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Abstract 

Electrodialysis-related technologies keep spreading in multiple fields, among which water 

desalination still plays a major role. A new technology that has not yet been thoroughly investigated 

is capacitive electrodialysis (CED), which couples the standard ED with capacitive electrodes. CED 

has a number of advantages such as removal of toxic products and system simplification. Little 

mention is made of this technology in the literature and, to the best of our knowledge, no modelling 

works have ever been presented. In this work, the CED process has been studied through experiments 

and modelling. A CED model is presented for the first time. With a simple calibration based on 

macroscopic membrane properties and the characterisation of electrode behaviour, the model is able 

to simulate the dynamics of simple as well as more complex layouts. An original experimental 

characterisation of electrodes is presented, showing how the collected data can be implemented into 
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the model. After a successful validation with experimental data, dynamic simulations of a single pass 

CED unit have been performed with the aim of assessing the effect of different capacitive electrode 

properties on process performance. Results show how the impact of these properties is different 

depending on the number of cell pairs. 

Keywords: Dynamic simulation, desalination, ion exchange membrane, electromembrane process, 

carbon electrode. 

1. Introduction 

Electrodialysis (ED) is an electrochemical process that involves the use of ion exchange membranes 

that are able to selectively orient the motion of either anions or cations [1,2]. The ED unit, often 

referred to as a stack, is generally based on a plate and frame arrangement, where cation and anion 

exchange membranes (AEMs and CEMs) are alternatively arranged in series. Channels for water flow 

are formed in between membranes by separators (i.e. spacers) giving mechanical stability to the 

channels and promoting mixing [2]. In particular, an AEM, a CEM and two adjacent channels form 

the repetitive unit, referred as the cell pair (Figure 1). Finally, the device is closed with two end plates.  

Upon application of an electric potential, anions and cations start to move in opposite directions. As 

a result of the alternating presence of CEMs and AEMs, cations will be able to flow through the 

former, while they will be almost totally blocked by anionic membranes. Conversely, anions will 

preferentially pass through AEMs. Therefore, ions (and thus salt) can be removed from one channel 

(referred as the diluate), while being accumulated in the adjacent one (i.e. the concentrate) producing 

the desalted product as well as a concentrate by-product. In a typical ED stack, current flow is ensured 

by the presence of faradaic electrodes that are mounted onto the endplates and are connected to a 

power supply. Therefore, the two end channels (the ones created in between the endplate and the last 

membrane on each side) are devoted to the circulation of an electrode rinse solution allowing the 

charge transfer by redox reactions that convert the electronic flux in the external circuit into the ion 

flux inside the stack. Usually, NaCl or Na2SO4 [3,4] are selected as electrolytes. 
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Capacitive electrodes represent a promising alternative to conventional electrode systems and have 

been recently proposed in applications for ED and reverse ED [5–7]. Porous capacitive electrodes act 

as a means of current transport by physico-chemical mechanisms of adsorption and desorption of ions 

(thus ejecting/capturing electrons) instead promoting electrochemical reactions (Figure 1). There are 

a number of advantages associated with the use of capacitive electrodes such as the absence of 

unstable or toxic products (i.e. Cl2, O2 and acids or bases, depending on the electrode solution 

adopted) and the reduction of the electrodic potential drop. In addition, system complexity is reduced 

due to the absence of the hydraulic circuit that in standard ED is used to recirculate the electrode rinse 

solution [5,7]. On the other hand, capacitive electrodes suffer from saturation of the carbon layer due 

to charge accumulation, so that the electrical polarity (as well as concentrate and diluate 

compartments) needs to be periodically switched in order to operate the desalination process for a 

long time. However, this drawback is compensated by the fact that ED plants usually operates in ED 

reversal mode, where a periodical polarity switch is already adopted to address membrane fouling 

issues. Therefore, such systems are already suitable for the use of capacitive electrodes.  
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Figure 1. a) Schematic representation of the electrodialysis process with capacitive electrodes (CED), b) detail on the porous 
structure of the capacitive electrode. 

Although a lot of complex phenomena can be involved [8,9], in principle a capacitive electrode is 

able to store charges in the form of ions through formation of the electric double layer (EDL) upon 

electrical polarisation [8,10]. As the EDL is formed on the pores’ surface, the higher the specific area, 

the higher the amount of ions that can be stored or released. Therefore, it is imperative to use materials 

with high surface area in order to avoid too frequent polarity switches. Good conductivity is also 

desirable, in order to limit the Ohmic losses at the electrodes. For this reason, capacitive electrodes 

are mainly made from carbon materials [8], although alternatives such as conductive polymers have 

been also investigated [11]. Among the carbon materials, different authors  have reported the use of 

graphene with various structures such as aerogels [12] multi-layer nanoribbons [13,14], nanotubes 

[12,15–18] and carbon onions [18,19]. In particular, Portet et al. [18] showed how carbon onions are 

specifically suitable for energy storage applications, due to their ability to rapidly deliver charges. 

Another good material is carbon black, which is able to provide a high surface area (> 1500 m2/g) 
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through agglomeration of nanoparticles [8,20]. However, the most common electrodes are usually 

made from activated carbons, characterised by randomly oriented and highly cross-linked graphene 

layers [21–28]. Activated carbons are particularly attractive as they combine high surface area with 

low production costs, as they can be produced by natural precursors such as fruit stones [28], leaves 

[21] and pitch [29]. 

The ability of capacitive electrodes for storing and delivering ionic charges make them suitable for 

two fields: conversion and storage of energy, and desalination. In the first one, supercapacitors 

represent by far the most common application [30,31], although there are some other processes such 

as Reverse electrodialysis (RED) with capacitive electrodes [7] or with capacitive flow electrodes 

[32], capacitive cell with CO2 solutions [33], capacitive double-layer expansion [34] and other 

CAPMIX technologies [8]. Among the desalination technologies, capacitive electrodes are mostly 

acknowledged for the capacitive deionisation (CDI) process [35–39]. An interesting development of 

CDI technology is the single module flow-electrode capacitive deionization (FCDI) [40], which 

allows the CDI to become a continuous process through the recirculation of an activated carbon 

suspension. While FCDI has the advantage to be a continuous process, compared to CED it requires 

a hydraulic electrode circuit.  Recently, an FCDI process model was also presented [41].  

Although carbon electrodes have been thoroughly studied and applied to many processes and CED is 

an already commercialised technology [42], to the best of our knowledge the process has not been 

widely studied in the literature [5,6]. In addition, no CED modelling works have been published yet. 

In this work, the CED process has been thoroughly studied by means of modelling and experiments. 

A set of galvanostatic experiments on a lab scale CED stack has been performed with the aim of 

testing the process desalination capability and characterising a set of capacitive electrodes. In 

addition, a CED process model is presented. The modelling tool has been implemented by a 

hierarchical approach that simulates the main dynamic phenomena involved in the CED process and 

ensures high flexibility in simulating different scales and layouts, ranging from the simple single pass 
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lab-unit up to complex multistage industrial installations. After a model validation by means of the 

aforementioned experimental data, simulations have been performed in order to present the predictive 

capability of the modelling tool and analyse the process performance under a variety of operating 

conditions.  

 

2. Modelling state of the art 

Despite the lack of published CED models, there are a lot of modelling works either on ED [43–56] 

or on capacitive electrodes applied to other processes [9,57–63]. 

