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ABSTRACT Natural and engineered networks, such as interconnected neurons, ecological and social
networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable
heterogeneity in the local connectivity around each node. For instance, in both elementary structures such
as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest
of the network disproportionately strongly. While the effect of the arrangement of structural connections
on the emergent synchronization pattern has been studied extensively, considerably less is known about
its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive
investigation across diverse simulated and experimental systems, encompassing star and complex networks
of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire
model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks.
We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear
prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence
gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one
observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence
of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation
of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship
may be lost or even inverted. In systems with a strong stochastic component, the generation of more
temporally-organized activity could be induced. These observations have many potential implications across
diverse fields of basic and applied science, for example, in the design of distributed sensing systems based
on wireless coupled oscillators, in network identification and control, as well as in the interpretation of
neuroscientific and other dynamical data.

INDEX TERMS Attractor dimension, chaotic transition, complexity, electronic chaotic oscillator, entropy,
network topology, neuronal culture, nodal strength, node degree, nonlinear dynamics, prediction error,
Rössler system, Saito oscillator, stochastic dynamics, structural connectivity, synchronization.

I. INTRODUCTION
Our world is pervaded by natural and engineered networks
which are remarkably diverse not only in their constituent
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elements and their behaviors, but also in size and spatial
scale. Yet, many tend to show similar statistical features, for
example in the organization of the structural connections;
these are thought to arise from self-organization processes
that are, at least to some extent, universal. For this reason,
the interdisciplinary study of a property or phenomenon over
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different types of complex networks can be highly relevant
in informing new design approaches and paradigms [1].
On the one hand, the investigation of naturally-occurring
networks such as neurons in nervous systems, species in
ecosystems, and proteins in organisms has received increas-
ing attention over the last two decades [2], [3]. On the
other, diverse areas of engineering are currently experiencing
a strong thrust towards better understanding the collective
properties of interacting devices such as terminals in wireless
telecommunication networks [4], nodes in Internet-of-Things
(IoT) infrastructures [5], loads and generators in power net-
works [6], and sensors in distributed sensing networks [7].
This trend reflects a need to more pervasively distribute
automation and intelligence for better serving societal needs
through higher flexibility and resilience delivered at lower
power consumption.

In networks of coupled systems, the arrangement of the
structural interconnections determines the possible interac-
tions, in turn shaping the behaviors that can be displayed by
the system as a whole: discovering how to induce and harvest
collective behaviors purposefully towards solving specific
problems may be viewed as one of the most significant
challenges of our times [8], [9]. For example, considering
the elementary but paradigmatic case of diffusively-coupled
oscillators, the onset and stability of a synchronous trajec-
tory common to all network units are related to the spectral
properties of the Laplacian matrix representing the interac-
tions [10], [11]. Also, the emergence of intricate synchrony
patterns, characterized by clusters of units sharing a collective
behavior, different from that of the other groups, is closely
related to the layout of the structural connections, such as
the existence of orbital and equitable partitions [12], [13].
Ultimately, results such as these have inspired and enabled
the development of some techniques for controlling networks,
wherein it is crucial to identify the topological properties that
can be relied upon in deciding to which nodes the desired
control law should be applied [14]–[17].

The bulk of literature in this area has focused on the
relationship between structure and collective state, but com-
plex systems often operate in regimes different than that.
Consider, for instance, a network of oscillators that are not
strongly synchronized: paradigmatic examples are found in
biological nervous systems where, on the contrary, high syn-
chrony generally corresponds to pathological states such as
epileptic seizures [18]. Indeed, it is recognized that a delicate
balance between information integration and differentiation
is essential for the emergence of higher functions such as
cognition and consciousness, and these clearly cannot be
understood trivially in terms of a coherent state engulfing
the entire brain [19], [20]. In networks of weakly-coupled
elements, interactions still play a primary role, but their
action in shaping the collective behavior is rather elusive and
difficult to characterize, also due to the possibly long-range
correlations which may be engendered by operation close to
criticality [21]–[23]. Accordingly, efforts to develop control
strategies face more significant difficulties and controversies

in deciding which nodes to target and how global dynam-
ics could be steered [24], [25]. Consequently, the many
possible practical engineering applications of networks of
weakly-coupled entities remain comparatively underdevel-
oped [26].

Because under situations of weak synchronization there
is, by definition, considerable richness and diversity in
the time-series recorded or simulated across the network
nodes, it becomes interesting to attempt relating the dynam-
ical features of activity unfolding locally within each node
(representing, for example, an electronic oscillator, a neu-
ron, an individual in an ecosystem, or another intelligent
agent) with the topological features of its connectivity to
the rest of the network. More specifically, since a scale-free
distribution of the node degree hallmarks many complex
networks [1], [24], and heterogeneity in the degree distri-
bution has knowingly non-trivial effects on the onset of
strongly-synchronized states [27], searching for distinctive
features in the behavior of the most densely-connected ‘hub’
nodes appears to be a natural choice. The question can
be approached in a complementary manner via measures
based on nonlinear dynamics theory such as predictability
(i.e., level of determinism) and fractal dimension of the attrac-
tor (i.e., geometrical complexity) [28], and through estimat-
ing information production, storage and transfer [29], [30].

To the authors’ knowledge, limited data is available regard-
ing the effect that the local connectivity of each coupled
element, represented by node degree and nodal strength in
binary andweighted graphs respectively, has on these aspects.
It is, however, agreed that for instance network structure and
dynamics in the brain are discernibly associated at both the
local and global levels [31], [32]. In analyses of time-series
representing intrinsic brain activity, it was found that, com-
pared to the rest of the network, hub regions of the cor-
tex exhibit stronger signatures indicative of low-dimensional
deterministic, possibly chaotic, nonlinear dynamics. In the
same study, an experimental transistor-based oscillator net-
work was considered as a toy model, and transition to chaos
was noted to selectively occur in the nodes which were hard-
wired to mimic hubs [33]. Another study simulating a net-
work of Stuart-Landau oscillators instanced over a realistic
human connectome reported a correspondence of the node
degree with the relative phases and amplitudes of oscilla-
tions [34]. Recently, a more comprehensive analysis revealed
an association between topological role and dynamics, such
that high degree appears to be associated with lower levels
of complexity across diverse systems [35]. Together, these
results point to a possibly general relationship that seems
worthy of additional consideration.

In the present contribution, we reveal across a broad range
of scenarios the possibly intricate effects that the local con-
nectivity, i.e., number and strength of connections, can have
on the activity within each network node. We consider ele-
mentary topologies, namely stars, as well as diverse instances
of complex networks whose members are subject to differ-
ent coupling levels. Firstly, we address the case of systems
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FIGURE 1. Effect of the bifurcation parameter a and node degree (number of leaves) n in star networks of Rössler systems. a) Network topology, where
n = 3, . . . ,10 and u = 0.1, b) Correlation dimension D2 (blue: hub, red: average of leaves), c) Permutation entropy of adjacent local maxima h5, d)
Coefficient of variation for maxima amplitude fluctuations σmax/µmax, e) and f) Representative time-series for hub and leaf activity given a = 0.35,
n = 10, and g) Phase synchronization r between the hub and leaves (blue) and among the leaves themselves (red). All measures derived from the xj
variables. Arrows denote the effect of increasing n.

that are primarily or wholly deterministic. In this context,
we demonstrate via numerical simulations of Rössler chaotic
units and experimental recordings of electronic nonlinear
oscillators that high connectivity density can promote the
onset of chaos and high-dimensional dynamics. However,
when the coupling is more intense, the effect can be lost
or even inverted. Secondly, we turn to systems wherein
dynamics are markedly stochastic. In the latter settings,
we show via numerical simulations of leaky integrate-and-
fire neuronal circuits and recordings from in-vitro cultures
of spontaneously-growing neuronal networks that high con-
nectivity density can promote the local onset of nonlinear
dynamics, that is, more predictable activity. Finally, the possi-
ble implications of these results on basic and applied science
are discussed, both at the conceptual level and as regards
the relevance for future applications of coupled oscillator
networks across several engineering fields.

II. STAR NETWORKS OF RÖSSLER SYSTEMS
A. SIMULATION SETTINGS AND
DYNAMICAL PARAMETERS
We firstly examine the case of Rössler systems diffu-
sively coupled according to a star topology having n leaves
(Fig. 1a). This case is paradigmatic because, on the one hand,
the Rössler equations show considerable dynamical richness
in spite of their low dimensionality and structural simplicity;
they generate orbits which spiral in the vicinity of the x, y
plane while, for suitable settings, spiking in the z dimension
and twisting, giving rise to a characteristic chaotic attractor.
As a function of the bifurcation parameter a, the level of
folding can be controlled, whereby given a = 0.1 the
dynamics are periodic (e.g., delineate a circle) and for a ≥ 0.2
chaos ensues with increasingly rapid divergence and more
complex trajectories [36]–[38]. On the other hand, the star
topology plays a central role in graph theory, because it
represents a simple situation wherein the nodes, namely the
hub j = 0 and leaves j = 1, . . . , n dichotomously cluster
into two categories having a different degree (number of

connections, namely n and 1) and centrality. As such, it is
the most elementary configuration exemplifying the effect of
node degree. At the same time, star motifs are foundational in
the construction of many emergent complex topologies, such
as scale-free networks. The dynamics on star networks often
allow some level of analytic solution, and their remarkable
generative potential is exemplified by the observation of
synchronization by dynamical relying, remote effects and
even chimera states [39]–[45].

The following system was considered for j = 0, . . . , n
ẋj = −yj − zj +

n∑
k=0

gjk (xk − xj)

ẏj = xj + ayj,
żj = bj + zj(xj − cj)

(1)

wherein

gjk =

{
u if (j = 0 ∨ k = 0) ∧ j 6= k,
0 otherwise

(2)

fixing the secondary parameters to b = 0.2 and c = 5.7, and
sweeping the bifurcation parameter a ∈ [0.15, 0.40], running
100 simulations for star networks having n = 3, . . . , 10
leaves. All parameters were set identically across the nodes
and runs, while initial conditions were randomized, setting
xj(0) = yj(0) = 0 and drawing zj(0) ∈ [−10, 10]. The
simulations were run until tend = 5 × 103, discarding the
first 20% to allow initial transient stabilization. The system
was integrated with variable step size using the Adams-
Bashforth-Moulton family of formulas of orders 1-12 [46],
setting the relative and absolute tolerances to 10−3 and 10−6,
respectively. A simulation was deemed to have diverged if
max(xj, yj, zj) > 103 and thus aborted. A total of N = 100
networks were simulated for each configuration, and average
results are presented.

To gauge the effect of node degree on the complexity of the
emergent dynamics, we firstly reconstructed the phase-space
of each network node j from its simulated time-series xj(t) by
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means of time-delay embedding, with xj(t) = [xj(t − δt(m−
2)), xj(t−δt(m−1)), . . . , xj(t)] [47], wherein the embedding
lag δt was set according to the first local minimum of the
time-lag mutual information function [48], and the embed-
ding dimension m was given by the lowest integer number
yielding<5% of false nearest neighbors [49]. For attenuating
bias due to temporal correlation between adjacent samples,
the minimum neighbor time separation (Theiler window w)
was set to twice the first local maximum of the space-time
separation plot [50]. Unless stated otherwise, all nonlinear
time-series analyses were carried out using the TISEAN
package (ver. 3.0.1) [28], [51]. Predicated on the time-lag
reconstruction, we estimated the geometrical complexity of
the strange attractor by means of the correlation dimen-
sion D2, as given by the Grassberger-Procaccia method [52].
In brief, D2 was computed from the correlation sum

C(m, ε) =
1

Npairs

N∑
j=m

∑
k<j−w

2(ε − |xj − xk |) (3)

where Npairs = (N − m + 1)(N − m − w + 1)/2 denotes
the number of point pairs covered by the sums, and 2(x) is
the Heaviside step function. Over sufficiently small length
scales ε, assuming that the embedding dimension m suitably
exceeds the box-dimension of the underlying attractor, one
should find

C(m, ε) ∝ εD2 . (4)

Here, over-embedding up to 2m was provided, the calcula-
tions were performed for 50,000 points interpolated at a fixed
time-step twice the median variable step, and convergence of
the estimated values of D2 in m was estimated using a simple
direct searchmethodwhich also estimated the range of ε [53].
It should be borne in mind that this estimation method may
negatively bias D2 in the context of high-dimensional signals
as might be expected here for large node degree n, neverthe-
less, it is widely adopted and understood [54].

To confirm and extend this analysis, a map-like account of
the dynamics was also considered. After mean subtraction,
all local maxima points, given by ẋ(t) = 0, ẍ(t) < 0
and x(t) > x(t ± δt) with δt = 10 interpolated points,
were extracted, yielding a corresponding step-wise ampli-
tude time-series x̂max(i) having length l. Based on this rep-
resentation, previously used to summarize chaotic dynamics,
e.g., in Refs. [35] and [55], we computed another measure
of complexity, based on information-theoretical rather than
dynamical notions, namely, the permutation entropy. This
is a robust non-parametric method, based on a purely ordi-
nal representation of the data. Similarly to the case of D2,
an L-dimensional space was firstly constructed, made of
the L-tuples (u1, . . . , uL) = (xn, xn+1, . . . , xn+L−1). In this
context, an L-tuple (u1, u2, . . . , uL) is encoded as S =
(s1, s2, . . . , sL), wherein sk denotes the ordinal position of uk :
in other words, the dynamics are encoded by ranks, based on
the symbolic sequences of ascending and descending values.
Provided the phase space is adequately filled, the permutation

entropy is given by

Hm = −
m!∑
j

pj log2 pj, (5)

wherein pj denote the relative symbol frequencies, and which
then can be normalized to give hm = Hm/ log2 m! ∈
[0, 1] [56]. Here, the order (sequence length) was empirically
set to m = 5, as this ensured that in the vast majority of cases
the coverage criterion 5m! < l was met, but this setting is
not critical [57]. In addition, from this map-like time-series
the local maxima amplitude average µmax and standard devi-
ation σmax were calculated: their ratio σmax/µmax provided
an immediate, intuitively-appealing additional measure of
signal irregularity expressed in terms of the coefficient of
variation [58]. To attenuate the effect of regular alternation
of high and low cycles, e.g. due to period doubling, a 5-point
moving average filter was applied.

