part of their proliferative drive from positive interactions with the
neighboring nonneoplastic environment (1). Out of the panoply of
surface molecules examined in CLL, attention has been recently
given to CD49d, a member of the integrin superfamily (2). CD49d
regulates adhesion to extracellular matrix by binding fibronectin
and to other cells by interacting with vascular cell adhesion
molecule-1 (VCAM-1)/CD106 (2). CD49d-dependent interactions
have a role in preventing both spontaneous and drug-induced
apoptosis of normal or neoplastic B cells (3–5). Moreover,
chemokine-induced transmigration of CLL cells across endothelia
depends on CD49d expression by CLL cells and is favored by the
production of the matrix metalloproteinase-9 as the result of
CD49d engagement (6).
CD49d marks a subset of CLL patients characterized by

aggressive and accelerated clinical course (7–10), and its expression
is strongly associated with CD38 (11–13), a type II transmembrane
glycoprotein acting both as ectoenzyme (EC 3.2.2.5) and receptor
for CD31 (reviewed in ref. 14). CD38 also represents a dependable
negative prognosticator in CLL (15–18); due to its receptorial
features, CD38 is part of a network sustaining growth and survival
of CLL cells (19). Interactions of CD38+ CLL cells with surrounding
nonneoplastic CD31+ cells is more likely to occur, although not
exclusively (20), in peripheral lymphoid organs and/or bone
marrow (BM) for several reasons. First, CD38 expression is usually
higher in residential as opposed to circulating CLL cells (21–23).
Second, both BM and peripheral lymphoid organs can provide
accessibility to CD31, as endothelial, stromal, and the so-called
nurse-like cells (NLC) all express high-CD31 levels (1, 24, 25).
Although both CD38 and CD49d may be regarded as molecules

deeply involved in the continuous interactions taking place between
CLL cells and their environment, a functional link between CD49d
and CD38 is still missing. By defining the global gene profile of CLL
cells coexpressing CD38 and CD49d, we selected the genes for the
chemokines CCL3 and CCL4 as overexpressed by CD38+CD49d+

CLL cells. Given this starting point, we provided evidence showing a
novel prosurvival circuitry operating in CD38+CD49d+ CLL,
sequentially involving the CD38/CD31 pair, CCL3 and CCL4 with
their receptors, and eventually the CD49d/VCAM-1 axes.

Materials and Methods

CLL patients, healthy donors, and cell lines. Peripheral blood (PB)
samples from 101 typical CLL (26) entered this study. The main clinical and
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biological features of CLL, the experiments for which each sample has been

used, are listed in Supplementary Table S1. In 11 cases, matched PB and BM

samples were available (Supplementary Table S1). IGHV mutational status

and cytogenetic abnormalities were detected as described (7, 27). Patients
provided informed consent in accordance with the local institutional review

board requirements and the declaration of Helsinki.

PB samples and buffy coats of healthy donors were kindly provided by

the blood bank of Centro di Riferimento Oncologico. Purified CLL cells,
monocytes from CLL samples, and normal B cells were obtained by

immunomagnetic selection using fresh PB samples as starting material

(27, 28). Macrophages were obtained by allowing monocytes to adhere in
the presence of 0.5 Ag/mL lipopolysaccharide (LPS; Sigma).
Human umbilical vascular endothelial cell (HUVEC), microvascular

endothelial cells from subcutaneous adipose tissue (ADMEC), and murine

L-fibroblast cells transfected with full-length human CD31 (L-CD31), VCAM-1
(L-VCAM-1; courtesy of Pablo Engel, University of Barcelona, Barcelona,

Spain), or vector alone (L-mock) were obtained as described (29–31).

Flow cytometry. Sources, specificities, and fluorochrome combinations

of monoclonal antibodies (mAb) used for CLL diagnosis and CD38 or CD49d

determination were reported elsewhere (7, 10). A CLL sample was defined

CD38+ or CD49d+ when the molecule was found in at least 20% of CD5+/

CD19+ cells. CD38 and CD49d expression was also investigated in matched

PB and BM samples from six CD38+CD49d+ and five CD38�CD49d� cases
(Supplementary Table S1). Although CD38 expression was slightly higher

in BM samples of five of six CD38+CD49d+ cases, average expression levels

of CD38 and CD49d were comparable between BM and PB samples (not

shown). CCR1/CD191 and CCR5/CD195 expression by CLL and healthy

donor PB cell subpopulations was evaluated on fresh samples combining

CCR5-FITC, CCR1-PE (R&D Systems) with CD3-PerCP, CD19-APC, and

CD14-Pe-Cy7 (Becton Dickinson). Data were acquired on a FACSCanto flow

cytometer and analyzed by Diva or CellQuest softwares (Becton Dickinson).