Many approaches can be adopted to build an ED model, ranging from the simplistic to the more 

rigorous ones. [2]. Among all the possible approaches, semi-empirical models represent a good 

balance, as an extensive description of non-ideal phenomena is provided requiring only easily 

measurable quantities as input parameters (e.g. macroscopic membrane properties). This method has 

already been presented for both RED [64–66], and ED [49,67–70]. 

Capacitive electrodes have been extensively modelled at different scales within the context of 

different applications. In the most basic approach, the electrode is represented by a simple electrical 

circuit composed by a capacitor and a resistor (RC circuit model) [57,58]. Although this approach 

does not take into account the physical structure of the carbon material, all the electrode 

characteristics are condensed into the values of the two electrical elements that are relatively easy to 

measure. Therefore, this simple yet effective approach is particularly useful for process models as it 

requires little yet easily accessible information.  

A more detailed approach to the problem is represented by the transmission line model [10,58,71,72]. 

In this case, the porous electrode structure is approximated through a complex circuit with electrical 

elements (i.e. resistor, capacitors and impedances) arranged in series and parallel. Different degrees 

of complexity can be found based on the assumed porous structures, ranging from simple RC 
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transmission lines [71,72] up to a complex arrangement of hierarchical impedances where a bimodal 

porous structure is required [10]. This type of model can be calibrated on a specific capacitive 

electrode by quantifying a set of fitting parameters in the form of electrical elements by means of 

electrical impedance spectroscopy measurements [10]. 

A completely different approach is based on the theoretical description of the EDL. Traditionally, 

models belonging to this category are based on the Gouy-Chapman-Stern theory [9,60,61]. 

Alternatively, the Donnan  and modified Donnan models provide a more comprehensive description, 

involving the dynamics of EDL formation and accounting for overlapping EDLs typical of small 

pores [59,63,73,74]. The latter class of models can also be extended to account for non-electrostatic 

ion adsorption [59] and faradic reactions [63]. Theoretical models for capacitive electrodes can 

predict electric potential distributions inside the pores. However, complex parameters, such as the 

capacitance of micropores [59], need to be estimated. 

In the CED model developed in this work, an existing semi-empirical hierarchical ED model [70] 

was properly modified and extended to account for the presence of capacitive electrodes which were 

modelled by means of a distributed RC circuit.  

 

3. Model 

A dynamic CED hierarchical model was developed. The starting point for the current formulation is 

a pre-existing steady-state ED one-dimensional process simulator [70] that was adapted for the 

purpose of accounting for the peculiarities of the new process. Consequently, existing hierarchies 

were modified to take into account the intrinsic dynamic behaviour, allowing for all the variables to 

be also function of time (Figure 2). 

Starting from the lowest scale, the model simulates mass transport and electrical behaviour of the cell 

pair (i.e. the ED repeating unit) and the capacitive electrodes. These two elements are coupled in the 
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second level where the whole stack is modelled (Figure 2 c). Finally, the stack model is implemented 

in the plant model, i.e. the highest scale that can simulate different process layouts (i.e. single stage, 

multistage, batch, feed and bleed etc.). 

 

Figure 2. Schematic representation of the model hierarchies. a) Cell pair, b) capacitive electrode, c) stack.  

 

3.1 Capacitive electrodes model 

Each capacitive electrode was modelled as a distributed entity divided into a number of discretisation 

intervals in the direction of the channel length (Figure 2 b). A simple RC circuit was used to model 

the behaviour of each interval. No contributions for unwanted faradic reactions or non-electrostatic 

adsorption was considered. Therefore, the time-dependent distributed electrode voltage drop 

(indicated as 𝑉) can be written as: 
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𝑉

(𝑥, 𝑡) =

𝜎


(𝑥, 𝑡)

𝑐


(𝑥, 𝑡)
+ 𝑅


𝑖(𝑥, 𝑡) 

(1) 

where 𝜎 is the amount of charge per unit of projected area collected by the capacitor  at a given time 

and position, 𝑐 is the electrode capacitance per unit of projected area, 𝑅 the electrode areal 

resistance, 𝑖 =  
ௗఙ

ௗ௧
 is the current density and 𝑥 and 𝑡 are the space and time coordinates respectively. 

The superscript 𝑗 represents the fact that the equation is valid for both of the electrodes in the CED 

unit. It is worth noting that, considering a spatial distribution, each discretised electrode volume can 

behave differently from others, thus potentially having different values of charge, capacitance, 

resistance and, thus, voltage at every 𝑥. This assumption has been made in order to account for the 

fact that in a real unit the electrode can be subjected to a very different concentration and current 

density along the channel direction, thus potentially making it behave very differently from the inlet 

to the outlet of the stack. Figure 3 shows the charge spatial distribution of a capacitive electrode as 

well as the current density spatial variation, highlighting how much these variables can change along 

the channel length.  

 

Figure 3. Spatial distribution of a) capacitive electrode charge and of b) current density along the channel length, at different times 
for the simulation a single pass CED unit 12.5 cm wide and 80 cm long, equipped with 270 µm woven spacers and FUJIFILM capacitive 
electrodes (RC circuit properties taken from experimental results). Inlet concentration of 2 g/l, linear velocity of 2 cm/s, and ±2 V of 
applied voltage with polarity switches every 600 s (10 min). 
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In this work, the value of 𝑐 was experimentally determined as a function of the solution 

concentration by means of galvanostatic methods (see section 4).  

3.2 Cell pair model 

The cell pair model has also distributed parameters and includes salt and water mass balances and 

transport equations (Figure 2 a), electrical equations and correlations for the estimation of 

thermodynamic properties of salt solutions and membranes [70]. Table 1 summarises the main 

equations implemented in the model. For the meaning of all quantities, refer to the list of symbols. 

For the sake of clarity, a complete description of the cell pair model can be found in the supplementary 

material.  

Table 1. List of the main equations for mass transport in the cell pair model. 

Described phenomenon Equation 

Salt mass balance 𝑏 𝛿ௌை

𝜕𝐶ௌை(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑄ௌை(𝑥, 𝑡)𝐶ௌை(𝑥, 𝑡)

𝜕𝑥
= ±𝑏 𝐽௧௧(𝑥, 𝑡) (2) 

Overall mass balance 
𝑑 𝑄ௌை(𝑥, 𝑡) 

𝑑𝑥
= ± 𝑏 𝑞௪(𝑥, 𝑡) (3) 

Conductive salt flux 𝐽ௗ(𝑥, 𝑡) =  [𝑡ாெ
௨௧ − (1 −  𝑡ாெ

௨௧)] 
𝑖 (𝑥, 𝑡)

𝐹
 (4) 

Diffusive salt flux 𝐽ௗ
ூாெ (𝑥, 𝑡) = − 

𝐷ூாெ

𝛿ூாெ
(𝐶

௧,ூாெ(𝑥, 𝑡) − 𝐶 
௧,ூாெ(𝑥, 𝑡)) (5) 

Overall salt flux 𝐽௧௧(𝑥, 𝑡) =  𝐽ௗ(𝑥, 𝑡) +  𝐽𝑑𝑖𝑓𝑓
𝐴𝐸𝑀(𝑥, 𝑡) +  𝐽𝑑𝑖𝑓𝑓

𝐶𝐸𝑀(𝑥, 𝑡)  (6) 

Osmotic water flux 𝑞௦
ூாெ(𝑥, 𝑡) = 𝐿

ூாெ൫𝜋
ூாெ(𝑥, 𝑡) − 𝜋

ூாெ(𝑥, 𝑡)൯ (7) 

