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Abstract

We consider a 2D vorticity configuration where vorticity is highly concentrated
around a curve and exponentially decaying away from it: the intensity of the
vorticity is O(1/ε) on the curve while it decays on an O(ε) distance from the
curve itself. We prove that, if the initial datum is of vortex-layer type, Euler so-
lutions preserve this structure for a time which does not depend on ε . Moreover
the motion of the center of the layer is well approximated by the Birkhoff-Rott
equation.

c© 2000 Wiley Periodicals, Inc.

Contents

1. Introduction and main ideas 2
2. Euler equations adapted to the layer 6
3. The asymptotic expansion 8
4. Functional setting 14
5. Main results 17
6. Mathematical preliminaries 20
7. Construction of the skeleton of the layer: proof of Theorem 5.2 22
8. Potential estimates 24
9. Construction of the vorticity distribution: proof of Theorem 5.4 29
10. Convergence to Birkhoff-Rott: proof of Theorem 5.5 32
11. Conclusions 34
Appendix A. Derivation of the Euler-VL equations in the comoving frame 35
Appendix B. Decomposition of the velocity 37
Appendix C. Details of the derivation of equations (3.18) and (3.21) 38
Appendix D. Details of the derivation of equation (3.22) 41
Appendix E. Proof of Proposition 8.1 41

Communications on Pure and Applied Mathematics, Vol. 000, 0001–0073 (2000)
c© 2000 Wiley Periodicals, Inc.



2 R.E. CAFLISCH, M.C. LOMBARDO, M.M.L. SAMMARTINO

Appendix F. Proof of the Lipschitz property of the Biot-Savart operator 54
Appendix G. Proof of the estimate on R and of the far field approximation 59
Appendix H. Proof of Proposition 9.3 63
Appendix I. Proof of Proposition 9.4 65
Appendix J. Details on the convergence to Birkhoff-Rott 69
Bibliography 71

1 Introduction and main ideas

The main feature of an incompressible flow is vorticity, i.e. the possibility,
for particles flow, to rotate. In fact (and this is the main difference between a
fluid and a solid) a fluid, when subject to a tangential stress, for example due to
interaction with a physical boundary, it displays a sliding motion that ultimately
leads to rotational flow and to the appearance of vortices. Vorticity is therefore a
powerful tool to understand and characterize fluid motion, both mathematically as
well as from the physical point of view.

In many instances, particularly for high Reynolds number flows, vorticity tends
to occupy small portions of the space often assuming very high values. Point vor-
tices, vortex filaments and vortex tubes, vortex sheets and shear layers, boundary
layers are examples where vorticity is able to strongly influence and organize the
flow in large portions of the space, even if being essentially supported on sets of
small, or even zero, measure. From the mathematical point of view, these are
challenging problems, for which one cannot usually invoke the classical Yudovich
theory [52]. The significant progresses that have been accomplished in the late
eighties and early nineties [18, 19, 16, 37, 22, 33, 48, 43, 38] have left unanswered
fundamental questions, like uniqueness of the solution, even in the 2D case where
the absence of vortex stretching makes the dynamics of the vorticity as simple as
possible; for vorticity distributions with non distinguished sign, even existence of
the solution is currently unknown. Another important question, which is still open,
is whether, imposing that the initial vorticity is a δ -function supported on a curve,
the solution keeps this structure.

In this paper we shall consider, for the 2D Euler equations, an initial datum
with a vortex layer structure: this means that, initially, a high intensity O(ε−1)
vorticity ω in is distributed around a planar curve ϕ in; and that the vorticity decays
to zero away from the curve on an O(ε) scale. We shall assume that the decay
is exponential and that, initially, both the vorticity distribution and the curve have
analytic regularity. Our hypotheses imply no restriction on the sign of the vorticity.

The data we shall consider can be handled using the general theory of Yudovich,
so that existence of the solution is not an issue. However, Yudovich theory does
not give any information on the structure of the solution. What we shall prove
is that the solution mantains the vortex layer structure for a time which is small,
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but independent from the thickness of the layer. Moreover we shall prove that the
dynamics of the vortex layer is ruled, to the leading order in ε , by the Birkhoff-Rott
(BR) equation; our results can therefore be considered as a rigorous justification
of the BR equation as a valid model for the description of the Euler dynamics of
vortex layers.

The BR equation [44, 7] is an integrodifferential equation that governs the mo-
tion of a curve y = ϕ(x, t) on which the vorticity is concentrated as a Dirac δ -
function. Assuming the regularity of the curve, as well as of the vorticity intensity,
one can prove the equivalence of the solution of the BR equation with the solution
of the Euler equations in their weak formulation, see [39]; in [36], after introducing
the notion of weak solution of the BR equation, the same consistency result was
proved under weaker, likely optimal [35], regularity hypotheses.

Proving regularity results for the BR equation is not a simple matter. The prob-
lem was known to be subject to the Kelvin-Helmholtz instability [21], being higher
modes of a small perturbation of the flat profile exponentially amplified. The as-
ymptotic analysis of Moore [41] suggested that the problem was indeed ill-posed,
and that the ill-posedness mechanism revealed itself in the appearance of a curva-
ture singularity in the shape of the curve; a phenomenon leading, at later times, to
an infinite roll-up of the curve [8]. Subsequent careful computations [28] confirmed
these results. The nonlinear ill-posedness of the BR equation in Hm with m > 3/2
was finally proved in [13], see also [20]. The analytic setting seems therefore to
be a natural framework where to look for solutions of the BR equation. The expo-
nential decay of the spectrum is in fact able to tame, at least for a short time, the
exponential amplification of the modes, a situation that is typical for many flows
with highly concentrated vorticity, see e.g. [46, 47, 14, 30, 29]. In fact, in [49], the
well-posedness of the BR equation for analytic data was achieved. Later, in [12], it
was proved that if one has a small analytic perturbation of a flat profile, then long
time well-posedness of the BR equation follows, with an existence time that goes
like | logε|, being ε the size of the perturbation.

Many attempts have been taken to regularize the BR equation to go beyond
the singularity time: see [5] where the dynamics of a vortex sheet as ruled by
the regularized Euler-α equations was proved to be well posed globally in time;
[27, 1, 2] where the effects of surface tension were taken into account; or [51],
where the notion of chord-arc curves was introduced to follow the solution of the
BR equation also beyond the singularity time. In [51], among other things, the
author proved that if the chord-arc curve “does not roll up too fast” then the BR
solution is indeed analytic, significantly improving the result of Lebeau [32].

Among the attempts of regularization of the vortex-sheets solutions, those con-
cerning the study of small thickness layers, are the ones more closely related to
the present paper. In [40, 17], through a formal asymptotic analysis, corrections
to the BR equations that take into account the thickness of the layer were derived.
However these corrections prevent neither singularity formation, nor ill-posedness
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for non analytic data. Numerical computations performed considering small thick-
ness layers [3, 15, 11, 10] show that the BR singularity, and the subsequent infinite
roll-up of the sheet, are not just a mathematical curiosity, but are the signature of
the formation of vortex cores. This means that the vorticity is not any more con-
fined close to the center of the layer and has the tendency to concentrate forming
vortical structures, a phenomenon that, besides its intrinsic importance because it
signals a new stage in the layer dynamics where a strong interaction between the
outer and the inner flow sets in, is also reminiscent of separation of the boundary
layer and transition to turbulence for wall bounded flows [23]. The only rigorous
analysis concerning vortex layers is in [6] where, still in the context of interface
dynamics, and for vortex layers of uniform vorticity, it was established the conver-
gence to the BR dynamics in the small thickness limit. In fact uniform vorticity
across the layer allowed the authors to define the two interfaces bounding the layer
and to study their motion through a system of two coupled BR-like equations. The
analytic norm used in [6] allowed to prevent zero-time loss of regularity of the two
interfaces and to show that the zero-thickness limit is governed by the BR equation.
In the present paper, on the other hand, we make no assumption on the vorticity
distribution (except the exponential decay away from a curve); this means that the
present setting could be appropriate to tackle the important problem of the justi-
fication of the BR equation as zero viscosity limit of the Navier-Stokes solution,
where the presence of diffusion does not allow uniform vorticity distribution.

