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ABSTRACT 

Background: Nonalcoholic steatohepatitis (NASH) is a common cause of chronic 

liver disease. Clinical trials use the NASH CRN system for semiquantitative 

histological assessment of disease severity. Interobserver variability may hamper 

histological assessment and diagnostic consensus is not always achieved. We 

evaluate a novel second harmonic generation/two photon excitation fluorescence 

(SHG/TPEF) imaging-based tool to provide an automated quantitative assessment 

of histological features pertinent to NASH.  

Method: Images were acquired by SHG/TPEF from 219 NAFLD/NASH liver biopsy 

samples from 7 centers in Asia and Europe. These were used to develop and validate 

qFIBS: a computational algorithm that quantifies key histological features of NASH. 

Results: qFIBS was developed based on in silico analysis of selected signature 

parameters for four cardinal histopathological features, i.e. fibrosis (qFibrosis), 

inflammation (qInflammation), hepatocyte ballooning (qBallooning) and steatosis 

(qSteatosis), treating each as a continuous rather than categorical variable. 

Automated qFIBS analysis outputs showed strong correlation with each respective 

component of the NASH CRN scoring (P<0.001) [qFibrosis (r=0.776), qInflammation 

(r=0.557), qBallooning (r=0.533) and qSteatosis (r=0.802)] and high AUROC values 

[qFibrosis (0.870-0.951) (95%CI, 0.787–1.000; P<0.001), qInflammation (0.820-

0.838) (95%CI, 0.726-0.933; P<0.001 ), qBallooning (0.813-0.844) (95%CI, 0.708-

0.957; P<0.001) and qSteatosis (0.939-0.986) (95%CI, 0.867-1.000; P<0.001)] and 

was able to distinguish differing grades/stages of histological disease. Performance 

of qFIBS was best when assessing degree of steatosis and fibrosis, but performed 

less well when distinguishing severe inflammation and higher ballooning grades. 

Conclusions: qFIBS is an automated tool that accurately quantifies the critical 

components of NASH histological assessment. It offers a relatively simple tool that 

could potentially aid reproducibility and standardization of liver biopsy assessments 

required for NASH therapeutic clinical trials.  

INTRODUCTION  
Nonalcoholic fatty liver disease (NAFLD) is an important cause of chronic liver 
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disease worldwide, with an estimated prevalence reported to be between 20 to 30% 

in North America, northern Europe, Australia, Japan, India and China [1-2]. NAFLD 

encompasses a wide spectrum of clinical histological phenotypes, ranging from pure 

steatosis without significant liver injury to nonalcoholic steatohepatitis (NASH); a 

constellation of features exemplifying hepatocellular injury and inflammation, with or 

without fibrosis or cirrhosis, occurring in the absence of significant alcohol intake. 

NASH is a major cause of liver-related morbidity and mortality [3,4], and has become 

one of the leading indications for liver transplantation [5-8]. However, at present, there 

is no licensed or universally accepted liver-specific therapy for NASH. Accordingly, 

there remains a pressing need to develop new effective therapeutics. 

 

Despite recent advances in the field, the development pathway for effective therapies 

in NASH is complex [9,10]. Well-defined endpoints are essential if therapeutic NASH 

trials are to robustly assess efficacy of treatment. These endpoints need to be 

accurate, reproducible and clinically meaningful [11-13]. Although non-invasive 

biomarkers, including imaging techniques, are promising tools to assess disease 

severity in NAFLD, none have yet been validated or qualified as trial endpoints and 

none can accurately assess grade of steatosis, ballooning of hepatocytes or liver 

inflammation. Therefore, histological assessment remains the, albeit imperfect, 

reference standard for diagnosing NASH and continues to play an integral role in 

clinical practice [14]. 

 

Several semiquantitative histological scoring systems to diagnose and grade NASH 

have been proposed [15-18], the most commonly used are the NASH Clinical Research 

Network (CRN) “NAFLD activity score” (NAS) and the FLIP “Steatosis, inflammatory 

Activity and Fibrosis score” (SAF). Whilst these scoring systems do differ in important 

ways, they all measure four key histological characteristics: steatosis, hepatocellular 

injury (hepatocyte ballooning), lobular inflammation and fibrosis. Although these 

scoring systems have been used in clinical trials [19-21], there remain concerns 

regarding potential interobserver variability and absence of clear diagnostic 
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consensus that are accentuated when these tools are applied by non-specialist 

hepatopathologists. In addition, current scoring systems only provide a non-linear, 

semiquantitative or categorical assessment of disease [18]. This may limit precision 

and granularity of data, particularly in the context of subtle changes with therapy. As 

such, there is a need for standardized, continuous quantitative scales that intuitively 

may perform better, especially when measuring interval changes and therapeutic 

responses. Therefore, there is an imperative to establish new, accurate and 

automated quantitative scoring systems that encompasses all key histopathological 

characteristics of NASH.  

