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ABSTRACT

We consider nonlinear, nonhomogeneous Robin problems with a (p — 1)-superlinear reaction term, which need not satisfy the Ambrosetti-
Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian,
we prove existence results under a different geometry near the origin.
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I. INTRODUCTION

Let Q ¢ RY be a bounded domain with a C* -boundary 0Q. In this work, we study the following nonlinear, nonhomogeneous Robin
problem:

—diva(Vu(z)) + E(z)\u(z)\l)_zu(z) = f(z,u(z)) inQ,

1

g—:ﬂ +B@)|ufu=0 on 9Q. M
In this problem, a : RN — R" is a monotone continuous map, which satisfies certain other regularity and growth conditions, listed in hypothe-
ses H(a)1. These conditions are general enough to incorporate in our framework many nonlinear differential operators of interest, such as
the p-Laplacian (1 < p < o0) and the (p, g)-Laplacian (1 < g < p < o0). The potential function & € L™ () is, in general, indefinite [that is, &(-)
is sign changing]. The reaction term f(z,x) is a Carathéodory function [that is, for all x € R, z — f(z,x) is measurable and for a.a. (almost
all) z € Q, x - f(z,x) is continuous]. We assume that f(z,-) is (p — 1)-superlinear but without satisfying the usual conditions, in such cases
the Ambrosetti-Rabinowitz condition (the AR-condition for short). Instead we employ a less restrictive condition, which fits in our setting
(p — 1)-superlinear functions with slower growth near + oo, which fail to satisfy the AR-condition. In the boundary condition, gT: denotes the

generalized directional derivative (conormal derivative) of u defined by extension to WP (Q) of the map ClQ)>su— g—:ﬂ = (a(Vu), n)gn,
with n(-) being the outward unit normal on 9. This directional derivative is dictated by the nonlinear Green’s identity (see, for example,
Ref. 12, p. 210). The boundary coefficient 3(-) is a non-negative Holder continuous on Q) function. If 8 = 0, then we recover the Neumann
problem. We are looking for positive solutions. In Sec. I1I, we prove two such results under different geometries near the origin. First, u = 0
is a local minimizer of the energy (Euler) functional and we prove an existence theorem. Second, instead we assume that f(z,-) admits a
z-dependent zero on the positive semiaxis and we prove the existence of an ordered pair of positive solutions. We also show the existence of a
smallest positive solution. In Sec. IV, we deal with the special case of the p-Laplacian differential operator [that is, a(y) = |y}’ %y for all y e RN
with 1 < p < o] and a reaction term near zero stays above the principal eigenvalue of the p-Laplacian with the Robin boundary condition.
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So, now u = 0 is no longer a local minimizer of the energy functional leading to a different geometry for the problem and consequently to a
different approach. As a particular case of the existence theorem in Sec. IV, we consider a parametric Robin problem with general potential
and prove the existence of a positive smooth solution for every value of the parameter A > 0, extending this way an earlier such result for
semilinear Dirichlet problems by Miyagaki-Souto.”® Our existence and multiplicity results in this paper extend in different ways the works of
Gao-Tang,'' Tturriaga-Souto-Ubilla,” Iturriaga-Lorca-Ubilla,” Liu,”’ Li-Yang,”* Miyagaki-Souto,”® and Sun.”” We also mention the related
recent work of Papageorgiou-Smyrlis™ on positive solutions of nonlinear logistic equations.

Our method of proof uses variational tools based on the critical point theory together with suitable truncation and perturbation
techniques, comparison principles, and Morse theory (critical groups).

Il. MATHEMATICAL BACKGROUND

Let X be a Banach space. By X*, we denote the topological dual of X, and by (-,-), we denote the duality brackets for the pair (X, X).
Suppose that ¢ € C'(X,R). We say that ¢ satisfies the “Cerami condition” (the “C-condition” for short), provided the following property
holds: “Every sequence {u} ey € X such that {@(un)}en € R is bounded and (1+ || uy ||)¢”(4s) = 0 in X™* as n — +oo admits a strongly
convergent subsequence.” Using this compactness-type condition on the functional ¢, one can prove a deformation theorem from which
follows the minimax theory of the critical values of ¢. Prominent in that theory is the so-called “mountain pass theorem” which we recall here
as follows:

Theorem 1. If ¢ € CHX,R) satisfies the C-condition, there exist ug, u1€ X and p > 0 such that ||ui—uo||> p,

max{¢(uo), p(u1)} < inf{o(w) : [u - uo| = p} = mp,

and ¢ =infy crmaxo <+ < 19(p(1)) with T = {y € C([0,1],X) : p(0) = o, (1) = w1 }, then ¢ > m, and c is a critical value of ¢ [that is, there exists
U € X such that ¢' () = 0 and ¢(4) = c].

The study of problem (1) will be based on the following spaces:

e The Sobolev space Wlf(Q).
The Banach space cl(Q).
e The boundary Lebesgue spaces L1(9Q)), 1 < g < oo.

By || - ||, we denote the norm of the Sobolev space WP (Q) defined by
1
luf = [l + [Vu2]"” forallu e W' (Q).

The Banach space C'(Q) is an ordered Banach space with the positive (order) cone given by C, = {u € C'(Q) : u(z) > 0forall z € Q}. This
cone has a nonempty interior which is given by the set D, = {u € C; : u(z) > 0forallz € Q}. On 9Q, we consider the (N - 1)-dimensional
Hausdorff (surface) measure o(-). Using this measure on O, we can define in the usual way the boundary Lebesgue spaces LY(9Q))
(1 < g < 00). From the theory of Sobolev spaces, we know that there exists a unique continuous linear map yo : W'*(Q) — LY(9Q), known as
the “trace map,” such that yo(u) = uLa o forallue W (Q) n C(Q). Therefore, the trace map gives meaning to the “boundary values” on dQ of
(NNil;P ) if N > p and into LY(0Q) for all g > 1 if N < p. Moreover, we

have ker yo = Wé’P (Q) andim yo = Wi (0Q2) with % + 1% = 1. From now on, for the sake of notational simplicity, we drop the use of the map

any Sobolev function. We know that yy is compact in L1(9Q) for g € [1,

yo. The restriction of any Sobolev function on JQ is understood in the sense of traces. Let J € C'(0, 00) with 9(t) > 0 for all ¢ > 0 and assume
that

91t

0<T< < ¢ forallt >0,
El6)
(2)
att < 9(t) < cz(ts_1 + tp_l)forallt >0, somec;, ;>0 1<s<p.
We introduce the following conditions on the map a(:) [see (1)]:
H(a): a(y) = ao(|y|)y for all y € RN with ao(t) > 0 for all ¢ > 0 and
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ay ()t
ay(t)

(i) ao € CH(0,00), t — ap(t)t is strictly increasing, ao(£)t — 0* as t — 0* and lirgl >—1;
t—0*

(ii) there exists c3 > 0 such that |Va(y)| < C3% for all y e RN\ {0};
(iil) (Va@)é &gy > %mz for all y e RN\ {0}, all £ e RY.

Remark 1. These conditions on a(-) are dictated by the nonlinear regularity theory of Lieberman®* and the nonlinear maximum principle
of Pucci-Serrin® (pp. 111 and 120).

We set Go(t)= fotao(s)s ds and define G(y) = Go(|y|) for all y € RY. Evidently, G(-) is convex and G(0) = 0. Also, we have

VG(y) = G6(|y|)|i—| =ao(p))y = aly) forally e R¥\{0},

VG(0) = 0. Therefore, G(-) is the primitive of a(-). Then, the convexity of G(-), and since G(0) = 0, implies that

G(y) < (a(y),y)py forally e RV, 3)

Lemma 1 summarizes the basic properties of the map a(-) and is an easy consequence of hypotheses H(a).
Lemma 1. If hypotheses H(a) hold, then

(a) y — a(y) is continuous, strictly monotone, hence maximal monotone too;
®) |a®)| < cs@ + |y ") forall y € RN, some ¢4 > 0;
(© (@), y)ry > p%‘l\y|pfor ally e RN,

This lemma together with (3) lead to the following growth estimates for the primitive G(-):

Corollary 1. If hypotheses H(a) hold, then p(}fl—l) Iy < G(y) < cs(1 + |yf) for all y € RY, some 5> 0.