1.1 Main ideas and plan of the paper
The main ideas which our results are based on are the following.

1.1.1 The use of a comoving reference frame

The physical systems has a fast O(ε−1) scale, across the layer, and a slow O(1)
scale, along the layer. The cartesian coordinates (x,y) mix these scales; it is there-
fore natural to analyze the dynamics in a frame adapted to the curve. In fact we
write Euler equations, in the vorticity formulation, using a frame that moves with
the layer and that, as one of the coordinate lines, has a curve centered in the layer.
The other coordinate line is parallel to the cartesian y-line, and the coordinate is
rescaled with ε to blow-up the layer. The resulting comoving curvilinear coordi-
nates (ξ ,Y ) are not orthogonal, and therefore it follows a more complicated form
of the Euler equations; however, in the new coordinates, fast O(ε−1) variations,
across the layer, and O(1) variations, along the direction tangent to the layer, are
separated. We also point out that this reference frame, that can be used in the
whole plane as long as the curve is a graph, has the additional advantage of avoid-
ing the singularity one encounters in using the tangent-normal reference frame, as
in [40, 17].
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1.1.2 Analyticity, Hölder norms and potential estimates
We use Hölder norms in an analytic setting. The analytic setting seems to us

necessary to avoid instabilities and ill-posedness, that are present in the BR equa-
tion. Hölder function spaces are a natural environment where to establish potential
estimates that, in our case, are necessary to give bounds of the velocity in terms of
the vorticity. In fact we shall prove potential estimates that bound Hölder norms of
the velocity in terms of the Hölder norms of the rescaled vorticity, see Proposition
8.1. This means that we do not have the gain of one order of regularity (typical of
the classical potential theory) but we get that our bounds are O(1), being expressed
in terms of the rescaled vorticity ω̃ ≡ εω . Our potential estimates are therefore
uniform in ε . We also stress that these potential estimates do not depend on the
analytic setting (as it is clear from the proof where it is evident that analyticity is
only a complication, see Appendix E and Appendix E.3) and we believe that are of
independent classical interest.

1.1.3 Decomposition of the velocity generated by a vortex layer
Another key ingredient in our procedure is a general decomposition formula

for the velocity generated by a vortex layer through the Biot-Savart law. We shall
see that the velocity can be decomposed as the velocity predicted by the BR ker-
nel (which, assuming that all the vorticity in concentrated on the curve, gives the
overall motion of the curve) plus a term that depends, in a very simple way, from
the local distribution of the vorticity, plus a remainder term that, inside the layer,
is O(ε). Although this remainder, at the formal level, is easily seen to be O(ε), to
give a rigorous proof of this fact, requires higher order regularity of the vorticity.
Having decomposed the rescaled vorticity as ω̃ = ω0 + εω1, and applying the de-
composition formula to the velocity generated by ω0, we push the remainder to the
equation ruling ω1.

1.1.4 The a-priori analyticity of the skeleton of the layer
The resulting equation for ω0, which is now convected by the BR term plus

the local term, is particularly simple: integration across the layer gives a set of
four equations that do not involve the finer structure of the layer (i.e. the ω0 in its
dependence on the normal coordinate), but only the skeleton of the layer, i.e. the
curve ϕ0(x, t), the vorticity intensity γ0(x, t), the quantity∫

∞

0
ω0(x,Y, t)dY ′−

∫ 0

−∞

ω0(x,Y, t)dY ′

which is the only information needed on how the vorticity is distributed inside
the layer, and the Lagrangian factor X0 that keeps track of the tangential motion
along the curve, see (2.9) and (3.17). One can therefore solve for this system and
establish the a-priori analyticity of the skeleton of the layer.

With this a-priori analyticity, one can then solve the equation for the leading
order vorticity ω0, and for the corrections ω1 and ϕ1. The fact that both ω0 and ω1
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remain exponentially decaying away from ϕ gives the persistence of the vortex-
layer structure, for a time that does not depend on the size of the layer.

The convergence of the motion of the layer to the dynamics predicted by the
BR equation (the justification of the Birkhoff-Rott equation) is our final result, and
it is a rather easy consequence of our analysis.

We shall also establish a far-field estimate proving, rigorously, that the veloc-
ity field generated by a vorticity layer distributed around a curve ϕ , away from
the layer and to the leading order, can be computed assuming the vorticity to be
concentrated on the curve ϕ; the rate of decay of the velocity field to the far-field
approximation, in terms of the distance from the layer, is also given.

The plan of the paper is as follows. In the next Section we shall write the Euler
equations adapted to the curve. In Section 3 we shall derive the decomposition
formula for the velocity generated by a vortex layer, and use this formula to write
the equations ruling the leading order vorticity and the correction. In Section 4 we
define the function spaces, while in Section 5 we state formally our main results.
In Section 6 we give some preliminary mathematical results, like the Cauchy es-
timate for an analytic function, the Abstract Cauchy-Kowaleski Theorem, and the
estimates for the BR operators. In Section 7 we construct, through a short time
existence Theorem, the skeleton of the layer. In Section 8 we give the potential
estimates that will be a crucial ingredient in the analysis of the equations govern-
ing the correction ω1. In Section 9 we construct the vorticities ω0, ω1 and the
correction to the curve ϕ1. In Section 10 we prove that, to the leading order, the
motion of the layer, is governed by the BR equation. In Section 11 we draw some
Conclusions. The paper has several Appendices where we have postponed most of
the technical details.

2 Euler equations adapted to the layer

Euler equations, for an incompressible 2D flow, are written as:

∂tω +u ·∇ω = 0 ,

where the velocity u can be recovered from the vorticity as u = −∇
⊥

∆−1ω . We
shall consider these equation in the strip (x,y) ∈ [−π/2,π/2]×R, with data peri-
odic in x. One can see that the velocity field has, in terms of vorticity, the following
expression:

u(x,y, t) =
1

8π2

∫
∞

−∞

∫ x+π/2

x−π/2

sinh [2(y− y′)]
sin2 (x− x′)+ sinh2 (y− y′)

ω
(
x′,y′, t

)
dx′dy′ ,(2.1)

v(x,y, t) = − 1
8π2

∫
∞

−∞

∫ x+π/2

x−π/2

sin [2(x− x′)]
sin2 (x− x′)+ sinh2 (y− y′)

ω
(
x′,y′, t

)
dx′dy′ .(2.2)

A precise statement on the class of initial data where we shall solve Euler equations
will be given later. Roughly speaking we shall consider that there exist a curve
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y = ϕ in(x) such that the initial vorticity decays exponentially fast away from the
curve; i.e.

(2.3) ω
in(x,y)∼ 1

ε
e−µ|y−ϕ in(x)|/ε ,

where ε > 0 gives the thickness of the layer and µ > 0 is the rate of exponential
decay. The position of the curve y = ϕ(x, t) will be determined imposing that it is
transported by the flow generated by the vorticity. One has therefore to solve:

∂tω +u∂xω + v∂yω = 0 ,(2.4)
∂tϕ +uϕ

∂xϕ = vϕ ,(2.5)
ω(x,y, t = 0) = ω

in(x,y) ,(2.6)

ϕ(x, t = 0) = ϕ
in(x) ,(2.7)

where the u, v, are calculated using (2.1)-(2.2), while uϕ , vϕ are the fluid velocity
components on the curve ϕ .