Throughout Sec. II-IV, complexity is empirically measured
via the correlation dimensionD2, which estimates the dimen-
sion of the possibly strange attractor, and via the permutation
entropy h5, which reflects the information content in a Shan-
nonian sense. This is deemed acceptable therein, given that
the systems under consideration are wholly or strongly deter-
ministic, and non-triviality is thus considered only in refer-
ence to deviation from order and not from randomness. Other
works consider measures of statistical complexity explic-
itly grounded on the thermodynamical notion of disequilib-
rium [35], [59], [60]. Some comparisons with the measure of
statistical complexity S introduced in Ref. [35] (therein, C)
are nevertheless provided in Sec. III and V. As regards the
coefficient of variation, by construction it is insensitive to the
temporal order of samples, thus, it only serves as an adjunct
measure and cannot be formally considered a complexity
index.

Lastly, it is necessary to quantify the level of synchroniza-
tion, between the hub and the leaves, and among the leaves
themselves. To this end, we focused on phase coherence
because the entrainment of phases is the earliest indicator
of emerging synchronization while a coupling strength is
increased [61]. For a time-series xj(t), the corresponding
analytic signal was calculated

ψj(t) = xj(t)+ ix̃j(t) = Aj(t)eiϕj(t), (6)

where i =
√
−1, x̃j(t) denotes the Hilbert transform of xj(t)

x̃j(t) =
1
π
p.v.

[∫
∞

−∞

xj(τ )
t − τ

dτ
]
, (7)

and where p.v. represents the Cauchy principal value of the
integral. From these complex-valued signals, for each node
pair (j, k) the instantaneous relative phase could be obtained
with

1ϕ(t) = arg[ψj(t)ψk (t)], (8)

finally yielding the corresponding phase-locking value

r = |〈ei1ϕ(t)〉t |. (9)
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B. EFFECTS OF NODE DEGREE AND COUPLING STRENGTH
With reference to Fig. 1a, let us consider the Rössler systems
diffusively coupled according to a star topology having n
leaves and, for now, a fixed coupling strength of u = 0.1. One
firstly observes that, in the leaves, the correlation dimension
increases only slowly with the bifurcation parameter a, set-
tling and dwelling around D(leaves)

2 ≈ 2 for a > 0.2, without
a clear effect of the hub node degree n (Fig. 1b). This level
reflects that established for uncoupled Rössler systems [36].
In turn, it implies that the dynamics of the leaves are largely
insensitive to the connectivity of the hub they are coupled
with. For small values of the parameter a, the dynamics
of the hub remain close to those of the leaves. However,
by contrast, at around a = 0.275, the correlation dimension
of the hub jumps to D(hub)

2 ≈ 4, signaling the emergence of
high-dimensional dynamics. This result implies that, when
the bifurcation parameter is sufficiently large, the two types
of nodes in the star spontaneously develop markedly different
dynamics. It is inherently a topological effect, given that
all system parameters are set identically across the network.
Unlike the leaves, towards the largest values of a, in the
hub an influence of the node degree emerges, whereby the
larger networks are associated with higher complexity of the
underlying attractor.

From the map-like representation of successive local max-
ima amplitudes, one draws similar conclusions. While the
effect of the bifurcation parameter a on the permutation
entropy h5 shows some differences compared to the above,
a marked separation between the hub and the leaves is con-
sistently present, whereby h(hub)5 > h(leaves)5 (Fig. 1c). Here,
the distinction becomes visible also at lower levels of a,
i.e., a = 0.2. Further, though the effect of the hub node
degree n appears more constrained, one finds that over a
wide range of a, elevating n increases h5 within the hub and
lowers it within the leaves. Therefore, in larger networks the
dynamics of the two node types become more differentiated.
At the same time, the coefficient of variation σmax/µmax
delineates a situation more similar to that revealed by the
correlation dimensionD2 (Fig. 1d). In this case, the dynamics
of the hub and leaves appear largely overlapping until a =
0.275; past this point, the variation within the hub becomes
markedly larger, and a striking effect of the node degree n
emerges within the same, while the leaves remain indifferent.
A qualitative appreciation of the difference can be obtained by
comparing representative time-series for the hub (Fig. 1e) and
a leaf (Fig. 1f), showing smaller, comparatively more variable
fluctuations in the former.

The above results need to be contextualized with regards
to the level of synchronization, as indexed here by the phase
coherence (Fig. 1g). For the chosen coupling strength u =
0.1, at levels of the bifurcation parameter such that chaoticity
is not fully developed, namely a < 0.2, the entrainment
is nearly perfect, with r ≈ 1. A rapid decrease is there-
after observed in the region 0.2 < a < 0.3, wherein
chaoticity develops and the level of folding increases. For
large values, namely a > 0.3, the level of synchronization

drops to r (hub-leaves) ≈ 0.2 between the hub and leaves,
and r (leaves) < 0.1 among the leaves themselves, clearly
hallmarking a regime of weak synchronization.

To gain further insight, it is necessary to study the sys-
tem behavior while varying both the hub node degree (i.e.,
number of leaves) n and the coupling strength u. In doing
so, we fix the bifurcation parameter at a = 0.35, based
on the previous results which demonstrate that differentiated
dynamics are clearly visible between the hub and leaves
for this setting. In this scenario, the correlation dimension
D(hub)
2 shows a non-monotonic trend: with stronger coupling,

it firstly increases then eventually declines; this effect is par-
ticularly visible in the smaller networks, wherein simulations
do not diverge until u is large (Fig. 2a). More precisely,
already for the degenerate case n = 1, representing a node
pair rather than a fully-developed star, one observes an initial
increase from the value D(hub)

2 ≈ 2 expected for u = 0
(complete uncoupling), towards D(hub)

2 ≈ 3.7 for u = 0.13,
finally followed by a decline back towards D(hub)

2 ≈ 2 for
u > 0.25. Considering the case n = 2, representing a
chain of nodes, one again observes an initial increase towards
D(hub)
2 ≈ 4 for u = 0.14, followed by a slower decline

towards D(hub)
2 ≈ 2 for u > 0.5. For the smallest proper star

network and beyond, namely n ≥ 3, the pattern is consistent,
but the maximum correlation dimension of the hub notably
increases with size, up to D(hub)

2 ≈ 5 for n = 9. Interestingly,
the coupling strength at which it reaches its maximum value,
namely u ≈ 0.1, appears largely insensitive to the network
size.

FIGURE 2. Effect of the node degree n and symmetric coupling strength u
on the hub dynamics in star networks of Rössler systems, where a = 0.35.
a) Correlation dimension D2, b) Permutation entropy for local maxima
amplitudes h5, c) Coefficient of variation for maxima amplitude
fluctuations σmax/µmax, d) Phase synchronization r between the hub and
leaves. All measures derived from the hub x0 variable. Curves not shown
where ≥50% of simulation runs diverged.

The other measures of complexity and irregularity pro-
vide largely consistent results. Namely, permutation entropy
shows a non-monotonic trend over all network sizes, also
peaking consistently around a coupling strength of u ≈ 0.1.
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The maximum value attained increases with the network size
from h(hub)5 ≈ 0.84 at n = 1 up to h(hub)5 ≈ 0.90 at n = 9
(Fig. 2b). As before, the coefficient of variation provides
an even more compelling picture; it follows a similar trend,
but the maximum value increases more dramatically, from
σ
(hub)
max /µ

(hub)
max ≈ 0.2 for n = 1 up to σ (hub)

max /µ
(hub)
max ≈ 0.33

for n = 9 (Fig. 2c). Inherently, the phase coherence increases
in r → 1 for u → ∞, even though for the larger networks
divergence prevents this fully-synchronized state from being
observed; since the Rössler systems in Eq. (1) are coupled
to each other through their first state variables, they have a
class III master stability function which, along with the fact
that the largest eigenvalue of the Laplacian matrix of the star
configuration is λn+1 = n+ 1, is responsible for the unstable
regime observed at large coupling. More importantly, at the
coupling strength at which the strongest effect of the hub
node degree is observed, namely u ≈ 0.1, this measure
remains consistently around r (hub-leaves) ≈ 0.2, confirming
a comparable situation of weak synchronization regardless of
the number of leaves (Fig. 2d).

Thus far, these results indicate that the local connectivity
can have rather prominent an effect in shaping the dynamics
within each network node. For suitably large settings of the
bifurcation parameter, a clear separation between the hub and
the leaves emerges, with considerably higher-dimensional
and more irregular dynamics arising in the former. The inten-
sity of this effect depends, to some extent, on the number
of leaves (i.e., node degree of the hub) n. However, more
markedly, it depends on the coupling strength u: transition to a
state of diversified dynamics is associated with, and plausibly
requires, a situation of weak synchronization, wherein the
energy exchange rate is sufficient for the leaves to collectively
push the hub into more complex behavior, but there is not
the emergence of a collective behavior engulfing the entire
network.

A limited number of previous studies, albeit considering
a different coupling mechanism, had addressed the effect of
connectivity on the emergence of a collective chaotic state,
including the need for a coupling strength within a bounded
interval [62], [63]; compared to those earlier results, here we
demonstrated in a rather more explicit manner the effects of
degree and coupling strength, by means of investigating in
detail the paradigmatic case of star networks. Because the
coupled systems have, in principle, sufficient dimensionality
to support hyperchaos, future work should explicitly derive
the spectrum of Lyapunov exponents, to ascertain whether the
observed higher-dimensional dynamics are associated with
an increasing number of positive exponents; such an under-
taking is beyond the scope of this work.

C. INFORMATION-THEORETICAL ANALYSIS
AND ASYMMETRIC COUPLING
For shedding light into the temporal dynamics and the
causative mechanisms underlying the differentiation of
dynamics between the hub and leaves, it is necessary to

analyze the network activity more deeply in terms of infor-
mation generation, storage and transfer [30]. To this end,
we herein consider the representative case of a star with n = 5
leaves and bifurcation parameter a = 0.35, while varying the
coupling strength in u ∈ [0, 0.4].
First, a bivariate scalar-driver analysis is performed,

in virtue of the fact that each structural coupling is instanced
between the hub and one leaf. The time-series of the leaf
under consideration and the hub are described as realizing a
2-dimensional stochastic process S = {X ,Y }, where X and
Y are the scalar processes representing, respectively, the leaf
and the hub. Then, denoting as Xt and Yt the random variables
obtained sampling the processes at the present time t , and as
X−t = [Xt−1,Xt−2 · · · ], Y

−
t = [Yt−1,Yt−2 · · · ] the vector

variables describing the past of the processes, the information
dynamics within S are described as follows [30], [64]. The
entropy of the hub process, defined asHY = H (Yt ) and quan-
tifying the amount of information contained in the current
state of Y , is decomposed intoHY = SY+TX→Y+NY , where
SY = I (Yt ;Y

−
t ) = H (Yt ) − H (Yt |Y

−
t ) is the self-entropy

of Y quantifying the information storage in the process,
TX→Y = I (Yt ;X

−
t |Y

−
t ) = H (Yt |Y

−
t ) − H (Yt |Y

−
t ,X

−
t ) is

the transfer entropy from X to Y quantifying the information
transferred from the leaf to the hub, andNY = H (Yt |X

−
t ,Y

−
t )

is the conditional entropy of Y given the past history of both
nodes, quantifying the new information produced in the hub
at each time point. In a fully symmetric way, the information
contained in the leaf, HX = H (Xt ) can be expanded as
HX = SX + TY→X + NX [65].
All measures were computed using the k-nearest neigh-

bor method for entropy estimation [66], realizing a strat-
egy to reduce the bias arising from the computation of
entropies in variables having different dimension [67]. The
estimator was implemented as detailed in Ref. [65] and
applied considering k = 10 neighbors. In all calculations,
the infinite-dimensional past of the processes was approxi-
mated by means of a uniform embedding scheme, i.e., Y−n ≈
[Yn−τ ,Yn−2τ , . . . ,Yn−lτ ], where the number of past com-
ponents considered was l = 5, and the temporal spacing
between lagged components, τ , was set to the lag past which
the autocorrelation decays below 1/e; to limit the computa-
tional load, only 20,000 points were considered. The precise
settings of k , l and τ had limited impact on the analyses.
To simplify their interpretation, T , S and N were normalized
to the observed entropies of the corresponding target process
H . The analysis was repeated separately for each leaf and
averaged results are presented; in the following, ‘‘leaves’’
therefore denotes the average over all j = 1, . . . , n peripheral
nodes considered individually.

In the uncoupling limit u→ 0, one hasD(hub)
2 ,D(leaves)

2 ≈ 2
and r ≈ 0 (Fig. 3a, b). Here, the transfer entropies between
the hub and leaf are effectively null, i.e., TX→Y ,TY→X ≈ 0
(Fig. 3c); furthermore, the amounts of stored and new infor-
mation are the same, i.e., SY /HY ≈ SX/HX and NY /HY ≈
NX/HX (Fig. 3d, e), confirming the fact that all nodes initially
have identical dynamics. The effects emerging for u > 0 are,
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FIGURE 3. Information-theoretical perspective on the effect of symmetric
coupling strength u in star networks of Rössler systems with n = 5 leaves
and a = 0.35. a) Correlation dimension D2 (blue: hub, red: average of
leaves), b) Phase synchronization r with the hub (blue) and between the
leaves (red), c) Transfer entropy T towards the hub and leaves (blue, red)
normalized by corresponding observed entropy H (scalar-driver analysis),
d) and e) Stored and new information, S and N , for hub and leaves (blue,
red) normalized by the corresponding observed entropy H (scalar-driver
analysis), f) Transfer entropy T̂ towards the hub as a function of the
number of leaves m included as sources of predictive information
(vector-driver analysis). All measures derived from the x variable.

therefore, to be ascribed not to the intrinsic node dynamics,
which were identical, but purely to the different position of
the nodes in the network topology.

For small values of the coupling strength u, the transfer
entropies start rising, markedly faster in the direction of the
hub, TX→Y /HY , than of the leaf, TY→X/HX (Fig. 3c). The
amount of stored information sharply drops for the hub,
SY /HY , whereas, by contrast, it increases for the leaves,
SX/HX (Fig. 3d). Meanwhile, the amount of new information
generated in the hub, NY /HY , transiently grows, whereas
it monotonically declines for the leaves, NX/HX (Fig. 3e).
Altogether, these measures point to the gradual emergence of
greater dynamical complexity in the hub, which is reflected
in a higher dimension D(hub)

2 of the attractor underlying its
dynamics (Fig. 3a). This differentiation is, at the same time,
supported by increasing information from the leaf and by
elevated generation of new information within the hub itself.