In addition, we impose the following conditions on the potential function &(-) and the boundary coefficient 3(-):

H(é):Ee L (Q).
H(B): B € C**(HQ) for some « € (0, 1) with B(z) > 0 for all z € 0Q.

Remark 2. When f3 = 0, we have the usual Neumann problem.

Consider a Carathéodory function fo : Q x R — R which satisfies

[fo(z,x)| < ao(2)(1 + |x|"*_1) foraa.zeQ, allxe R,
Np .
Np ifN>p

+o0 if N<p
We set Fo(z,x)= [;" fo(z,s)ds and also define the C'-functional y : W"(Q) — R by

with ag € L*(Q)4, p* = { (the critical Sobolev exponent).

= [ pG(vuyd f g f P4
p(u) pr (Vu)dz + Qf(z)|u| Z + 80,8(2)|u\ o
for all u € W'?(Q). Then, we consider the C'-functional Qo : W (Q) - R defined by

Ly Lp
P0() = p(w) fn Fz,u)dz forallu € W"P(Q).

Weset V= C'(Q)and X = W(Q) = Cl(Q)”'H. The following result can be found in Ref. 30 (subcritical case) and Ref. 32 (critical case).
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Proposition 1. If uge W"#(Q) is a local V-minimizer of go, that is, there exists po> 0 such that go(uo) < go(uo+h) forallh € V, | h||v< po,
then ug € Cl""(Q)for some a € (0,1) and ug is a local X-minimizer of @, that is, there exists p1> 0 such that ¢o(uo) < @o(uo+h) for all h € X,
IRl< pr.

Consider the nonlinear map A : W'*(Q) — W'*(Q)* defined by
(A(w), h) = f(a(Vu), Vh)gvdz forallu,h e WP(Q).
Q

From Gasinski-Papageorgiou,'® we have the following proposition:

Proposition 2. The map A(-) is bounded (that is, it maps bounded sets to bounded sets), and it is continuous monotone (hence maximal
monotone too) and of type (S)+ which means that “u, Yuin WP(Q) and lim SUPy — +oo (A(Un), un—t) <0 = uy,—> uin whr(Q).”

We will also need some basic facts about the spectrum of the operator —A, + &(z)I with the Robin boundary condition. Recall that
Apu = div(|Vul? ~2vu) for all u € WH(Q) (the p-Laplace differential operator). So, we consider the following nonlinear eigenvalue problem:

—Apu(z) + E@)u@)u(z) = X ()P *u(z) inQ, W

anP +B@)|uffPu=0 on 9Q.

In this case, a(y) = [y "*y for all y e RY and 80 3. 1s defined by extension of the map

LQ Ou o 2 p-20u
CQ)>u any = |Vulf " (Vu, n)gy = |Vl e

By an “eigenvalue,” we mean a 2 e R for which problem (4) admits a nontrivial solution % € W(Q) known as an “eigenfunction”
corresponding to the eigenvalue A. From Ref. 32 (see also Ref. 18), we have that 7 € L™ (Q). Then, from the nonlinear regularity theory of
Lieberman,”” we have that 7 € C'(Q2). We know that there exists a smallest eigenvalue A, (&, B) € R given by

N P) = in ﬁ cue WH(Q)u o]. (5)
p

This eigenvalue has the following properties:

. /\1(5 B) is isolated in the spectrum o(p) of (4) (that is, there exists ¢ > 0 such that Mi(E, & p), T, & B) +e)nT(p) =0).

o Li(& p) is simple (that is, if 7,7 are elgenfunctlons corresponding to the eigenvalue A, (£, 8), then @ = 7 with 77 € R\{0}).

e The eigenfunctions corresponding to 1, (£, 8) have constant sign.
Let 71 (¢, B) be the Lf-normalized (that is, [[#1(&, )|, = 1) positive eigenfunction, then we have 7 (&, B) € C.. Moreover, from the nonlinear
maximum principle (see Ref. 36), we have 4 (&, ) € D,. Since T (&, ) is isolated and G(p) € R is closed, the second eigenvalue Xz(f,ﬁ) is
well-defined by 1>(¢, ) = inf[X : 1 € 5(p), 1 > (&, B)].

By the Ljusternik-Schnirelmann minimax scheme, we know that G(p) has a whole strictly increasing sequence {Ax(&, ) }xery € R such

that xk(E,ﬁ) — +00 as k - +oo. These are known as “LS-eigenvalues” or “variational eigenvalues” of (4). We do not know if this sequence

exhausts G(p). The Ljusternik-Schnirelmann scheme provides minimax expressions for these eigenvalues. For A (&, §), we have an alternative
minimax characterization which is more suitable for our purposes. So, let

OB = {uel’(Q): |u, =1}, M=wW"(Q)naoB

and

T={FeC(-1,1],M):7(-1) = -w (& p), Y1) =W (&)}
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Proposition 3. ’Xz(f,ﬁ) = inf max p(y(¢)).
7€T—lstsl

For more information on these issues, we refer to Refs. 28 and 32. Next, let us recall a few basic definitions and facts from Morse
theory (critical groups) which we will need in the sequel. So, let (Y1, Y>) be a topological pair such that Y, ¢ Y; ¢ X. For every k € Ny, by
H(Y1,Y3), we denote the kth-relative singular homology group for the pair (Y1, Y;) with integer coefficients. If k € —N, then Hy(Y1,Y>) = 0.
Letg e CYX,R) and ¢ € R. We introduce the following sets:

o ={ueX:pw)<c}, Ky={ueX:¢'(u)=0}
Ky ={ueKy:ou)=c}
Suppose that ug € K is isolated. The critical groups of ¢ at u are defined by
Ci(p,u0) = Hi(¢ N U, 9" nU\{uo}) forallk e Ny,

with U being a neighborhood of uy such that K, n Un ¢ = {u}. The excision property of singular homology theory implies that
the above definition of critical groups is independent of the choice of the neighborhood U. Suppose that ¢ € C'(X,R) satisfies the C-
condition and that infp(K,) > —oo. Let infep(Ky) > c. The critical groups of ¢ at infinity are defined by Ci(g, ) = Hi(X, ¢°) for all
k € Ng. This definition is independent of the particular choice of the level ¢ < infgp(K,). To see this, let d < ¢ < infp(K,). From the
noncritical interval theorem (see, for example, Ref. 27, p. 110), we know that ¢ is a strong deformation retract of ¢°. Therefore,
Hi(X,¢%) = Hi (X, (pd) forall k € No. The following proposition is useful in producing additional critical points for a functional ¢ € CY(X,R)
(see Ref. 27):

Proposition 4. If ¢ € c! (X, R) satisfies the C-condition, for some k € No Ci(9,0) # 0, C(@, 00) = 0, then there exists u € Ky, u # 0.

Finally, let us fix our notation. So, for x € R, we set x* = max{+x,0} and for u e W(Q) we define u®(-) = u(-)*. We know that
wFe W(Q),u=u"-u",and |u| = u* + u~. By |-|n, we denote the Lebesgue measure on RN If u,v € WIP(Q), then

[u,v] = {h e W"(Q) : u(z) < h(z) < v(z) fora.a.z € Q}.

For Xy ¢ 0Q a closed set, we introduce the following set of functions:

D. () = {h e CH(Q) : h(z) > Oforallz € Q, o

Oh < 0}.
nls,

Evidently, this set is open in Cl(ﬁ) and we have D, ¢ 5+(Zg). Note that B+(Zo) is the interior of the positive (order) cone of Ci Q)
= {u e Cl(Q): uk = O}. So, alternatively the analysis below can be done using the pair CcL(Q), Wi’P Q) =C!L (5)"'”.

11. NONHOMOGENEOUS EQUATION

In this section, we deal with problem (1) and we look for positive solutions. We prove an existence theorem and a multiplicity theorem
producing two nontrivial smooth solutions. The two results differ in the geometry of the equation near zero.

For the existence theorem, our hypotheses on the map a(-) are the following:

H(a)i:a(y) = ao(Jy|)yforally € RN with ao(t) > 0forall £ > 0, and hypotheses H(a); (i)-(iii) are the same as the corresponding hypotheses
H(a) (i)-(iii) and

(iv) if Go(t)= fofao(s)s ds, then pGo(t) — ao(l‘)t2 > —cforallt>0and somec>0.
Remark 3. As we already mentioned in Sec. 11, hypotheses H(a)1(i)—(iii) come from the nonlinear regularity theory of Lieberman’’ and the

nonlinear maximum principle of Pucci-Serrin®® (pp. 110 and 120). Hypothesis H(a) (iv) serves the particular needs of our problem, but it is very
mild and it is satisfied in all cases of interest as the examples which follow illustrate.