To prove that the vorticity ω(x,y, t) will satisfy, for t > 0, a behavior like (2.3),
is one of the main goals of this paper.

2.1 The comoving frame
To separate fast and slow variations, it is natural to introduce a coordinate sys-

tem adapted to the curve. In the plane (x,y) let y = ψ(x, t) be a generic curve, pe-
riodic in x of period π . Moreover let (u(x,y, t),v(x,y, t)) a velocity field π-periodic
in x. We make the change of coordinates (x,y, t)→ (ξ ,Y,τ) defined as:

(2.8) x = ξ +X(ξ ,τ) , y = εY +ψ(ξ ,τ) , τ = t ,

where the lagrangian factor X is given by

(2.9) X(ξ ,τ)≡
∫

τ

0
uψ(ξ ,τ ′)dτ

′ .

In equation (2.8) and in the rest of the paper we have used the same symbol to
denote the curve as a function of the eulerian variable x or the Lagrangian variable
ξ : when we write ψ(ξ ,τ) we shall in fact mean ψ(x(ξ ,τ),τ). Moreover notice
that the functions ψ(ξ ,τ) and X(ξ ,τ) are π-periodic in ξ .

One can see that the Euler equations and the equation ruling the motion of a
curve ϕ , written in the above defined coordinate system, are the following:

∂τ ω̃ +
(u−uψ)

1+Xξ

∂ξ ω̃ +
1
ε

[
−∂ξ ψ

(u−uψ)

1+Xξ

+(v− vψ)

]
∂Y ω̃ = 0 ,(2.10)

∂τϕ +
uϕ −uψ

1+Xξ

∂ξ ϕ = vϕ ,(2.11)

ω̃(ξ ,Y, t = 0) = ω̃
in(ξ ,Y ) ,(2.12)

ϕ(ξ , t = 0) = ϕ
in(ξ ) ,(2.13)
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where we have introduced the rescaled vorticity ω̃ ≡ εω . The incompressibility
condition in the new variable reads as

(2.14)
∂ξ u

1+Xξ

+
1
ε

[
−

∂ξ ψ

1+Xξ

∂Y u+∂Y v
]
= 0 .

The details of the derivation of the above equations are given in Appendix A.
Here we anticipate that in our study of the Euler equations for vortex layer data, we
shall set ψ = ϕ; i.e. we shall use, as base curve of the reference frame, the curve
ϕ = ϕ0 + εϕ1.

We make the following formal Remarks concerning the above Eq.(2.10). First,
given that the time derivative is comoving, then ∂τ ω̃ is O(1). The operator ∂ξ is
the derivative along the curve (the ξ line-coordinates are Y = const, therefore they
are parallel to the curve). It follows that ∂ξ ω̃ = O(1). In (2.10) the O(ε−1) terms
are therefore only in the last term, involving the derivative across the curve. On the
other hand, using the incompressibility condition, one can see that:

(2.15)
[
−

∂ξ ψ

1+Xξ

(u−uψ)+(v− vψ)

]
=−ε

∫ Y

0

∂ξ u
1+Xξ

dY ′ ,

so that (2.10) can be written as

(2.16) ∂τ ω̃ +
(u−uψ)

1+Xξ

∂ξ ω̃−
∫ Y

0

∂ξ u
1+Xξ

dY ′∂Y ω̃ = 0 ,

and therefore also the last term appearing in (2.10) is again, formally, O(1). How-
ever the use of the incompressibility condition leads to a not less severe difficulty,
i.e. the appearance of a linearly growing in Y term (given by the integration in Y
of ∂ξ u, a quantity that has no decay properties in Y ), combined with a loss of a
derivative given by the appearance of ∂ξ u; notice that the potential estimate given
in Proposition 8.1, allowing to bound the velocity in terms of the vorticity, does not
give the usual gain of one derivative; this is the price one has to pay to make the
potential estimate uniform in ε . The simultaneous presence of loss of exponential
decay and of loss of regularity does not allow to get enough contractiveness.

Therefore, to make rigorous the above formal analysis, a deeper understanding
of the structure of the velocity generated by the vortex layer is required.

3 The asymptotic expansion

We solve the above problem (2.10)-(2.13) in two steps: the first at O(1) and the
second at O(ε), writing:

(3.1) ω̃ = ω0 + εω1 , ϕ = ϕ0 + εϕ1 .

To understand what are the equations at different order we have to inquire on the
structure of the velocity.
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3.1 The structure of the velocity
Here we find it convenient to use the variables (x,Y ) and use the following

expression for the velocity generated by a rescaled vorticity Ω (the real vorticity
being ε−1Ω) concentrated around a curve ψ:

(3.2) u− iv =
∞

∑
n=∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

Ω(x′,Y ′)
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′ ,

where (with an abuse of notation) we have defined:

Kε
ψ(x− x′,Y −Y ′) = x− x′+ i

[
ψ(x)−ψ(x′)+ ε(Y −Y ′)

]
,

K0
ψ(x− x′) = x− x′+ i

[
ψ(x)−ψ(x′)

]
,

The definition of K0
ψ , that will be present in the definition of the Birkhoff-Rott

operator, will be useful later.
Using (3.2) one can derive, see Appendix B, the following expression for the

velocity written in complex variable notation:

(3.3) u− iv = M(Ω,ψ)+R(Ω,ψ)

where the operators M and R are defined as follows:

M(Ω,ψ) =

BR[γ,ψ]+
1
2

[∫ Y

−∞

Ω(x,Y ′)dY ′−
∫

∞

Y
Ω(x,Y ′)dY ′

]
(−1+ i∂xψ(x))
(1+∂xψ2(x))

=

BR[γ,ψ]+
1
2

[∫
∞

Y
Ω(x,Y ′)dY ′−

∫ Y

−∞

Ω(x,Y ′)dY ′
]

t̃∗(3.4)

being γ the vorticity intensity, i.e. the total vorticity across the layer:

γ(x) =
∫

∞

−∞

Ω(x,Y ′)dY ′ ,

BR[γ,ψ] the Birkhoff-Rott operator:

(3.5) BR[γ,ψ] =
1

2πi

∞

∑
n=−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

γ(x′)
K0

ψ(x− x′)
dx′ ,

and the vector t̃∗ is the complex conjugate of t̃ = t̃u + it̃v, which is a vector parallel
to the tangent to the curve ψ with components:

(3.6) t̃u =
1

1+∂xψ2 , t̃v =
∂xψ

1+∂xψ2 .

The remainder R is defined as follows:

R(Ω,ψ) =
∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2
T (x,x′,Y ′)

[
1

Kε
ψ

− 1
K0

ψ

]
dx′dY ′ ,
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where for notational simplicity we have suppressed the dependence of the K’s from
x, x′ and Y −Y ′, and where we have defined:

(3.7) T (x,x′,Y ′) = Ω(x′,Y ′)−Ω(x,Y ′)+Ω(x,Y ′)
(
t̃∗(x′)− t̃∗(x)

)
(1+ i∂xψ(x′)) .

A crucial property of the above quantity is the fact that T (x,x,Y ′) = 0, that will be
used in the proof of Proposition 8.3.