At a coupling strength of u = 0.1, the correlation dimen-
sion in the hub reaches its maximum value, i.e., D(hub)

2 ≈

4.2, signaling the establishment of high-dimensional dynam-
ics; by contrast, in the leaves one observes only a minimal
increase to D(leaves)

2 ≈ 2.3 (Fig. 3a). The phase coherence
r (hub-leaves) ≈ 0.2 and r (leaves) < 0.1 confirms the presence
of weak synchronization (Fig. 3b). At this point, the trans-
fer entropy is maximized towards the hub at TX→Y /HY ≈
0.09, and considerably larger than in the opposite direction,

TY→X/HX ≈ 0.05 (Fig. 3c). This is accompanied by mini-
mization of information storage in the hub SY /HY ≈ 0.35,
which becomes markedly lower compared to the leaves,
SX/HX ≈ 0.45 (Fig. 3d), and by a correspondingly highest
rate of new information generation, NY /HY ≈ 0.55 (Fig. 3e).
As the couplings are diffusive and undirected, this situation,
markedly asymmetric in terms of both the complexity and
information flow, arises solely because of the higher node
degree distinguishing the hub.

At u = 0.2, the correlation dimension remains higher in
the hub than the leaves, i.e., D(hub)

2 ≈ 3.9 vs. D(leaves)
2 ≈ 2.7,

but the difference is attenuated because the former begins to
decay and the latter continues slowly increasing (Fig. 3a).
Phase coherence indicates a moderate level of entrainment,
with r (hub-leaves) ≈ 0.5 (Fig. 3b). In the vicinity of this point,
the transfer entropies towards the two directions show a cross-
over, with TX→Y ,TY→X ≈ 0.08 (Fig. 3c). The information
stored in the hub begins increasing, i.e., SY /HY ≈ 0.38, while
that in the leaves remains stable (Fig. 3d), and the rate of
new information generation decays in parallel between the
two (Fig. 3e). Past this point, the influence that the hub and
leaf have on each other continues reversing: stronger cou-
pling brings about rapidly decreasing complexity of the hub
dynamics, with a smaller but opposite effect on the leaves.

At u = 0.3, one eventually observes similar cor-
relation dimension values between the hub and leaves,
i.e., D(hub)

2 ,D(leaves)
2 ≈ 2.9 (Fig. 3a). At this point,

albeit still incomplete, phase synchronization reaches con-
siderable intensity, with r (hub-leaves) ≈ 0.7 (Fig. 3b).
The information flow between the hub and each leaf has
become fully reversed, markedly lower towards the former
at TX→Y /HY ≈ 0.05, and about double in the opposite
direction, TY→X/HX ≈ 0.1 (Fig. 3c). The information stored
in the hub and leaves becomes similar, i.e., SX/HX , SY /HY ≈
0.45 (Fig. 3d), and the rate of new information generation
decays further (Fig. 3e).
Second, a vector-driver approach is considered [65], span-

ning from two leaves to the entirety of the network, with
m = 1, . . . , n to represent the fact that, at a global level,
the hub simultaneously interacts with all the leaves. Namely,
the time-series of the leaves and hub were described as
realizing an (m+ 1)-dimensional network stochastic process
S = {X ,Y }, where X = {X1, . . . ,Xm} is the vector process
of the m leaves and Y is the scalar process of the hub.
Given Xt and Yt , and considering X−t = [Xt−1,Xt−2 · · · ],
Y−t = [Yt−1,Yt−2 · · · ] as the vector variables describing
the past of the processes, the information dynamics within
the network process S were described and estimated simi-
larly to the above. We denoted the corresponding transfer
entropy towards the hub as T̂ (m)

X→Y = I (Yt ;X
−
t |Y

−
t ) =

H (Yt |Y
−
t )−H (Yt |Y

−
t ,X

−
t ). To limit the estimation bias aris-

ing from the use of variables having different dimension,
all transfer entropies T (m)

X→Y , for m = 1, . . . , n were mate-
rially computed considering the full n-dimensional vector
process X = {X1, . . . ,Xn} and adopting a distance-projection
strategy [67].
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FIGURE 4. Effect of asymmetric coupling strength u1,u2 in star networks of Rössler systems with n = 5 leaves and a = 0.35. a) Correlation dimension
D2 (hub, average of leaves), b) Permutation entropy of adjacent local maxima h5, c) Coefficient of variation for maxima amplitude fluctuations
σmax/µmax, e) Phase synchronization r between the hub and leaves. Hatched areas denote simulation divergence.

This analysis confirms that, at a coupling strength of
u = 0.1, the information transfer towards the hub monotoni-
cally increases the more leaves are taken into account, raising
from T̂ (1)

X→Y ≈ 0.03 nat to T̂ (5)
X→Y ≈ 0.15 nat (Fig. 3f).

The hub, therefore, on average absorbs information from the
entirety of the network as opposed to, for example, preferen-
tially entraining with a subset of one or more leaves as might
be expected, for example, in the presence of phenomena such
as cluster synchronization [11], [12], [68].

Having established that symmetric couplings may
spontaneously give rise to preferential in-flow or out-flow
of information between the hub and leaves, the underlying
mechanisms can be better elucidated by additionally consid-
ering a situation wherein the structural links are made asym-
metric by construction. While retaining the same network
topology and parameters, we considered, again for a = 0.35
and j = 0, . . . , n the system

ẋj = −yj − zj +
n∑

k=0

gjk (xk − xj)

ẏj = xj + ayj,
żj = bj + zj(xj − cj)

(10)

with the graph

gjk =


u1 if k = 0 ∧ j 6= k,
u2 if j = 0 ∧ j 6= k,
0 otherwise

(11)

where the coupling coefficients u1 and u2 represent, respec-
tively, the outgoing connections towards the leaves (fan-
out) and the incoming connections to the hub (fan-in).
A 2-dimensional array of settings log-spaced over u1, u2 ∈
[10−2, 1] was simulated.
The interplay between the network topology and the level

of link symmetry is readily appreciable. For sufficiently
weak coupling towards the leaves u1, with growing cou-
pling towards the hub u2 the complexity and irregularity
in its dynamics steadily increase, up to D(hub)

2 ≈ 6.6
(Fig. 4a), h(hub)5 ≈ 0.94 (Fig. 4b) and σ (hub)

max /µ
(hub)
max ≈ 0.54

(Fig. 4c) before the point past which the simulations diverge.
Notably, the phase coherence increases only slightly, up to
r (hub-leaves) ≈ 0.31 (Fig. 4d), indicating that the hub has a
limited possibility of passively synchronizing with the leaves,

when it cannot actively attract them towards its trajectory.
Assuming that u2 is sufficiently large to elicit differentiated
dynamics in the hub, e.g., u2 = 0.1, one observes an oppo-
site effect of the coupling strength towards the leaves, u1:
as this is increased, the correlation dimension in the hub
falls from D(hub)

2 ≈ 4.9 to 2.0 (Fig. 4a), with analogous
trends found for h(hub)5 ≈ 0.90 down to 0.71 (Fig. 4b) and
σ
(hub)
max /µ

(hub)
max ≈ 0.34 down to 0.15 (Fig. 4c). The situation,

however, is not specular, because increasing the coupling
strength towards the leaves markedly raises the phase coher-
ence, up to r (hub-leaves) ≈ 1; this is expected, because each
leaf is connected to just one hub node and therefore succeeds
in synchronizing with it (Fig. 4d).
Considering next the dynamics of the leaves, a different

situation is established. The level of dynamical complexity
and irregularity remains below the highest values observed
for the hub, but there is an intermediate band wherein a tran-
sient increase occurs, with a limited effect of the strength of
coupling towards the hub u2. Starting fromD(leaves)

2 ≈ 2.0 for
sufficiently small strength of the coupling towards the leaves
u1, a gradual elevation is found, up to D

(leaves)
2 ≈ 4.6 at u1 =

0.1 (Fig. 4a); analogous effects are observed for h(hub)5 ≈ 0.84
(Fig. 4b) and σ (leaves)

max /µ
(leaves)
max ≈ 0.22 (Fig. 4c). Beyond

this point, a rapid collapse is found, as the phase coherence
increases and the dynamics become undifferentiated with
respect to the hub, effectively delineating a master-slave syn-
chronization scenario (Fig. 4d). It is worth noting that the
situation is not symmetric in the two directions: for strong
coupling only towards the leaves, global synchronization
arises and the dynamics become indistinguishable from an
isolated Rössler system, whereas, for strong coupling only
towards the hub, the trajectories eventually diverge.

In summary, this section sought clarity on the causative
mechanisms underlying the non-monotonic effect of the
coupling strength visible in Fig. 2. Rigorous information-
theoretical accounts are instrumental in attaining an under-
standing of the interaction patterns arising among coupled
chaotic oscillators: these may become highly intricate even
in the context of elementary topologies, as exemplified by
previous research on the emergence of remote synchroniza-
tion in ring networks [69]. Furthermore, it is always necessary
to confirm any causality inferences based on observation
via intervention, in this case, manipulation of the structural

174800 VOLUME 7, 2019



L. Minati et al.: Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks

links [30], [64]. These results mainly demonstrate that, even
in the presence of undirected couplings, two clearly-distinct
regimes emerge as a function of the coupling strength.

At low values, i.e., u < 0.2, the hub primarily sinks
entropy from the leaves and, as a consequence, stores limited
information while generating high-dimensional dynamics.
In this region, the collective strength of the links from the
leaves towards the hub has a profound impact on its dynamics,
but the same does not hold in the other direction, because
each leaf only possesses a single connection, therefore the
energy (information) exchange rate towards it is considerably
lower (1/5, in this case). At high values, i.e., u > 0.2,
the coupling becomes sufficient to entrain the leaves with the
hub; therefore, there is a transient growth in the complexity of
their dynamics driven by an outflow of information from the
hub, but this is in the context of a general loss of differentiated
activity, along the path towards complete synchronization.
Such a spontaneous breaking of the symmetry of the identical
connections as a function of the global topology appears
remarkable.

This account of the dynamics as a function of the coupling
strength finds confirmation in the results obtained for asym-
metric couplings. These indicated that the dynamics of the
hub grow in complexity purely as a function of its ability to
receive afferences from the leaves: accordingly, the highest
values of the correlation dimension were observed for the
most asymmetric, effectively unidirectional, configurations.
Such an arrangement resembles a situation wherein the activ-
ity frommultiple independent dynamical systems is summed,
which inherently reflects in a growing fractal dimension of
the attractor, up to the point where its geometry becomes
statistically indistinguishable from randomness [54]. Here,
however, we demonstrated not merely the effect of a sum
but the coupling of a dynamical system, and its entrainment
in increasingly complex trajectories up to the point of diver-
gence. These results may have practical relevance in wireless
networks of electronic oscillators coupled in master-slave
mode, such as via radio receivers and transmitters [7]. While
additional results are not presented for brevity, we drew
analogous conclusions at different settings of the bifurcation
parameter a, for non-identical nodes and, as exemplified
below, also for structurally-different dynamical systems.

III. COMPLEX NETWORKS OF RÖSSLER SYSTEMS
A. STATISTICAL OBSERVATIONS
While star topologies are instrumental in demonstrating the
effect of node degree and are a ubiquitous constituent motif
of complex networks, they are seldom observed in isolation
within large-scale natural and engineered systems [70]. In this
section, we therefore extend the results obtained thus far to
encompass two representative types of complex networks,
which realize random topologies with or without a scale-free
organization, replacing the elementary pattern described by
Eq. (2) with a more general unweighted, undirected graph G
representing the couplings among n = 100 nodes.

First, we consider the Barabási-Albert model, wherein the
graph is constructed through adding nodes one at a time,
connecting each new node tom ≤ m0 existing ones according
to a probability p which increases with the number of their
already existing connections. This model thus captures a pref-
erential attachment process of network growth, wherein the
most strongly connected nodes attract evenmore connections,
leading to a power-law node degree distribution P(k) ∝ k−3,
which implies the presence of a minority of hub nodes whose
degree is disproportionately higher compared to the rest of
the network [71]. Here, we set m0 = 3 initially-placed
nodes and m = 2 number of nodes each new node is con-
nected to, yielding a symmetric network invariably contain-
ing 394 links. Second, we consider the Erdős-Rényi model,
wherein a graph is constructed through connecting nodes
purely randomly, namely, adding each edge with a probability
that is independent of all the other edges. As a result, the node
degree distribution is binomial and, for sufficiently large and
sparse graphs, can be approximated as a Poisson distribution
P(k) ∝ (λke−λ)/k!, where λ = p(n − 1); in other words,
the majority of nodes have the same node degree, with only
infrequent deviations, conferring the network a characteristic
scale, which contrasts with the inherently scale-free nature
of graphs constructed using the Barabási-Albert model [70].
Here, to match the density between the two models, we set
p = 0.04, yielding a maximally-probable node degree k = 3,
which is an order of magnitude lower than the degree of
the strongest-connected nodes which can be found in the
scale-free networks.

Comparing these two models side-by-side in the context of
equal density graphs has become commonplace as a means
of highlighting the specific effects stemming from scale-free
organization [72]. The simulations which follow therefore
juxtapose networks having identical size and density, but
profoundly different layouts of connections. Even though
star motifs can be seen in both models, for the scale-free
networks, there is an intuitive appeal in identifying the
strongest-connected hub nodes as the core of a restricted pop-
ulation of star topologies, which together strongly determine
the cascaded connections across the rest of the network [70].

Retaining the same settings as in Sec. II, 250 ran-
dom instances of each network type were simulated for
every combination of settings for the bifurcation param-
eter a ∈ {0.25, 0.3, 0.35} and coupling strength u ∈
{0.005, 0.01, 0.02, 0.04, 0.06, 0.08}, and average results are
presented. All simulation runs were performed using code
written in-house and run on a Cray XD1 system (Cray Inc.,
Seattle, WA, USA).