Apoptosis was evaluated by sequentially staining CLL cells with

Syto16 (Molecular Probes, Invitrogen), anti–CD19-APC mAbs, and 7-

amino-actinomycin-D (7-AAD, Becton Dickinson; ref. 32). Viable cells

(Syto16bright/7-AAD�) are distinguished from apoptotic (Syto16dim/7-AAD�)
or necrotic (Syto16�/7-AAD+) cells in flow cytometry plots (32).

Immunohistochemical and immunocytochemical analyses. BM
biopsies (BMB) sections from 20 CLL cases were tested for the expression

of CD10, CD20, CD34, CD49d, CD68, VCAM-1, CCR1, CCL3. CCL3 expression
was also tested on cytospin preparations of purified CLL cells treated

in vitro with anti-CD38 mAbs. Staining procedures are reported in

Supplementary Materials and Methods.
Two different semiquantitative four-tier grading systems were used for

the immunohistochemical evaluation of CD68 and VCAM-1 staining within

CLL-infiltrated areas. Both systems relied on the analysis of positive cells on

five randomly selected high-power microscopic fields (magnification, 400�)
showing the highest degree of lymphoid infiltration. CD68 was graded as

follows: grade 0, absence of CD68+ cells; grade 1, up to 20 CD68+ cells; grade

2, 21 to 40 CD68+ cells; grade 3, >40 CD68+ cells. VCAM-1 grading

system was as follows: grade 0, absence of VCAM-1+ cells; grade 1, one

or more scattered VCAM-1+ cells forming an incomplete meshwork; grade

2, detection of a diffuse but meager meshwork of VCAM-1+ cells; grade

3, detection of a diffuse and dense meshwork of VCAM-1+ cells.

CCL3 assessment on BMB was similarly performed in CLL-infiltrated

areas. CCL3+ cases showed a clear cytoplasmic reactivity to anti-CCL3
antibodies in most CLL cells. Scattered CCL3+ cells (e.g., infiltrating T cells)

could be present also in CCL3� cases.
CD38 and CD49d engagement. Purified CD38+CD49d+ CLL cells were

incubated with either the agonist IB4 or the nonagonist IB6 (5 Ag/106

cells) anti-CD38 mAbs or plated onto mytomicin-C–treated L-CD31,

L-VCAM-1, and L-mock cells (2.5 � 105 per well). Both CLL cells

and supernatants were collected after 14 and 24 h. For spontaneous

Figure 1. A, expression of CCL3 and CCL4 protein by CLL cells. CCL3 (top ) and CCL4 (bottom ) levels were evaluated by ELISA in supernatants of CLL cells from
CD38+CD49d+ cases triggered for 24 h by either IB4 agonist (black columns) or IB6 nonagonist (gray columns ) anti-CD38 mAbs. B, CCL3 staining of CLL cells
(case 30) after 24-h cultures with either IB6 nonagonist (control ) or IB4 agonist (CD38 triggering ) anti-CD38 mAbs. Original magnification, 1,000�; scale bar, 7.5 Am.
C, CCL3 staining in BM infiltrating CLL cells from cases 42 (CD38�CD49d�; left ) or 48 (CD38+CD49d+; right ). Original magnification, 400�; scale bar, 20 Am.
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apoptosis evaluation, cells were collected after 1 to 3 wk of coculture with
L-VCAM-1 or L-mock cells.