If one uses the variable ξ instead of x, one can write the following expression
for the velocity:

(3.8) u− iv = ∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

Ω(ξ ′,Y ′)
K ε

ψ (ξ −ξ ′,Y −Y ′)
J(ξ ′)dξ

′dY ′ ,

where we have defined:

K ε
ψ (ξ −ξ

′,Y −Y ′) = ξ −ξ
′+X(ξ )−X(ξ ′)+ i

[
ψ(ξ )−ψ(ξ ′)+ ε(Y −Y ′)

]
with J = 1+ ∂ξ X(ξ ,τ). The above expression can be recovered from (3.2) with
the use of the change of variable (2.8).

One can define the corresponding operators BR, M and R that now depend
on the Lagrangian factor X also:

(3.9) BR[γ,ψ,X ] =
1

2πi

∞

∑
n=−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

γ(ξ ′)

K 0
ψ (ξ −ξ ′)

J(ξ ′)dξ
′ ,

(3.10) M (Ω,ψ,X) = BR[γ,ψ,X ]+
1
2

[∫
∞

Y
Ω(Y ′)dY ′−

∫ Y

−∞

Ω(Y ′)dY ′
]

t̃∗

(3.11)

R(Ω,ψ,X) = ∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
T (ξ ,ξ ′,Y ′)

[
1

K ε
ψ

− 1
K 0

ψ

]
J(ξ ′)dξ

′dY ′ ,

where t̃ has the expression given in (3.6) with ∂xψ = [1+Xξ ]
−1∂ξ ψ , and T is

the same as T in (3.7) expressed in the variable ξ . One can therefore write the
decomposition formula for a velocity field generated by a vorticity Ω concentrated
on a layer close to a curve ψ(ξ ) in the coordinates (ξ ,Y ) as

(3.12) u− iv = M (Ω,ψ,X)+R(Ω,ψ,X) .

The decomposition given in (3.12) is the main result of this Subsection. In fact
we shall see that, under suitable hypotheses, the contribution given by R is small
inside the layer, see Proposition 8.3. This will allow us to write an equation for
the leading order vorticity ω0 where the vorticity will be convected only by the
velocity M0 ≡M (γ0,ϕ0,X0), and delaying the contribution of R in the equation
for the correction ω1. The physical meaning of the contribution of M is apparent:
the velocity of the curve, as given by the Birkhoff-Rott operator, plus a local–in the
sense that depends on the vorticity at the points (ξ ,Y ′)– contribution of the vorticity
integrated across the layer; this contribution has direction along the tangent to the
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curve. Given that the contribution of M ignores the details of how the vorticity
is distributed in the layer, as well as for the fact that the velocity at a point x is
influenced by the vorticity at other points x′ only through the BR operator which
governs the global motion of the curve, we shall name M as the macroscopic
velocity.

3.2 The equations at different orders
In this Subsection we shall define the equations satisfied by ω0 and ω1. We

shall write these equations using the coordinates (ξ ,Y,τ) with ψ = ϕ . To specify
these equations first we have to establish how, correspondingly to the expansion
(3.1), we decompose the velocity. We shall write u = u0 + εu1, (u0,v0) being the
velocity generated by ω0 and (u1,v1) the velocity generated by ω1. However, in the
previous Subsection, we have seen that a vortex layer vorticity generates a velocity
field containing a term, the remainder R, which formally is O(ε). Therefore the
term u0 contains the term M which is O(1), and the term R which is O(ε). Using
the complex notation we can write:
(3.13)

u− iv = u0− iv0 + ε(u1− iv1) = M (ω0,ϕ,X)+R(ω0,ϕ,X)+ ε (u1− iv1) .

It is natural to have the leading order vortcity ω0 convected by O(1) quantities,
i.e. by M . However the term M (ω0,ϕ,X) depends also by the correction terms
through εϕ1 and the Lagrangian factor X , see (3.16) below; we therefore define:
(3.14)

M0(ω0,ϕ0,X0) = BR[γ0,ϕ0,X0]+
1
2

[∫
∞

Y
ω0(Y ′)dY ′−

∫ Y

−∞

ω0(Y ′)dY ′
]

t̃∗0

where the vector t̃∗0 is the complex conjugate of t̃0 = t̃u
0 + it̃v

0, having defined:

(3.15) t̃u
0 =

1
1+∂xϕ02 , t̃v

0 =
∂xϕ0

1+∂xϕ02 .

The difference with respect to M (ω0,ϕ,X) is in the fact that the BR operator is
computed using the curve ϕ0 instead of ϕ and the leading order approximation (see
(3.17) below) X0 instead of X ; analogously, the vector t̃0 is tangent to the curve ϕ0
rather than ϕ . In the rest of this paper, to make the notation less cumbersome, we
shall adopt the shorthands:

BR = BR(ω0,ϕ,X), M = M (ω0,ϕ,X), R = R(ω0,ϕ,X),

BR0 = BR(ω0,ϕ0,X0), M0 = M0(ω0,ϕ0,X0)

unless the dependence of the operators BR, M and R from their arguments needs
to be made explicit.

The Lagrangian factor X is implicitly defined using the exact expression of the
velocity, i.e. as:

(3.16) X(ξ ,τ) =
∫

τ

0
[M u(ω0,ϕ,X)+Ru(ω0,ϕ,X)+ εu1]Y=0 dτ

′ .



12 R.E. CAFLISCH, M.C. LOMBARDO, M.M.L. SAMMARTINO

On the other hand, the leading order approximation of the Lagrangian factor, that
we shall denote X0, is implicitly defined solely in terms of M u

0 , i.e. as:

(3.17) X0(ξ ,τ) =
∫

τ

0
M u

0 (ω0,ϕ0,X0)|Y=0 dτ
′ .

We write the equations satisfied by ω̃ using the reference frame adapted to the
curve ϕ , so that in Eq.(2.16) one has to take ψ = ϕ , while the Lagrangian factor
has the expression given in (3.16). Moreover, (uψ ,vψ) means (u,v)Y=0.

We now write the equations for the leading order vorticity ω0 and for the ap-
proximation of the curve ϕ0 as well for the O(ε) corrections ω1 and ϕ1. The details
of the derivation can be found in the Appendixes C and D. The equation for ω0 is:

∂τω0 +
[
M u

0 −M u
0|Y=0

] ∂ξ ω0

1+∂ξ X0
−
∫ Y

0
∂ξ M u

0 dY ′
∂Y ω0

1+∂ξ X0
= 0 .(3.18)

The rationale behind (3.18) is in the decomposition of the velocity given in (3.13)
and in the fact that, inside the layer, the term R (and, obviously, ε (u1− iv1) also) is
an O(ε) term, see Proposition 8.3. It is therefore natural to have the leading order
vorticity to be convected by the O(1) part of the velocity. The choice of using M0

instead of M allows to have the dynamics of ω0 to depend explicitly only on ϕ0

instead of the correct curve ϕ = ϕ0 + εϕ1.

The effects of the remainder term R, of M −M0, and of ε (u1− iv1) are there-
fore postponed to the next order equation for ω1.

We couple the above equation (3.18) with the following equation for the motion
of the curve ϕ0:

(3.19) ∂τϕ0 = M v
0|Y=0,

and with the following equation for the approximated Lagrangian factor X0

(3.20) ∂τX0 = M u
0|Y=0,

that derives from the definition (3.17).
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The equation for ω1 can be derived from (2.10) with ψ = ϕ , and from (3.18):

∂τω1 +
1
ε

[
M u−M u

Y=0
1+∂ξ X

−
M u

0 −M u
0|Y=0

1+∂ξ X0

]
∂ξ ω0 +

1
ε

Ru + εu1− (Ru + εu1)Y=0

1+∂ξ X
∂ξ ω0−

1
ε

[
1

1+∂ξ X

∫ Y

0
∂ξ M udY ′− 1

1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′
]

∂Y ω0−

1
ε

1
1+∂ξ X

[∫ Y

0
∂ξ (R

u + εu1)dY ′
]

∂Y ω0 +

u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1−

1
1+∂ξ X

[∫ Y

0
∂ξ u0dY ′

]
∂Y ω1 +[

−∂ξ ϕ
u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
∂Y ω1 = 0(3.21)

Notice that the terms in the first and third lines above are, formally, O(1) because
inside the layer:

M −M0 = O(ε) X−X0 = O(ε);

the above two formal statements will be made rigorous later: the first one in Lem-
mas I.1 and I.2 of Appendix I; the second is an obvios consequence of the estimates
on M −M0 and on R. The terms in the second and the fourth lines of (3.21) are
O(1) because, inside the layer R = O(ε).