Example 1. The following maps a : RY — RN satisfy hypotheses H(a),:

@) a(y) = [yl ~*y with 1 < p < co. This map corresponds to the p-Laplacian defined by Apu = div(|Vul’ ~>Vu) for all u e W"P(Q).

() a() =y *y+|y|"" %y with 1 < q < p < co. This map corresponds to the (p, q)-Laplacian defined by Apu + Aqu for all u € WHP(Q).
Such an operator arises in problems of mathematical physics (see, for example, Ref. 5). Recently, there have been some exis-
tence and multiplicity results for such equations. We refer to the works of Aizicovici-Papageorgiou-Staicu,” Barile-Figueiredo,’

Candito-Livrea-Papageorgiou,” Cingolani-Degiovanni,® Gasiriski-Papageorgiou,'*'> Marano-Mosconi-Papageorgiou,”> Papageorgiou-
Radulescu,”*1*>** Sun,*® and Sun-Zhang.”’
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(0 aly)=QQ+ |y|2)¥y with 1< p < oco. This map corresponds to the generalized p-mean curvature differential operator defined by
div (1 +|Vul) T V) for all u e WP(Q).

(d) a(y) = \y|P’2[1 + ﬁ] with 1 < p < co. This map corresponds to the following differential operator —A,u +div( Wlﬂgi‘vp”) for all

u € WhP(Q). This operator arises in problems of plasticity.

Our hypotheses on the reaction term f(z, x) are the following:
Hi: f: Q xR — Ris a Carathéodory function such that f(z,0) = 0 for a.a. z € Q and

() |fzx)|<az)+x") foraa zeQ,allx>0,withae L®(Q)s, p <r<p*;
(i) if F(z,x)= [, f(2,s)ds, then lim % = +oo uniformly for a.a. z € O
x—+00

(iii) ife(z,x) = f(z,x)x — pF(z,x), then there exists d € LH(Q) such that e(z, x) < e(z,y) +d(z) foraa. ze Q,all0<x < y;
(iv) if &= %f, ﬁ: %/3 [see (2)], then there exist functions 7,7 € L*(Q) such that 7(z) < ﬁxl(f,ﬁ) for aa. zeQ, 7 # 1%1(5,73‘),

f(zx) f(zx)
xp1 xp~1

f(z) < lim infy_¢+ <limsup, . < 7(z) uniformly for a.a. z € Q.

Remark 4. Since we look for positive solutions and the above hypotheses concern the positive semiaxis, we may assume that f(z,x) = 0 for
a.a. z € Q, all x <0. Hypotheses H (ii) and (iii) imply that lim % = +oo uniformly for a.a. z € Q. So, the reaction term f(z,) is (p — 1)-
X—>+00o

superlinear. However, the superlinearity condition of f(z,-) is not formulated using the so-called Ambrosetti-Rabinowitz condition. We recall
that the AR-condition says that there exist s > p and M > 0 such that

0 <sF(z,x) < f(z,x)x fora.a.zeQ, allx > M, (6)

0 < ess ing(',M). (6a)

This is a unilateral version of the usual AR-condition since we have assumed that f(z,0) = 0 for a.a. z € Q, all x < 0. Integrating (6) and
using (6a), we obtain the following weaker condition:

c6x’ < F(z,x) foraa.zeQ, allx > M, somecg > 0. (7)

From (4), we see that, for a.a. z € Q, F(z,-) eventually has s-polynomial growth. From (6), this implies that for a.a. z € Q, f(z,) eventually has
(s — 1)-polynomial growth. This excludes from consideration (p — 1)-superlinear nonlinearities with slower growth near +oco (see the examples
below). Here, instead of (6) and (6a), we use hypothesis H; (iii) which includes such nonlinearities. Hypothesis H, (iii) is a quasimonotonicity

condition on the function e(z,-). This condition is a little more general than the one used by Li-Yang.”* Hypothesis H; (iii) is satisfied if

f(z.x)

—-1 is nondecreasing on [M, +00) or if for a.a. z € Q, the function x — e(z, x) is

there exists M > 0 such that for a.a. z € Q, the function x —
nondecreasing on [ M, +00).

Example 2. The following functions satisfy hypotheses Hy. For the sake of simplicity, we drop the z-dependence,

B if x € [0,1],
S0 = { - if x> 1,

with 9 < 1 (?,F) and p,T < r. Also, f2(x) ="~ ! [In(1 + x) + 9] with 9 < T (’f:ﬁ). Note that f, does not satisfy the AR-condition.

Let 9 >|| €| « [see hypothesis H(§)]. We introduce the following Carathéodory function:

— 0 ifx<0
_ +yp—1 _ =Y,
fox) = flax) + 9y = { f(zx) + 9" if0 < x. ®)
We set F(z, x)= foxf(z, s)ds and consider the C'-functional P W(Q) — R defined by
—~ 1 9 P =, 1Lp
P(w) = ~pu) + > Jul - /F(z, wdz forallu e W(Q).
p p Q
J. Math. Phys. 60, 101506 (2019); doi: 10.1063/1.5118760 60, 101506-6
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Proposition 5. If hypotheses H(a)1, H(§), H(f), and H, (i)-(iii) hold, then @ satisfies the C-condition.

Proof. Let {us}ney € WHP(Q) be a sequence such that

[¢(un)| < My forsomeM,; >0, alln €N, 9)
(1 + |un|))¢ (4n) - 0in W (Q)* asn — +oo. (10)
From (10), we have
|(A(u,,),h)+ /(E(z)+9)|un|"_2u,,hdz (11)
Q

2w hdo — [ 7z, hd‘

+f80ﬁ(z)\u (unhdo~ [ Tz hdz

< &[] , forallhe W (Q)withe, — 0°.

1+ [|u

In (11), we choose i = —u,, € W"(Q). Then,
Co
p-1
[see Lemma 1, hypothesis H(f8) and (8)]
= u, >0 in W"(Q)asn — +oo (recall that 9 > €]l o0)- (12)

[V |5 + f (E(z) +9)(u, ) dz < eqforalln e N
Q

From (9) and (12), we have
fﬂ PG(Viil)dz + fﬂ @) + 9w dz + fa @y do
- fg PRz ul)dz < My, (13)

for some M, > 0, all n € N.
In (11), we choose h = u}, € WP (Q). Then,

- [ (@vui) vumedz~ [ (§@)+ 9w dz (14)
Q Q
_ +\p iy +y +
/aOﬁ(z)(u,,) do+ fdf(z,u,,)u,,dzgsn,
for all n € N. Adding (13) and (14) and using hypothesis H(a), (iv), we obtain

/e(z, uy)dz < Mz forsomeM; >0, alln e N. (15)
Q

Claim: {u}} en € WHP(Q) is bounded.
We argue by contradiction. So, suppose that the claim is not true. By passing to a subsequence if necessary, we may assume that

[us]] = +00  asn — +oo. (16)
Lety, = HZ—EH, n e N. Then, || yn||= 1, y» > 0 for all n € N. So, we may assume that
Yn Ly in W (Q) andy, — yinL'(Q) andin I’ (0Q), y > 0. (17)
First, assume that y # 0 and let Q. = {z € Q : y(z) > 0} {recall that y > 0 [see (17)]}. Then, |Q.|y > 0 and we have

U (z) > +00  foraa.ze Q.. (18)

From (18) and hypothesis H, (ii), it follows that
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Using (19), we have

ARTICLE
.
M — +00 fora.a.ze Q.
uy (2)P
. F(z,uy(2)) Flz,uy(2)
R P T Ay L

for a.a. z € Q.. Then, invoking Fatou’s lemma [hypotheses H; (i) and (ii) permit its use], we obtain

_/ F(z, u,,
A o, e

Hypothesis H; (ii) implies that we can find M4 > 0 such that

Then,

.
f F(z, u")dz
o\, [us [P

F(z,x) >0 fora.a.zeQ, allx > M.