ELISA. The amounts of CCL3 and CCL4 proteins in CLL cell culture
supernatants and tumor necrosis factor a (TNFa) in macrophage-derived
conditioned media (CM) were determined by ELISA (Bender Medsystems
GmbH). Expression of CCR1 and CCR5 by adherent macrophages and

VCAM-1 by endothelial cells was evaluated by an ad hoc ELISA (30) using

unconjugated anti-CCR1, anti-CCR5 (R&D Systems), or anti–VCAM-1

(Chemicon) mAbs.
Macrophage-derived CM and monocyte chemotaxis assay. To obtain

macrophage-derived CM, macrophages were cultured for 24 to 48 h with

either 50 ng/mL of recombinant human CCL3 (R&D Systems; CCL3-CM),

0.5 Ag/mL LPS (LPS-CM), or medium alone (CNT-CM). Subconfluent
HUVEC and ADMEC were incubated for 12 h with 100 AL/well of CM and

evaluated for VCAM-1 expression. In selected experiments, CM were

preincubated with an antihuman TNFa neutralizing mAb (R&D Systems;
20 ng antibody/1 mL CM for 30 min at 37jC).
Responsiveness of purified monocytes to CCL3 and CCL4 (3 ng/mL) was

investigated by a 2-h chemotaxis assay, carried out in 24-well 5-Am pore size

Transwell plates (Costar), as reported (28). Results were expressed as
migration index (MI), i.e., transmigrating cells in the presence of chemokine

divided by transmigrating cells in the absence of chemokine.

Results

CCL3 and CCL4 are overexpressed in CD38+CD49d+ CLL
cells. A gene expression profile of purified CLL cells from 26 cases
(11 CD38+CD49d+ and 15 CD38�CD49d�; Supplementary Table S1)
was performed (see Supplementary Materials and Methods). Results

indicated 294 differentially expressed genes: 89 down-regulated and
205 up-regulated in the CD38+CD49d+ group. A hierarchical clus-
tering, generated using these 294 best-correlated genes, clearly split
the 11 CD38+CD49d+ from the 15 CD38�CD49d� CLL (Supplemen-
tary Fig. S1A and Supplementary Table S2). Among the genes up-
regulated in CD38+CD49d+ CLL, we found the CD38 and CD49d
genes and several genes previously identified as related either to
the CD38+ phenotype and/or poor prognosis, such as lipoprotein
lipase, Septin-10, activation-induced cytidine deaminase, and spastic
paraplegia 20 (Supplementary Table S2; refs. 33, 34).
To further elucidate the biological functions of genes represent-

ing the expression signature of CD38+CD49d+ CLL, the identifiers
for the 294 best-correlated genes were linked to the ‘‘Onto-Express’’
bioinformatics tool (35). Biological processes showing the highest
significant enrichment for genes found to be differentially
expressed between CD38+CD49d+ and CD38�CD49d� CLL are
listed in Supplementary Table S3. Of note, the genes for the
chemokines CCL3 and CCL4 were constantly selected as overex-
pressed by the CD38+CD49d+ CLL group (CCL3 mean fold change,
3.47; CCL4 mean fold change, 4.36; Supplementary Table S3).
Quantitative real time–PCR (QRT-PCR) experiments, carried out in
37 CLL samples (22 CD38+CD49d+ and 15 CD38�CD49d�; Supple-
mentary Table S1), confirmed the constitutive higher expression
of both CCL3 and CCL4 transcripts in CD38+CD49d+ CLL (Supple-
mentary Fig. S1B). Such a higher expression was also confirmed by
comparing CCL3 and CCL4 transcript levels in BM samples from
six CD38+CD49d+ and five CD38�CD49d� cases, without significant
differences with the corresponding PB samples (Supplementary
Fig. S1C). These data, along with the notion of a role played by
chemokines in favoring microenvironmental interactions of CLL
cells (28, 36, 37), suggested to investigate in detail the function of
CCL3 and CCL4 in the pathophysiology of CD38+CD49d+ CLL.