Equation (3.21) has to be coupled with the following equation for ϕ1

∂τϕ1 =
1
ε
[M v−M v

0 +Rv + εv1] ,(3.22)

whose derivation can be found in Appendix D, and with an equation ruling the
evolution of the Lagrangian factor X . From (3.16) we know that

(3.23) ∂τX = [M u +Ru + εu1]Y=0 ;

Introducing the correction X1 defined as:

X = X0 + εX1

and because of (3.20), one writes the evolution equation for X1:

(3.24) ∂τX1 =
1
ε
[M u−M u

0 +Ru + εu1]Y=0
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FIGURE 4.1. The domain of analyticity D(ρ) and Σ(θ)

In (3.21) and (3.22) the velocities u1 and v1 are generated by the vorticity ω1
and are therefore given by the Biot-Savart law

u1(ξ ,Y,τ) =
∫

ξ+ π

2

ξ− π

2

∫
∞

−∞

Hu(ξ −ξ
′,Y −Y ′)ω1

(
ξ
′,Y ′,τ

)
J(ξ ,τ)dξ

′dY ′(3.25)

v1(ξ ,Y,τ) =
∫

ξ+ π

2

ξ− π

2

∫
∞

−∞

Hv(ξ −ξ
′,Y −Y ′)ω1

(
ξ
′,Y ′,τ

)
J(ξ ,τ)dξ

′dY ′(3.26)

where the expression for the kernels (Hu,Hv) is given in (8.1) and (8.2), and the
Jacobian J is written explicitly in (8.5).

The main results of this Subsection are: the derivation of the evolution equa-
tions for ω0, ϕ0 and X0, (3.18), (3.19) and (3.20) respectively; and the derivation
of the equations for ω1, ϕ1 and X1, (3.21), (3.22) and (3.24) respectively. The O(ε)
velocity (u1,v1), appearing in the equation for ω1 is given by (3.25)-(3.26).

In Section 7 we shall integrate in Y equation (3.18) and derive the equations of
the skeleton of the layer, therefore obtaining ϕ0, X0 and the vorticity intensity γ0.
In Section 9 we shall solve for ω0, ω1, ϕ1 and X1. The equations are coupled by the
fact that the frame where the equation for ω0 is written, has base curve the exact
ϕ = ϕ0 + εϕ1.

4 Functional setting

In this Section we shall describe the function spaces we shall use throughout the
paper. In what follows we shall denote by D(ρ) the periodic strip of the complex
plane of width ρ > 0:

D(ρ)≡ {ξ + iη : ξ ∈ R/πZ , |η |< ρ} ,

and with Σ(θ), where 0 < θ < π/4, the conoid in the complex plane:

Σ(θ) ≡ {Y + iλ : |Y | ≤ 1, |λ |< θ}
⋃

{Y + iλ : |Y | ≥ 1, |λ |< θ +(|Y |−1) tanθ}(4.1)
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In the rest of the paper α with 0 < α < 1 will express the Hölder modulus of
continuity. The positive constants µ and β have the following meaning: µ will
give the rate of exponential decay of the vorticity away from the layer, while β will
give the rate at which the domains of analyticity shrink in time.

For a function f : D(ρ)→ C we introduce the notation:

| f |ρ ≡ sup
(ξ ,η)∈D(ρ)

| f (ξ + iη)| ,

| f |(α)
ρ ≡ sup

(ξ ,η),(ξ̄ ,η)∈D(ρ)

∣∣ f (ξ + iη)− f (ξ̄ + iη)
∣∣∣∣ξ − ξ̄

∣∣α
For a function g : D(ρ)×Σ(θ)→ C we introduce the following notations:

|g|ρ,θ ≡ sup
(ξ ,η)∈D(ρ), (Y,λ )∈Σ(θ)

|g(ξ + iη ,Y + iλ )| ,

|g|(α)
ρ,θ ≡ sup

(ξ ,η), (ξ̄ ,η) ∈ D(ρ)

(Y,λ ), (Ȳ ,λ ) ∈ Σ(θ)

∣∣g(ξ + iη ,Y + iλ )−g(ξ̄ + iη ,Ȳ + iλ )
∣∣[

(ξ − ξ̄ )2 +(Y − Ȳ )2
]α/2

and

|g|ρ,θ ,µ ≡ sup
(ξ ,η)∈D(ρ), (Y,λ )∈Σ(θ)

|eµ|Y |g(ξ + iη ,Y + iλ )| ,

|g|(α)
ρ,θ ,µ ≡ sup

(ξ ,η), (ξ̄ ,η) ∈ D(ρ)

(Y,λ ), (Ȳ ,λ ) ∈ Σ(θ)

∣∣∣eµ|Y |g(ξ + iη ,Y + iλ )− eµ|Ȳ |g(ξ̄ + iη ,Ȳ + iλ )
∣∣∣[

(ξ − ξ̄ )2 +(Y − Ȳ )2
]α/2

Definition 4.1. Let f : D(ρ)→ C analytic. Then we say f ∈ Bα
ρ when:

‖ f‖(α)
ρ ≡ | f |ρ + | f |(α)

ρ < ∞

Definition 4.2. Let g : D(ρ)×Σ(θ)→ C analytic. Then we say g ∈ Bα
ρ,θ when:

‖g‖(α)
ρ,θ ≡ |g|ρ,θ + |g|

(α)
ρ,θ < ∞

Definition 4.3. Let g : D(ρ)×Σ(θ)→ C analytic. Then we say g ∈ Bα
ρ,θ ,µ when:

‖g‖(α)
ρ,θ ,µ ≡ |g|ρ,θ ,µ + |g|

(α)
ρ,θ ,µ < ∞

Definition 4.4. Let f : D(ρ)→ C analytic. then we say f ∈ Bm,α
ρ when:

‖ f‖(α)
m,ρ ≡ ∑

j≤m
|∂ j

ξ
f |ρ + |∂ m

ξ
f |(α)

ρ < ∞

Definition 4.5. Let g : D(ρ)×Σ(θ)→ C analytic. Then we say g ∈ Bm,α
ρ,θ when:

‖g‖(α)
m,ρ,θ = ∑

i+ j≤m
|∂ i

ξ
∂

j
Y g|ρ,θ + ∑

i+ j=m
|∂ i

ξ
∂

j
Y g|(α)

ρ,θ < ∞



16 R.E. CAFLISCH, M.C. LOMBARDO, M.M.L. SAMMARTINO

Definition 4.6. Let g : D(ρ)×Σ(θ)→ C analytic. Then we say g ∈ Bm,α
ρ,θ ,µ when:

‖g‖(α)
m,ρ,θ ,µ = ∑

i+ j≤m
|∂ i

ξ
∂

j
Y g|ρ,θ ,µ + ∑

i+ j=m
|∂ i

ξ
∂

j
Y g|(α)