Some information can be firstly gathered by considering
the dynamical measures averaged over the entire network,
denoted as 〈x〉. At the lowest setting of the bifurcation param-
eter, a = 0.25, regardless of the topology, the effect of
the coupling strength u is quite limited, with the correlation
dimension dwelling around 〈D2〉 ≈ 1.8 (Fig. 5a), the per-
mutation entropy settling after an initial increase at 〈h5〉 ≈
0.65 (Fig. 5b), the coefficient of variation briefly peaking for
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FIGURE 5. Average effect of the coupling strength u and bifurcation
parameter a in scale-free (Barabási-Albert model, continuous lines) and
non scale-free random (Erdös-Rényi model, dashed lines) undirected
networks of n = 100 Rössler systems. a) Correlation dimension D2, b)
Permutation entropy of adjacent local maxima h5, c) Coefficient of
variation for maxima fluctuations σmax/µmax, d) Phase synchronization r .
Values averaged over runs with different network topologies and all
nodes (D2, h5 and σmax/µmax) or node pairs (r ).

u = 0.02 then decaying back to σmax/µmax ≈ 0.1 (Fig. 5c),
and the phase coherence indicating that the system quickly
reaches a strongly-synchronized state, with 〈r〉 ≈ 0.8 for u ≥
0.04 (Fig. 5d). At the intermediate setting of the bifurcation
parameter, a = 0.3, a noticeable effect of the coupling
strength u appears. The correlation dimension increases from
〈D2〉 ≈ 1.8 to 〈D2〉 ≈ 2.1 additionally showing, for the
scale-free networks only, a non-monotonic trend peaking at
〈D2〉 ≈ 2.3 (Fig. 5a). The permutation entropy similarly
increases from 〈h5〉 ≈ 0.6 to 〈h5〉 ≈ 0.75, with closer
values between the two networks (Fig. 5b). The coefficient
of variation displays a larger and markedly non-monotonic
effect, reaching σmax/µmax ≈ 0.16 at u = 0.04 for the non
scale-free networks, and the higher level of σmax/µmax ≈

0.19 at u = 0.06 for the scale-free networks (Fig. 5c).
The phase coherence indicates that the system gradually
approaches an intermediate level of synchronization, with
〈r〉 ≈ 0.6 (Fig. 5d). Finally, at the highest setting of the
bifurcation parameter, a = 0.35, one observes an even clearer
effect of the coupling strength u on the correlation dimension,
which increases from 〈D2〉 ≈ 2 to 〈D2〉 ≈ 2.5, with similar
values between the two network types (Fig. 5a). The change
in permutation entropy, though shallower, is concordant, with
an increase from 〈h5〉 ≈ 0.71 to 〈h5〉 ≈ 0.81 (Fig. 5b).
A larger effect is, again, found for the coefficient of variation,
which raises from σmax/µmax ≈ 0.13 to σmax/µmax ≈ 0.18,
with a lessened sensitivity to network topology (Fig. 5c).
At this setting, the system reaches at most a state of weak
synchronization, hallmarked by phase coherence 〈r〉 ≤ 0.3
(Fig. 5d).

Altogether, these results indicate that increasing the cou-
pling strength u between the linked nodes has a global effect
on the dynamics, which recalls the observations in the iso-
lated star networks (Fig. 2): namely, growing coupling tends
to lead towards higher complexity and irregularity, manifest
through elevated correlation dimension, permutation entropy
and coefficient of variation. Thesemeasures aremaximized in
a region of weak synchronization, maintainingwhich requires
a sufficiently large setting of the bifurcation parameter a.

To gain further insight, it is necessary to consider local
effects reflecting the inherent connectivity heterogeneity,
for instance, via binning the nodes according to their node
degree k . Taking this perspective, and for brevity initially
focusing on the correlation dimension D2, four key effects
emerge, which can be schematized as follows.

First, a marked effect of the node degree k is observed in
the scale-free networks, wherein, for suitably large settings
of the bifurcation parameter a, D2 > 4 is reached in the
most intensely connected nodes (Fig. 6a-c); because their
degree distribution is by construction considerably narrower,
this effect does cannot emerge in the non scale-free networks
(Fig. 6d-f).
Second, in the scale-free networks the effect of node

degree k is modulated by both the bifurcation parameter a and
the link strength u. At the lowest setting of the bifurcation
parameter, a = 0.25, the maximum increase is obtained at
a coupling strength of u = 0.01, peaking at D2 ≈ 3 for
k = 36 (Fig. 6a). At the intermediate setting, a = 0.3,
the increase becomes more prominent, up to D2 ≈ 4 and
visible already at lower-degree nodes having k = 32; at
the same time, at the stronger coupling setting u = 0.02,
for which no such effect is observed in the previous case,
here an even more marked elevation manifests, reaching a
plateau D2 ≈ 4 for k ≥ 28, and the gradual increase is
already visible at k = 20 (Fig. 6b). At the highest setting,
a = 0.35, a similar pattern is maintained, but translated
towards stronger coupling strengths u = 0.02, 0.04 and lower
node degrees k ≥ 14 (Fig. 6c).
Third, for practically every setting of the bifurcation

parameter a and node degree bin k , a non-monotonic influ-
ence of the coupling strength u is found, wherein elevating it
the correlation dimension initially increases, then decreases.
For example, considering all nodes having an intermedi-
ate node degree of k = 20, at a = 0.3 one observes
D2 ≈ {1.2, 2.6, 2.3, 1.5} for u ∈ {0.01, 0.02, 0.04, 0.06}
(Fig. 6b), and similarly at a = 0.35 one observes D2 ≈

{2.0, 3.7, 2.6, 1.7} for u ∈ {0.02, 0.04, 0.06, 0.08} (Fig. 6c).
The same trend is consistently found for the most intensely
connected nodes having k = 36, wherein given a =
0.25 one observes D2 ≈ {1.2, 3.0, 1.4, 1.1} for u ∈
{0.005, 0.01, 0.02, 0.04} (Fig. 6a), and similarly at a =
0.3 one observes D2 ≈ {4.0, 4.4, 2.8, 1.4} for u ∈

{0.01, 0.02, 0.04, 0.06} (Fig. 6b).
Fourth, for the lowest-degree nodes, e.g. k ≤ 10, the oppo-

site influence emerges, wherein elevated coupling brings
about a decrease in the correlation dimension; albeit less
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FIGURE 6. Effect of the coupling strength u and bifurcation parameter a as a function of the node degree k (binned as [k,k + 1]) in scale-free
(Barabási-Albert model: a, b and c) and non scale-free random (Erdös-Rényi model; d, e and f) undirected networks of n = 100 Rössler systems.
Correlation dimension D2 values for the x variable averaged over runs with different network topologies and all nodes falling into each degree bin.

prominent, this effect is highly consistent. At the lowest
setting of the bifurcation parameter, a = 0.25, and strongest
coupling, u = 0.04, in the scale-free networks one observes
D2 ≈ 2 for k = 2 andD2 ≈ 1.3 for k = 10 (Fig. 6a); because
this effect does not require high-degree nodes, it emerges
also in the non scale-free networks, wherein one obtains the
same values (Fig. 6d). At the highest setting of the bifurcation
parameter, a = 0.35, the decay becomes even more promi-
nent: in the scale-free networks one observes D2 ≈ 2.7 for
k = 2 and D2 ≈ 1.7 for k = 10 (Fig. 6c), and in the non
scale-free networks one observes D2 ≈ 2.8 for k = 2 and
D2 ≈ 1.4 for k = 10 (Fig. 6f).

Albeit with some differences, analogous trends are
revealed by the other indices, which are therefore not shown
for brevity. The sensitivity of the permutation entropy h5,
however, has elements of difference: while at the lowest set-
ting of the bifurcation parameter a = 0.25 and intermediate
coupling strength u = 0.01 one observes a marked increase
from h5 ≈ 0.64 at k = 22 to h5 ≈ 0.79 at k = 36,
at the higher settings of a = 0.3, 0.35 a saturation-like
effect is rapidly reached, wherein the measure settles around
h5 ≈ 0.9; on the other hand, permutation entropy seems more
sensitive to the effect in the non scale-free networks, showing,
given a = 0.25 and u = 0.04, an increase from h5 ≈ 0.60 at
k = 2 to h5 ≈ 0.82 at k = 14. Meanwhile, as previously
established for the star networks in Sec. II, the coefficient

of variation produces results considerably closer to the cor-
relation dimension: for example, given a = 0.25 and u =
0.01 it increases from σmax/µmax ≈ 0.04 for k = 10 up
to σmax/µmax ≈ 0.42 for k = 36. The non-monotonic
effect of coupling strength is also reproduced, for example
at k = 30, at which σmax/µmax ≈ {0.02, 0.42, 0.19, 0.03}
for u ∈ {0.005, 0.01, 0.02, 0.04}.

B. ILLUSTRATIVE EXAMPLES
Further insight into the dynamics underlying the differenti-
ation between high- and low-degree nodes is provided by
considering a representative example, extracted from a sim-
ulation wherein the bifurcation parameter and the coupling
strength were initially set to a = 0.25 and u = 0.01.
Visually comparing on a large temporal scale the time-series
of activity (x variable of the Rössler system) in a node having
degree k = 31 (Fig. 7a) with another having degree k = 3
(Fig. 7b) reveals that the former is dominated by large and
low-frequency cycle amplitude fluctuations, unfolding on a
scale approximately one order of magnitude slower than the
system intrinsic oscillation period; these are clearly absent
for the latter, wherein chaoticity is manifest in the form of
faster and less prominent cycle-to-cycle changes. Accord-
ingly, the frequency spectrum for the high-degree node is
shifted towards the left, peaking at f ≈ 0.01, whereas the
activity in the low-degree node features a flatter spectrum
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FIGURE 7. Comparison of the dynamics between a high-degree node (k = 31, blue) and a low-degree node (k = 3, red) in a Barabási-Albert network
having coupling strength u = 0.01 and bifurcation parameter a = 0.25. a) and b) Corresponding time-series, c) Frequency spectra, d) and e) Attractors, f)
and g) Poincaré sections from adjacent local maxima. Frequency spectra shown after normalization of signal amplitude to unitary standard deviation
and y-axis truncated at 0.1 for comparison.

extending towards higher frequencies (Fig. 7c). An important
indication of the underlying mechanism can be obtained by
visualizing the phase space in terms of the three system
variables. In the high-degree node, the intrinsic dynamics
of the system are largely obliterated, because there is no
folding and the spikes along the z dimension are reduced to
a minimal amplitude: here, irregularity is manifest as fluc-
tuating size of a nearly circular orbit (Fig. 7d). By contrast,
in the low-degree node, the folding and spiking characteristic
of the Rössler system for the chosen parameter settings are
well-evident (Fig. 7e). Even more explicit evidence comes
from the Poincaré sections, showing complete dissolution of
themap, replaced by a positive correlation between the ampli-
tude of adjacent maxima, for the high-degree node (Fig. 7f)
but not the low-degree one (Fig. 7g).

These results fuel important considerations and warnings
about the data analysis. First, inspection of the correla-
tion sum slope curves reveals a lack of convergence in the
case of the high-degree node; this plausibly stems from the
well-known limitations of the estimation method [54], but
also points to the need for different approaches to accurately
determine the embedding settings in the presence of such
kind of multi-scale dynamics [73]. The implication is that
the reported values are not quantitatively accurate; instead,
they should only be taken as an empirical indicator of a
higher level of complexity compared to the low-degree nodes.
Second, in the high-degree node, irregularity is manifest as
considerably slower amplitude fluctuations compared to the
low-degree node. In this study, due to time-series length
constraints, we chose an order m = 5 for the permutation
dimension (representing a typical setting in the literature),
making it plausible that the irregular behavior might not
adequately be represented in the presence of these slower
dynamics, since not enough local maxima are included in the
symbol sequence. To remove this concern, additional simu-
lations were run for the example shown in Fig. 7, gathering
sufficient data for calculating the permutation dimension up

to an order of m = 8. Inspection of the corresponding curves
shows a complete differentiation between the high-degree
and the low-degree nodewhich, furthermore, remains entirely
consistent even altering the bifurcation parameter a (Fig. 8a)
and the coupling strength u (Fig. 8b); in particular, it is
evident that the curves decay more rapidly for the low-degree
node, providing clear evidence of lower dynamical complex-
ity. At this point, to allow explicit comparison with the results
in Ref. [35], we also calculated the statistical complexity
introduced therein and defined as Sm = hmQm, where Sm ∈
[0, 1], hm is the normalized permutation entropy, and Qm is
a normalized measure of disequilibrium, i.e., distance from
an equiprobable distribution. The corresponding trends are
different because this index by construction assumes low
values when the system appears close to equilibrium, which
is the case for low orders m that cannot fully represent the
dynamics. Even though the values tend to be lower for the
high-degree node, the trend is such that the corresponding
values increase faster with m compared to the low-degree
node, for which a plateau is reached (Fig. 8c,d). These results
underline the importance of model order in these analyses;
moreover, we note that, given the absence of any stochasticity
in these simulations, the thermodynamical notion of (appar-
ent) equilibrium may not straightforwardly correspond to
triviality intended as the absence of structure.

Having established the above, to aid understanding the
intricate interplay between node degree k and coupling
strength u, it is useful to directly visualize a set of representa-
tive scale-free networks, whose dynamics were simulated at
the intermediate setting of the bifurcation parameter, a = 0.3.
For a coupling strength of u = 0.02, one clearly observes
that the largest-degree nodes, which serve as hubs and as
such have a central position in the topology of each network,
develop the highest values of correlation dimension (Fig. 9a);
in this configuration, the lowest-degree nodes, e.g., k ≤ 5,
show dynamics similar to the uncoupled case, withD2 ≈ 1.9,
the nodes with intermediate degrees, e.g., k ∈ [10, 15] exhibit
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FIGURE 8. Statistical properties of the examples in Fig. 7, for different
settings of the model order m. a) and c) Permutation entropy hm and
complexity Sm as a function of the bifurcation parameter a, given a
coupling strength of u = 0.01, b) and d) Permutation entropy hm and
complexity Sm as a function of the coupling strength u, given bifurcation
parameter a = 0.25.

a drop down to D2 ≈ 1.3, and the small existing fraction
of highly-connected nodes, e.g., having k > 20, develop up
to D2 ≈ 4.8. There is, therefore, a non-monotonic effect
wherein complex dynamics effectively become ‘‘focused’’
onto the hub nodes, the most peripheral nodes remain largely
independent, and the rest of the network followsmore ordered
dynamics compared to a corresponding ensemble of isolated
oscillators. Interestingly, the effect is qualitatively reminis-
cent of that which iteratively squaring the adjacency matrix
has on the nodal strengths [74].