CCL3 and CCL4 are up-regulated by CD38 engagement in
CD38+CD49d+ CLL cells. The next step was the analysis of CCL3
and CCL4 mRNA and protein modulation upon CD38 ligation in
CD38+CD49d+ CLL cells. Purified CLL cells from 11 CD38+CD49d+

CLL cases (Supplementary Table S1) were cultured either with
the agonist IB4 mAb or the nonagonist IB6 anti-CD38 mAb as
comparative control. After 14 (t14) and 24 (t24) hours, CLL cells
and culture supernatants were collected for evaluation of CCL3 and
CCL4 at the mRNA and protein levels. As compared with controls,
higher levels of transcripts for CCL3 (mean fold increase, 18.0 F
8.1; P = 0.041) and CCL4 (mean fold increase, 13.8 F 5.2; P = 0.005),
both peaking at t14, were detected by QRT-PCR upon CD38 ligation
(not shown). A parallel increase was observed at the protein level
(Fig. 1A), although with a later (t24) peak (mean CCL3 protein,
0.9 F 0.1 ng/mL; mean fold increase, 14.0 F 4.4; P = 0.003/mean
CCL4 protein, 1.7 F 0.5 ng/mL; mean fold increase, 49.0 F 29.0;
P = 0.01). Consistently, a clear increase of CCL3-specific staining of
CLL cell cytoplasm was observed upon a 24-hour CD38 engage-
ment by agonist mAbs (Fig. 1B). Notably, a direct correlation was
found between CD38 expression levels by flow cytometry and the
levels of CCL3 protein released in culture supernatants both at
control conditions (P = 0.03; Spearman’s q rank correlation) and
upon CD38 engagement (P = 0.02).
A similar up-regulation of CCL3 and CCL4 transcripts was

obtained in four representative CD38+CD49d+ cases, in which CD38
engagement was performed using CD31-transfected murine
L-fibroblasts instead of agonist anti-CD38 mAbs (not shown).
Finally, no additional up-regulation of CCL3 and CCL4 transcript
levels was observed upon simultaneous engagement of CD38 and

Table 1. Immunohistochemical analysis in BMB from
CD38+CD49d+ and CD38�CD49d� CLL

# BM* CCL3
c

CD68
b

VCAM-1
b

CD38�CD49d� CLL 38 40(N) � 1 1

39 45(N + I) � 2 2
40 40(N + I) � 2 2

41 90(D) � 2 1

42 50(N + I) � 1 1

43 45(N) � 0 0
44 90(D) + 2 2

45 50(N + I) � 1 1

46 50(N + I) � 1 1

47 40(N + I) � 2 1
CD38+CD49d+ CLL 48 90(D) + 3 3

49 40(N + I) + 3 2

50 70(D) � 2 2

51 50(N) + 3 3
52 50(N + I) + 2 2

53 45(N + I) � 2 2

54 90(D) + 3 3
55 50(N + I) + 2 2

56 60(N + I) � 2 2

57 40(N + I) + 3 2

Abbreviations: N, nodular; I, interstitial; D, diffuse.
* Figures refer to percent BM infiltration; patterns of infiltration are

reported in parenthesis.
cNegative (�) and positive (+) expression was determined as reported
in Materials and Methods.
bCD68 and VCAM expression was evaluated by two different

semiquantitative four-tier grading systems ( from grade 0 to grade 3).

Tumor-Microenvironment Interactions in CLL
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CD49d by agonist anti-CD38 mAbs and L-VCAM-1 transfectants,
respectively (not shown).

CCL3 is expressed by BM CLL cells from CD38+CD49d+ CLL.
BM can provide the optimal microenvironment for CLL cells to
interact with endothelial and stromal cells, e.g. via the CD38/CD31
pair (14). We investigated CCL3 expression by BM infiltrating CLL
cells from BMB of 10 CD38+CD49d+ and 10 CD38�CD49d� cases
(Supplementary Table S1). By CD20 staining, different infiltration
patterns and a variable degree of BM involvement were observed,
without significant differences between CD38+CD49d+ and
CD38�CD49d� CLL (Table 1). By limiting analyses to CLL-involved
areas, CCL3 protein was detected in eight CLL cases, all but one
belonging to the CD38+CD49d+ CLL group (P = 0.02; Table 1), with

a distinct CCL3-specific cytoplasmic staining observed in the vast
majority of infiltrating neoplastic cells (Fig. 1C).