ρ,θ ,µ < ∞

Definition 4.7. Let t ∈ [0,T ] and let β and ρ be such that βT < ρ . A function
f (·, ·) will be said to be in Bm,α

ρ,β ,T when f (·, t) ∈ Bm,α
ρ−β t ∀t ∈ [0,T ] and when:

‖ f‖(α)
m,ρ,β ,T ≡ ∑

j≤m
sup

0≤t≤T
|∂ j

ξ
f (·, t)|ρ−β t + sup

0≤t≤T
|∂ m

ξ
f (·, t)|(α)

ρ−β t < ∞

Definition 4.8. Let t ∈ [0,T ] and let β , ρ and θ be such that βT < ρ , βT < θ . A
function g(·, ·, ·) will be said to be in Bm,α

ρ,θ ,β ,T when g(·, ·, t)∈ Bm,α
ρ−β t,θ−β t ∀t ∈ [0,T ]

and when:

‖g‖(α)
m,ρ,θ ,β ,T ≡ ∑

i+ j≤m
sup

0≤t≤T
|∂ i

ξ
∂

j
Y g(·, ·, t)|ρ−β t,θ−β t +

∑
i+ j=m

sup
0≤t≤T

|∂ i
ξ
∂

j
Y f |(α)

ρ−β t,θ−β t < ∞

Definition 4.9. Let t ∈ [0,T ] and let β , ρ and θ be such that βT < ρ , βT < θ .
A function g(·, ·, ·) will be said to be in Bm,α

ρ,θ ,µ,β ,T when g(·, ·, t) ∈ Bm,α
ρ−β t,θ−β t,µ

∀t ∈ [0,T ] and when:

‖g‖(α)
m,ρ,θ ,β ,µ,T ≡ ∑

i+ j≤m
sup

0≤t≤T
|∂ξ ∂

j
Y g(·, ·, t)|ρ−β t,θ−β t,µ +

∑
i+ j=m

sup
0≤t≤T

|∂ i
ξ
∂

j
Y g|(α)

ρ−β t,θ−β t,µ < ∞

Remark 4.10. For a function g(ξ ,Y ) defined on D(ρ)×Σ(θ) one can define the
Hölder modulus of continuity with respect to ξ and Y separately:

|g|(α,ξ )
ρ,θ ,µ ≡ sup

(ξ ,η), (ξ̄ ,η) ∈ D(ρ)

(Y,λ ) ∈ Σ(θ)

∣∣eµ|Y |g(ξ + iη ,Y + iλ )− eµ|Y |g(ξ̄ + iη ,Y + iλ )
∣∣

|ξ − ξ̄ |α

|g|(α,Y )
ρ,θ ,µ ≡ sup

(ξ ,η) ∈ D(ρ)

(Y,λ ), (Ȳ ,λ ) ∈ Σ(θ)

∣∣∣eµ|Y |g(ξ + iη ,Y + iλ )− eµ|Ȳ |g(ξ + iη ,Ȳ + iλ )
∣∣∣

|Y − Ȳ |α

One can define, analogously to Definition 4.5, the quantities ‖g‖(α,ξ )
m,ρ,θ and ‖g‖(α,Y )

m,ρ,θ ,

and, analogously to Definition 4.6, the quantities ‖g‖(α,ξ )
m,ρ,θ ,µ and ‖g‖(α,Y )

m,ρ,θ ,µ . Clearly
one has the norms equivalence:

c
(
‖g‖(α,ξ )

m,ρ,θ +‖g‖
(α,Y )
m,ρ,θ

)
≤ ‖g‖(α)

m,ρ,θ ≤C
(
‖g‖(α,ξ )

mρ,θ +‖g‖(α,Y )
m,ρ,θ

)
c
(
‖g‖(α,ξ )

m,ρ,θ ,µ +‖g‖
(α,Y )
m,ρ,θ ,µ

)
≤ ‖g‖(α)

m,ρ,θ ,µ ≤C
(
‖g‖(α,ξ )

mρ,θ ,µ +‖g‖
(α,Y )
m,ρ,θ ,µ

)
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The above Remark will be useful when we shall prove the potential estimates
bounding the velocity in terms of the vorticity; in fact, in the Biot-Savart kernel the
tangential variable ξ and the transversal variable Y appear with different scales,
and it will be easier to give separate estimates for the Hölder modulus of continuity
taken with respect to ξ and with respect to Y .

Remark 4.11. In what follows, to make the notation simpler, when the index de-
noting the number of derivatives is equal to 0, we shall omit it. For example Bα

ρ,θ ,

Bα
ρ,θ ,µ , Bα

ρ,θ , Bα

ρ,θ ,µ,β ,T will be used instead of B0,α
ρ,θ , B0,α

ρ,θ ,µ , B0,α
ρ,θ , B0,α

ρ,θ ,µ,β ,T respec-
tively. The same notation will be used for norms.

5 Main results

Consider the Euler equations written in the comoving frame adapted to the
curve, Eqs.(2.10)-(2.13).

Remark 5.1. To solve Euler equations we need to introduce the correction term
ω1. This necessity can be understood in the following way. In the Euler equations
appears an O(ε−1) term, see (2.10). Using the incompressibility condition this
O(ε−1) is shown to be, formally, O(1), see (2.16). The linearly growing term
deriving from the integration in Y of a non decaying quantity, together with the
presence of the ∂ξ derivative of the velocity and of the ∂Y derivative of the vorticity,
cannot be handled directly. The solution is in the decomposition formula (3.3)
(or, in the Lagrangian coordinates we are using, formula (3.12)). The term M
has the special structure being given by the BR term (that can be shown to be a-
priori analytic, see Theorem 5.2 and Section 7 below) plus a term (involving the
integration of the vorticity) whose behavior at |Y | →∞ can be shown to be a-priori
analytic. The remainder term R is formally O(ε) and this fact will be proven
to be true inside the layer. However the proof, to avoid logarithmic singularities,
involves the use of delicate cancellation properties that require higher regularity
of the vorticity ω0, still to be proved at O(1). The solution to this impasse is to
introduce the correction ω1 and to put the effects of the term R(ω0,ϕ0) in the
equation for ω1.

Therefore we look for a solution of the Euler equations in the form

ω̃ = ω0 + εω1 , ϕ = ϕ0 + εϕ1 , X = X0 + εX1 ;

the necessity to include the lagrangian factors as unknown derives from the fact that
we are solving Euler equation in a lagrangian frame. The unknowns (ω0,ϕ0,X0)
solve equations (3.18)-(3.20) with initial data

(5.1) ω0(ξ ,Y, t = 0) = ω̃
in(ξ ,Y ) , ϕ0(ξ , t = 0) = ϕ

in(ξ ) , X0(ξ , t = 0) = 0 ,

while (ω1,ϕ1,X1) solve equations .(3.21), (3.22) and (3.24) with initial data

(5.2) ω1(ξ ,Y, t = 0) = 0 , ϕ1(ξ , t = 0) = 0 , X1(ξ , t = 0) = 0 .
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Please notice that at time t = 0 the variable x and ξ coincide so that, in the specifi-
cation of the initial data, one can use indifferently x or ξ .

The reason why the lagrangian factors X0 and X1 enter dynamically in the equa-
tions to be solved can be understood in the following way: looking at the definition
of the zero-th order approximation X0 (3.17), one sees that to compute X0 one has
to know the first order approximation of the velocity at Y = 0 (i.e. M0) which,
in turn, to be computed, needs the knowledge of the lagrangian factor, see (3.14).
Analagously, to compute X1, one need to know the first order correction u1 which
can be recovered from the Biot-Savart law (3.25), where the lagrangian factors
appear throuh the kernel Hu, see (8.1).