As the coupling strength is increased to u = 0.04, the situ-
ation begins reversing, and marked heterogeneity is evident,
wherein the high-degree nodes are split between those retain-
ing a high correlation dimension and those featuring D2 < 2
(Fig. 9b). At the even stronger coupling setting of u = 0.06,
the situation has fully reversed, since the largest-degree nodes
show the lowest levels of dynamical complexity, and vice
versa (Fig. 9c); in this configuration, the most peripheral
nodes, with k = 2, feature highly-variable values of the corre-
lation dimension, centered around D2 ≈ 2.8, which steadily
decay with increasing degree until only D2 ≈ 1.5 is found
for the nodes having a degree of k > 10. Notwithstanding
their smaller span of node degrees, a similar effect arises in
the non scale-free networks, wherein D2 ≈ 2.5 for the nodes
with k = 2, descending to D2 < 1.5 for k > 8 (Fig. 9d).
Finally, it is instructive to explicitly consider the interac-

tion between the bifurcation parameter a and the coupling
strength u by varying them systematically within one given
network. For this purpose, a representative scale-free graph

was chosen, and the corresponding dynamical system was
simulated 100 times starting from random initial conditions,
for each parameter combination obtained while sweeping a ∈
[0.15, 0.35] and separately setting u = 0.01, 0.02, . . . , 0.06.
To better illustrate the relationship between node degree and
dynamics, the parametric maps were constructed by sort-
ing the rows in order of descending node degree, namely,
ki = {24, 23, 23, 21, 17, 10, 6 . . .}. Considering firstly the
correlation dimension D2, at the lowest coupling strength,
u = 0.01, there is no effect. Between u = 0.02 and u = 0.05,
a selective elevation of this parameter up to D2 > 4 for
the high-degree nodes becomes visible at a > 0.25: with
increasing coupling, this effect arises then vanishes again.
At the strongest coupling strength, u = 0.06, the effect is
no longer found (Fig. 10a). Albeit with a different pattern,
the permutation entropy also reveals a marked differentiation,
increasing from h5 ≈ 0.7 to h5 ≈ 0.9 in the highest-degree
nodes, with a graded effect which ensues already at a > 0.2
(Fig. 10b). As previously noted, the coefficient of variation
follows the correlation dimension more closely, but with
sharper edges in this case, jumping from σmax/µmax ≈ 0.2
for k < 10 to σmax/µmax ≈ 0.40 for k > 10 (Fig. 10c).
The sudden change in the latter parameter, and the eleva-
tion observed for the correlation dimension, coincided with
the transition from strong to weak synchronization, which
occurred at increasing values of the bifurcation parameter,
namely a ≈ {0.230, 0.25, 0.27, 0.28, 0.28, 0.29}, and earlier
in the lesser-connected nodes, delineating an additional effect
of node degree (Fig. 10d).
In Sec. II, we primarily focused on how connectivity, sym-

metric or asymmetric, influences the relationship between a
hub and its leaves, revealing a situation wherein increased
coupling brings about elevated complexity in the hub, insofar
as the coupling strength is not large. Here, those observations
were extended to the more naturalistic case of complex net-
works, highlighting a non-trivial situation wherein the node
degree, coupling strength, and bifurcation parameter interact
in determining the local dynamics unfolding within each
node. On the whole, the results confirm the initial indication
that more intense connectivity promotes complexity, insofar
as the node degree is sufficiently large and the system is in
a weakly synchronized scenario so that a collective behavior
does not emerge (Fig. 9a). This assertion finds support in the
trends observed for the ensemble values averaged over the
entire networks.

Upon closer consideration, however, the relationship is
complicated by a plethora of counter-intuitive effects, such as
the drop in correlation dimension, which could be elicited in
low- and intermediate-degree nodes, while remaining overall
far from a situation of strong synchronization (Fig. 9b,c).
In other words, it appears that connectivity can both ‘‘attract’’
and ‘‘repel’’ a node from attaining higher complexity, com-
pared to its intrinsic dynamics, as would be observed in an
uncoupled arrangement. Our findings recall only in part the
observations in Ref. [35], wherein the highest-degree nodes
for which we observed an increase were not represented,
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FIGURE 9. Representative examples of the effect of coupling strength u on undirected networks of n = 100 Rössler systems having bifurcation
parameter a = 0.3, for scale-free (Barabási-Albert model: a, b and c for u = 0.02,0.04,0.06 respectively) and non scale-free random (Erdös-Rényi
model; d for u = 0.06) topology. Node diameter proportional to degree, and color denotes the correlation dimension D2 of node dynamics (x variable).

despite the larger network size. More generally, the precise
choice of dynamical measure, alongside the practical limi-
tations affecting its practical estimation, appears to play an
important role, pointing to the need for more systematic
analysis and warning against drawing possibly hasty conclu-
sions regarding general relationships between node degree
and dynamics. When considering the temporal dynamics of
representative nodes, it could be seen that high connectivity
largely obliterates the intrinsic dynamics, replacing themwith
a highly-irregular overwhelming drive representing the sum-
mation of all connected nodes: the geometrical features of the
original attractor (as would be observed in the uncoupled sys-
tem) are washed away but, crucially, the signal is not trivially
corresponding to noise, because by construction there are no
stochastic dynamics in these simulations.

It was previously shown that scale-free topologies promote
the transition to global synchronization between coupled
Rössler systems via the effect of loop motifs [75]. Here,
in analyzing the path-to-chaos in these networks, we have
revealed that the most intensely-connected nodes are those
wherein chaoticity becomes primarily, or selectively, mani-
fest as the bifurcation parameter is gradually elevated: based

on the results of Sec. II, this appears directly influenced by the
node degree. Future work may explicitly evaluate the effect
of particular network motifs.

IV. COUPLED ELECTRONIC CHAOTIC OSCILLATORS
A. PHYSICAL REALIZATION
Thus far, numerically-simulated networks of Rössler systems
have been considered in this work. Such cases are exemplary
because the properties of this low-dimensional system are
well-understood, and emergent phenomena are often insensi-
tive to the specific choice of nonlinearity [37], [38]. Neverthe-
less, to confirm the generality of our findings, in this section
a substantially different scenario is investigated, representing
another widely-used model of generic nonlinear dynamics.

First, the node dynamics are replaced with the four-
dimensional Saito chaos generator [76], which follows

ẋj = −zj − wj +
n∑

k=0

gjk (xk − xj)

ẏj = γj(2δjyj + zj)
żj = ρj(xj − yj),
ẇj = (xj − h(wj))/εj

(12)
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FIGURE 10. Effect of the bifurcation parameter a on node dynamics as a function of degree k and coupling strength u in a chosen representative
undirected network of n = 100 Rössler systems. For improved visualization, the chart regions corresponding to the most densely-connected nodes (i.e.,
k ∈ [10,24], above white line) have been magnified. a) Correlation dimension D2, b) Permutation entropy of adjacent local maxima h5, c) Coefficient of
variation for maxima fluctuations σmax/µmax, d) Average phase synchronization r with the rest of the network. All values averaged over multiple
restarts having different initial conditions.

wherein, representing an undirected star graph containing a
hub j = 0 coupled to n leaves, one has

gjk =

{
ujk if (j = 0 ∨ k = 0) ∧ j 6= k,
0 otherwise

(13)

and the nonlinearity consists of the piece-wise linear function

h(w) =


w− (1+ ηj) if w ≥ ηj
−η−1j w if |w| < ηj.

w+ (1+ ηj) if w ≤ −ηj

(14)

As specified below, an important difference with respect
to the cases considered thus far is that here all parameters
are subject to small random deviations due to the physical
component tolerances, rendering the nodes and link strengths
non-identical, i.e., γj ≈ γ , δj ≈ δ, εj ≈ ε, ηj ≈ η, ρj ≈ ρ and
ujk = ukj ≈ u.

This system is structurally unrelated to the Rössler equa-
tions, in that it comprises three inter-dependent linear equa-
tions for ẋ, ẏ and ż, and a separate nonlinear equation for ẇ,
mutually coupled only with the x variable. The time-courses
of x, y and z delineate a spiral-like trajectory, whose pro-
jection is reminiscent of the behavior of the Rössler system
on the x, y plane, whereas the variable w additionally shows
sudden jumps, with alternation of high and low values due
to the hysteresis effect of h(w). Depending on the control
parameters γ , δ, ε, η, and ρ, rich dynamics can be generated,
including regions of periodicity, quasi-periodicity, chaos, and
hyperchaos. Usually, γ , η and ρ are fixed, ε→ 0 and δ serves
as the bifurcation parameter, similarly to a in Eq. (1) [76].

Second, instead of integrating the system numerically,
we consider its physical construction in the form of an analog
electronic oscillator. This chaos generator was, accordingly,
also selected because it lends itself to a compact circuit
realization, wherein the function h(w) is approximated by
the current-voltage response of two Zener diodes connected
anti-parallel in series, and the linear relations are imple-
mented via operational amplifiers [76], [77]. Explicit compar-
ison between simulations and measurements is always fertile
because, even when the two should coincide in the asymp-
totic limit, the dynamics of physical devices are considerably
richer due to the presence of more complex relationships,
parametric heterogeneities, and non-ideal behaviors [78].

An approximation of this system can be built as shown
in Fig. 11a. Given the component values indicated therein,
rescaling the amplitudes by V̂ = UZr2/(r1 + r2) = 2.55 V,
where r2 = r1R1/R2, rescaling the time by letting ẋ = dx/dt̂
(and similarly for the other variables), with t̂ = t/τ where
τ = r1C1 = 39 µs, then replacing the dynamical variables
with xj = v(x)j /V̂ , yj = v(y)j /V̂ , zj = r1i

(z)
j /V̂ and wj =

r1i
(w)
j /V̂ , one has

C1
dv(x)j
dt
= −i(z)j − i

(w)
j +

(
v(x)k − v

(x)
j

)
/RC

C2
dv(y)j
dt
= i(z)j + v

(y)
j /RD

L
di(z)j
dt
= v(x)j − v

(y)
j

L0
di(w)j

dt
= v(x)j − f (i

(w)
j )

(15)
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FIGURE 11. Physical realization of the Saito chaos generator. a) Circuit
diagram of node j , where the component values are as specified
in Table 1; the variable parameters were RD ∈ [5.6,8.3] k� and
RC = {100,200,400} k�. b) Circuit boards, implementing the active
oscillator (top) and the associated variable coupling resistors (bottom).

and

f (i) =


r1(i− I )− V̂ for i > I
−r2i for |i| < I ,
r1(i+ I )+ V̂ for i < −I

(16)

where I = V̂/r2 [76].
The chosen component values nominally give ε =

L0/(r21C1) = 0.0085, ρ = r21C1/L = 12.2, γ = C1/C2 = 1,
and η = r1/r2 = 1; the effect of deviations is detailed
in Table 1. The bifurcation parameter was swept by means
of the variable resistor RD over the range δ = r1/(2RD) ∈
[0.6, 0.9]. These settings are close to those for which dynam-
ics of increasing richness were initially observed in Ref. [76],
namely, from quasi-periodic for δ < 0.78, to chaotic between
0.78 < δ < 0.94, and eventually hyperchaotic for δ > 0.94.
However, as loss of oscillatory activity could be observed in
this experimental realization for δ > 0.9, the hyperchaotic
region was not explored here. In addition, three levels of cou-
pling were evaluated, with u = r1/RC = {0.025, 0.05, 0.1}.
The spontaneous activity was concentrated in the fre-

quency range f < 30 kHz, namely considerably below
the gain-bandwidth of the operational amplifiers (4 MHz,
powered at±15 V, type TL082; ST Microelectronics S.p.A.,
Agrate Brianza MI, Italy) and the self-resonances of the
inductors (>200 kHz, types 22R335MC, and 22R106MC
with 22R226MC in series; MuRata Corp., Tokyo, Japan).
However, the realization still represents an approximation
of the idealized case, because of L0 > 0 yielding a finite
ε, the non-zero current-limiting resistor ro, and the smooth

TABLE 1. Electronic component values and corresponding derived
parameter settings in the Saito chaos generator.

response of the Zener diodes (type BZT52-C5V1; Nexperia
B.V., Nijmegen, TheNetherlands). Furthermore, the paramet-
ric tolerances were ±10% for L0, L, C1 and C2, ±5% for
UZ, and ±1% for all r and R. The oscillator was realized on
a printed circuit board minimizing parasitics, and provided
with 8 instances of RC, allowing coupling to the same number
of leaves (Fig. 11b). All links were realized with U.FL-type
coaxial cables reducing external interference, and all boards
were located > 10 cm apart to avoid spurious inductive
interaction between nodes.

When the nodes were electrically uncoupled (RC = ∞)
and given a typical setting of the dynamical control
parameter (RD = 6.25 k�), the frequencies of the
largest fluctuations across physical circuit board specimens
were fj = {6.174, 6.264, 6.261, 6.262, 6.267, 6.405, 6.395,
5.914, 5.946 kHz}.

B. EFFECTS OF DEGREE AND COUPLING STRENGTH
Time-series of the voltage v(x)j were acquired for 5 mil-
lion points at 1 MSa/s using a recording oscilloscope
(type WaveSurfer 3054; LeCroy Inc., Chestnut Ridge
NY, USA) connected to a digitally-controlled multi-
plexer (type MUX508IDR; Texas Instruments Inc., Dal-
las TX, USA). A representative subset of the dataset has
been uploaded to Ref. [79]. The data were analyzed as
described in Section II.A, over 20 evenly-spaced segments
of 200,000 points each. Because for this system multiple
local maxima are contained in each cycle, the map-like rep-
resentation previously introduced has reduced effectiveness.
Therefore, to corroborate the flow-based results obtained
with the correlation dimension D2, we instead resorted to a
measure of spectral flatness defined as

ξ =
N
(∏N

i=1 ai
) 1
N∑N

i=1 ai
, (17)

where N denotes the number of binned Fourier amplitudes
ai [80]. Transition from ordered to chaotic dynamics is uni-
versally hallmarked by the generation of a broad spectrum
at low frequencies [37], towards which this parameter is
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FIGURE 12. Effect of the bifurcation parameter δ and node degree n in
the physically-realized star networks of Saito oscillators. a), b) and c)
Correlation dimension D2 (blue: hub, red: average of leaves) and phase
synchronization r between the hub and leaves (black) as a function of δ,
respectively for u = 0.025,0.05 and 0.1, and n = 8. d), e) and f)
Correlation dimension D2 and phase synchronization r as a function of n,
respectively for u = 0.025 and δ = 0.8, u = 0.05 and δ = 0.85, and u = 0.1
and δ = 0.75. Duplicated plots reflect realizations instantiating two
different physical circuit board specimens at the hub location.

highly sensitive, as also exemplified by previous results on
transistor-based chaotic oscillators [81]. Here, it was evalu-
ated over the f ∈ (0, 10] kHz range.
Considering the full network including n = 8 leaves

and gradually increasing the bifurcation parameter, for δ <
0.65 one initially observes a region of periodic dynam-
ics in D2 ≈ 1, accompanied by significant but incom-
plete phase coherence r (hub-leaves) ≈ 0.5 at the weakest
coupling level (u = 0.025, Fig. 12a), which becomes
near-perfect r (hub-leaves) ≈ 1 at the stronger coupling settings
(u = 0.05 and 0.1, Fig. 12b, c)
Towards δ = 0.7, the dynamics in the leaves unfold in

elevating complexity, peaking at D(leaves)
2 ≈ 2.5 for the two

weakest coupling levels (Fig. 12a, b), and reaching a slightly
higher valueD(leaves)

2 ≈ 3.2 under the strongest coupling con-
dition (Fig. 12c). At this setting of δ, the dynamics in the hub
remain considerably less developed, between D(hub)

2 ≈ 1.4
and D(hub)

2 ≈ 1.9 across the weakest and strongest coupling
levels. The differentiation of activity is readily appreciable
from the underlying signals, which show sustained irregular
fluctuations in the leaves alongside a nearly completely peri-
odic oscillation in the hub (Fig. 13a). At this level of δ and
those described below, the situation is invariably one of weak
synchronization, as indicated by a phase coherence between
r (hub-leaves) < 0.1 and r (hub-leaves) ≈ 0.15 (Fig. 12a-c).