Monocyte macrophages express the CCR1 and CCR5 chemo-
kine receptors and migrate in response to CCL3 and CCL4.
Expression of the CCL3-specific and CCL4-specific receptors
CCR1 and CCR5 was examined by flow cytometry in PB
cell populations from 39 CLL cases (12 CD38+CD49d+, 14
CD38�CD49d�, 10 CD38�CD49d+, and 3 CD38+CD49d�; Supple-
mentary Table S1) and 9 healthy donors. Irrespective of CD38 or
CD49d expression by CLL cells, monocytes showed in all cases the
highest mean fluorescence intensity levels for CCR1 and CCR5, the
latter at a lower intensity (Supplementary Table S4; Fig. 2A). Similar
CCR1 and CCR5 expression levels were detected in adherent

Figure 2. Expression of CCR1 and CCR5 by PB subpopulations of CLL samples and CCL3-mediated or CCL4-mediated monocyte migration. A, flow cytometry
analysis of CCR5 and CCR1 expression by PB cells of a CLL representative case (case 97). Left, CLL cells, T lymphocytes, and monocytes identified on the basis
of immunologic gating (dot plots ). Colored histograms represent CCR5-FITC and CCR1-PE expression by each PB population. Gray histograms refer to isotype controls.
B, CCR5 and CCR1 expression by macrophages evaluated by ELISA. Columns, results from four different resting (light gray ) and activated (dark gray ) macrophage
populations; bars, SE. C, purified monocytes from nine CLLs tested for migration toward CCL3 and CCL4. Columns, migration indices; bars, SE. *, P < 0.05.
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macrophages from CLL cases, with an increase upon in vitro
activation (Fig. 2B ). Conversely, CLL cells and residual T
lymphocytes showed low mean fluorescence intensity levels for
both chemokine receptors (Supplementary Table S4; Fig. 2A).
Similar expression patterns were observed in PB cell subsets from
healthy donors (Supplementary Table S4).
After showing that monocytes express CCR1 and, to a lesser

extent, CCR5, we analyzed the effects exerted by CCL3 and
CCL4 on migration of purified monocytes from nine CLL cases
( five CD38+CD49d+, one CD38�CD49d�, two CD38�CD49d+, and
one CD38+CD49d�; Supplementary Table S1). Both chemokines
increased monocyte migration; however, the effects were more
apparent with CCL3. Indeed, a statistically significant higher
number of monocytes migrated in response to CCL3 rather than
CCL4 (MI for CCL3, 8.7 F 1.7; MI for CCL4, 1.7 F 0.5; Fig. 2C); no
significant differences were observed between monocyte prepara-
tions purified from CLL cases expressing different CD38 or CD49d
levels (not shown).

CD68+ cells infiltrate CLL areas of BMB from CD38+CD49d+

CLL. Based on the expression of CCL3 selectively found in CLL
cells from BMB of CD38+CD49d+ cases, along with the capability
of this chemokine to attract monocytes, we attempted to quantify
the extent of infiltration of CD68-expressing monocytoid cells in
the context of CLL-involved areas of BMB from CD38+CD49d+ and
CD38�CD49d� CLL (Fig. 3). The number of round-to-spindle–
shaped CD68+ cells intermingling with CLL cells was significantly

higher in CD38+CD49d+ compared with CD38�CD49d� cases
(P = 0.016). In particular, a grade 3 infiltration was solely found
in BMB from CD38+CD49d+ CLL (5 of 10 cases); conversely, all
five grade 0 (null) or grade 1 (low) infiltrations were observed
in the CD38�CD49d� group (Table 1). Infiltrating CD68+ cells
strongly expressed the CCL3-specific receptor CCR1 (Supplemen-
tary Fig. S2).

CM from CCL3-treated macrophages up-regulates VCAM-1
by endothelial cells. In our model, we hypothesized a role for the
CD68+ macrophage component recruited in the context of BM
lymphoid aggregates by CCL3 released by CD38+CD49d+ CLL cells.
In particular, we investigated the ability of CCL3-stimulated
macrophages to induce endothelial cells to express the CD49d
ligand VCAM-1 (38).
VCAM-1 expression was determined in two endothelial cell

models (HUVEC and ADMEC) after 12 hours of incubation with
CM collected from CLL-derived macrophages challenged in vitro
with either CCL3 (CCL3-CM) or culture medium alone (CNT-CM)
from four different CD38+CD49d+ CLL macrophage preparations
(Supplementary Table S1). As shown in Fig. 4A , the mean VCAM-1
expression seemed significantly up-regulated in both cell models
upon exposure to CCL3-CM compared with CNT-CM.
It is known that VCAM-1 expression can be up-regulated in

different cell types by TNFa (38). Accordingly, a significant
enrichment of TNFa protein was detected in CCL3-CM compared
with CNT-CM (Fig. 4B). The highest levels of TNFa protein were