To solve these equations we first construct the skeleton of the layer, namely
(ϕ0,γ0,X0), being γ0 the leading order vorticity intensity, i.e. the integral in Y of
ω0, see (7.1).

This is accomplished in the following Theorem that is one of the main results
of this paper.

Theorem 5.2 (Construction of the skeleton of the layer). Suppose ω̃ in ∈ B1,α
ρ0,θ0,µ0

and ϕ in ∈ B2,α
ρ0 with ‖ϕ in‖(α)

2,ρ0
< 1/4. Then there exist ρ̄0 < ρ0, θ̄0 < θ0 µ̄0 < µ0,

T0 and β̄ > 0 such that γ0 ∈ B1,α
ρ̄0,β̄ ,T0

and ϕ0,X0 ∈ B2,α
ρ̄0,β̄ ,T0

.

Remark 5.3. The equations ruling the dynamics of γ0 can be derived from the
equation for ω0, i.e. Eq.(3.18), through integration in Y , see (7.2) below. However,
in this equations, it appears the quantity γ

+
0 − γ

−
0 , which expresses how the curve

is off the barycenter of the layer. This new variable, therefore, will have to be
considered in the dynamics. This will be accomplished in Section 7, where we
shall solve (7.2), (7.4), (7.5) and (7.6) for (γ0,γ

+
0 − γ

−
0 ,ϕ0,X0).

Having proven that the layer, macroscopically, has analytic regularity, one has
to pass to determine how the vorticity is distributed, namely ω0 and ω1, the correc-
tion to the position of the curve ϕ1, as well the correction to the lagrangian factor
X1.

Theorem 5.4 (Construction of the vorticity distribution). Suppose ω̃ in ∈ B1,α
ρ0,θ0,µ0

and ϕ in ∈ B2,α
ρ0 , with ‖ϕ in‖(α)

2,ρ0
< 1/4. Then there exist ρ1,θ1,µ1,β1,T1, with ρ1 <

ρ̄0 < ρ0, θ1 < θ̄0 < θ0 µ1 < µ̄0 < µ0, T1 < T0 and β1 > β̄ > 0 such that Eqs.(3.18),
(3.21), (3.22), (3.24) admit a unique solution (ω0,ω1,ϕ1,X1) in [0,T1] with ω0 ∈
B1,α

ρ1,θ1,µ1,β1,T1
, ω1 ∈ Bα

ρ1,θ1,
µ1
2 ,β1,T1

and ϕ1,X1 ∈ B1,α
ρ1,β1,T1

.

Notice how the vorticity correction ω1, as compared to the leading order ω0,
has lower regularity in the spatial variables (x,Y ), and a slower exponential decay
when |Y | → ∞

We now state the convergence of the dynamics of the vortex layer (as ruled by
the Euler equations) to the dynamics of the Birkhoff-Rott equation. We find more
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convenient to state the convergence result using the eulerian variable x rather than
the lagrangian variable ξ . We remark that the vorticities ωi and the curves ϕi, that
in the above Theorem have been constructed using the Lagrangian variable ξ , given
the analytic invertibility of the change of variable x→ ξ , they can be expressed as
analytic functions of the eulerian variable x.

Let a vortex layer initial datum (ω̃ in(x,Y ),ϕ in(x)) be given. The above Theo-
rem 5.2 and Theorem 5.4 have constructed the solution to the Euler equations in
the form of a vortex layer solution (ω̃,ϕ) with ω̃ = ω0(x,Y, t)+ εω1(x,Y, t) and
ϕ(x, t) = ϕ0(x, t)+ εϕ1(x, t). Moreover, taking ρ̃1 < ρ1, θ̃1 < θ1, T̃1 < T1, one can
assume (ω̃,ϕ) ∈ B1,α

ρ̃1,θ̃1,µ1,β1,T̃1
×B2,α

ρ̃1,β1,T̃1
. To simplify the notation we rename ρ̃1,

θ̃1 and T̃1, and assume (ω̃,ϕ) ∈ B1,α
ρ1,θ1,µ1,β1,T1

×B2,α
ρ1,β1,T1

.
We can therefore compute the vorticity intensity of the vortex layer:

γ(x, t) =
∫

∞

−∞

ω̃(x,Y ′, t)dY ′

and say that γ ∈ B1,α
ρ1,β1,T1

Consider the Birkhoff-Rott equations:

∂tγs +∂x (Uγs) = 0(5.3)
∂tϕs +U∂xϕs = V(5.4)

where
(U,V ) = BR[γs,ϕs]

being BR the Birkhoff-Rott operator defined in (3.5). Initialize the BR equations
with the initial vorticity intensity of the vortex layer and with the same curve which
the layer is based on:

(5.5) γs(x, t = 0) =
∫

∞

−∞

ω̃
in(x,Y ′)dY ′ ϕs(x, t = 0) = ϕ

in(x)

From the results of [49, 12] we know that there exist ρs > 0, βs > 0, Ts > 0
with ρs−βsTs > 0 such that the BR equations admit a unique solution (γs,ϕs) ∈
B1,α

ρs,βs,Ts
×B2,α

ρs,βs,Ts
.

Define ρ = min(ρ1,ρs), β = max(β1,βs) and T = min(T1,Ts).
Next Theorem states that the BR solution is a good approximation of the vortex

layer solution.

Theorem 5.5 (Convergence to the BR solution). Let (ω̃,ϕ)∈ B1,α
ρ,θ ,µ,β ,T ×B2,α

ρ,T the
VL-solution of the Euler equation with VL initial datum (ω̃ in,ϕ in). Let (γs,ϕs) ∈
B1,α

ρ,T × B2,α
ρ,T the solution of the BR equations with initial datum given by (5.5).

Then:
‖γs− γ‖(α)

1,ρ,β ,T ≤ cε ‖ϕs−ϕ‖(α)
2,ρ,β ,T ≤ cε
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6 Mathematical preliminaries

In this Section we present some miscellaneous results that will be used through-
out the paper.

6.1 The Abstract Cauchy-Kowalewski Theorem
We first state a fixed-point Theorem, the so called Abstract Cauchy-Kowalewski

Theorem. Consider the equation

(6.1) u+F(u, t) = 0 .

Let {Xρ : 0 < ρ ≤ ρ0} be a scale of Banach spaces with norms | · |ρ , such that
Xρ ′ ⊂ Xρ ′′ and | · |ρ ′′ ≤ | · |ρ ′ when ρ ′′ ≤ ρ ′ ≤ ρ0.

Theorem 6.1 (ACK). Suppose that there exist R > 0, ρ0 > 0, and β0 > 0 such that
for 0 < τ ≤ T ≤ ρ0/β0 the following statements hold:

(1) if ρ is such that 0 < ρ ≤ ρ0−β0τ , then the function F(0, t) : [0,τ] 7→ {u ∈
Xρ : sup

0≤t≤τ

|u(t)|ρ < ∞} is continuous and

|F(0, t)|ρ0−β0t ≤ R0 < R;

(2) if ρ ′, ρ are such that 0< ρ ′< ρ ≤ ρ0−β0τ , then the function F(u, t) : [0,τ] 7→
Xρ ′ is continuous for all u such that {u ∈ Xρ : sup

0≤t≤T
|u(t)|ρ ≤ R};

(3) if ρ ′ and ρ(s) are such that ρ ′ < ρ(s) ≤ ρ0−β0s and if u1 and u2 ∈{u :
u(t) ∈ Xρ0−β0t : sup

0≤t≤τ

|u(t)|ρ0−β0t ≤ R}, then

|F(u1, t)−F(u2, t)|ρ ′ ≤C
∫ t

0
ds
|u1−u2|ρ(s)

ρ(s)−ρ ′

where C is a constant independent of t, τ , u1, u2, ρ , ρ ′, ρ(s).