Electroosmotic water flux 𝑞௦(𝑥, 𝑡) =  
𝑤 𝐽௧௧(𝑥, 𝑡)𝑀௪

𝜌௪
 (8) 

Overall water flux 𝑞௪(𝑥, 𝑡) =  𝑞
𝑜𝑠𝑚
𝐴𝐸𝑀(𝑥, 𝑡) + 𝑞

𝑜𝑠𝑚
𝐶𝐸𝑀(𝑥, 𝑡) + 𝑞௦(𝑥, 𝑡) (9) 

 

In contrast to the original steady-state model, most of the variables are now intrinsically functions of 

time (𝑡) as well as space (𝑥) and salt material balances (eq.(2)) have the time derivative term. 
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The cell pair electrical terms are also computed at this scale. Interestingly, due to the discretisation 

of the capacitive electrodes (whose model is coupled with the cell pair model at the stack level), it is 

not possible to define a single voltage drop over a cell pair (𝑉) independent from the spatial 

coordinate. In fact, only in the stack, where current collectors impose an equipotential surface, is it 

possible to define a unique value of the voltage (for more details, see section 3.3). Therefore, 𝑉 is 

different for each single branch of the cell pair equivalent electrical circuit, thus becoming a function 

of 𝑥. According to the cell pair equivalent circuit (depicted between the brackets in Figure 4): 

 𝑉(𝑥, 𝑡) =  𝜂 (𝑥, 𝑡) + 𝑅௧௧(𝑥, 𝑡)𝑖(𝑥, 𝑡)  (10)  

where 𝜂 is the non-Ohmic voltage drop associated to the back electromotive force where 

concentration polarisation is also taken into account making use of computationally determined 

Sherwood numbers [70,75–77] and 𝑅௧௧ is the total areal Ohmic resistance of cell pair which can be 

calculated as the sum of membrane and solution compartment resistances [70].  

 

3.3 Stack model 

The stack model simulates a series of cell pairs between two capacitive electrodes which are 

positively or negatively polarised. Within the stack, it is possible to compute power consumption, 

performance parameters (e.g. current efficiency) and overall quantities such as the applied voltage 

[70]. At a given time, performance parameters are defined as in the classical ED process, while the 

external applied voltage (𝑉௧௧ ) can be calculated by summing up the voltage drop of all cell pairs and 

of the two electrodes at any position (according to the system equivalent circuit shown in Figure 4): 

𝑉௧௧ (𝑡) =  ቌ 𝑉
(𝑥, 𝑡)

ே

ୀଵ

ቍ +  𝑉
ଵ (𝑥, 𝑡) +  𝑉

ଶ (𝑥, 𝑡) (11) 
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Figure 4. Scheme of the distributed equivalent electrical circuit representative of the stack model, including the cell pair circuit (in 
brackets) in series with the RC elements of the capacitive electrodes. For the sake of brevity, only the branches that describe the 
position x = 0 (channel inlet) as well as one for a generic x position have been explicitly represented. 

 

Despite the fact that the voltage of each element (i.e. cell pairs and the two electrodes) can be different 

at each 𝑥 position, the total voltage is a single parameter. This represents the value that can be 

externally measured at the current collectors. 

3.4 Plant model 

The plant model represents the highest hierarchy of simulation where a number of stack models can 

be variously arranged together with other auxiliary units. In a previous paper [70] multistage and 

batch configurations for standard ED have been assessed highlighting the operating advantages of 

some possible arrangements. However, more complex layouts can also be simulated, including the 

presence of recycle streams, typical of feed and bleed configurations. 

4. Experimental 

 A 10×10 cm2 bench-scale CED unit (Deukum GmbH, Germany), equipped with carbon capacitive 

electrodes with graphite current collectors (FUJIFILM Manufacturing Europe B.V., The 

Netherlands), operating in a single pass co-flow arrangement was tested. The stack was assembled 

with 10 cell pairs made by Type 10 ion exchange membranes (FUJIFILM Manufacturing Europe 

B.V., The Netherlands) whose main properties are listed in Table 2, and 270 µm woven spacers 

(Deukum GmbH, Germany) [78]. CEM end-membranes have been placed in direct contact with the 



13 
 

electrodes, so that only cations are involved in the formation of EDL at the electrodes. For this reason, 

during the operation one capacitor will accumulate cations while the other will desorb them. A 

schematic representation of the stack assembly is provided in Figure 5. 

Table 2. Properties of Type 10 FUJIFILM membranes (experimentally measured). 

Membrane Thickness 

 δ (µm) 

Permselectivity 

α* 

Water permeability 

Lp (ml/(bar h m2)) 

Resistance 

R (Ω·cm2)** 

AEM 130 0.969 6.29 1.77 

CEM 130 0.975 7.79 1.89 

*Permselectivity measured in between 0.05M/0.5M KCl solutions 

**Membrane resistance measured with 0.5 M NaCl solution 

 

 

Figure 5. Schematic representation of the CED unit used for the experiments. 𝑉௧௧ ,𝑉
ଵ ,𝑉

ଶ  and 𝑉ଵ indicates the experimentally 
measured voltage drops: overall voltage drop (𝑉௧௧ ), electrode 1 voltage drop (𝑉

ଵ ), electrode 2 voltage drop (𝑉
ଶ ), cell pairs voltage 

drop (𝑉ଵ). 

 

NaCl solutions at different concentrations (1, 3, 5 and 10 g/l) were pumped with a flowrate of ~ 490 

ml/min (3 cm/s) through the stack using DC controlled diaphragm pumps controlled by flow meters 

(Krohne, Germany). Solution conductivities have been measured and continuously monitored both at 

the inlet and at the outlet through conductivity meters (LAQUA F-74, HORIBA Ltd., Japan) 
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The experiments were performed under galvanostatic conditions (constant current) by means of a 

power supply (PPS-11815, Voltcraft, Germany). Platinum wires of 0.2 mm diameter (Agar Scientific 

Ltd., UK) were used to measure the voltage drop over the membrane pile excluding the electrodes 

(𝑉ଵ, as shown in Figure 5) and over the single electrodes (𝑉
ଵ  and 𝑉

ଶ  from Figure 5). Voltages 

have been continuously measured and recorded through an acquisition system (M300, Rigol 

Technologies Inc., U.S.).  

During a single galvanostatic test, a constant current has been maintained for a chosen time period in 

order to avoid excessive voltage over the electrodes, and thus the occurrence of water splitting. At 

the end of the period, a polarity switch inverted the direction of the fixed current (Figure 6 a). The 

switches were repeated for a number of cycles in order to ensure the achievement of a regular periodic 

operation.  

Figure 6 a shows an example of the electrical voltages measured during a typical experiment.  Apart 

from 𝑉௧௧, the graph depicts 𝑉
ଵ , 𝑉

ଶ  and 𝑉ଵ. It is worth noting that the voltages are always 

represented as voltage drops (so that ∑ 𝑉 = 𝑉௧௧). Therefore, when a positive current (orange line) is 

applied, 𝑉
ଵ  represents the voltage drop of the electrode that is adsorbing cations (and thus acting as 

a passive charging element), while the negative value of 𝑉
ଶ  is representative of the electrode that is 

actively discharging and thus providing part of the current. The opposite happens when a negative 

current is applied. 