Increasing the bifurcation parameter δ further, a cross-
over is eventually observed, whereby the complexity of the
dynamics drops in the leaves but increases in the hub, even-
tually making the two comparable: this point is found around
δ ≈ 0.74 at the weakest coupling setting (u = 0.025,
Fig. 12a), shifts towards the right δ ≈ 0.78 at the intermediate
setting (u = 0.05, Fig. 12b), and cannot be reached at
the strongest setting (u = 0.1, Fig. 12c). Considering the
case of weakest coupling, the dynamics in the hub reach
the maximum correlation dimension around δ = 0.8, where
one obtains D(hub)

2 ≈ 2.6 in contrast with D(leaves)
2 ≈ 1.7

(Fig. 12a). The differentiation between the hub and leaves is
again well-evident upon visual inspection of the underlying
signals, which show sustained irregularity in the former and
largely periodic activity with only transient turbulence in
the latter (Fig. 13b). At the intermediate coupling strength,
a similar situation is reached for δ = 0.85, where D(hub)

2 ≈

3.1 and D(leaves)
2 ≈ 2.2 (Fig. 12b).

Reassuringly, the results are highly consistent with respect
to swapping the circuit board at the hub location with another
specimen, confirming that they are not consequential to a
particular set of component values: this is relevant in the
present case, because the physical elements are affected by
tolerances, which render the nodes non-identical. Moreover,
analogous conclusions are drawn from the spectral flatness.
Considering the weakest coupling setting u = 0.025, at δ =
0.7, where the correlation dimension peaks in the leaves, one
obtains ξ (leaves) ≈ 0.78 and ξ (hub) ≈ 0.32. At δ = 0.8,
where the correlation dimension instead peaks in the hub, one
accordingly gets ξ (hub) ≈ 0.79 and ξ (leaves) ≈ 0.62. Here,
in the hub the spectrum features two broad components, one
extending between 0-10 kHz peaking at ≈ 3.8 kHz, and the
other between 10-30 kHz peaking at≈ 18.9 kHz; by contrast,
in the leaves the activity is dominated by a narrow, though not
line-like, component at ≈ 5.2 kHz.
To elucidate the effect of network size, selected measure-

ments were repeated for n = 1, . . . , 8 while shuffling the
leaves to ensure that they were not influenced by nodes hav-
ing particular component value combinations. Considering
first the weakest-coupling setting u = 0.025, and δ = 0.8
at which the hub correlation dimension is highest compared
to the leaves (Fig. 12a), two regions are identified. When
n < 4,D(leaves)

2 > D(hub)
2 , even though the difference is small.

At n = 4, a crossover is encountered, beyond which the level
of complexity rapidly grows in the hub, reachingD(hub)

2 ≈ 2.6
for n = 8, while remaining relatively stable for the leaves at
D(leaves)
2 ≈ 1.7. It is noteworthy that, in this situation, even

though the interaction between hub and leaves is sufficient
to sustain a marked differentiation, the phase coherence is
effectively zero, i.e., r (hub-leaves) ≈ 0.05 (Fig. 12d). These
observations are confirmed by the spectral flatness, which
evaluates to ξ (leaves) ≈ 0.62 and ξ (hub) ≈ 0.56 for n = 1,
ξ (leaves) ≈ 0.63 and ξ (hub) ≈ 0.67 for n = 4, ξ (leaves) ≈ 0.64
and ξ (hub) ≈ 0.81 for n = 8.

At the intermediate coupling strength u = 0.05, simi-
lar trends in n are observed: here, however, the correlation

VOLUME 7, 2019 174809



L. Minati et al.: Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks

FIGURE 13. Representative experimental time-series of the voltage v (x)
j , corresponding to variable x for node j , from star networks of Saito oscillators

having n = 8 leaves (blue: hub j = 0, red: leaves j = 1, . . . ,n). a) Recording for u = 0.1 and δ = 0.75, b) Recording for u = 0.025 and δ = 0.8.

dimension in the hub reaches a higher level, D(hub)
2 ≈ 3.2

at n = 7, then drops for n = 8; moreover, compared to the
previous case, in the leaves a higher D(leaves)

2 ≈ 2.2 is also
observed (Fig. 12e).

Finally considering the strongest-coupling scenario u =
0.1 at the point δ = 0.75 where the leaves correlation dimen-
sion is close to highest with respect to the hub (Fig. 12c),
one initially has D(leaves)

2 ≈ D(hub)
2 ≈ 2.5. For growing

network size, a sharp reduction in the correlation dimen-
sion is observed for the hub, reaching D(hub)

2 ≈ 1.8 for
n = 4, whereas in the leaves the dynamics remain rela-
tively unchanged at D(leaves)

2 ≈ 2.7. Attaching more leaves
has a negligible effect (Fig. 12f). As before, these results
are confirmed by the spectral flatness, which evaluates to
ξ (leaves) ≈ ξ (hub) ≈ 0.78 for n = 1, ξ (leaves) ≈ 0.80 and
ξ (hub) ≈ 0.44 for n = 4, ξ (leaves) ≈ 0.80 and ξ (hub) ≈ 0.43
for n = 8.

In summary, these electronic Saito oscillator networks pro-
vide results that have aspects of both similarity and differ-
ence compared to those reported in the previous sections for
Rössler systems. On the one hand, they overall replicate the
observations regarding the differentiation of activity between
the hub and leaves. In particular, for suitably large settings

of the bifurcation parameter, and under conditions of weak
coupling, greater complexity spontaneously emerges in the
dynamics of the hub, while the leaves dwell in or close to
a periodic regime: this recalls Fig. 1 and Fig. 9 for the star
and complex networks. Explicit reassurance about the fact
that this difference genuinely arises due to the higher node
degree of the hub could be gathered by changing the network
size (materially disconnecting leaves), thus paralleling the
results shown in Fig. 2. For excessively strong coupling,
this effect vanishes but the opposite one is found, namely,
higher-dimensional dynamics in the leaves compared to the
hub, again recalling the results obtained with coupled Rössler
systems. On the other hand, at lower-intermediate settings
of the bifurcation parameter δ ≈ 0.7 the situation appears
different, in that higher complexity is consistently detected
for the leaves regardless of the coupling strength. In part,
these results recall some previous anecdotal observations in
coupled Chua’s circuits [77].

The non-monotonic influence of the bifurcation parameter,
evident particularly for the leaves, deviates from the initial
study on an isolated instance of this circuit, wherein elevat-
ing δ steadily increased the largest Lyapunov exponent λ1,
eventually also with λ2 > 0, plausibly reflecting in a growing
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Kaplan-Yorke dimension DKY [37], [76]. This difference is
plausibly a reflection of the fact that here a network of cou-
pled units was considered; however, specific aspects related
to the present circuit implementation (e.g., L0-L magnetic
coupling within each node) cannot be excluded. The effect
of the bifurcation parameter was partially distinct also with
respect to the Rössler systems: this may not only be due to
the different dynamics, but also stem from the presence of
mismatches between nodes in the present case. The latter can
play an important role, because the formation of synchro-
nizationmanifolds between non-identical systems often gives
rise to intricate inter-dependencies, which promote or hinder
chaotic dynamics across a network or in node subsets [9],
[61]. Addressing these issues would require detailed analyses
which are beyond the purpose of this work.We note, however,
that both patterns of differentiated dynamics between the hub
and leaves, especially higher complexity in the hub, were
visible in numerical simulations of this system assuming
identical or non-identical nodes, which are not shown for
brevity. Because in the implemented star network of elec-
tronic chaotic oscillators, a situation of different dynamics
and presence of mismatches and non-idealities is consid-
ered, subject to certain system-specific aspects, the numerical
results reported in Sec. II and III appear to have possibly
general relevance in physical and natural scenarios.

V. STOCHASTIC SPIKING SYSTEMS
A. SIMULATED NEURONAL MICROCIRCUIT
Thus far, this paper has focused on two systems which
are, depending on the numerical or experimental scenario,
fully or strongly deterministic. In the physical world, these
represent a special case, because non-negligible levels of
noise are nearly ubiquitously present. Not only it is know-
ingly challenging to distinguish noise and chaos, namely
structureless versus intricate but deterministic dynamics, but
many natural and in particular biological systems are gov-
erned by primarily stochastic activity. In other words, while
underlying nonlinear dynamics are present, they are largely
concealed by random fluctuations, for example of thermal
origin [28], [82], [83]. Notably, while in engineered devices
noise is often a hindrance to information storage and trans-
mission, self-organized entities such as biological neuronal
circuits can leverage it purposefully through phenomena
such as stochastic resonance [84]; recently, this effect is
also finding applications in nonlinear optics and solid state
devices [85], [86]. It is therefore interesting to briefly inves-
tigate the influence of local connectivity also in systems with
noisy dynamics via the mechanism of stochastic synchroniza-
tion.

At the same time, particular interest is also attracted by
integrate-and-fire activity, namely, excitable entities which
store energy up to a threshold then, as consequence of a small
fluctuation, release it abruptly in the form of a sudden and
discrete event. These systems, which often possess aspects
of criticality, are exemplified by action potential generation

in neurons, other scenarios including chemical and nuclear
chain reactions, crack propagation, phase transition to a
low-resistance state in gas discharge tubes [87]–[91]. Their
statistical properties can be accurately modeled in the form
of point processes, implying that the continuous flow-like
evolution of the system variables becomes negligible and the
dynamics can be described in amap-likemanner purely based
on the event timings [28], [92], [93].

Here, we shall therefore investigate the possible effect
of connectivity on the emergence of nonlinear structures in
time-series of inter-event intervals, first in simulated, then in
biological neurons. To this end, we initially consider a model
microcircuit, namely, a small-sized neuronal ensemble whose
activity is analyzed in terms of all individual spike-trains,
thus representing a microscale description. To this end, n = 7
spiking cells are represented by instancing the following
intrinsically oscillating leaky integrate-and-fire model [94]

v̇j = −vj + i
(app)
j + i(syn)j (18)

where j = 1, . . . , n and all variables are dimensionless
(membrane time constant τ = 1), the synaptic current is an
alpha-function

i(syn)j =

n∑
k=1

gjk2(t − Tk )α2e−α(t−Tk )(t − Tk ) (19)

where 2(x) is the Heaviside step function, Tk denote the
spike times of neuron k , and each neuron receives an applied
current

i(app)j = i(bias)j + ξ (t) (20)

where i(bias) is a homogeneously-applied d.c. term and
ξ (t) is a stochastic variable representing a local, inde-
pendent white noise source, such that 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). Rather than involving the contin-
uous state variables vj, the couplings are, therefore, realized
purely based on the discrete event times Tk .

This network consists of two high-degree neurons j = 1, 2
mutually connected via inhibitory synapses to a subset of five
low-degree neurons j = 3, . . . , 7. Thus, it can be viewed
as the superposition of two stars wherein the separate hubs
and shared leaves have, respectively, node degrees 5 and 2
(Fig. 14a); each neuron additionally possesses an excitatory
self-synapse. Accordingly,

gjk =


w� if j = k
wx if (j = 1 ∨ j = 2) ∧ j 6= k
wy if (k = 1 ∨ k = 2) ∧ j 6= k ,
0 otherwise

(21)

where the weights wx and wy denote, respectively,
the incoming connections to the hubs (fan-in) and the out-
going connections towards the leaves (fan-out), and w� rep-
resents the self-synapse weight. This more complex topology
provides an improved opportunity for observing a relation-
ship between connectivity and dynamics, which is expected
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FIGURE 14. Simulated toy model network of leaky integrate-and-fire neurons. a) Network topology, where w�, wy and wx denote, respectively,
the self-synapse, fan-out (hub→ leaves) and fan-in (leaves→ hub) weights; b) Raster plot (τ denotes the membrane time constant). Neurons coded by
color, y-coordinate randomly jittered within each band for visualization purposes. Top and bottom bands: hubs, middle bands: leaves.

to be weaker due to the presence of strong stochastic-
ity. Yet, it retains the fundamental characteristic of star
graphs, namely, the existence of two node types having a
clearly distinct degree. The reciprocal inhibitory synapses
between hubs and leaves represent a pervasive motif in
the brain, where mutual inhibition, pervasively found for
example across hemispheric homologue regions, represents
a fundamental mechanism underlying diverse functions from
sleep-wake control to decision-making [95], [96]. In this
sense, the present network can be considered as a toy
model for vastly more complex scenarios. The excitatory
self-synapses provide a parsimonious way of promoting
self-sustained activity.

For gaging the differences in dynamics between the
hubs and leaves, we initially evaluate their average firing
rates f (hubs) and f (leaves), together with their Fano factors
F (hubs) and F (leaves), which provide a indication of burstiness,
namely, propensity to generate over-dispersed event distribu-
tions. The latter were calculated binning the point process
according to

F(T ) =
σ 2
T

µT
, (22)

where we set bin width to T = 100; σ 2
T and µT denote,

respectively, variance and mean of the binned event counts.
Because of the expected weak nonlinearity, measures such

as the correlation dimension are not appropriate for this sys-
tem. Instead, we calculated the permutation entropy (Eq. 5),
which has superior sensitivity to the presence of ordered
structures in the simulated noisy data, and denote it with
h(sim)
m . Importantly, applying it for the present purpose is
more prone to pitfalls compared to the previous sections,
wherein it served to measure the complexity of determinis-
tic dynamics. Therefore, rather than considering it directly,
we let h(surr)m represent the permutation entropy of the ran-
domly shuffled time-series and only considered the difference
1hm = h(surr)m − h(sim)

m , for which positive values indicate the
presence of structure in the data. This usage stems from recent

results demonstrating the successful distinction of chaos and
noise based on the systematic comparison to surrogate time-
series [97]. We retained the setting m = 5, but allowed the
lag to span d = 1, . . . , 5 to harvest additional evidence over
multiple time scales [57].