B f F(z,u)
@0)n{ur=myy |us [P

F(z,
+ f (z+un) dz > —c;
@\eon{uy<My} |ug [P

for all n € N, some ¢; > 0 [see (21) and use hypothesis H;(i)]. Hence, we have

From (9) and (12), we have

=

F(z, u;)dz: / F(z:ruZ)dZJr
o [uifp o, [uglp

.
2/ F(z,un)dz_c7

f F(z,u})
dz
oo, [ui |

foralln € N [see (22)]

[z 1P
F(z,
li (2 u")dz =+oo [see(20)].
n—+oo Hun ”P

fﬁ(z, uy)dz < Ms + /G(Vu;)dz
Q Q
N 117 [ @+ onydz+ % | @y do,

forsome Ms > 0, alln € N,

Flz,ul) Ms 1
< Cs ||u+Hp + Hv)lng

< +
o |u;lp (7
= fﬂ (&) + 9)yldz + % fa pehdo,
foralln € N (see Corollary 1)

Fz,ul)
o fuil

dz < Mg forsome Mg >0, alln € N.

scitation.org/journal/jmp

19)

(20)

1)

(22)

(23)

(29)

1
Comparing (23) and (24), we have a contradiction. Next, we assume that y = 0. For k > 0, we set v, = k? y, for all n € N. Evidently, we have

vu =~ 0in L (Q) [see(17)and recall thaty = 0].

Hypothesis H; (i) and Krasnoselskii’s theorem (see, for example, Ref. 12, p. 407) imply that

fF(z, Vp)dz >0 asn— +oo [see(25)].
Q

Because of (16), we see that we can find 19 € N such that

(25)

(26)
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11
0<k;f <1 foralln > no. (27)
lusi P

Consider the C'-functional Do : W(Q) > R defined by

5lvulh+ f(£ )+ 9)fufdz+ 2 /ﬁ(z)|u|pdo [Fewds

Po(u) p (p

for all u € W'"?(Q). Let t,, € [0,1] be such that
Boltauy) = max[@o(tuy) : 0<t < 1] forallneN. (28)
On account of (27) and (28), we have

?ﬁo(l‘nUD 2 ’¢0(Vn)

P
- Il [ e
*fmﬁ(z)vg,da—/QF(z,vn)dz [see (8)]

1
[ oo f () + 9V dz]

- 7HWH§7 f F(z, va)dz
p Q
(see hypothesis H(f), recall that 9 > |/&]oo)

9
> s |val? - ! vl - fﬂ F(z, va)dz

foralln > ng, somecg > 0,
> cgk - ganHg - fF(z, va)dz foralln > ng
p Q
(recall that |y.| = 1 foralln € N)

> Cz—sk foralln > ny > ny [see (25)and (26)].

However, k > 0 is arbitrary. So, we infer that

Po(tutiy) = +00  asn — +oo. (29)
Note that
$(0)=0 and Golu,) < M, foralln e N (30)

[see (9) and note that Py (uy;) < Po(un) < P(un) for all n € N.
Then, (29) and (30) imply that

t, €(0,1) foralln>n,

=0 foralln>n, [see(28)]
t=t,

d_ .
= E(Po(tun)
= (@o(tatsy)s tatty) =0  (bythe chain rule)

N f E@)(tauil) dz
Q
+ [ @ty do = [ Fe bt )d,
aq q
= pPo(tauy) = fe(z,tnu;)dzg [e(z,u:,r)dz+||dH1
Q Q

foralln > n,[see Hy (iii) ]

= pGo(taus) < My for some M7 > 0, alln > n; [see (15)]. (31)
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Comparing (29) and (31), we have a contradiction. This proves the claim. The claim and (12) imply that {u,},y € W(Q) is bounded. So,
we may assume that

Up —uin WI’P(Q) and u, — uinL'(Q) and in I (OQ). (32)
In (11), we choose i = u, — u € W (Q), pass to the limit as n — +o0, and use (32). Then,

lim (A(un),un—u) =0

n—+oo
= U, > uin WI’P(Q)

= @ satisfies the C — condition.

To proceed further, we will need Lemma 2. This lemma will help us to establish the geometry near the origin.

Lemma 2. If n € L*(Q) is as in hypothesis Hi (iv), then we can find co > 0 such that

C1

S Ivly + [ &@ - n@lufdz+ [ @l do

> collulf forallue W'P(Q).

Proof. We have
c

1
p-1

[19uls+ [ @@ -atenluraz+ [ Bolupao]

with € = "%115,73\ = Pc;llﬁ,’ﬁ = P%llr/ [see also hypothesis H1 (iv)].
Let ¥ : W"(Q) — R be the C'-functional defined by

Fw) = |vull + fﬂ o) - 7))l dz + fa P@lupdo

for all u € WP(Q). We have
6> [ MER - n@]ufdz>0
[see (5) and hypothesis Hy (iv)].

Evidently, it is enough to prove the lemma for ¥. Arguing indirectly, and since ¥ is p-homogeneous, suppose we can find {u, } ey € W' (Q)
such that

|tn] = 1forallne N and Y(u,) | Oasn — +oo. (33)

We may assume that

Un —uin W (Q)and u, — uin I*(Q) and in I (9Q). (34)
The functional ¥(-) is sequentially weakly lower semicontinuous. So, from (33) and (34), it follows that
Y(u) <0,
HVuH§+ /’f(z)|u|sz+ f B@)|ufdo < fﬁ(z)|u|sz
Q 20 Q
= )< /Q A@\uldz <1 E B ul’ (35)
= uy= AUI(EE) forsomel e R [see(5)].

If A = 0, then u = 0 and so u, — 0 in W"?(Q), a contradiction to the fact that || u, ||= 1 for all n € N. If A # 0, then to fix things we assume that
A > 0 (the reasoning is similar if A < 0). We have u = Aﬁl(f,ﬁ) € D,. So, from (35) and the hypothesis on # [see hypothesis Hi(iv)], we obtain
plu) < Xl(f,ﬁ) ||, which contradicts (5). O

Using this lemma, we can determine the geometry near zero for 9. This is the first step in establishing the mountain pass geometry for ¢.
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Proposition 6. If hypotheses H(a)1, H(§), H(f), and H, hold, then u = 0 is a local minimizer of @.

Proof. Hypotheses H (i), (iv) imply that given € > 0, we can find c1o = cio(€) > 0 such that

F(z,x) < ~(n(2) + &)’ +c1ox’ foraa.zeQ, allx > 0.

-

Then, for u € W (Q), we have

o(u)
: fﬂ G(Vi)dz + 11) fﬂ (@) + wluldz + 11) fa @)l do

- /{; F(z,u)dz

> ;[pc_‘ Ivulf+ [ e+ fagﬁ<z>|u|"da]

- fF(z, u")dz [see Corollary 1and (8)]
Q

> %[pcf CIvulf+ fa (E@) - n@)|ul’dz + fBQﬁ(z)luIPdU]

- £||u\|" —cii|u|” forsomeci > 0 [see (36)]
1
> Z;[C9 —¢&]|ulf =i |u|” (see Lemma2).

Choosing ¢ € (0, ¢9), from (37), we infer that
D) > coa|lulf — e |lu|” forallu e W(€Q), someciy > 0.
Since p < r, we see that we can find p € (0, 1) small such that

P(u) >0=3(0) forallue W (Q),0< |ul <p

= u = 0isa(strict) local minimizer of .

As a consequence of hypothesis H; (ii), we have the following proposition:

Proposition 7. If hypotheses H(a)1, H(§), H(f3), and H, hold and u € D, then ¢(tu) — —oo ast — +oo.
Proposition 8. If hypotheses H(a)1, H(), H(B), and Hy hold, then K ¢ Ci.
Proof. Letug € K. Then,

P (uo) =0
= (A(uo).h) + fo (@) + 9)|uo2uohdz

+ [ B@luof P uohdo = [ Tz, uphdz

for all h e W'"P(Q). In (38), we choose h = —uy € W"?(Q), and using Lemma 1, we have

C1

SVl [ 6@+ 9 de <0

[see (8) and hypothesis H(f)]
cislug|F <0 forsomecis >0 (recall 9 > €] o)

up > 0.