From the 𝑉௧௧ vs time curves obtained from the experiments, it was possible to estimate the equivalent 

capacitance of the electrodes by means of the following equation: 

𝑑𝑉௧௧

𝑑𝑡
=

𝑖

𝑐
 

(12) 

where 
ௗ

ௗ௧
 is the slope of the overall voltage vs time curve (linear parts of 𝑉௧௧ curve as in Figure 6 

b), 𝑖 is the overall current and 𝑐
 is the equivalent areal electrode capacitance, accounting for both 



15 
 

capacitive electrodes. If the charging (or discharging) voltage curve of the two electrodes is almost 

equivalent, it can be assumed that their behaviour is the same. Consequently, the capacitance of a 

single electrode can be taken as twice as the value estimated from eq.(12). In the case of highly 

asymmetric behaviour (i.e. when two completely different electrodes are used at each side of the CED 

unit), the capacitance of the each electrode can be also deduced directly from the slope of each 𝑉
 

voltage curve. 

At a given feed concentration (which was assumed as the concentration inside the stack channels due 

to the high flowrate), the capacitance has been averaged over each value measured from positive and 

negative voltage curves. In addition, each experiment was repeated 2 to 3 times. 

 

Figure 6. a) Representation of a typical experimental voltage vs time curve showing the overall voltage drop ( 𝑉௧௧ ), electrode 1 voltage 
drop (𝑉

ଵ ), cell pairs voltage drop (𝑉ଵ), electrode 2 voltage drop (𝑉
ଶ ) and the applied current. b) Detail of a linear part of  𝑉௧௧  vs 

time curve used for the estimation of electrode capacitance. The graphs refer to a 1 g/l feed concentration and ±0.1 A, where positive 
or negative sign of the current indicates the two different polarities. 

 

5. Results and discussion 

In the first part of this section, the results from the experimental capacitance measurements are shown. 

Then, predictions of the CED process simulations, performed with the experimentally determined 

values of electrode capacitance, are compared with the experimental data of the CED unit for 
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validation purposes. Finally, simulation results aimed at assessing the influence of capacitive 

electrode parameters and number of cell pairs on the process performance are presented and 

discussed. 

 

5.1 Bench-scale CED stack 

5.1.1 In-situ experimental characterization of the capacitive electrodes 

Figure 7 shows the specific capacitance per cm2 of projected area estimated from the overall voltage 

versus time curves (𝑐
) as a function of solution concentration. Error bars have been determined 

from the standard deviation of the outcomes of each repeated experiment. The slightly increasing 

trend of the capacitance can be explained by the formation of an electric double layer at the 

nanoscopic scale which is influenced by the amount of ions in the solution, as traditionally formulated 

by the Gouy-Chapman model of the diffuse EDL [79]. Given the common nature of the two electrodes 

of this specific unit (see section 4), the capacitance of a single electrode has been taken as twice the 

value reported in Figure 7 as discussed in section 4.  

 

Figure 7. Measured specific overall electrodes capacitance (𝑐
  ) as a function of solution concentration. 
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5.1.2 Experimental characterization of the CED unit and model validation 

The correlation of the capacitance vs the concentration obtained from the experimental results has 

been implemented into the capacitive electrode model of the CED process simulator in order to 

predict the behaviour of the experimentally characterised electrodes. Therefore, it was possible to 

assess the model reliability in simulating the operation of the CED unit by comparison with the 

experimental curves. gProms Modelbuilder (PSE, UK) has been used as simulation platform.  

Simulations were performed by applying the electrode open circuit voltages (i.e. measured when no 

current was flowing through the system) as initial condition. Those voltages are associated with the 

fact that a certain amount of charge is already accumulated at the electrode surface. In addition, the 

value of the electrode ohmic resistance was calibrated from the instantaneous step voltage response 

of each electrode when the current is applied (Figure 8 c and Figure 9 c) and ranged from 50 to 100 

Ω∙m2, based on solution concentration. 

 Figure 8 shows simulation results in comparison with the experimental data for the case of 10 g/l 

feed and ±0.15 A current. As shown, the process is actively desalinating one feed stream while 

concentrating the other (Figure 8 d). At a given polarity, the cell pair voltage stays constant as the 

desalination rate is kept constant by the applied current. On the other hand, the absolute value of 𝑉
ଵ  

and 𝑉
ଶ  (Figure 8 c) grows in order to maintain the desired current. Interestingly, after the first two 

cycles the operation is quite stable and able to maintain the same performances for multiple cycles. 

Therefore, it seems realistic to imagine wider CED stacks (i.e. with larger active area) that can steadily 

desalinate a feed stream down to the drinking water concentration target. 
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Figure 8. Model predictions compared with experimental data of a bench-scale 10×10 cm2 CED stack equipped with 270 µm woven 
spacers and Type 10 FUJIFILM membranes. Inlet concentration of 10 g/l flowrate of 486 ml/min and applied current of ±0.15 A with 
polarity switches every ~280 s. a) Overall voltage drop, b) Cell pairs voltage drop, c) Electrodes voltage drop, d) outlet conductivity 
of the two compartments. 

 

Other operating conditions have been tested through both experiments and simulations. For example, 

Figure 9 shows the case of 1 g/l of salt concentration and ±0.1 A current. Similarly to the previous 

case, the desalination capability has also been demonstrated for lower concentration feeds. The main 

difference is that in this case the cell pair voltage drop (Figure 9 b) is much higher compared to the 

one in Figure 8 b due to the lower solution conductivity. Consequently, shorter cycles have been 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 500 1000 1500

ΔV
 (V

)

V10cp Exp. V10cp Model

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 500 1000 1500

ΔV
 (V

)

t (s)

Vel1 Model Vel1 Exp.
Vel2 Model Vel2 Exp.

14

14,5

15

15,5

16

16,5

17

17,5

18

0 500 1000 1500

σ
(m

S/
cm

)

t (s)

#1 Model #2 Model

#1 Exp. #2 Exp.

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 500 1000 1500

ΔV
 (V

)

Vtot Model Vtot Exp.
a) b)

c) d)



19 
 

performed in this case, despite the fact that the slope of the total voltage curve (Figure 9 a) is flatter 

due to the lower applied current.  

 

 

Figure 9. Model predictions compared with experimental data of a 10×10 cm2 CED stack equipped with 270 µm woven spacers and 
Type 10 FUJIFILM membranes. Inlet concentration of 1 g/l, flowrate of 486 ml/min and applied current of  ±0.1 A with polarity 
switches every ~180 s. a) Overall voltage drop, b) average cell pairs voltage drop, c) electrodes voltage drop, d) outlet conductivity of 
the two compartments. 

 

In general, Figure 8 and Figure 9 demonstrate that the model has a good prediction capability at 

different operating conditions both for the voltage vs time curves, as well as for the outlet 

conductivities. However, the model shows a slight overestimation of the average cell pair voltage 

drop (Figure 9 b). This discrepancy can be attributed to the stack assembly. According to the scheme 
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of Figure 5, the dimensions of the carbon electrodes are limited to the 10×10 cm2 active area and no 

external gaskets are used to compensate for the localized increase of thickness that takes place in the 

central part of the stack. Therefore, when the stack is closed, the electrodes apply a localized pressure 

on the active area of the membranes that are directly compressed over the spacer netting, reducing 

the real thickness of the channels and thus the channel Ohmic resistance. For low feed concentrations 

(as for the 1 g/l case) the resistance is higher and the difference between the real and the nominal 

value of the resistance increases the differences between the predicted and the measured voltage 

values. 