Figure 3. Patterns of CD68+ cell infiltration and distribution of VCAM-1 expression in BM lymphoid aggregates from CD38�CD49d� and CD38+CD49d+ CLL.
The number of CD68+ cells and the pattern of VCAM-1 expression were evaluated in the context of the BM lymphoid aggregates following two different four-tier grading
systems (grade 0 through grade 3). Panels represent examples for each grade of CD68 (left) and VCAM-1 (right ) expression. A, grade 0 (CD38�CD49d� CLL;
no. 43). B, grade 1 (CD38�CD49d� CLL; no. 38). C, grade 2 (CD38+CD49d+ CLL; no. 52). D, grade 3 (CD38+CD49d+ CLL; no. 54). Original magnification, 400�; scale
bars, 20 Am.
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found in CM from LPS-exposed macrophages (LPS-CM), which was
also the most effective CM in inducing VCAM-1 up-regulation by
endothelial cells (Fig. 4A and B).
The specific contribution of TNFa to VCAM-1 expression by

HUVEC and ADMEC was confirmed by neutralizing its biological
activities in CCL3-CM derived from selected macrophage cultures
(CLL cases 90 and 97). As shown in Fig. 4C , TNFa neutralization
was followed by a significant reduction of VCAM-1 up-regulation in
both cell models.

VCAM-1 is up-regulated in endothelial/stromal cells from
BMB of CD38+CD49d+ CLL. These results were validated by
analyzing VCAM-1 expression in BM lymphoid aggregates of CLL
cases expressing or not CD38 and CD49d. A significantly more
prominent meshwork of VCAM-1+ cells was detected in the context
of the lymphoid infiltrates of CD38+CD49d+CLL compared with
CD38�CD49d� cases (P = 0.002). No cases graded 0 or 1 for VCAM-
1 expression were observed in the CD38+CD49d+ group, whereas
high (grade 3) VCAM-1 expression levels were only scored in this
group (Table 1; Fig. 3A–D).
Inside the lymphoid aggregates, VCAM-1 marked both the

sinusoidal endothelia and the meshwork of interdigitating

BM stromal cells, the former identified by CD34 and the latter
by CD10 staining in serial sections (Supplementary Fig. S3).
Moreover, double immunostaining indicated that the VCAM-1+

endothelial/stromal component generally lacked CD68 expression.
In turn, CD68+ macrophages were almost constantly VCAM-1�

(Supplementary Fig. S4).
CD49d engagement by VCAM-1 protects CLL cells from

apoptosis. Given the high expression of VCAM-1 characterizing
BMB of CD38+CD49d+ CLL, and the close proximity in CLL-
involved BM microenvironment of CD49d+ CLL cell membranes
and VCAM-1+ cellular processes from stromal/endothelial cells
(Supplementary Fig. S5), we tested whether engagement of CD49d
by VCAM-1 was able to delay the spontaneous apoptosis observed
in cultured CLL cells (1).
Purified CLL cells from five CD38+CD49d+ cases (Supplementary

Table S1) were cultured on murine L-fibroblast cells transfected
with full-length human VCAM-1 or vector alone, and cell viability
was determined over a time period spanning from 7 to 21 days.
Figure 4D shows that CLL cells exposed to VCAM-1 were
characterized by a relevant improvement in cell viability. In
particular, the effects on protection from apoptosis exerted