Y

Y

(36)

(37)

(38)
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So, we have the following equation (see Ref. 30):

(A(uo), h) + _[Qf(z)ug_lhdz+ /(,;Qﬂ(z)ug_lhdo
= Af(zy uo)hdzforallh € WLP(Q)
~diva(Vun(2) + EEJua(e) " = 2 (=)
fora.a.z € Q, )

Ouo ﬁ(z)ug_lu =0 ondQ

—+
on,
(see Ref. 30). Now, we can use Proposition 2.10 of Ref. 32 (see also Ref. 18) on (39) and have that

up € L= (Q). (40)
Then, (40) and the nonlinear regularity theory of Lieberman® imply that

u06C+
= K@Q Cs.
O

In what follows, we assume that Ky is finite. Otherwise, we already have infinitely many positive smooth solutions for problem (1) (see
Proposition 8). Now, we are ready to produce positive solutions.

Theorem 2. If hypotheses H(a),, H(&), H(B), and H, hold, then problem (1) admits at least one positive solution uge D..

Proof. Proposition 6 and since K is finite imply that we can find p € (0, 1) small such that
$(0) = 0 < inf[§(w) : |u| = p] = mp (41)

(see Ref. 1, Proof of Proposition 29). Combining (41) with Propositions 5 and 7, we see that we can apply Theorem 1 (the mountain pass
theorem) and find uy € W'?(Q) such that

uo € Ky and 7, < P(uo). (42)

From (41), (42), and Proposition 8, we infer that uy € C,\{0}. Let p = ||uig | 0. Hypotheses H, (i), (iv) imply that we can ﬁnd’fp > 0 such that
f(z,x) +Ex"" > 0foraa. z e Q,all x € [0, p]. Using this in (39), we obtain the following equation (see Ref. 36, p. 120):

diva(Vuo(2)) < [[|€] e +’f\p]uo(z)p_1 fora.a.zeQ,
= Up € D+.

O

By changing the geometry of the problem near zero, we can have a multiplicity theorem for the positive solutions of (1). So, we strengthen
alittle the conditions on a(-) and modify the hypotheses on the reaction term f(z, -). The new hypotheses on the map y — a(y) are the following:

H(a): a(y) = ao(|y|)y forall y € RN with ag(¢) > 0 forall ¢ > 0, and hypotheses H(a)(i)-(iii) are the same as the corresponding hypotheses
H(a) (i)-(iii) and

(>iv) if Go(t)= [Otao(s)s ds, then pGo(t) — ao(t)l‘Z > —cforall £ >0, some ¢ > 0, and there exists g € (1,p] such that lim sup,_, o+
and t — Go(#9) is convex.

Go(t)
14

< +00

Remark 5. All the examples given after hypotheses H(a): also satisfy the new conditions H(a)a.

The new hypotheses on the reaction term f(z, x) are the following:
Hy: f: QxR —R is a Carathéodory function such that f(z,0) =0 for a.a. z € Q, hypotheses H, (i)-(iii) are the same as the
corresponding hypotheses H; (i)-(iii) and

(iv) with g € (1, p] as in hypothesis H(a),(iv), we have lim,_,o+ % = +oo uniformly for a.a. z €
(v) there exists w, € C'(Q) such that
J. Math. Phys. 60, 101506 (2019); doi: 10.1063/1.5118760 60, 101506-12
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wi(z) 2 ¢, >0 forallzeQ,

flz,wi(2)) - Ewi(2f ' < —cu<0 foraa.zeQ,
diva(vw) eL'(©@) (7 +%=1), 0<-diva(Vw.(2)
r r

foraa.ze Q,

(vi) there exists &, > 0 such that for a.a. z € Q the function x — f(z,x) + £&:x"~! is nondecreasing on [0, | | o ].

Remark 6. Hypothesis H(iv) implies the presence of a concave term near the origin. If £(z) > 0 for a.a. z € Q and f(z,¢+) <0 fora.a.z € Q,
then w.= c, satisfies hypothesis H»(v).

Theorem 3. If hypotheses H(a),, H(&), H(f), and H> hold, then problem (1) has at least two positive solutions uo, U € D, and uy <,
Uy u.

Proof. Asbefore, let 9 >|| & || [see hypothesis H(§)] and consider the Carathéodory function k : Q x R — R defined by
0 if x <0,
k(z,x) =4 flzx)+ 9" if 0.<x < wi(z), (43)
flzwi(@) + 9w (27" if wi(z) < x.

Let K(z, x)= fo’(l;(z, s)ds and consider the C'-functional ¥ : W'?(Q) — R defined by
S U N ”
(u) = 1;#(“) + E||u||p - fK(z, u)dz forallu e WP(Q).
Q

From (43) and since 9 >|| || 0, We see that ¥ is coercive. Also, via the Sobolev embedding theorem and the compactness of the trace map, we
check that ¥ is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find 1y € W'?(Q) such that

y(uo) = infly(u) : u e W(Q)]. (44)
Hypothesis H(a),(iv) implies that we can find ¢;5 > 1 and § € (0, c+) such that
G(y) < aisly|! forall|y| < 6. (45)
Moreover, hypothesis H, (iv) implies that given any 7 > 0, we can find 8, € (0, 8] such that
F(z,x) > 1x? foraa.zeQ, allx € [0,8;]. (46)

Let 71 (q)(£", B) be the principal eigenvalue for the eigenvalue problem (4), when the differential operator is u — —Aqu + &' (z)u. We know that
1(q)(&", B) € D, and so we can find ¢ € (0, 1) small such that

fii1(9)(¢", B)(2) € (0,8:] and ¢V (q)(E", f)(2)| < & (47)

forallz € Q.
Then, we have

y(fim (q)(E", B))
< clsﬂ[uvm)(fi P+ [ @m@Epra:

¥ fa FEm@E ﬁ)"da] - fQ o, fin ()&, p))dz
[see (45),(47) and recall c14 > 1]
= l‘q[Clsxl (q)(f+,[3’) -1].

Choosing 7 > clsxl(q)(f+,ﬁ), we see that
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y(an (q)(E,P) <0
= y(up) <0=y(0) [see(44)]
= uy # 0.
From (44), we have
v (40) =0
= (A(uo),h) + f () + 9ol uohdz (48)
Q

+ f B2 ol 2uohdo = f Rz, uo)hdz
o0 Q

for all h e WHP(Q). In (48), we choose h = —Uy € WY (Q). Then,

C1

SEIv [ €+ 9w de <o

[see Lemma 1, hypothesis H() and (43)]
ci6 g ||P < 0 for some c16 > 0 (recall that 9 > ||€] o)

up > 0,up # 0.

Y

Y

Next, in (48), we choose /1 = (ug — w,)" € W(Q). Then,
(Aol (o = )+ [ (€@ + 9™ (o = wi)'dz
Q
+ aﬂﬁ(z)ug”(uo —wy)do
= [ Tz o) o - )z
Q

= /(l[f(z,w+)+9wﬁ_1](uo —wy)'dz  [see(43)]

< (AW o = w0y + [ (5@ + O (g — wh) dz
Q

-1 +
+ /aﬂﬁ(z)wﬁ (up — wy) do
[see hypotheses H, (v) and H(f3)]

= up<w, (sinced> [{]).

So, we have proved that
ug € [0,we], uo #0. (49)

From (49) and (43), Eq. (48) becomes (see Ref. 30)
(A(uo), ) + fa @il hdz + fa B hdo
- fQ (2 uo)hdz

forallh e W™ (Q)

—diva(Vuo(2)) + E@)uo(zV ™" = f(z,u0(2))
= foraa.z€ Q, (50)

ou .
an: +B(2)ul " =0 on OO

As before from (50) and the nonlinear regularity theory (see Refs. 18, 22, and 32), we have 1o € C,\{0}. On account of hypothesis H,(vi),
there is &, > max{&,, | €] } such that f(z,x) + &x""" > 0 for a.a. z € Q, all x € [0, | ws | oo ]. From (50), we have the following equation (see
Ref. 30, pp. 111 and 120):
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diva(Vuo(2)) < [|€] e + g+]uo(z)‘°71 fora.a.zeQ

= uy € D;.
In addition, note that

~ diva(Vuo(2)) + (&) + Euo(2) ™

= f(zu0(@) + Eu(2)!

< flow (@) + Ewi (2!

[see hypothesis H, (vi) and recall that ug < w. ]

<—cia+ (@) +Ewi ()

< —diva(Vw.(2)) + (€(2) + E)w.(2) ' foraa.z € Q (51)
[see hypothesis H (iv)].