5.2  Performance prediction of large-scale CED stacks 

In real scenarios, salty water feeds need to be desalted down to drinking water salt concentration. In 

order to apply the CED technology to those cases, larger units must be considered. In this context, 

the model is a suitable tool to analyse the process in wider and more industrially-relevant conditions. 

Following the model validation, a single pass CED operation was simulated for a scaled-up 

configuration with 12 cell pairs and an active area of 12.5 (width) × 80 (length) cm2. A resistance of 

50 Ω·cm2 has been attributed to the electrodes (see section 5.1.2). Starting from a reference case, the 

CED model has been used to assess the effect of the electrode features on the process performance 

(section 5.3.1 and 5.3.2). 

The CED unit had to desalt a 2 g/l NaCl feed solution flowing with a linear velocity of 2 cm/s. This 

time, potentiostatic operations with a constant voltage of ±2 V have been simulated as this mode of 

operation is the most common in commercial applications. Multiple polarity switches were performed 

every 10 minutes (600 s). It is worth noting that the chosen switching time is not too far from the 

usual switching time of EDR plants (between 15 and 30 minutes). In order to simulate the CEM end 

membrane scheme, the electrode that is accumulating charge during the first cycle has a zero charge 

initial condition, while the opposite electrode is assumed to be pre-charged with a 𝑄 of 1 C/cm2. 
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Figure 10. Simulation results of a single pass CED unit 12.5 cm wide and 80 cm long equipped with 270 µm woven spacers and 
FUJIFILM capacitive electrodes (RC circuit properties taken from experimental results). Inlet concentration of 2 g/l, linear velocity 
of 2 cm/s, and ±2 V of applied voltage with polarity switches every 600 s (10 min). a) Overall, electrodes and cell pair voltage drop 
and current vs time, b) outlet concentrations of the two streams vs time. 

Simulation results are reported in Figure 10. In particular, Figure 10 a depicts the electrical variables 

as a function of time. At the beginning of a cycle, electrode 2 (i.e. the pre-charged one that is rejecting 

cations) is actively providing a voltage in addition to the external applied voltage (of 2V) that is higher 

than the actual electrode 1 voltage drop. Therefore, a voltage higher than 2 V is really applied to the 

cell pairs. However, during constant voltage operation, the electrodes’ voltage changes, thus causing 
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a decrease of (the absolute value of) the cell pairs’ voltage. Because of this phenomenon, the overall 

current decreases, negatively affecting the desalination rate during a cycle and thus causing the diluate 

outlet concentration to increase up to 0.8 g/l at the end of the cycle, as shown in Figure 10 b. 

The simulated reference case of CED operation would likely present some critical issues when 

replicated in a real unit. Firstly, the electrode voltage goes above 1 V in the last part of each cycle, 

meaning that unwanted faradic reactions (i.e. water splitting) may occur at to a large degree and 

damage at the electrodes may occur. In addition, the diluate outlet concentration increases well above 

the freshwater limit (set to 0.5 g/l, but usually taken even lower as a safety precaution). Therefore, 

with these electrodes shorter switching intervals would be required. 

 

5.2.1 Effect of electrode capacitance on single pass CED 

In order to avoid the aforementioned critical issues, maintaining the set switching interval or even 

extending it, the electrode should have an enhanced capacity. In this way, the electrodes’ voltage 

would grow less through time, causing a slower drop in the overall current. The latter effect would 

also make an impact on the diluate outlet concentration slowing down its increase. In order to 

numerically evaluate the improvements, the effect of electrode capacitance on process performance 

has been assessed via simulations. In particular, the specific capacitance per electrode was increased 

from ~ 1.2 F/cm2 for the reference case to 2 and 3.3 F/cm2. In this sensitivity study, the two latter 

values of capacitance are taken as constant values (i.e. independent from solution concentration) for 

the sake of simplicity. 

 Simulation results are reported in Figure 11. Comparing the reference capacitance with 2 F/cm2, the 

slope of the capacitive electrodes’ voltage over time is already strongly reduced, thus not reaching 

the undesired 1 V threshold through the 600 s of constant polarity (Figure 11 a). In addition, 

desalination performances are also enhanced (Figure 11 b). At 2 F/cm2, the diluate concentration goes 
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only slightly over 0.5 g/l, achieving an acceptable result, as the outlet solution produced in the earliest 

part of the cycle (whose concentration was well below the limit) will be in the end mixed with the 

more concentrated solution exiting at the end of the cycle. Interestingly, a further increase in the 

capacitance up to 3.3 F/cm2 does not provide a significant improvement to the voltage even though it 

still makes an impact on the outlet concentration. 

 

Figure 11. Simulation results for the comparison of different electrode capacitances (~ 1.2, 2 and 3.3 F/cm2) in a single pass CED unit 
12.5 cm wide and 80 cm long equipped with 270 µm woven spacers and FUJIFILM capacitive electrodes (RC circuit properties taken 
from experimental results). Inlet concentration of 2 g/l, linear velocity of 2 cm/s, and ±2 V of applied voltage with polarity switches 
every 600 s (10 min). a) Electrodes voltage drop vs time, b) outlet concentrations of the two streams vs time. 
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5.2.2 Effect of electrode resistance on single pass CED 

The specific electrode resistance is another interesting parameter to analyse. The reference value of 

50 Ω*cm2 has been compared with a doubled resistance (100 Ω*cm2) as well as with a halved one 

(25 Ω*cm2), maintaining the reference value of capacitance. Figure 12 shows the results in terms of 

electrode voltage and outlet concentration vs time. The increase in resistance causes a slight increase 

in the voltage as well as in the diluate concentration (due to a reduction in the stack current density). 

The reduction of the electrode resistance has the opposite effect. Nevertheless, the influence of the 

electrode resistance is almost negligible , as it is relatively small compared to the average Ohmic 

resistance of the 12 cell pairs amounting to ~ 500 Ω*cm2 . Consequently, a reduction in resistance 

does not lead to appreciable improvements of the process performance as an increase of capacitance 

does. 
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Figure 12. Simulation results for the comparison of different electrode resistances (25,50 and 100  Ω*cm2) in a single pass CED unit 
12.5 cm wide and 80 cm long equipped with 270 µm woven spacers and FUJIFILM capacitive electrodes (RC circuit properties taken 
from experimental results). Inlet concentration of 2 g/l, linear velocity of 2 cm/s, and ±2 V of applied voltage with polarity switches 
every 600 s (10 min). a) Electrodes voltage drop vs time, b) outlet concentrations of the two streams vs time. 

5.2.3 Effect of the number of cell pairs 

The dynamic effects of capacitive electrodes on process performance (i.e. voltage, current and 

concentration vs time) shown in the previous subsections are also affected by the low number of cell 

pairs that have been simulated. In fact, an increase in the number of cell pairs can modify the impact 

that electrode properties have on the overall process. For this reason, the reference case has been 

replicated with a higher number of cell pairs. 
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Figure 13. Simulation results showing the effect of a different number of cell pairs (12 and 60) in a single pass CED unit 12.5 cm wide 
and 80 cm long equipped with 270 µm woven spacers and FUJIFILM capacitive electrodes (RC circuit properties taken from 
experimental results). Inlet concentration of 2 g/l, linear velocity of 2 cm/s, and fixed voltage (±2 V for 12 cp, ± 9.45 V for 60 cp) with 
polarity switches every 600 s (10 min). a) Electrode1  and single cell pair voltage drop vs time and current vs time, b) outlet 
concentrations of the two streams vs time. 