 

With recent advancement in ultra-fast lasers, intrinsic optical signals like auto-

fluorescence from biological samples could be imaged by using second harmonic 

generation (SHG) and two-photon excited fluorescence (TPEF) with unstained slide. 

Wang et al [22] first established a SHG-based quantification of fibrosis-related 

parameters (Q-FP) model in NAFLD that offered a more refined assessment of 

collagen architectural changes along a continuous, quantitative and scale. Liu et al 

[23] and Chang et al [24] subsequently described the use of SHG to auto-quantify 

collagen deposition and assess fibrosis in pediatric and adult patients with NAFLD. 

To further explore the utility and potential of SHG in the context of NAFLD, we carried 

out an international, multicenter study to develop and validate a novel SHG-based 

automated quantitative evaluation tool “qFIBS”, for the evaluation of fibrosis as well 

as lobular inflammation, ballooning and steatosis, with the goal of increasing the 

precision of disease severity assessment following the confirmation of a 

NAFLD/NASH diagnosis by an expert hepatopathologist[22-25]. This present study 

comprises a large multicenter cohort that includes patients from different” ethnicities, 

age ranges (pediatric to adult), and varying severity of NAFLD, from simple steatosis 

through to cirrhosis. 
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MATERIALS AND METHODS 

Patients and Tissue Preparation 

Liver tissue from 219 adult patients (≥18 years old) with biopsy-proven NAFLD/NASH 

were included in the current study. Cases were recruited at seven international 

specialist centers (Peking University People’s Hospital, China; Beijing 302 Hospital, 

China; Singapore General Hospital, Singapore; Freeman Hospital, Newcastle upon 

Tyne, UK; University of Turin, Italy; University of Palermo, Italy; and Virgen del Rocio 

University Hospital, Spain). Patients with liver disease of other etiologies, such as 

alcoholic or drug-induced liver disease, autoimmune liver disease, viral hepatitis, 

cholestatic or genetic liver diseases were excluded. A separate cohort of pediatric 

NAFLD cases were also assessed as part of the validation study (Supplementary 

data method). This study was approved by the Ethics Committee of all the 

participating hospitals.  

 

The 219 samples were sectioned into 4-5 μm thick for SHG-imaging and stained with 

H&E and Masson trichrome for histological assessment. Clinical and pathological 

characteristics were obtained from the patients’ medical records. Liver histology from 

all cases was jointly assessed by three expert hepatopathologists (DT, AW, WQL) 

and consensus scores determined according to the NASH CRN System (NAS = sum 

of steatosis scored 0–3, ballooning 0–2, and lobular inflammation 0–3) [15]. Liver 

fibrosis was scored as 0 - 4 using the NASH CRN scoring system, with 4 indicating 

cirrhosis [15,16]. NAFLD was defined by the presence of ≥ 5% macrovesicular or mixed 

steatosis. NASH was defined as NAS ≥4 with a score of at least 1 in each individual 

component of the score[25]. The minimum length of liver biopsy specimens was 10 

mm.  

 

Image acquisition  

All imaging was conducted by trained technicians on identical equipment (Genesis® 

system, HistoIndex Pte. Ltd., Singapore) according to a standardized operating 

procedure. Of the 219 samples, 69 samples were imaged in China, 108 samples in 



10 
 

Singapore, and 42 samples from European centers were imaged in the UK. This 

process utilized SHG microscopy to visualize collagen and TPEF microscopy to 

visualize the other histological structures (i.e. inflammation, hepatocyte ballooning 

and steatosis). The same image acquisition parameters were used for the samples 

at all the centers. The samples were laser-excited at 780 nm, SHG signals were 

recorded at 390 nm, and TPEF signals were recorded at 550 nm. Image tiles were 

acquired at 20X magnification with 512 X 512 pixel resolution with a dimension of 

200 X 200 μm2. Multiple adjacent image tiles were captured to encompass the whole 

tissue area in each slide. 

 

Establishment & Validation of qFIBS (qFibrosis, qInflammation, qBallooning 

and qSteatosis)  

The 219 samples were assigned a priori using stratified randomization by an 

experienced statistician to one of two groups: two-thirds (146 samples) were 

assigned to a Training group and the remaining third (73 samples) to a Validation 

group (Fig. 1).  