We furthermore implemented a simple zeroth-order predic-
tor, which approximates the dynamics locally by a constant.
Namely, in delay embedding space, measurements at a time
N + δn were forecasted by averaging individual predictions
based on all neighbors sn ∈ Uε(sN ) closer than a threshold ε,
with

ŝN+δn =
1

|Uε(sN )|
∑

sn∈Uε (sN )
sn+δn, (23)

assuming unit delay δt = 1 and spanning the embedding
dimensions m = 2, 3, 4. Letting the prediction horizon
δn = 1, the overall prediction error for a measured or sim-
ulated signal could be quantified as

εm =

√
〈(sn+δn − ŝn+δn)2〉n

/
σs, (24)

where σs denotes the standard deviation of the data [28].
In this case, all prediction errors were compared with those
obtained for surrogate data preserving both the autocorrela-
tion and probability distribution [98]. Denoting with ε(sim)

m the
prediction error from the simulated time-series and ε(surr)m the
surrogates prediction error averaged over 10 runs, we only
considered the difference 1εm = ε

(surr)
m − ε

(sim)
m , for which

positive values again indicate increasing evidence of nonlin-
ear dynamics.

To determine the level of synchronization between each
pair of neurons X and Y , we finally calculated the spike
cross-correlation function

CXY (t) =
1

√
NXNY

t+δτ/2∑
ti=t−δτ/2

X (ts)Y (ts − ti) (25)

where ts indicates the event times the X train, NX and NY rep-
resent the number of events in the X and Y trains respectively,
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and the bin size was set to δτ = 1. From this, the coincidence
index (CI) is obtained as

CIXY =
CXY (0)∑T

t=−T CXY (t)
, (26)

wherein we set the integration span to T = ±100 [99].
All simulations were run until tmax = 20 × 103, for

step-size dt = 10−2 and initial conditions vj(0) = 0. Each
neuron was deemed to have spiked when vj(t) > 1, and no
refractory period was imposed, i.e., τrefr = 0. The synaptic
current scaling, d.c. bias and self-synapse weights were iden-
tically set to α = 4, i(bias) = 0.8 and w� = 0.8 respectively;
a noise intensity of D = 0.02 was selected (these choices are
not critical). A total of n = 200 runs were performed for each
condition, and average results are presented.

First, we set the weights wx = −0.1 and wy = −0.15,
realizing a situation wherein the strengths of the individ-
ual fan-in and fan-out synapses are on the same order of
magnitude: due to their larger node degree, this implies that
the two hubs receive an overall stronger inhibitory input.
Consequentially, their firing rate f (hubs) ≈ 0.10 is signif-
icantly lower than that of the leaves f (leaves) ≈ 0.47, and
the underlying distributions of inter-event intervals are more
right-skewed. Their activity is also markedly more bursty,
with F (hubs)

≈ 9.5 and F (leaves)
≈ 3.8, as may be appreciated

on a raster plot (Fig. 14b). The coincidence index indicates a
situation of very weak synchronization: it is largest between
the hubs CI(hubs) ≈ 0.066, being mediated by inhibition-
of-inhibition via the leaves, intermediate among the leaves
CI(leaves) ≈ 0.033, and smallest between the hubs and leaves
CI(hubs-leaves) ≈ 0.004, due to their mutual inhibition. Inci-
dentally, these values are on the same order as those charac-
terizing the biological cultures considered in the next section.

In this configuration, at lag d = 1 the permutation
entropy difference is positive and larger for the hubs than
the leaves, with 1h(hubs)5 ≈ 0.0266 and 1h(leaves)5 ≈

0.0242; at the longer lags d = 2, . . . , 5 it decreases
as expected but the relationship remains unchanged,
with 1h(hubs)5 ≈ {0.0144, 0.0076, 0.0042, 0.0026} and
1h(leaves)5 ≈ {0.0115, 0.0053, 0.0025, 0.0013}. The
prediction error difference provides analogous results
across the embedding dimensions, with 1ε

(hubs)
2,3,4 ≈

{0.0165, 0.0157, 0.0149} and 1ε(leaves)2,3,4 ≈ {0.0150, 0.0146,
0.0133}. While quantitatively small, because of their high
consistency these effects are statistically strongly significant:
two-tailed t-tests always yielded p < 0.001, thus demonstrat-
ing stronger nonlinear dynamics in the hubs than the leaves.

Second, we set the weights wx = −0.025 and wy =
−0.25, realizing a different situation wherein there is a less
pronounced mismatch between the total strengths of all con-
nections entering each hub and leaf. Consequentially, the dif-
ference in firing rates is specular to the previous case, with a
significantly higher value in the hubs f (hubs) ≈ 0.49 than the
leaves f (leaves) ≈ 0.13. The Fano factors are more balanced,
namely F (hubs)

≈ 3.3 and F (leaves)
≈ 4.7, indicating a similar

level of burstiness, lower than observed above for the hubs.

The coincidence index also points to a specular situation,
because the synchronization is now largest between the leaves
CI(leaves) ≈ 0.070, smaller between the hubs CI(hubs) ≈ 0.032
and smallest between the hubs and leaves CI(hubs-leaves) ≈
0.007.

In spite of the opposite pattern of firing rate and syn-
chronization, the permutation entropy difference is still
larger for the hubs than the leaves, with 1h(hubs)5 ≈

0.0250 and 1h(leaves)5 ≈ 0.0195; at the longer lags d =
2, . . . , 5 it again decreases as expected but the relation-
ship remains unchanged, with 1h(hubs)5 ≈ {0.0119, 0.0055,
0.0025, 0.0013} and 1h(leaves)5 ≈ {0.0081, 0.0035, 0.0016,
0.0009}. As above, the prediction error difference provides
analogous results across the embedding dimensions, with
1ε

(hubs)
2,3,4 ≈ {0.0166, 0.0159, 0.0146} and 1ε

(leaves)
2,3,4 ≈

{0.0114, 0.0104, 0.0088}. All results are significant at p <
0.001, confirming that the different dynamics observed for
the hub in the first scenario are not merely an artifact due
to the firing rate or burstiness, because the differentiation is
maintained here even though the differences in these param-
eters are opposite.

In summary, this simulated toy network of stochastic
spiking units extended the results presented in the previ-
ous sections, demonstrating an influence of local connec-
tivity in a scenario entirely different from the Rösseler and
Saito systems, wherein nonlinearity was strong and cou-
plings were implemented via continuous variables rather
than discrete spike events. Here, the higher node degree
of the hubs seemingly engendered an elevated expression
of deterministic dynamics over a baseline of predominant
stochasticity. Remarkably, this effect appeared more closely
related to their topological position than the rate distribution
of firing activity. While these results should be interpreted
cautiously due to greater difficulty in the nonlinear analy-
sis of noisy time-series, they were confirmed by two com-
pletely different measures, comparing against two separate
surrogate sets (shuffling-based for the permutation entropy,
Fourier-based for the zeroth-order predictor). Although fur-
ther systematic investigations evaluating the effects of the
weights together with the noise strength can be carried out, for
now it appears noteworthy that, even in this stylized scenario,
it was possible to elicit the emergence of more regular and
bursty lower-frequency activity in the hubs, contrasted with a
higher-rate noise-like activity in the leaves. This observation
recalls numerical and analytical results obtained in a star
network of biophysically-realistic neurons, wherein it was
found that coherent oscillations can arise as a function of the
synaptic coupling strength and the network size [100]. Fur-
thermore, a distinction in the same direction was empirically
observed in haemodynamic time-series from the human brain
acquired at rest, wherein the most densely-connected cortical
hub regions generated signals containing stronger signatures
of nonlinearity compared to predominantly stochastic activity
in the rest of the brain [33]. The present results also appear
in line with recent work simulating a larger population of
Morris-Lecar neurons instanced over a scale-free topology; in
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FIGURE 15. Multi-electrode arrays (MEA) recordings of dissociated rat cortical neurons. a) Phase contrast micrograph of a representative culture,
courtesy of Dr. D.A. Wagenaar [102]. Electrode pitch: 200 µm. b) Example raster plot showing network bursts. Electrodes coded by color, y-coordinate
randomly jittered within each band for visualization purposes and c) Corresponding synchronization matrix (coincidence index CI, within 1t = ±10 ms).

that context, weak coupling elevated the statistical complex-
ity S of firing in the hub neurons, indexing a deviation from
purely noise-like dynamics [35].While a detailed comparison
is beyond scope, we report that the same measure revealed an
analogous effect in the first configuration considered here,
yielding S(hubs)5 ≈ 0.13 and S(leaves)5 ≈ 0.07.

B. DISSOCIATED NEURONAL CULTURES
Finally, we demonstrate that the results obtained simulat-
ing the stylized neuronal microcircuit generalize to a vastly
more complex case, consisting of in-vitro neuronal cultures.
Namely, the spontaneous firing activity was recorded from
biological cortical neurons, which were harvested from rat
embryos, mechanically dissociated to destroy the bulk of ini-
tial connections, then plated on glass culture wells containing
multi-electrode arrays (MEA) [101]. Besides the biological
vs. numerical nature of the experiment, this dataset is differ-
ent in that it represents a mesoscale scenario, because each
culture is obtained by plating ≈ 50, 000 cells in a droplet
covering an area with ≈ 5 mm diameter, instrumented by an
array of 8× 8 electrodes having 200 µm pitch: each channel,
therefore, captures the ensemble activity of ≈ 100-1, 000
neurons (Fig. 15a). In a suitable medium, the dissociated
neurons spontaneously regrow new axonal connections over
a range of up to a few millimeters, forming a pattern that
is entirely self-organized and, as such, translates into highly
variable, yet consistently rich, activity [102]. After plating,
these cultures are initially immature and, therefore, nearly
electrically quiescent or generating spikes that are spatially
uncorrelated. Such activity becomes increasingly visible after
≈ 10 days in-vitro (DIV) and develops until ≈ 30 DIV,
past which neuronal death ensues and the cultures gradually
degenerate. The data were drawn from a public repository,
available at Refs. [102], [103], wherein the experimental
methods including signal filtering and spike detection are
detailed.

The high density of overlapping neurites renders it
presently not possible to map the synaptic layout without
recourse to techniques that require fixation and are therefore
destructive, such as confocal microscopy. As a proxy of struc-
tural connectivity, then, in this section functional connec-
tivity is considered for comparison with the dynamics. The
association between the two is knowingly maximized when
the analysis is restricted to network bursts, that is, sporadic
events during which synchronicity extends to a considerable
fraction of the culture, or even the totality of it (Fig. 15b) [99].

Here, these were segmented by first identifying bursts at
the level of single electrodes in terms of temporal cluster-
ing (minimum inter-spike interval ≈ 0.1 s, adaptively set),
then retaining only the time-intervals wherein simultaneous
bursting involved > 5 electrodes. On the remaining spikes,
connectivity was thereafter estimated via the coincidence
index (CI, Eq. 27), setting a window size of δt = 10 ms
(comparable results can be obtained with δt = 25 ms);
while index choice remains a contentious matter, additional
analyses not shown for brevity confirm the results based
on alternative assumptions, including approaches involving
smoothing the point-processes to recover and correlate con-
tinuous time-series [104]. In this scenario, node degree and
synaptic strength are not accessible. Therefore the level of
connectedness of each node is represented through its nodal
strength, empirically defined as

wj =
n∑

j=1,j6=k

CIjk , (27)

where the network size n is defined as the number of active
electrodes, namely, those for which at least one burst and
64 spikes are obtained. This approach is justified by the fact
that the cultures develop inhomogeneous activity, such that
some nodes are noticeably more synchronized than the oth-
ers, conferring to the corresponding matrices a characteristic
‘‘striped’’ appearance (Fig. 15c) [74]. As in the simulated
microcircuit, the coincidence levels observed, namely up to
CI ≈ 0.06, are indicative of operation in a weak synchroniza-
tion regime, which represents a pervasive requirement for the
maintenance of healthy neuronal dynamics [18].

In line with previous observations, the network size n
increases with age, from n ≈ 34 at DIV 10 up to n ≈ 49 at
DIV 24, then begins to decline (Fig. 16a); correspondingly,
the average firing rate raises from f ≈ 2 Hz at DIV 10 up to
f ≈ 6 Hz at DIV 24 and 31 (Fig. 16b). This trend of steady
development followed by incipient degeneration is even more
clearly evident in terms of the Fano factor (T = 10 ms, not
critical), raising from F ≈ 1.2 at DIV 10 to F ≈ 2.2 at
DIV 24 (Fig. 16c), and of the nodal strength, raising from
w ≈ 0.8 at DIV 10 to w ≈ 3.3 at DIV 24 (Fig. 16d);
for DIV 31, F and w are both slightly lower. In the first
scenario of the simulated microcircuit, in the two hubs the
firing rate was lower and the burstiness was higher compared
to the leaves: notably, the same associations are found here
between recording electrodes, in terms of the rank-order cor-
relations between the firing rate and nodal strength ρ[f ,w] ≈
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FIGURE 16. Statistical properties of neuronal activity as function of culture age (days in-vitro, DIV 10, 17, 24 and 31). a) Number of active
electrodes n (culture size), b) Average firing rate f , c) Fano factor F , d) Weighted nodal strength w , e) Permutation entropy difference
between the surrogate and experimental spike trains h(surr)

6 − h(exp)
6 , f) Prediction error difference between the surrogate and measured

spike trains ε(surr)
3 − ε

(exp)
3 , g)-j) Rank-order correlation coefficients ρ[x, y ] between these parameters.

{−0.49,−0.76,−0.72,−0.69}, and between the Fano factor
and nodal strength ρ[F,w] ≈ {0.22, 0.35, 0.07, 0.06}, aver-
aged separately over DIV 10, 17, 24 and 31.