Figure 4. VCAM-1 up-regulation by endothelial cells after exposure to macrophage CM and effects of CD49d engagement via VCAM-1 on CLL cell apoptosis.
A, expression of VCAM-1 on HUVEC and ADMEC after 12-h incubation with either unstimulated (CNT-CM ), CCL3-stimulated (CCL3-CM ), or LPS-stimulated
macrophage CM (LPS-CM). B, TNFa protein levels in CNT-CM, CCL3-CM, and LPS-CM. ELISA values in A and B are mean F SE of duplicate samples from four
separate macrophage preparations. *, P < 0.01 versus control; **, P < 0.01 versus both conditions. C, the specific contribution of TNFa stimulation on VCAM-1
expression by HUVEC and ADMEC was evaluated by neutralizing (+anti-TNFa) or not the activity of TNFa in CM from two selected macrophage preparations before
their addition to HUVEC and ADMEC. TNFa was added to both cell lines as positive control for VCAM-1 up-regulation. Values obtained by ELISA are mean F SE of
duplicate samples. *, P < 0.01 versus control. D, purified CD38+CD49d+ CLL cells from five patients cultured on L-VCAM-1 (closed diamonds ) or L-mock (open
diamonds ) cells. At the indicated times (7–21 d), cell viability was analyzed by flow cytometry using the syto-16/7-AAD method. Points, percentages of viable cells of
duplicate samples; bars, SE.
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by CD49d/VCAM-1 interactions became apparent after 7 days
of culture and were more evident after 14 and 21 days of
culture, reaching 42% mean viable cells compared with 28.5% in
nonstimulated conditions (P = 0.001; Fig. 4D).

Discussion

CCL3 and CCL4 are small (8–10 kDa), structurally related, and
secreted proteins, which are inducible and produced by mature
hematopoietic cells (reviewed in ref. 39). Biologically, CCL3 and
CCL4 have overlapping effects and act as potent chemoattractants
for monocyte macrophages, dendritic, T, and natural killer cells
(39). Despite indirect suggestions of a putative role for CCL3 and
CCL4 in CLL (13, 40, 41), their involvement in this disease has
not been investigated in detail.
Here, we show a distinctive overexpression of transcripts for the

CCL3 and CCL4 genes in CD38+CD49d+ CLL cells and a clear-cut
transcript up-regulation and increased release of CCL3 and CCL4
by CD38+CD49d+ CLL cells upon CD38 triggering. Of note, a direct
correlation between the levels of CD38 and CCL3 protein was
shown by considering both the basal CCL3 levels in CD38+CD49d+

CLL, and the increased amount of CCL3 released upon CD38
engagement.
These results are in keeping with the known capacity of CD38

engagement to mediate, along with proliferative and/or antiapop-
totic signals (19, 31), cytokine release in other cellular systems
(14, 42). Because CD31 is expressed by various cell types, including
monocytes, endothelial cells, and CLL cells themselves irrespective
of CD38 expression (20, 43), it is conceivable that interaction of
CD31+ cells with CD38+ CLL cells might frequently occur in vivo ,
contributing to increased levels of CCL3 and CCL4 in biological
fluids. In this regard, a preliminary survey of CCL3 protein
concentration in plasma samples from 53 CLL revealed almost
3-fold higher CCL3 levels in CD38+ (25 cases) compared with

CD38� (28 cases) CLL (mean values of 43.8 versus 15.1 pg/mL,
respectively).8

These findings raise the issue of the role played by CCL3 and
CCL4 in CLL. According to our results, CLL-derived CCL3, more
than CCL4, significantly contributes to the recruitment of cells
from the monocyte macrophage lineage to BM microenvironmen-
tal sites. These conclusions are supported by distinct lines of
evidence. First, CCR1 and CCR5 (the receptors for CCL3 and CCL4)
are strongly expressed, the former more than the latter, by PB
monocytes and macrophages (44) from healthy and CLL samples,
but not by the majority of T or neoplastic B cells. Second, PB
monocytes from CLL samples are uniquely sensitive to CCL3
signals in vitro , in keeping with the strong expression of CCR1
(39, 45). A third line of evidence is represented by the in vivo
observation of a higher number of infiltrating CD68+ cells in the
context of CLL-involved areas of BMB from CD38+CD49d+ CCL3-
producing cases compared with CD38�CD49d� CLL. CD68 was
shown to mark a heterogeneous population of myeloid cells,
including macrophages, dendritic cells, and NLC, a distinctive cell
population arising from monocytes cultured in vitro in close
contact with CLL cells (1, 24, 25). According to costaining studies,
this CD68+ component infiltrating the BM stroma of CD38+CD49d+