 

Using the NASH CRN scoring system [15] as the reference standard, automated 

measures of fibrosis, inflammation, hepatocyte ballooning and steatosis were 

developed in the Training group and validated in the Validation group. The sequential 

procedure for establishing the four indices comprised: (1) detection of collagen, 

inflammatory cells, ballooned cells and fat vacuoles in different regions of the lobules 

(Fig. 2); (2) quantification of defined architectural parameters that were 

characteristic of each histopathological feature (Fig.1); (3) selection of the most 

significant parameters (Fig.1); and (4) model construction, combination of 

parameters into a single “signature” index for each of the four histological 

components. These were individually termed qFibrosis, qInflammation, qBallooning 

and qSteatosis (Fig. 1). The severity of all NASH pathological characteristics was 

calculated with the four established indices, together comprising the qFIBS index. 

Detailed descriptions of the protocols are provided in Supplementary Materials and 
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Methods. 

 

Statistical analysis 

The Spearman nonparametric method was used to estimate the correlation between 

the quantified indices (qFibrosis, qInflammation, qBallooning and qSteatosis) and 

NASH CRN defined semiquantitative pathological categories. The area under the 

receiver operating characteristic (AUROC) analysis was performed to evaluate the 

accuracy of the quantified indices for prediction of the different scores of histological 

characteristics. The cutoff values were determined by Youden’s index. The 

sensitivity and specificity of the four indices for prediction of the different scores were 

calculated. Statistical significance level was set at P<0.05. Statistical analyses were 

done with MATLAB R2015a (MathWorks, USA). 
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RESULTS 

Summary of clinical data 

The demographic, biochemical, and histological characteristics of patients with 

biopsy-proven NAFLD are summarized in Table 1. The Training and Validation 

groups were comparable with respect to demographics, laboratory and histological 

data. There were no significant differences between the two groups in terms of age, 

gender, ethnicity, body mass index (BMI), and prevalence of diabetes mellitus and 

hypertension. There were also no statistically significant differences with regards to 

serum alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl 

transferase (GGT), alkaline phosphatase (ALP), total bilirubin, albumin, fasting 

glucose, triglycerides and platelet count. Similarly, the fibrosis stage, inflammation, 

ballooning and steatosis scores were evenly distributed between the two groups. 

Fibrosis, inflammation, ballooning and steatosis assessments 

Liver fibrosis, inflammation, hepatocyte ballooning and steatosis severity were 

quantified using the SHG/TPEF system (Fig. 3). All parameters were quantified 

across the whole slides. 128 collagen and 45 steatosis parameters were quantified 

at the central vein (CV), portal tract (PT) and perisinusoidal (PS) regions, 63 

inflammation and 39 ballooning parameters were quantified at the PT and lobular 

(CV and PS) regions. The details of all parameters measured are included in the 

supplementary results.  

Establishment of the models for fully quantitative assessments of qFIBS 

component models and dynamic ranges 

The number of parameters required to optimally assess each histological feature was 

refined during the algorithm training process in the discovery cohort in order to 

develop the four separate component models comprising qFIBS. Ultimately, 

qFibrosis included 17 parameters, qInflammation required 25 parameters, 

qBallooning needed 13 parameters, and qSteatosis just 5 parameters in the 

respective models. Each model outputs a numerical index that indicates the severity 

of the corresponding histological characteristic. The value ranges of the four indices 
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are positive integers ranging between 0 - 6.55 for qFibrosis, 0.68 - 3.38 for 

qInflammation, 0.22 - 1.96 for qBallooning, and 0.83 - 2.18 for qSteatosis 

(Supplementary Table 9).  

The comparison of H&E and Masson trichrome staining with SHG/TPEF images of 

liver biopsy tissue at different scales of scoring and the quantitative values of 

qFibrosis, qInflammation, qBallooning and qSteatosis, are illustrated 

(Supplementary Fig. 1 - 4). Each qFIBS component was strongly correlated with the 

relevant NASH CRN component (P<0.001 for fibrosis, lobular inflammation, 

ballooning, and steatosis). (Supplementary Tables 5 - 8). 

 
Validation of qFIBS models demonstrates correlation with histologically 

determined NASH CRN scores 

The performance of the qFIBS models were next assessed in a separate validation 

cohort (n=73 cases), results of these analyses are summarized in Figure 4 with a 

detailed breakdown of performance characteristics (sensitivity, specificity, Positive 

predictive value (PPV) and negative predictive value (NPV)) provided in Table 2.  