From (51) and Proposition 5 of Ref. 10, we have

(wy —ug)(z) >0forallz € Q,
0w, — uo)

on
= wy — 1 € Dy (Zo). (52)

L <0withZg = {z € 0Q : up(z) = wi(2)}

0

Using uo, we introduce the following Carathéodory function:

_ fzu0(2)) + Juo(2) " if x < uo(2),
,X) = _ 53
Yo(z,%) { f(z,x) + 97! ifug(2) < x. (53)
We set fo(z, x)= foxyo(z, s)ds and consider the C!-functional 7y : Wl’p(Q) — R defined by
To(u) = ly(u) + §||u||£ - f’fo(z, w)dz forallu e W(Q).
p p Q
Using (53), we can show that
Kz, € [uo) N Dy = {ue C'(Q) : up(2) < u(z) forallz € Q}. (54)
We may assume that
K?O n [uo,W+] = {uo}. (55)
Indeed, if we can find @ty € Kz, N [0, w4 ], ilo # to, then from (54) we have
Uy < 1:{0, 1:1() S D+
= iip is the desired second positive solution of (1) [see (53)].
We consider the Carathédory function y, : Q x R — R defined by
- _ | Yolz,x) ifx < wy(2),
Jole,x) = { Folewi (@) ifwi2) < x. 36)

We set T'o(z, x)= fox)”/o(z, s)ds and consider the C'-functional 7o : W(Q) — R defined by
To(u) = %‘u(u) + g ||u||§ - /fo(z, wdz forallu e W(Q).
Q

As before, since 9 >| & || o and using (53) and (56), we have that 7o () is coercive and sequentially weakly lower semicontinuous. So, via the
Weierstrass-Tonelli theorem, we can find o € W (Q) such that
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%o(ito) = inf[7o(u) : u € W(Q)]. (57)
Using (53) and (56), we see that

Kz, € [uo, w+] N D,

= g€ [uo,w+]NDy [see(57)]. (58)
Note that
?(,’bm] = fébw*] [see (53) and (56)]. (59)

From (55), (58), and (59), it follows that & = ug. Then, (52) and Proposition 1 imply that
uo is alocal W™ (Q) — minimizer of . (60)

We assume that Kz, is finite [otherwise, on account of (54), we have an infinity of positive smooth solutions of (1) bigger than 1y and so we
are done]. Then, we can find p € (0, 1) small such that

To(uo) < inf[To(u) : |u— uo|| = p] = 7y (61)
(see Ref. 1, Proof of Proposition 29). Hypothesis H»(ii) implies that for all u € D,, we have
To(tu) > —oc0 as t— +oo. (62)
Note that
"Eg|[u0) = ’(,5|[u0) + &, forsome &, € R [see (53) and (8)]
= Ty satisfies the C — condition (see Proposition 5). (63)

Then (61), (62), and (63) permit the use of Theorem 1 (the mountain pass theorem). So, we can find % € WL (Q) such that

Ueks S u)nDy  [see(54)], m, <To(@). (64)
From (61) and (64), it follows that 4 # ug, up < U, and U is a positive smooth solution of (1). O

In the current setting, we can prove the existence of a smallest positive solution for problem (1). Let S be the set of positive solutions for
problem (1). We have seen that under hypotheses H(a), H(f), and H,, we have @ + S, c D,. Moreover, from Ref. 33 (see also Ref. 9), we have
that S, is downward directed (that is, if u;, u, € S;, then we can find u € S; such that u < u;, u < ).

Theorem 4. If hypotheses H(a),, H(&), H(f), and H» hold, then problem (1) admits a smallest positive solution u, € D..
Proof. From Lemma 3.10, p. 178 of Ref. 17, we know that we can find {u4 },cny € S+ such that
infS; = infu,.
neN

Evidently, we may assume that u, € [0, w.] for all n € N. So, it follows that {u,},y € W"?(Q) is bounded. So, by passing to a suitable
subsequence if necessary, we may assume that

Un —> 1, in W (Q) and 4y, — s in L'(Q) and in I (8Q). (65)
We have
-1 -1
(A(un), h) + fﬂ £l hdz + fa B ndo (66)
- fﬂ F(2 un)hdz

forallh e W'P(Q), alln e N.
In (66), we choose h = u, — ux, € W(Q), pass to the limit as # — +o0, and use (65). Then,

lim (A(un), tn — tx) =0

n—+oo
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= Uy — ux in WP(Q)  (see Proposition 2). (67)

So, if in (66) we pass to the limit as n — +oo and we use (67), then

(A(ux), h) + [E(z)uﬂ_lhdz + f ﬁ(z)u‘:lhda
Q aa
- f f(z ux)hdz forall h € W (Q)
Q
= us €S, u{0}.
We need to show that u, # 0. Hypotheses H, (i) and (iv) imply that given any A > 0, we can find ¢17 = ¢17(A) > 0 such that
flz,x) > ATl - cl7xr_1 fora.a.ze Q, allx > 0. (68)
This unilateral growth estimate on the reaction term f(z, -) leads to the following auxiliary nonlinear Robin problem. Here, as before 9 > | £ || oo,
~diva(Vu(2)) +§ (@u(zf ™ = @)™ - crou()
inQ, (69)

g—:“+/3(z)uf”1 =00ndQ, u>0. .

Claim 1. For A > 0 big, problem (69) admits a unique positive solution % € D.
First, we show the existence of a positive solution for problem (69). To this end, let J : WL (Q) — R be the C*-functional defined by

1 9, _ c o Ay s
J) = )+l + S - 2 1w

Recall that 9 > || €] . Therefore, since g < p < r, it follows that J(-) is coercive. In addition, the Sobolev embedding theorem and the com-
pactness of the trace map imply that J(-) is sequentially weakly lower semicontinuous. So, using the Weierstrass-Tonelli theorem, we can find
% € W™ (Q) such that
J(@) = inf[J () : u e WP (Q)]. (70)
Hypothesis H(a);(iv) and Corollary 1 imply that there exists c1g > 0 such that
GW) < sy’ +[yff) forally e RN (71)

Then, for u € W"P(Q) with u > 0, 0 <|| u < 1, we have
1
I < en vl + |7l + [ & @t

1 , CA

+ f/ B(2)u’do + cro|lu|” — = | u|? for some ci9 > 0
pJoa q

A
< [e20 - a]”u” (recallg < p < rand |u| = 1).

However, A > 0 is arbitrary. So, choosing A > gco > 0, we have

J(u) <0=J(0)
= J(w)<0=J(0) [see(70)]

= u=+0.
From (70), we have
J'(@)=0
= (A@).h)+ fﬂ £ (o)’ 2ahdz + fa @l ihdo
-1 fn @ hdz - 17 fg @) " hdz (72)

forallh e W (Q).
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In (72), we choose h = -~ € W"(Q). Then,

v+ f E @)@ Yz + f B(2)@ ) do < 0
p-1 Q [Je)

(seeLemma 1)
= o |u |P < 0forsomecy >0 (recall that 9 > ||€]|co)

— 720,70,
Therefore, (72) becomes (see Ref. 30)
(A, h) + f £ () hdz + f B)# " hdo
Q oQ
) f T hdz - ey f 7 hdzforall h e W' (0)
Q Q

~diva(Vi(z)) + & (@uz) ™" = 2u@)*" - cipuz) ™!
5 foraa.z€ Q, (73)
ou

+B2)@ " =0 ondQ,

=u e C,\{0} (bythenonlinear regularity theory).
From (73), we have the following equation (see Ref. 36, p. 111 and 120):
diva(Vii(2)) < [|[€]eo + c17|[] e Ju(z)P " fora.a.z e Q
= ue€D,.
This proves the existence of a positive solution in D, for the auxiliary problem (69), when A > 0 is big. Next, we show the uniqueness of this
positive solution. To this end, we introduce the integral j : L'(Q2) - R = R U {+0o0}, defined by
1/q 11 gt Pl
‘ fQG(Vu Vdz + pr€ (2)u?1dz
JW =1 L [oB@u! e ifu'lt e W(Q), u>0,
+oo  otherwise.
Let uy,u; € domj={u e L'(Q) : j(u) < +oo} [the effective domain of j(-)]. We set
u=[tu+(1- t)uz]l/q fort€[0,1].