Figure 13 shows the comparison between the reference case and a case where 60 cell pairs have been 

simulated. In order to set a comparable scenario, the total voltage has been fixed in a way that, at the 

initial condition (i.e. at 0 s), the voltage applied at each cell pair was equal for the two cases. As can 

be seen, the main effect of increasing the number of cell pairs is a reduction of the slope of the outlet 


V

 (
V

)

-0.5

0.0

0.5

1.0

1.5

I 
(A

)

-8

-6

-4

-2

0

2

4

6

8

3.0

3.5

4.0

a)

b)

t (s)

1500 2000

C
 (

g
/l)

0.0

0.5

1.0

#1 outlet
#2 outlet

12 cp
60 cp

Electrode 1 
1 cell pair

Current

12 cp
60 cp



27 
 

concentration vs time (Figure 13 b). This trend can be explained by the fact that the more the cell 

pairs the smaller the electrode voltage compared to the voltage of the cell pairs. Consequently, with 

60 cell pairs the electrode voltage changes through time almost does not affect the current curve that 

becomes flatter (orange curve from Figure 13 a) and also does the voltage drop of each cell pair (green 

curve from Figure 13 a). Of course, current and concentration curves would be perfectly flat for an 

infinite number of cell pairs. Another interesting consequence of the reduction of the current slope is 

the increase of the electrodes’ voltage slope (only 𝑉
ଵ  is depicted in Figure 13 a as 𝑉

ଶ  is qualitatively 

the same) as they are subjected to a higher average current. As can be deduced from previous 

discussions (see beginning of Section 5), the two limiting factors that cause the need to reverse 

polarity in CED operations are the excessive salinity of the dilute stream and the reach of the threshold 

value of the electrode voltage. Considering the effects on the outlet concentration and on the electrode 

voltage it can be observed that with increasing number of cell pairs, a progressive shift from the 

concentration limiting condition to the voltage limiting condition occurs. 

 

6. Conclusions 

In this work, the feasibility of the CED process has been proven with both experiments and modelling. 

A hierarchical dynamic model for the CED process has been presented for the first time. A single cell 

pair and the electrodes are separately described in the lowest hierarchy of the model. In particular, 

capacitive electrodes are modelled as an RC circuit distributed along the direction of the flowing 

solution. The cell pair and capacitive electrodes are subsequently coupled in the stack model, where 

the overall variables and performance parameters are calculated. The stack model can then be 

variously arranged in the highest hierarchy of the plant model. 

A set of experiments has been performed with the aim of demonstrating the desalination capability 

of the CED system. In addition, an experimental characterisation of a set of capacitive electrodes has 
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been carried out and the collected data have been used as input for the modelled RC circuit as well as 

to validate the CED model. 

Starting from a reference case, the model has been used to assess the effect of different parameters 

on process performance in conditions closer to real desalination applications. By simulating the same 

scenario in the presence of an increased capacitance, it was possible to show that the presence of a 

high capacitance (i.e. 2 F/cm2 ) would ensure the feasibility of longer desalination cycles prior to the 

occurrence of a polarity inversion, thus maintaining the electrode voltage drop below the water 

splitting threshold and the outlet diluate concentration below the target for a longer time. However, 

it has been shown that a further increase in the capacitance would unlikely lead to great improvement. 

A sensitivity analysis for the electrode resistance has been also carried out, demonstrating how 50 

Ω*cm2 is already a low value compared to the Ohmic resistance of the membrane pile that is one 

order of magnitude higher. Finally, it has been shown how the increase in the number of cell pairs 

can change the effect of the electrodes, causing a shift in the limiting condition that controls the 

polarity switch frequency. 

Although the RC circuit proved its suitability for process modelling, the simplifying assumptions 

made may affect model reliability in certain conditions. In particular, the presence of faradic reactions 

can considerably change process outputs at relatively high voltages. Therefore, a future work will 

comprehensively assess also this aspect. 
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List of symbols 

𝐴  Membrane area (m2) 

𝑏 Membrane width (m) 

𝐶 Concentration (mol/m3) 

𝑐 Specific capacitance (F/m2) 

𝐷ூாெ Salt permeability coefficient of one IEM (m2/s) 

𝐹 Faraday’s constant (C/mol) 

𝐼 Current (A) 

𝑖 Current density (A/m2) 

𝐽ௗ Conductive flux (mol/m2/s) 

𝐽ௗ
ூாெ  Diffusive flux across one IEM (mol/m2/s) 

𝐽௧௧ Total salt flux (mol/m2/s)  

𝐿 Channel length (m) 

𝐿 Water permeability (m3/Pa/s/m2) 

𝑀௪ Molecular weight (Kg/mol) 

𝑁 Number of cell pairs 

𝑄 Volumetric flow rate (m3/s) 

𝑞௦ Electroosmotic volumetric flux (m3/m2/s) 

𝑞௦
ூாெ Osmotic volumetric flux across one IEM (m3/m2/s) 

𝑞௪ Total water volumetric flux (m3/m2/s) 

𝑅 Areal electrical resistance (Ωm2) 

𝑅ீ  Universal gas constant (J/mol/K) 

𝑡௨௧ Counter-ion transport number in the membrane 

t Time (s) 

𝑉௧௧ Overall voltage (V) 

𝑉 Voltage drop over one cell pair (V) 

𝑉
 Electrode j voltage drop (V) 

𝑉ଵ Voltage drop over 10 cell pairs (V) 

𝑤 Total water transport number 

𝑥 Coordinate in the direction of the main flow 
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Greek letters 

𝛼 Permselectivity 

𝛿 Channel thickness (m) 

𝜂 Non-Ohmic voltage drop (V) 

𝜋 Osmotic pressure (Pa) 

𝜌௪ Mass density (Kg/m3) 

𝜎 Surface charge density (C/m2) 

Subscripts and superscripts 

𝐴𝐸𝑀 Anion-exchange membrane 

𝐶 Concentrate 

𝐶𝐸𝑀 Cation-exchange membrane 

𝐷 Dilute 

𝑒𝑙 Capacitive electrode 

𝑒𝑞 Equivalent circuit 

𝐼𝐸𝑀 Ion-exchange membrane 

𝑖𝑛𝑡 Value at the membrane -solution interface, solution side 

𝑆𝑂𝐿 Solution (either concentrate or diluate) 

𝑡𝑜𝑡 Total 
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Electrodialysis cell pair model description 

This section is intended to give a more detailed description of the lower hierarchy model of the cell 
pair, briefly described in the modelling section of the paper. All the equations involved, including the 
ones already presented in the main paper, will be shown. 

At the scale of the cell pair, mass balances, transport phenomena, solutions thermodynamics and 
electrical parameters are described. 