 

qFibrosis, which is principally determined by degree of zone 3 perisinusoidal fibrosis, 

correlated strongly with histological fibrosis stage (r=0.776) and could accurately 

differentiate fibrosis stages, area under curve (AUC) >0.87 (0.870 - 0.951) (95% 

confidence interval (CI), 0.754 - 1.000) (Supplementary Table 5, Fig.4 and Table 2). 

Similarly, qInflammation increased with histologically determined inflammation grade 

(r=0.557) and could differentiate grades of inflammation, AUC >0.82 (0.820 - 0.838) 

(95% CI, 0.726 – 0.933) (Supplementary Table 6, Fig.4 and Table 2). qBallooning, 

which was principally determined by features localized to the portal tract and lobular 

areas, also increased with histological ballooning score (r=0.533) and could 

distinguish different grades of ballooning, AUC >0.813 (0.813 - 0.844) (95% CI, 0.708 

- 0.957) (Supplementary Table 7, Fig.4 and Table 2). qSteatosis exhibited the highest 

level of correlation with histological steatosis score (r=0.802) and performed 

especially well, differentiating grades of steatosis with very high levels of accuracy, 
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AUC > 0.939 (0.939 - 0.986) (95% CI, 0.867 – 1.000) (Supplementary Table 8, Fig.4 

and Table 2). 

 

To demonstrate the generalizable nature of the qFIBS analysis, further validation in 

a pediatric NAFLD/NASH cohort was also undertaken. The AUC values of 

performance results in adult-pediatric groups were Fibrosis, 0.807 - 0.961; 

qInflammation,0.803 - 0.855; qBallooning, 0.810 - 0.834; qSteatosis, 0.961 - 0.976. 

These results were comparable with the adult-only analysis (see Supplementary 

Table 10).  
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DISCUSSION 

We report the development and validation of a novel in silico process for automated 

NAFLD/NASH biopsy evaluation (qFIBS), that standardizes the histological 

assessment of NASH severity following confirmation of diagnosis by an expert 

heptaopathologist. At present, histological assessment of severity at baseline, and 

subsequent change in response to intervention, are assessed by expert 

histopathologists and remains an essential endpoint in Phase II/III clinical trials for 

NASH [27, 28]. The majority of studies use the NASH CRN system for semiquantitative 

histological assessment to grade disease activity and stage fibrosis [10,11]. However, 

inter- and intra-observer variability may impair the accuracy and reproducibility of 

these histological assessments. Indeed, clear diagnostic consensus regarding the 

presence or absence of steatohepatitis among pathologists is not always feasible 

[15,17, 29]. These issues serve to highlight the need for a more standardized, accurate 

and precise approach to grading and staging NASH in liver biopsies once the 

diagnosis of NAFLD/NASH has been established. They also imply a paradox that 

makes addressing this need all the more challenging: the histological reference 

standard for NASH, against which any novel tool is assessed, is itself inherently 

imperfect and unable to produce a completely error-free classification with respect 

to the presence or absence, or severity, of the target condition or feature. Although 

not unique to liver histopathology, such situations are methodologically challenging 

to address [30].  

 

Notable issues with the traditional histological scores relate to the nature of 

semiquantitative grading systems employed by both NAS and SAF, which conflate 

anatomical distribution of specific lesions with features of severity in order to facilitate 

data capture by the human eye. These scores necessitate that continuous measures 

be assigned into discrete categorical grading bins [26-32], a constraint that inevitably 

leads to discrepancies related to inter- and intra-observer judgement, especially with 

cases at the margins between two categories. It also produces a blunting of 

sensitivity to detect change as semiquantitative grades may fail to report clinically 
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relevant but modest alterations in severity that do not transition across a predefined 

but arbitrary categorical boundary. This phenomenon is well illustrated by the breadth 

of disease that is encompassed by stage F3 fibrosis in the Brunt/Kleiner NASH CRN 

classification. In F3, anatomical portal-portal and/or portal-central bridging is the 

defining feature, yet no weight is given to density of collagen deposition or 

consequent effect on lobular ultrastructure. Intuitively, quantitative assessment of 

changes on a continuous scale in liver lesions should provide a more tractable and 

sensitive reference when dissecting disease progression and regression in NASH.  