Using Lemma 1 of Ref. 7, we have

1/
[Vu()| < [1vm @+ (1 - D vus@ /7]
fora.a.ze Q
= Go(|Vu(2)))
< Go{ [V (@)1 + (1 - D)vus(a) 1] )
fora.a.z € Q [recall that Go(-) is increasing]
< tGo(|Vi1(2) 7)) + (1 = DGo(|Vua(2) /1))
fora.a.ze Q
[see hypothesis H(a)>(iv)]
= G(Vu(2) < tG(Vur (2)'/) + (1 - HG(Vinr(2)''")
fora.a.z€ Q,
= j(-)is convex
[recall that g < p and see hypothesis H()].
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Also by Fatou’s lemma, j(-) is lower semicontinuous. Suppose that ¥ € W"?(Q) is another positive solution of the auxiliary problem (69). Again
we show that v € D,. Then, for h = u? - ¥ and t € (0, 1], small, we have u? — th, ¥1 + th € dom j. Evidently, j(-) is Gateaux differentiable at #?
and at ¥/ in the direction h. So, from the chain rule and the nonlinear Green’s identity (see Ref. 12, p. 210), we obtain

7 —g _ 1 r=diva(Vy) + !
@ = / o hdz,
gy 1 —diva(vv) + & (27
fohm= A o hdz,

for this h € C'(Q)). From the convexity of j(-), we have the monotonicity of j'(-). Hence,

o< [(ZRAYD AT )G - e
- [ @@ -7 @ - )dz
- fn cry@ -V )@ -v)dz
= u=v (sinceqg<p<r).
This proves Claim 1.

Claim 2. u<uforallues,.
Let u € S; and consider the Carathédory function k, : QO x R — R defined by

0 ifx <0,
ke(zox) ={ AT — e+ 987! if0 < x < u(2), (74)

Mu(2)T" = cipu(2)™" + Ju()Pifu(z) < x.

We set Ki(z,x)= [, k+(z,s)ds and consider the C'-functional y, : W"(Q) —» R defined by

Y (1) = fQ G(Vu)dz+% fQ (@) + 9)|upPdz

N 117 fa @uPda - fﬂ K. (z u)dz

for all u € W' (Q). Since 9 > | €]l oo, from (74), we infer that y. is coercive. In addition, it is sequentially weakly lower semicontinuous. So, we
can find i1 € W(Q) such that
(i) = inflyy (u) : ue WHP(Q)]. (75)

As in the prove of Claim 1, we show that

Y (@) < 0= ,(0)

= u+0.
From (75), we have
v (i) = 0
= (A(it),h) + fQ (& (2) + )P ihdz
v [ gl ando = [ k(e ihdz 6

for all h € WHP(Q). In (76), first we choose h = —ii~ € W"P(Q). Then, since 9 >| € || o0, we obtain

|| <0 forsomecy >0
= u>0,u=+0.
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Also in (76), we choose h = (it — u)* € W'?(Q). Then,
(A -0+ [ (€ @0 - w)'dz
N fa @i - w'do
- f ko (2, 1) (it — ) dz
Q
:fn[/\u‘rl — o™+ 9 (i - w) dz
5/ [f(zou) + 9™ )(i1— u)'dz  [see (68)]
Q
<(A(u), (it - u)*) + fﬂ (E (@) + ™ (- w) dz
P,l > + .
+ /60[5(2)u (1 —u)"do (sinceu € S)
= (A®@) - A(), (i1 —u)")
+ [E @@ - -z
Q

+ faoﬁ(z)(a"“ " @ -u)do<0

= i <u[sinced > ||£] o, seealsohypothesis H(B)].

So, we have proved that
e [O,u], u+0. (77)

Then, on account of (74), Eq. (76) becomes
(AG@), h) + f £ ()i hdz + [ ()it hdo
Q o0

= f AT = ey Yhdz forallh € W(Q)
Q

= fiisapositive solution of the auxiliary problem (69).

From Claim 1, we have

forallu € S, [see (77)].
This proves Claim 2. Now, on account of Claim 2, we have

foralln e N
[see (67)]

= u,#0 andso wux €S,, uy =infS,.

u<uy,
= uU<Lux

0
IV. p-LAPLACIAN EQUATION
In the existence theorem of Sec. III (see Theorem 2), we assumed that the quotient % stayed below a multiple of the principal
eigenvalue TG, ’/.3). In the particular case of the p-Laplacian [that is, a(y) = [y’ "y for all y € RN], hypothesis H; (iv) becomes
. o fex) f(zx)
fi(z) < h}rg&pfw < hrxrj)?p = <n(z)
uniformily fora.a.z € Q,
n(z2) <h(EP) foraa.zeQ, n+h(Ep).
J. Math. Phys. 60, 101506 (2019); doi: 10.1063/1.5118760 60, 101506-20

Published under license by AIP Publishing


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

So, at zero, we have nonuniform, nonresonance with respect to the principal eigenvalue ’Xl(rf, B). This condition made u = 0 a local
minimizer of ¢ (see Proposition 6) and made possible the use of Theorem 1 (the mountain pass theorem). It is natural to ask what happens if
the quotient fxi,z’x)

2 stays above A; (&, ) as x — 0. We will show that in this case for the p-Laplacian equation, we can still produce a nontrivial
smooth solution but without any information on its sign. In this case, the mountain pass theorem cannot be used. Instead we use tools from
Morse theory (critical groups). So, the problem under consideration is the following nonlinear Robin equation:

1) —Apu(z) + f(z)|u(z)|P72u(z) = f(z,u(2)) in Q,
Pl S0 on 0.

Therefore, now we have
a(y) = |y|‘D_2y forally e RY (1<p<o0),
G(y) = %MF forally e RV,

ou _ p_zau 1,p
an, ul e forallu e WP (Q).

We introduce the following subspace of W' (Q):

V= {u e WH(Q): /’ﬁl(f,ﬂ)udz = o}. (78)
Q
We have the following direct sum decomposition:

WY(Q) = Ru (& p) e V. (79)

In the sequel, for economy in the notation, we write i, = % (&, 8) € D,. We set

v = ian:‘uP(L;) cue WP(Q), u+ o]. (80)
lulls

In this case, the C'-functional g, : W'"P(Q) — R is given by

pp(u) = ||Vu\|§ + fﬂf(z)\u|"dz+ /aoﬁ(z)|u|Pda

forall u e W2(Q).
As in Ref. 28 (see Proposition 3.8), we can show that

1\1 <1\V 31\2. (81)

Moreover, if p = 2, then ’/X\V = ’Xz. The hypotheses on the reaction term are the following:
Hs: f: Q xR — R is a Carathédory function such that f(z,0) = 0 fora.a. z € Q and

1) |f(zx)] <alz)+ |x|’"1) foraa.ze Q,allx e R, witha e L= (Q),, p <1 < px;

(i) if F(z,x)= fox f(z,s)ds, then limy ;.00 % = +oo uniformly for a.a. z €

(iii) ife(z,x) = f(z,x)x — pF(z, x), then there exists d € LH(Q) such that e(z, x) < e(z,y) +d(z)foraa.zeQ,all0<x<yory<x <0
(iv) there exist 8 € (0,1) and 5 € (A1, Av’) such that 11 x| < f(z,x)x < #|x|’ for a.a. z € O, all |x]| < .

Remark 7. Now hypothesis H3(iv) at zero permits resonance with respect to the principal eigenvalue A

Let ¢p : W (Q) > R be the energy (Euler) functional for problem (1)p defined by
op(u) = Il)yp(u) - fF(z,u)dz forallu € WI’P(Q),
Q

with g, : W'(Q) — R defined by
- P vy f P4
wpta) = |vulf+ [ E@lulde+ [ palufdo
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for all u € W'(Q). Note that the hypotheses H3 (i)-(iii) are the same as the corresponding hypotheses H; (i)-(iii). Therefore, Proposition 5
remains valid and we have the following proposition:

Proposition 9. If hypotheses H(&), H(B), and Hs hold, then the functional ¢ satisfies the C-condition.