CLL, in addition to being CCR1+ in keeping with their putative
capacity to respond to CCL3, expressed CD149 and lacked VCAM-1,
a phenotype also reported for NLC (1, 24, 25).
The observation of a preferential monocyte macrophage

infiltration in CLL-involved BM stroma from CD38+CD49d+ cases
raises the additional question regarding the functional role of these
cells in the pathophysiology of CD38+CD49d+ CLL. We addressed
this issue by considering (a) the parallel increase of CD68+ cells and

Figure 5. Model for a prosurvival circuitry operating in CD38+CD49d+ CLL. CD38/CD31 interactions (A ), either homotypic (CLL-CLL) or heterotypic
(CLL-stromal/endothelial cells), yield the release of CCL3 and CCL4 by CLL cells (B); these chemokines (mainly CCL3) attract CD68+ myeloid cells expressing the
CCL3 receptor CCR1 (C ); CD68+ cells, through the release of TNFa and other cytokines (D ), determine the overexpression of VCAM-1 by stromal/endothelial
cells (E); VCAM-1/CD49d interactions can efficiently increase survival of CD49d-expressing CLL cells (F ).

8 D. Benedetti, unpublished observation, March 2008.
9 C. Tripodo, personal observation, June 2008.
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neovasculature, as detected in lymph nodes of lymphoproliferative
disorders (46); (b) the association in CLL lymph node sections
between high CD38 expression by tumor cells and increased tumor
vascularity (22); and (c) the known feature of VCAM-1, the CD49d
ligand, to be induced on the surface of stromal/endothelial cells
upon several stimuli (38). This background prompted us to
evaluate the expression of VCAM-1 in CLL-involved BM tissues
from cases expressing CD38 and CD49d or not. Results indicate a
close correlation among the CD38+CD49d+ phenotype by CLL cells,
infiltration of CD68+ macrophages, and presence of a stromal/
endothelial component strongly expressing VCAM-1. A functional
link between CD68 and VCAM-1, as expressed in CLL-involved
BMB, was indirectly found by showing the capacity of CM
produced by CCL3-stimulated macrophages from CD38+CD49d+

CLL cases to up-regulate VCAM-1 expression in endothelial cell
models (29, 30). As indicated by our experiments and in keeping
with literature data, TNFa turned out to be among the major
cytokines released by CCL3-stimulated macrophages likely respon-
sible for VCAM-1 up-regulation by endothelial cells (47). However,
as suggested by an incomplete reversion of VCAM-1 overexpression
upon TNFa blocking, other cytokines allegedly released by CCL3-
stimulated macrophages (e.g., interleukin-1) may also contribute to
VCAM-1 up-regulation (47).
Microenvironmental interactions in marrow or secondary

lymphoid organs have been shown to confer growth advantage
and extended survival to CLL cells and play a role in disease
progression and resistance to therapy (1, 48). Operationally, growth
and prosurvival signals are delivered through a number of different
receptor-ligand pairs. As an example, interactions occur between
CLL cells, expressing CD40, and CD40L+ T cells, the latter
specifically attracted by CLL-derived CCL22 (1, 49). Moreover,
NLC interact with CLL cells using the CD38/CD31 axis usually
associated with CD100/plexinB1–mediated contacts (31) and by
producing soluble factors, such as CXCL12 and BAFF/APRIL, which
bind CLL cells, in turn expressing their respective receptors (50).

These interactions are favored by the release by NLC of chemokines
(e.g., CCL19, CCL21, and CXCL12) capable of attracting CLL cells,
especially if expressing CD38, ZAP-70, and CD49d (28, 36, 37).
Here we showed that CD68+ NLC or monocyte macrophage cells

can also be attracted by specific chemokines (e.g., CCL3) produced
by CLL cells when expressing high levels of surface CD38 to allow
efficient CD38/CD31 interactions. These attracted CD68+ cells, in
addition to directly interact with CLL cells, can be active in
determining, through the release of TNFa and other cytokines, the
overexpression of VCAM-1 by the stromal/endothelial component
of BM microenvironment. Specific VCAM-1/CD49d interactions
can efficiently increase survival of CD49d-expressing CLL cells
(Fig. 5). The proposed circuitry may represent the cellular basis
explaining the aggressive clinical course of CLL coexpressing CD38
and CD49d.
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