 

In longitudinal studies, the strongest histological long-term prognostic factor has 

been repeatedly found to be stage of liver fibrosis, with patients with advanced 

fibrosis (stages F3 and F4 [cirrhosis]) having the highest rates of liver-related and 

all-cause morbidity and mortality [3,33,34]. Therefore, presence of advanced fibrosis 

and especially cirrhosis is considered a generally-accepted surrogate for liver-related 

outcomes in NASH trials. Staging of fibrosis based on the NASH CRN 

underestimates perisinusoidal fibrosis and, as alluded to earlier, does not provide a 

distinction between biopsies with rare or short septa from those with numerous septa 

(unlike the distinction between F2 and F3 with the METAVIR score for chronic 

hepatitis). This is a limitation of the current reference standard and means there is 

no clear-cut threshold to differentiate significant fibrosis from those with advanced 

fibrosis. Analysis of biopsies during the development of the qFibrosis has established 

that zone 3 perisinusoidal fibrosis is highly correlated with classical fibrosis stage 

and that measurement of zone 3 fibrosis facilitates accurate discrimination of fibrosis 

stages, whilst also providing a continuous assessment of fibrosis severity. Wang et 

al has shown SHG can differentiate subtle differences between fibrosis stages 1a, 

1b, 1c (NASH-CRN system), and differences in zonal distribution of fibrosis in 

cirrhotic patients [22]. If validated in long term studies against hard clinical outcomes, 

these data suggest that qFibrosis may be used to assess fibrosis change as a 

primary outcome and could potentially provide the clearest answer to the question of 

clinically relevant therapeutic response. 
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When assessing grade of disease, the NAS comprises the sum of 3 discrete 

semiquantitative parameters: steatosis, lobular inflammation and hepatocyte 

ballooning [20,35]. The validity of this combined score has previously been questioned 

by the histopathology specialist community as it is heavily weighted towards degree 

of steatosis and so fails to adequately distinguish differences in disease activity from 

amount of steatosis [27,30]. We employed TPEF to accurately assess the tissue 

microstructure and autofluorescent properties when the biopsy samples are 

irradiated with an exogenous or endogenous laser [36,37]. Based on TPEF signals and 

quantification, three separate parameters are described: qInflammation, qBallooning 

and qSteatosis. Whilst not perfect, each is focused upon a given histological feature 

and showed a good correlation with the relevant NAS component with high AUROC 

values. That some PPV/NPV values when discriminating between intermediate 

grades of ballooning or inflammation (Table 2) were modest may, at least in part, be 

due to classification errors in the reference standard as, within the classic accuracy 

concept, any discrepancy is assumed to be a failure of novel text and therefore a 

“false” positive/negative result [30].  

 

Similar efforts on automated biopsy analysis has been made in preclinical models of 

NASH using the open-source pathology software QuPath [38]. Several techniques 

have been employed to automate steatosis measurement, however many require 

the use of specialized histological stains that are not compatible with routine formalin 

fixed paraffin embedded (FFPE) processed samples combined with digital image 

analysis [39]. Automatic quantification of lobular inflammation and ballooning on digital 

images of H&E stained slides has also been reported, but AUC values were poor 

(0.45 for lobular inflammation and 0.46 for ballooning) [40]. Others have demonstrated 

that liver fibrosis could be quantified using a range of techniques such as collagen 

proportionate area [41] and dual-photon microscopy [22-24,42] but these studies have 

tended to be in mixed etiology cohorts, or derived from single centers, and 

histological characteristics other than fibrosis were not assessed. In contrast, the 
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current study derives NAFLD/NASH cases associated samples from a large 

international multicenter collaboration and so provides an opportunity to not only 

comprehensively assess key histological features of NASH, but also to demonstrate 

utility across differing ethnicities, environmental/nutritional backgrounds and age 

groups (adult and pediatric disease).  

 

Although the automated evaluation system - qFIBS is very precise and highly 

reproducible, it deserves further commentary. By using unstained slides to further 

eliminate potential variation caused by staining, qFIBS could most accurately 

distinguish different grades of steatosis and different stages of fibrosis, but was less 

accurate in distinguishing severe inflammation and higher ballooning grades. While 

the initial data is indeed promising, the algorithm will require further development and 

refinement. For steatosis, the system only measures empty spaces since fat has 

been lost during the processing technique. The size of the fat vacuole may have 

relevance in the clinical evolution or improvement of NASH. Histologically, the 

pathologist can distinguish between macrovesicular steatosis comprising large and 

small droplet fat from microvesicular steatosis. However, the system currently 

recognizes predominantly large droplet fat that pushes the hepatocyte nucleus to 

one side. Furthermore, the difference in the definitions of mild, moderate and severe 

steatosis is a limitation of the automated technique [43-45]. Correlation with more 

testing features such as hepatocyte ballooning remains moderate. Hepatocytes 

exhibiting ballooning change may not necessarily be enlarged and, separately, 

ballooning cannot always be clearly differentiated from feathery degeneration. 