Next, we compute the critical groups of the energy functional at infinity. In fact, we will do this for the general case of the differential
operator diva(Vu) since the result is of independent interest and can be used in other occasions. In this case, the energy functional ¢ :
W' (Q) - R is given by

o(u) = })y(u)— fﬂ Flz,wdz forallu e W(Q),
with g : W(Q) — R defined by
_ P P
pu) = /QpG(Vu)dz+ /Qf(z)|u| dz + /mﬁ(z)ht\ do
forall u e W2(Q).

As we already mentioned, if G(y) = ;;MP for all y € RY, then ¢ = ¢, and this energy functional corresponds to the p-Laplace differential
operator.

Proposition 10. If hypotheses H(a)1, H(§), H(B), and H3 (i)-(iii) hold, then Ci(¢, 00) = 0 for all k € Ny.

Proof. Let OBy ={ue whr(Q) :[lu||=1}. Hypotheses H3(i), (ii) imply that given k > 0 we can find c23 = ¢23(k) > 0 such that
F(z,x) > g\xvj —c3 foraa.zeQ,allxeR. (82)

Then, for u € OB; and t > 0, we have
1
tu) = —u(tu) — F(z, tu)d
(1) = ta | Fatuydz

# t
<cs(L+2°|Vulp) + 5624\\14”5 - ;kHqu + 23| Qv

for somecyy > 0
[see Corollary 1, hypotheses H(), H(f8) and (82)]

<t[crs —kul}] forsomecss >0  (recall u € OB,).
Recall that k > 0 is arbitrary. So, choosing k > ﬁ, we infer that
P
¢(tu) > —co  ast — +oo. (83)
For u € OB; and t > 0, we have
%(p(tu) ={¢'(tu),u) (bythe chainrule)
:%(q)'(tu), tu)
:l[/(a(tVu), tVu)pydz + [f(z)|tu|pdz
tlJa Q
tulPdo — f , tu)(tu)d ]
+ [ B@luPdo -~ [ ftdz

1 » P ]
St[/QpG(tVu)dz+ /(;E(z)|tu| dz + fmﬁ(z)|tu| do /(;pF(z, tu)dz + cz6
for some cz6 > 0 [see hypotheses H(a); (iv), H3 (iii) ]

=%[p<p(tu) + C26 ] (84)

From (83) and (84), it follows that %(p(tu) < 0 for all £ > 0 big. The implicit function theorem implies that we can finde € C(9B;) such that

C25

e>0 ande(e(u)u) = po < —?. (85)
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We extend &(-) on WP (Q)\{0} by & () = m’e‘(u—z”) forall u e WP (Q)\{0}. We have?y € C(W"P(Q)\{0}) and ¢ (€ ()u) = po. Also, we have

o(u) = po ="ep(u) = 1. (86)
So, if we define
- _J1 if p(u) < po,
eo(u) = {’éo(u) if po < @(u), (87)

then we have & ¢ C(W"(Q)\{0}) [see (86)]. We consider the deformation & :[0,1] x (W"?(Q)\{0}) - W"P(Q)\{0} defined by
h(t,u) = (1 - t)u + teg(u)u for all ¢ € [0,1], all u € W'P(Q). We have

o h(0,u) = uforall u e WHP(Q)\{0},
o h(l,u)=e(uuec¢p® [see(87)],
o ht; ), =id|, [see(56)and (87)].

From these facts, we infer that

¢ isastrong deformation retract of whP (\{0}. (88)

Consider the radial retraction ry : W'* (\{0} — OB, defined by

ri(u) = forallu e W™ (Q)\{0}.

"
Jul

We introduce the deformation h : [0,1] x (WI’P(Q)\{O}) - WI’P(Q)\{O} defined by it u) = (1 - u+tr(u) for all te [0,1], all
u e WHP(Q)\{0}. With this deformation, we see that

WI’P(Q)\{O} is deformable into OB;. (89)
In addition, using radial retraction r1(-), we see that
OB, is aretract of WI’P(Q)\{O}. (90)
From (89), (90), and Theorem 6.5, p. 325 of Ref. 8, we infer that
OB, is a deformation retract of W' (Q)\{0}. (91)
From (88) and (91), it follows that (see Ref. 27, p. 143)

¢™ and dB; are homotopy equivalent
= H(W"(Q),¢”) = H(W"(Q),dB,) forallk e Ny, (92)

The Sobolov space wl? (Q) is infinite dimensional. Hence (see Ref. 16, Problems 4.154 and 4.159, and Ref. 27, p. 147),

OB is contractible
(see Ref. 16, Problems 4.154 and 4.159)

= H(W'"(Q),0B))=0 forallkeN,
(seeRef. 27, p. 147)

= H(W"(Q),¢")=0 forallkeNy [see(92)]. (93)

As usual, we assume that K, is finite (or otherwise, we already have an infinity of nontrivial solutions which are in C'(Q) by the nonlinear
regularity theory). So, choosing pp < — %‘ even more negative, we have
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Cilp, 0) = H(W'P(Q),¢f*)  forallk € N
= Ci(p,00) =0 forallk e Ny.

O
Now for the functional ¢,, we compute the critical groups at zero.
Proposition 11. If hypotheses H(¢), H(B), and H3 hold and;\\v > 0, then C1(¢p,0) # 0.
Proof. We consider the direct sum decomposition,
WPQ) =Rz @V [see(79)]. (94)
Recall that %; € D.. So, for |¢| < 1 small, we have
|t (z)| < 8, and |tV (2)| <8 forallz e Q. (95)
Then, using (95) and hypothesis H3(iv), we have
B _
pp(f) < ;[Hp(ul) -M]=0 (recall |7 |, = 1).
So, we can find p; > 0 such that
Pz, nom,, <O (96)
with By, = {u € W"(Q) : |u| < p1}. From hypotheses Hs(i), (iv), we have
F(z,x) < g|x|P + Co6lx| fora.a.z € Q, allx € R, some cz6 > 0. (97)
Then, for u € V, we have
1 P r
@p(u) > };[ﬂp(“) = nllulh] - car | u]
for some c7 > 0 [see (97)]
> l[ - l] (u) — car ] [see (80)]
2 » ;\\V Up 27
> cos||ul? - 27| ul|” for some c25 > 0
(sincey < ’Iv andxv > 0).
Because r > p, choosing p» € (0, 1) small, we have
@p(u) >0 forall0 < [lu| <ps,ucV. (98)

From (96) and (98), it follows that ¢, has a local linking at the origin with respect to the decomposition (94). So, from Ref. 27, p. 171, we have
Ci(9p,0) 0. O

Now we are ready for the existence theorem for problem (1)p.
Theorem 5. If hypotheses H(§), H(B), and Hs hold and Ay > 0, then problem (1)p admits a nontrivial solutionu € cl(Q).

Proof. From Proposition 11, we have that
Ci(gp,0) #0. (99)

Also, from Proposition 10, we know that
Ci(pp,o0) =0 forallk € Ny. (100)

From (99) and (100), we infer that there exists 77 € W (Q) such that
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U €Ky, U0 (seeProposition4)

= 7isanontrivial solution of (1)p.

The nonlinear regularity theory implies that 7 € C'(Q)). O

We conclude with an existence result concerning the following nonlinear parametric Robin problem:

- -Apu(z) + f(z)u(z)p_1 =Afo(z,u(z)) inQ,
(D g—;;+ﬁ(z)up_l =00n0Q, u>0.

We impose the following conditions on the data of (1):
Hp: £ e L™(Q), B € C*(H(Q)) with a € (0,1), £ > 0, B > 0 and at least one of them is nontrivial.
Hy: fo: QxR — R is a Carathéodory function such that fo(z,0) = 0 for a.a. z € Q, and hypotheses H4(i)-(iii) are the same as the
corresponding hypotheses H (i)-(iii) and
Jolzx)
XP’l

(iv) lirgl = 0 uniformly for a.a. z € Q.
x—0*

Remark 8. Hypothesis Hy implies that 1, > 0. Then, hypothesis Hy(iv) is a special case of hypothesis H, (iv).
Invoking Theorem 4, we have the following result concerning problem (1)}:

Theorem 6. If hypotheses Ho and Hy hold, then for every A > 0 problem (1)) admits a positive solution @ € D;.

Remark 9. For p = 2 (semilinear problem) and Dirichlet boundary condition, with stronger hypotheses on the data, such an existence result
is the main theorem in the work of Miyagaki-Souto.”® Their method of proof is more involved. Semilinear Robin problems were studied in the
recent work of Hu-Papageorgiou.””
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