Different transport phenomena take place inside the cell pair, causing both salt and water to move 
through membranes. The main salt transport mechanism is the conductive flux, which is proportional 
to the ionic current and is associated to the external applied voltage.  In a general position along the 
length of the cell pair, it can be calculated as: 

𝐽𝑐𝑜𝑛𝑑(𝑥, 𝑡) =  [𝑡
𝐶𝐸𝑀
𝑐𝑜𝑢𝑛𝑡𝑒𝑟

− (1 − 𝑡𝐴𝐸𝑀
𝑐𝑜𝑢𝑛𝑡𝑒𝑟)] 

𝑖 (𝑥, 𝑡)

𝐹
 

(13) 

where 𝑖 is the current density, 𝐹 is the Faraday constant, and 𝑡ாெ
௨௧ and  𝑡ாெ

௨௧ are the transport 
numbers of the counter-ions inside the IEMs, directly linked with the membrane permselectivity using 
the following expression [1]: 

 

 𝛼ூாெ =
𝑡ூாெ

௨௧ − 𝑡ௌை
௨௧

𝑡ௌை
  

(14) 

where 𝑡𝑆𝑂𝐿
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and 𝑡𝑆𝑂𝐿

𝑐𝑜  are the transport numbers of counter-ion and co-ion in solution, and the 
subscript 𝐼𝐸𝑀 indicates that, using the relevant values, the expression is valid either for AEM or 
CEM. It is worth noting that the term [𝑡ாெ

௨௧ − (1 −  𝑡ாெ
௨௧)]  in eq. (13) is representative of the 
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non-ideal permselectivity of the membranes, as it accounts for the conductive co-ion transport 
through IEMs that in practice results in a drop of the salt removal efficiency of the system. 

In addition to the effects on the conductive flux, another consequence of the non-perfect membrane 
selectivity is the occurrence of a back-diffusive salt flux driven by the salt concentration difference 
between the channels, which, for a single membrane, can be written as:  

𝐽𝑑𝑖𝑓𝑓
𝐼𝐸𝑀 (𝑥, 𝑡) = − 

𝐷𝐼𝐸𝑀

𝛿𝐼𝐸𝑀
(𝐶𝐶

𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡) − 𝐶𝐷 
𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡)) 

(15) 

where 𝐷 is the salt permeability coefficient through the IEM, 𝛿 is the thickness of IEM and 𝐶௧ is 
the salt concentration in solution at the interface with the membrane. Subscripts 𝐶 and 𝐷 refer to 
concentrate and diluate respectively  and the superscript 𝐼𝐸𝑀 indicates that, using the relevant values, 
the expression is valid for both AEM and CEM. The overall diffusive flux can be written as the sum 
of the fluxes through the two membranes. 

Also water molecules can move through the membranes.  Water transport can be attributed to two 
phenomena: osmosis and electroosmosis. The first transport mechanism is caused by the 
transmembrane osmotic pressure difference and can be expressed as: 

𝑞𝑜𝑠𝑚
𝐼𝐸𝑀(𝑥, 𝑡) =  𝐿𝑝

𝐼𝐸𝑀
൫𝜋𝐶

𝐼𝐸𝑀 − 𝜋𝐷
𝐼𝐸𝑀൯ (1

6) 

i.e. 

𝑞𝑜𝑠𝑚
𝐼𝐸𝑀(𝑥, 𝑡) =  𝐿𝑝 

𝐼𝐸𝑀  ቂ𝜈 𝑅𝐺𝑇 ቀ𝜑𝐶
𝐼𝐸𝑀𝐶𝐶

𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡) − 𝜑𝐶
𝐼𝐸𝑀𝐶𝐷 

𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡)ቁቃ (17) 

where  𝐿 is the water permeability coefficient of IEMs and 𝜋 is the osmotic pressure that can be 
related to the van ’t Hoff coefficient (𝜈), the osmotic coefficient (𝜑) and the solution concentration. 
Pitzer’s correlations are used to estimate osmotic coefficients [2,3]: 

𝜑 − 1 =  − 𝐴ଵ 

√𝑚

1 + 𝑏ᇱ√𝑚
+ 𝑚𝐵ఝ + 𝑚ଶ𝐶ఝ 

(18) 

𝐵𝜑 = 𝛽(0) + 𝛽
(1)

𝑒−𝛼√𝑚 (19) 

where 𝐴ଵ is the modified Debye-Huckel constant (0.3915 at 25 °C), 𝑏ᇱis a correlation constant equal 
to 1.2, 𝑚 is the molality of the electrolyte, 𝛼 is a fixed constant with a value of 2 (kg/mol)1/2, 𝛽(), 
𝛽(ଵ), 𝐶ఝare functions of the nature of the electrolyte and amount to 0.06743, 0.3301 and 0.00263, 
respectively, for NaCl. As for the diffusive flux, the total osmotic flux is the sum of the fluxes on the 
two membranes. 

The second water transport mechanism, electroosmosis, is the water flux coupled with the ions 
movement due to two main contributions: the water molecules of the solvation shell and the water 
flux dragged by the momentum arising on the slip-plane between the solvation shell and the solvent 
[4,5]. Generally, electroosmosis can be expressed as a function of the overall salt flux: 

𝑞𝑒𝑜𝑠𝑚(𝑥, 𝑡) =  
𝑤 𝐽𝑡𝑜𝑡(𝑥, 𝑡)𝑀𝑤

𝜌𝑤

 
(20) 

where  𝐽௧௧ is the sum of the diffusive (of both AEM and CEM) and the migrative salt flux and 𝑤 is 
the total water transport number, defined as the sum of the water transport number relative to each 
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ion. In ref. [4], Wilson reports that for most membranes the ionic transport numbers are close to the 
primary hydration numbers. Thus, for a NaCl solution a value of 12 moles per equivalent of 
transported salt can be assumed. 

The model computes distributions over the dimension of the channel length and time. Bulk 
concentration and flowrate distributions inside the channels are described through differential mass 
balance equations that, in the case of co-current flow and negligible changes in the solutions density, 
are: 

𝑏𝛿ௌை

𝜕𝐶ௌை(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑄ௌை(𝑥, 𝑡)𝐶ௌை(𝑥, 𝑡)

𝜕𝑥
= ±𝑏 𝐽௧௧(𝑥, 𝑡) 

(21) 

𝑑 𝑄ௌை(𝑥, 𝑡) 

𝑑𝑥
= ± 𝑏 𝑞௪(𝑥, 𝑡) 

(22) 

 

where 𝑄  represents the local volumetric flow rate, 𝑏 the channel width and  𝑞௪ the local overall 
volumetric water flux (i.e. the sum of osmotic and electroosmotic fluxes). The signs + and – refers to 
the concentrate and the diluate respectively. It is worth noting that in the overall mass balance 
equation, the accumulation term (time-derivative of total mass in the control volume) is null due to 
the assumption of incompressible fluid flowing through a constant cross-section (i.e. constant 
volume) channel. 

A crucial aspect of ED process modelling is to relate the ionic current to the applied voltage. The 
voltage drop over a cell pair (𝑉) is calculated as: 

 𝑉(𝑥, 𝑡) =  𝜂 (𝑥, 𝑡) + 𝑅௧௧(𝑥, 𝑡)𝑖(𝑥, 𝑡) (23)  

where 𝜂 is the non-ohmic voltage drop associated to the back electromotive force (diffusion potentials 
are not taken into account), 𝑖 is the current density, 𝑅௧௧ is the total areal ohmic resistance of cell pair 
that can be calculated as the sum of the four components in series 

𝑅𝑡𝑜𝑡(𝑥, 𝑡) =  𝑅𝐶𝐸𝑀(𝑥, 𝑡) + 𝑅𝐴𝐸𝑀(𝑥, 𝑡) + 𝑅𝐶(𝑥, 𝑡) + 𝑅𝐷(𝑥, 𝑡)  (24) 

where 𝑅ாெ and 𝑅ாெ represents the resistance of IEMs. 𝑅 and 𝑅 are the resistance of concentrate 
and diluate respectively, and, neglecting the ohmic contribution of the diffusion boundary layers, can 
be generally expressed as: 