To highlight the correspondence between the two sce-
narios, the same nonlinear approaches as in the previous
section are used: importantly, to this end all spike events were
considered, without performing any kind of burst filtering,
which would inherently corrupt the dynamics. Considering
firstly the permutation entropy difference with respect to the
shuffled surrogates, 1h6 = h(surr)6 − h(exp)6 , for lag d = 1
one observed a steady increase, from 1h6 ≈ 0.0038 at DIV
10 to 1h6 ≈ 0.0090 at DIV 31 (Fig. 16e); the effect persists
and becomes even stronger for longer lags, for example at
d = 5 one has 1h6 ≈ 0.0039 at DIV 10 and 1h6 ≈ 0.0228
at DIV 31. Here, m = 6 was chosen given as the highest
value at which the median spike-train length exceeds 5m!.
Considering next the prediction error difference with respect
to Fourier amplitude- and value distribution-preserving sur-
rogates,1ε3 = ε

(surr)
3 −ε

(exp)
3 , one similarly observes a lower

level 1ε3 ≈ 0.032 at DIV 10 and 17, and a higher level
1ε3 ≈ 0.060 at DIV 24 and 31 (Fig. 16f); also in this case,
the embedding dimension had limited effect, i.e., 1ε2,4 ≈
1ε3. Notably, both the permutation entropy and nonlinear
predictor show that the dynamics of spontaneous activity are
markedly more structured at the latter time-points compared
to the first two.

While such age-related effects are notable, greater interest
lies in the relationship between these indicators of nonlinear
dynamics and the other features which distinguished the hub
nodes in the simulated microcircuit considered previously.
The permutation entropy difference shows a negative cor-
relation with firing rate that depends markedly on culture
age: across DIV 10, 17, 24 and 31, for d = 1 one has
ρ[f ,1h6] ≈ {0.12, 0.00,−0.41,−0.39} (Fig. 16g). At the
age when the effect is most marked, namely DIV 24, chang-
ing the lag confirms the robust association, with ρ[f ,w] ≈
{−0.60,−0.54,−0.41,−0.31} given d = 2, . . . , 5. Con-
cerning the effect of nodal strength, the hypothesized specular
relationship is well-evident: across DIV 10, 17, 24 and 31,
for d = 1 one has ρ[w,1h6] ≈ {−0.11,−0.04, 0.22, 0.26}

(Fig. 16h). Also in this case, probing longer time-scales via
increasing the time lag d confirms the initial finding; in fact,
for d = 3 even stronger correlations are revealed, with
ρ[w,1h6] ≈ {0.15, 0.45, 0.39, 0.30}. Such differentiation,
wherein signatures of nonlinear dynamics emerge preferen-
tially for nodes that fire at a lower frequency and have higher
synchronization, then emerges as a product of the maturation
process in these biological preparations.

Albeit with some differences, analogous conclusions are
drawn based on the nonlinear prediction error. Its differ-
ence with respect to surrogates is always negative: across
DIV 10, 17, 24 and 31, for m = 3 one has ρ[f ,1ε3] ≈
{−0.22,−0.37,−0.12,−0.07} (Fig. 16i). Here, the age at
which is effect is strongest is a week earlier, namely DIV
17; at this point, one has 1ε2,3,4 ≈ {−0.43,−0.37,−0.27}.
Again, the effect of nodal strength is found in terms of
a nearly-specular pattern: across DIV 10, 17, 24 and 31,
for m = 3 one has ρ[f ,1ε3] ≈ {0.20, 0.38, 0.20, 0.19}
(Fig. 16j). At DIV 17, changing the embedding dimension
one observes 1ε2,3,4 ≈ {0.45, 0.38, 0.31}. In other words,
the permutation entropy and prediction error provide conver-
gent indications regarding the relationship between nonlinear
dynamics, nodal strength and frequency; however, their sen-
sitivity appears to differ, in that the former finds the strongest
associations at DIV 24, and the latter at DIV 17.

Omitting for brevity a detailed comparison, we note that
application of the measure of statistical complexity intro-
duced in Ref. [35] provides comparable results. On the one
hand, across DIV 10, 17, 24 and 31, the average complexity
appears to decrease, with S6 ≈ {0.35, 0.28, 0.22, 0.21}, and
the correlation with firing rate is nearly invariably complete,
with ρ[f , S6] ≈ −1. On the other, the correlation with nodal
strength is positive and increases with culture age, peaking at
DIV 17 as observed for the nonlinear prediction error, with
ρ[w, S6] ≈ {0.48, 0.74, 0.70, 0.65}.
Having thus far considered the effects at a statistical level,

it is instructive to visualize a selection of 6 arbitrarily-chosen
but representative cases, for which the difference in nonlinear
prediction error is compared with the connectivity strength.
Although substantial variability is always evident, one notes
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FIGURE 17. Synchronization networks formed by representative neuronal cultures of different age, namely a) days in-vitro (DIV) 10, b) DIV
17 and c) DIV 24. Green intensity denotes edge strength (synchronization level), node diameter proportional to weighted nodal strength, node
layout reflects electrode locations, and node color denotes the prediction error difference between surrogate and measured spike trains
ε

(surr)
3 − ε

(exp)
3 .

that at DIV 10 the network density (synchronization level)
remains on average low, and the prediction error differences
accordingly also remain low; for some networks, there are,
however, a minority of strongly-connected nodes (large diam-
eter), and these tend to be associated with a positive predic-
tion error difference (red hue; Fig. 17a). One week later, at
DIV 17, the prediction error difference is unchanged in some
cultures, but reaches considerably high levels in others, which
are found predominantly in the most densely-connected
nodes (Fig. 17b). At DIV 24, the networks appear even further
developed: consequentially, the prediction error difference
is more pervasively positive, therefore less associated with
nodal strength (Fig. 17c).
While the simulated microcircuit considered in the pre-

vious section represents a stylized motif, these living cul-
tures possess a vastly more complex architecture, in a sense
paralleling the difference between the star and complex net-
works of Rössler oscillators considered in Sec. II and III.
In this case, however, a profound difference in scale is also
present, on the order of 3-4 orders of magnitude, affecting
not only the system size but also the granularity at which
the activity is represented in each point process. It, therefore,
appears remarkable that convergent results were obtained,
indicating that the emergence of a nonlinear structure is
associated with nodes that fire more infrequently but in a
more synchronized manner, additionally showing slow fluc-
tuations in terms of bursts. The spontaneous evolution of
these cultures represents a highly individualized interplay
of a multiplicity of factors including homeostasis and pref-
erential attachment [102], which eventually lead towards
an organization which is small-word and scale-free [105],
and geared towards the collective operation close to criti-
cality [106]. In this sense, such preparations can be viewed
as a mesoscale equivalent of the features of entire brains,
which are typically studied at an even coarser spatiotemporal
resolution [78].

It should not be surprising, then, that these results also
map closely onto those previously reported for hemody-
namic time-series, which also delineated a close association
between node degree of synchronization and the convergence
of correlation dimension estimation taken as a proxy of non-
linearity [33]. Notably, a correspondence between the in-vivo
and in-vitro scenarios was also discussed in a previous study,
wherein it was found that signatures of chaotic dynamics
gradually ensue in these cultures, as a function of age and
culture size [107]: the present results are in line with that
report, but crucially add the explanatory factor of connectivity
intensity (nodal strength) as a determinant of spatial (topo-
graphical) differences in the generation of nonlinear dynam-
ics over a background of stochastic activity. The notion that
higher synchronization, stemming from stronger coupling,
leads to more structured dynamics also rhymes with the idea
that mutual entrainmentmay be away for neuronal ensembles
to protect themselves from unavoidable noise sources (e.g.,
thermal noise), thus making it possible to purposefully gen-
erate coherent signals [108].

VI. CONCLUDING REMARKS AND
POSSIBLE APPLICATIONS
This multidisciplinary study addressed the as-yet relatively
under-investigated but fundamental topic of the effect that
connectivity has on the local dynamics unfolding within each
node in a generic natural or artificial network. Firstly, the ele-
mentary case of star topologies was considered, and it was
shown via simulations of Rössler systems that increased cou-
pling favors the development of complex dynamics, insofar as
the links are not so strong as to move away from the regime
of weak synchronization and cause the system to start devel-
oping a collective behavior. Through information-theoretical
analyses, it was illustrated that elevated complexity in the
hub could be driven by information inflow from the leaves,
a conclusion that was also supported by simulations with
asymmetric couplings. Second, scale-free and non scale-free
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graphs were investigated, and similar conclusions were
drawn; besides differences directly stemming from their node
degree distributions, some additional effects not evident in
the star networks were found. In particular, the possibly
non-monotonic influence of connectivity was more clearly
revealed, wherein, depending on the coupling strength, ele-
vated levels of complexity could be observed in the highest
or lowest degree nodes. Third, the results were extended to
an experimental scenario, namely a star network of electronic
chaotic oscillators. Given the situation of different dynamics
and presence of mismatches and non-idealities, this con-
firmed the possibly general relevance of the numerical results,
in particular, the effects of node degree and coupling strength.
Fourth, a stochastic spiking system representing a neuronal
microcircuit was simulated, and it was found that in such a
context, elevated connectivity can lead to the emergence of
stronger signatures of nonlinearity, established over a base-
line of noise-like activity. Finally, similar conclusions were
drawn based on experimental data from biological neuronal
cultures on multi-electrode arrays.

In summary, this work indicates that relationships between
the local connectivity of each node and its dynamics can
arise across rather diverse scenarios. The specific trend, how-
ever, seems to depend on a multitude of features, including
the topology of the entire network. As such, our results
corroborate and extend recent work in this direction, also
cautioning against assuming that a simple relationship holds
universally [35], [62], [63]. Interestingly, the effect of con-
nectivity was, at least on the surface, effectively diametrically
opposite in scenarios of strong and weak determinism of the
elemental dynamics. In the former case, elevated couplings
lead to more complex activity in the hub nodes, thereby
rendering the presence of deterministic relationships more
difficult to detect. Taking human interactions as a metaphor,
this recalls the common experience that people with a high
number of social connections, such as managers, tend to have
considerably more erratic and unpredictable schedules than
other employees [109]. On other hand, in the latter case,
the effect was to attenuate the noise and thus render activity
more ordered and predictable.

Another relevant aspect of this work is the systematic com-
parison of different measures of complexity and nonlinearity,
primarily the correlation dimension, permutation entropy and
prediction error, which led to convergent but not fully over-
lapping results, thus highlighting the importance of further
addressing the effect of measure choice in this area. Given the
intricate nature of the effects, the fundamental relationship
between local connectivity and dynamics should be more
extensively addressed in the future, to better elucidate the
multiplicity of factors which determine it, including possibly
system-specific aspects.

Although this topic has as-yet received limited attention
compared to the effect of connectivity on synchronization,
the potential implications of a more detailed understand-
ing of the relationship between connectivity and local node
dynamics are manifold [11]–[13], [68], [75]. As engineering

inexorably transitions towards a focus on highly distributed
systems, with ever finer granularity, it will become essential
to understand how weakly- and strongly-connected nodes
can behave differently. For example, in digital relay net-
works, as encountered in IoT contexts, some nodes may,
in virtue of their location, be more likely to interact,
namely exchange data or synchronize, with a large number
of neighbors [4], [5]. One particular instance of interest is
the realization of distributed sensing systems operating via
wirelessly-coupled nonlinear oscillators, such as transistor
oscillators [110], [111]. Such entities can be used to sense
a broad range of physical variables unintrusively, such as soil
nutrient content, and their behavior and the variable of inter-
est for data acquisition is a distributed information based both
on the locally sensed quantity and the knowledge of this vari-
able at neighboring, linked sites. As coupling strengths may
depend on distance, the present results suggest that the homo-
geneity of the topographical distribution of nodes can have a
profound effect. Namely, sparsely-distributed networks with
regions of high-density are predicted to be more likely to gen-
erate high-complexity, possibly chaotic, behaviors compared
to dense and more homogeneous networks, where a more
ordered and highly-synchronized collective state is likely to
emerge. In these contexts, there may be situations wherein
high- or low-complexity activity is desirable.When dynamics
are primarily stochastic, for example, due to the overlap of
noise-like transactions from unrelated end-points, according
to the present results creating highly-coupled nodes could be
away to engender the emergence ofmore predictable network
activity; this might have relevance to the control of power
distribution and telecommunication networks [6], [7]. These
speculative assertions will be evaluated in future applied
research.

The analysis of the complexity at the level of individ-
ual nodes presented may herein be of interest also for net-
work identification and control. At a general level, it may
contribute to the detection of emergent properties and iden-
tification of the vital nodes which influence and sustain the
network dynamics [8], [21], [22]. In network control, given
the high number of elements of the system, it is difficult or
even impossible to apply an action to each node and, for this
reason, several efforts have been devoted to understanding
which sites enable the full [112] or partial [113] control of
the network. Our conclusions in some aspects complement
these results that are mainly focused on the linear nodal
dynamics case. In the case of isolated dynamics, the control of
chaos has led tomany techniques either aiming at suppressing
or promoting a chaotic behavior [114]. The results of our
study can provide directions to extend these techniques to
networked systems as, on the one hand, they may inform the
selection of the units to pin for control by identifying the
nodes having the highest or lowest level of complexity and,
the other hand, they may unveil the mechanisms underlying
the differentiation of the complexity at the node level and,
therefore, promote a better understanding on how to control
this differentiation.
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Finally, these results are relevant to the interpretation of
neurophysiological time-series. In a previous study, it was
shown that the hub regions of the cortex generate signals
which large-amplitude, low-frequency fluctuations which
contain stronger signatures of nonlinearity compared to
the rest of the brain, wherein, under resting conditions,
the activity appears mostly as noise-like higher-frequency
fluctuations [33]. Here, such observation was extended to
neuronal cultures and a simulated microcircuit. The present
results reinforce the connection to several simulation stud-
ies, wherein it was shown that connectivity could lead to
the emergence of the low-frequency coherent fluctuations
which are tracked by hemodynamics and, therefore, visible
to techniques such as functional MRI [115]. More generally,
because it seems possible to establish a relationship between
the connectivity of each network node and its dynamics, this
work motivates more extensively investigating such a rela-
tionship in the brain, across diverse spatiotemporal windows,
not only at the global but also at the regional level [32], [34].
On the one hand, the joint consideration of measures of
dynamics and synchronization may aid in the recognition of
brain states, such as in relation to mental states and tasks.
On the other, the establishment of a clear relationship between
dynamics and synchronization across cortical regions could
provide a new reference for assessing the integrity of brain
function, with applications, for instance, in patients with
discrete lesions or incipient degeneration [19], [31]. Extreme
deviations from normal dynamics such as diffuse synchro-
nization during epileptic seizures or reduced activity integra-
tion during coma are well-known pathological hallmarks; it
should thus be seen whether more subtle deviations in the
relationship between the complexity of node dynamics and
connectivity convey useful information [18], [20], [31].
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