Despite extensive cross-validation, double-reporting and consensus building 

amongst the expert pathologists, there remained inter-observer variability that limited 

the fidelity of the reference standard.  

 

In the context of inflammation, NASH-type lobular inflammation is difficult to 

distinguish from inflammation from other etiologies as the system currently cannot 

distinguish the various inflammatory cell types. Therefore, the technology is not well 
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suited to establishing a de novo diagnosis but rather is a tool with which to robustly 

quantify disease severity once the diagnosis of NAFLD has been established. While 

qFIBS offers several novel applications for assessment of NASH histology, this 

technology does not replace the need for invasive liver biopsy and cannot replace 

the key role of the histopathologist in clinical practice. The information provided by 

qFIBS is limited to the specific assessment of fibrosis, lobular inflammation, 

ballooning and steatosis components and does not provide a diagnostic assessment 

of the liver biopsy specimen. In other words, qFIBS like NASH CRN scoring system 

is to be applied only after a histological diagnosis of NASH has been made based 

on established criteria including the pattern of tissue injury. qFIBS is thus most 

suitable as an adjunct tool that provides additional value to the efficiency and 

reliability of the histopathologist in clinical practice. The primary utility of qFIBS may 

be in standardizing histological assessments in therapeutic NASH trials, many of 

which require serial liver biopsies for assessment of improvement in the various 

phenotypes of NASH. In order to demonstrate sensitivity for detecting a therapeutic 

response, the qFIBS tool will require further validation in paired biopsy samples 

before and after treatment for NASH. The automated fibrosis scoring provided by 

SHG microscopy helps to minimize interobserver variability and, as has been 

demonstrated in the current study, permits image acquisition to occur at widely 

distributed clinical sites rather than necessitating shipping of samples for central 

histology review. Most importantly, by expression in an automated continuous scale, 

qFIBS may provide more precise quantification that allows for detection of subtle 

interval nuances that may not be so apparent using traditional approach.  

 

In conclusion, our study demonstrates that it is feasible to develop a system using 

SHG/TPEF to automatically quantify the four cardinal features needed to 

characterize NASH, namely, fibrosis, lobular inflammation, hepatocyte ballooning 

and steatosis. These findings are significant as accurate continuous measurements 

are potentially more useful than semiquantitative scores to measure NASH activity 

and quantify patients’ response to therapeutics used in clinical trials or patient care. 
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This automated quantification system has the potential to support translational and 

clinical research as it addresses several unmet needs for precision medicine. 
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Figure Legend 

Figure 1. Flowchart for the development of the four components of qFIBS 

(qFibrosis, qInflammation, qBallooning, qSteatosis). Abbreviations: BJ, BeiJing 

Center; SGH, Singapore General Hospital; EU, European centers. 

 

Figure 2. Schematic illustration of the detection algorithms of fibrosis, 

inflammation, ballooning and steatosis in livers with nonalcoholic steatohepatitis.  

 

Figure 3. Liver biopsy with NASH: (A) and (B) Steatosis with ballooning of hepatocytes, 

mild portal inflammatory cell infiltrates, and perisinusoidal fibrosis (Hematoxylin & Eosin 

and Masson). (C) Raw image of same area highlighting collagen fibers green 

(SHG/TPEF). (D) Segmented image with differential labeling of collagen in portal tract 

(PT) (yellow), central vein (CV) (purple) and perisinusoidal (PS) (blue) regions 

(SHG/TPEF). (E) Inflammation in the same respective areas was correspondingly 

labeled (SHG/TPEF). (F) Ballooning of hepatocytes was scattered (SHG/TPEF). (G) Fat 

vacuoles (FV) were distributed throughout the regions (SHG/TPEF). 

 

Figure 4. Box-Whisker plots of values of each qFIBS component distribution 

relative to the NASH CRN Score component category in the adult Validation Group. 

Results for the Validation cohort are shown. For each stage/score/grade, maximum and 

minimum values are indicated by horizontal lines at the bottom and top of each 

stage/score/grade entry, the white box in the middle represents data points in the 25% 

to 75% interquartile range, and the line through the middle of the central white box 

represents the median value. Note: r value was calculated according to Spearman 

method. 