𝑅𝑆𝑂𝐿(𝑥, 𝑡) = 𝑓𝑠𝑆𝑂𝐿
 

𝛿𝑆𝑂𝐿

Λ𝑆𝑂𝐿(𝑥, 𝑡) 𝐶𝑆𝑂𝐿(𝑥, 𝑡)
 

(25) 

with 𝛿 being the compartment thickness, 𝑓௦ the shadow factor, which accounts for the resistance 
increase due to the presence of a non-conductive spacer [6] and Λ the equivalent conductivity. The 
subscript 𝑆𝑂𝐿 refers to the generic solution, thus making the equation valid for both concentrate and 
diluate resistances by using the relevant parameters. For a NaCl salt solution, the equivalent 
conductivity can be estimated by the correlation of Islam et al. [7]: 

Λ(𝑥, 𝑡) =  ቈΛ −  
𝐵ᇱ

ଵ(𝐶)√𝐶

1 + 𝐵ᇱ(𝐶) 𝑎√𝐶
 ቈ1 −

𝐵ᇱ
ଶ(𝐶)√𝐶

1 + 𝐵ᇱ(𝐶) 𝑎√𝐶
𝐹′(𝐶) 

(26) 

𝐵′(𝐶) = 50.29 ∙ 108/(𝜀𝑇)1/2 (27) 
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𝐵′
1(𝐶) = 82.5/ൣ𝜂(𝜀𝑇)1/2 ൧ (28) 

𝐵′
2(𝐶) = 8.204 ∙ 105/(𝜀𝑇)3/2 (29) 

𝐹′(𝐶) =  
ቂ𝑒𝑥𝑝 ቀ0.2929 𝐵′ 𝐶1/2𝑎ቁ − 1ቃ

ቀ0.2929 𝐵′ 𝑐𝐶1/2𝑎ቁ
 

(30) 

where Λ is the equivalent conductivity at infinite dilution, 𝐶 is the molar concentration, 𝜂 is the 
viscosity, 𝜀 the dielectric constant and 𝑇 the electrolyte solution temperature and  𝑎 = 3.79 𝐴  for 
NaCl. The main advantage of using this correlation is that it can reliably predict the conductivity even 
at high ionic strength (i.e. with concentrated brines). 

The shadow factor is generally a function of the geometrical characteristics of the spacer. Therefore, 
it is usually calculated as a function of the channel porosity [8,9], open area [6], or both [10,11]. The 
porosity represents the fraction of channel volume occupied by the liquid, while the open area 
represents the free fraction of membrane area projected in the direction perpendicular to membranes. 
Values for the open area typically range between 40-60% [6].  In this study, the shadow factor for the 
simulated spacer has been calculated by finite-volume simulations (solving the Laplace equation for 
the electric potential), resulting in a value that is close to the reciprocal of the average of porosity and 
open area, and is in agreement with experimental findings [12]. 

It is known that membrane resistance is influenced by solution concentration [13–15]. According to 
the experimental data by Galama et al. [13], membrane resistance appears to be generally influenced 
by diluate solution concentration. Based on those findings, the following trend can be attributed to 
membrane resistance: 

𝑅𝐼𝐸𝑀 (𝑥, 𝑡) =  𝑅𝐼𝐸𝑀
𝐻𝐼𝐺𝐻 + 

𝑎

𝐶 (𝑥, 𝑡)
𝑛 (31) 

where 𝑅ூாெ
ுூீு, 𝑎 and 𝑛 and are constants with value of 7×10-3 and 1.25 respectively for a resistance 

expressed as ohm*m2. In this specific case, 𝑅ூாெ
ுூீு has been taken equal to the value of the resistance 

measured at the standard concentration of 0.5 M NaCl. The values of the other constants are obtained 
by assuming the same trend of membrane resistance against the diluate concentration reported in 
Galama’s work [13]. 

The non-ohmic contribution of the voltage drop (𝜂) is the sum of the membrane potentials that are 
established within all cell pairs due to the different salt concentration between flowing solutions. A 
simplified expression of the membrane potential can be derived from the Teorell-Meyer-Sievers 
theory [16,17]. Taking also into account concentration polarisation effects, the non-ohmic drop can 
be calculated as follows: 

𝜂(𝑥, 𝑡) =  𝜂ாெ(𝑥, 𝑡) + 𝜂ாெ(𝑥, 𝑡) (32) 

 

𝜂𝐼𝐸𝑀
(𝑥, 𝑡) =  𝛼𝐼𝐸𝑀

𝑅𝐺𝑇

𝐹
𝑙𝑛  

𝛾
𝐶
𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡) 𝐶𝐶

𝑖𝑛𝑡,𝐼𝐸𝑀 

𝛾
𝐷
𝑖𝑛𝑡,𝐼𝐸𝑀 (𝑥, 𝑡)  𝐶𝐷

𝑖𝑛𝑡,𝐼𝐸𝑀  
൩ 

(33) 

where 𝛼ூாெ  is the permselectivity of one IEM, 𝛾௧ and 𝐶௧ represent the activity coefficient and 
the salt concentration, respectively, at the membrane-solution interface. Similarly to osmotic 
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coefficients, the Pitzer model can be used to estimate the  average activity coefficient of salt in 
solution (𝛾±) [2,3]: 

𝑙𝑛𝛾± =  − 𝐴ଵ ቈ
√𝑚

1 + 𝑏ᇱ√𝑚
+

2

𝑏ᇱ
ln൫1 + 𝑏ᇱ √𝑚൯ + 𝑚𝐵ఊ + 𝑚ଶ𝐶ఊ 

(34) 

𝐵𝛾 = 2𝛽(0) + 2𝛽(1)
ቈ1 − ቆ1 + 𝛼 𝑚

1
2 −

𝛼2𝑚

2
ቇ  𝑒𝑥𝑝 ൬−𝛼 𝑚

1
2൰ /𝛼2𝑚 

(35) 

𝐶𝛾 =
3

2
 𝐶𝜑 

(36) 

The salt concentrations at the solution-membrane interfaces are estimated as functions of the current 
density and the Sherwood number. In particular, neglecting the salt back-diffusion, eq. (15), the 
interface salt concentrations (solution side) appearing in eq. (33) can be estimated by the following 
relations [18,19]: 

𝐶𝐶
𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡) = 𝐶𝐶(𝑥, 𝑡) +

൫ 𝑡𝐼𝐸𝑀
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑡𝐶

𝑐𝑜𝑢𝑛𝑡𝑒𝑟൯ 𝑖(𝑥, 𝑡)

𝐹 𝑆ℎ𝐶
𝐼𝐸𝑀(𝑥, 𝑡)

𝑑𝐶
𝑒𝑞

𝐷𝐶
 

(37) 

𝐶𝐷
𝑖𝑛𝑡,𝐼𝐸𝑀(𝑥, 𝑡) = 𝐶𝐷(𝑥, 𝑡) −

൫ 𝑡𝐼𝐸𝑀
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑡𝐷

𝑐𝑜𝑢𝑛𝑡𝑒𝑟൯ 𝑖(𝑥, 𝑡)

𝐹𝑆ℎ𝐷
𝐼𝐸𝑀(𝑥, 𝑡)

𝑑𝐷
𝑒𝑞

𝐷𝐷
 

(38) 

where 𝑆ℎ is the Sherwood number, 𝐷 is the salt diffusion in solution and 𝑑 is the equivalent 
diameter, here assumed equal to two times the channel thickness. Sherwood numbers, in turn, are 
computed through correlations obtained by 3-D CFD simulations for various spacer or profiled 
membrane geometries  [20–22]. 
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