Then there exists β > β0 such that for all 0< ρ < ρ0 Eq. (6.1) has a unique solution
u(t) ∈ Xρ0−β t with t ∈ [0,ρ0/β ]. Moreover, sup

ρ<ρ0−β t
|u(t)|ρ ≤ R.

For a proof of the above Theorem see e.g. [45, 9] and [34, 14] where a version
that allows mild singularities in time is given.

6.2 Cauchy estimates
We now present some Lemmas, that will be used in the analysis of the various

nonlinear terms present in Eqs.(3.18) and (3.21); the proof of these Lemmas are
based on the use of the Cauchy estimate of a derivative of an analytic function.
Throughout this section l ≥ 0 is an integer.
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Lemma 6.2. Let f ∈ Bl,α
ρ ′′ . If ρ ′ < ρ ′′ then

(6.2) ‖∂ξ f‖(α)
l,ρ ′ ≤

‖ f‖(α)
l,ρ ′′

ρ ′′−ρ ′
.

If the derivative is with respect to the Y variable, because of the angular shape
of the region of analyticity, shrinking the strip of analyticity, one can also bound
linear growth in Y .

Lemma 6.3. Let f ∈ Bl,α
ρ ′′,θ ′′,µ ′ . If θ ′ < θ ′′ and If µ ′ < µ ′′

‖∂Y f‖(α)
l,ρ ′,θ ′,µ ′ ≤

‖ f‖(α)
l,ρ ′,θ ′′,µ ′

θ ′′−θ ′
+µ

′‖ f‖(α)
l,ρ ′,θ ′,µ ′(6.3)

‖Y ∂Y f‖(α)
l,ρ ′,θ ′,µ ′ ≤

‖ f‖(α)
l,ρ ′,θ ′′,µ ′

θ ′′−θ ′
+µ

′ ‖ f‖(α)
l,ρ ′,θ ′,µ ′′

µ ′′−µ ′
+‖ f‖(α)

l,ρ ′,θ ′,µ ′ .(6.4)

We finally state the following Lemma that can be easily proven using the above
Cauchy estimate.

Lemma 6.4. Let f ∈ Bl,α
ρ ′,θ ′ and g ∈ Bl,α

ρ ′′,θ ′′,µ ′ . If ρ ′ < ρ ′′, then

‖ f ∂ξ g‖(α)
l,ρ ′,θ ′,µ ′ ≤ c‖ f‖(α)

l,ρ ′,θ ′
‖g‖(α)

l,ρ ′′,θ ′,µ ′

ρ ′′−ρ ′

and, if θ ′ < θ ′′

‖ f ∂Y g‖(α)
l,ρ ′,θ ′,µ ′ ≤ c‖ f‖(α)

l,ρ ′,θ ′
‖g‖(α)

l,ρ ′,θ ′′,µ ′

θ ′′−θ ′

6.3 Estimates on the Birkhoff-Rott operator and on the macroscopic
velocity

We introduce the notation:

δγ = γ
(1)− γ

(2), δψ = ψ
(1)−ψ

(2), δX = X (1)−X (2), δΩ = Ω
(1)−Ω

(2).

We state the following results:

Proposition 6.5. Let γ(i) ∈ B1,α
ρ , ψ(i) ∈ B2,α

ρ and X (i) ∈ B2,α
ρ for i = 1,2.

Then BR[γ(i),ψ(i),X (i)] ∈ B1,α
ρ and

‖BR[γ(1),ψ(1),X (1)]−BR[γ(2),ψ(2),X (2)]‖(α)
1,ρ ≤ c

(
‖δγ‖(α)

1,ρ +‖δψ‖(α)
2,ρ +‖δX‖(α)

2,ρ

)
For the proof see [49] or [12, 13].

Proposition 6.6. Let Ω(i) ∈ B1,α
ρ,θ ,µ , ψ(i) ∈ B2,α

ρ and X (i) ∈ B2,α
ρ for i = 1,2 .

Then M [Ω(i),ψ(i),X (i)] ∈ B1,α
ρ,θ and

‖M [Ω(1),ψ(1),X (1)]−M [Ω(2),ψ(2),X (2)]‖(α)
1,ρ,θ ≤ c

(
‖δΩ‖(α)

1,ρ,θ ,µ +‖δψ‖(α)
2,ρ +‖δX‖(α)

2,ρ

)
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Given the expression (3.10) for M , the proof of Proposition 6.6 is an immediate
consequence of Proposition 6.5.

7 Construction of the skeleton of the layer: proof of Theorem 5.2

A preliminary crucial step in the construction of the vortex layer is to show that
γ0(ξ ,τ) and ϕ0(ξ ,τ), remain analytic up to a time T0.

We define the following quantities:
(7.1)

γ0(ξ )=
∫

∞

−∞

ω0(ξ ,Y ′)dY ′ , γ
+
0 (ξ )=

∫
∞

0
ω0(ξ ,Y ′)dY ′ , γ

−
0 (ξ )=

∫ 0

−∞

ω0(ξ ,Y ′)dY ′

We integrate in Y , from −∞ to ∞, Eq.(3.18) and find the following evolution equa-
tion for γ0:

(7.2) ∂τγ0−M u
0 |Y=0

∂ξ γ0

1+∂ξ X0
+

∂ξ (γ0BRu
0)

1+∂ξ X0
= 0;

to derive the above equation we have used∫
∞

−∞

dY ω0(ξ ,Y )
∫

∞

Y
dY ′ω0(ξ ,Y ′) =

∫
∞

−∞

dY ω0(ξ ,Y )
∫ Y

−∞

dY ′ω0(ξ ,Y ′) .

From (3.14) and (3.6) one derives

(7.3) M0|Y=0 = BR0 +
1
2
[
γ
+
0 − γ

−
0

]
t̃∗0

where

t̃0 =
1+ i[1+∂ξ X0]

−1∂ξ ϕ0

1+[1+∂ξ X0]−2∂ξ ϕ02

and recognizes that in the equation for γ0, equation (7.2), it appears also the quan-
tity

[
γ
+
0 − γ

−
0

]
. To get a closed system one has therefore to find an equation for[

γ
+
0 − γ

−
0

]
.

Integrating in Y Eq.(3.18), first from 0 to ∞ and then from −∞ to 0 one gets the
following equations:

∂τγ
+
0 +

1
1+∂ξ X0

[
−1

2
γ
+
0 ∂ξ γ0 t̃u

0−
1
2

γ
+
0 γ
−
0 ∂ξ t̃u

0 + γ
+
0 ∂ξ BRu

0

]
= 0

∂τγ
−
0 +

1
1+∂ξ X0

[
1
2

γ
−
0 ∂ξ γ0 t̃u

0 +
1
2

γ
+
0 γ
−
0 ∂ξ t̃u

0 + γ
−
0 ∂ξ BRu

0

]
= 0

Subtracting the two equations one derives:

∂τ

(
γ
+
0 − γ

−
0

)
+

1
1+∂ξ X0

{
−1

2
γ0∂ξ γ0t̃u

0−
1
4

[
γ

2
0 −
(
γ
+
0 − γ

−
0

)2
]

∂ξ t̃u
0 +
(
γ
+
0 − γ

−
0

)
∂ξ BRu

0

}
= 0

(7.4)
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The two above equations (7.2) and (7.4) are two equations for γ0 and
(
γ
+
0 − γ

−
0

)
.

Given that the operators BR0 and M0 depend, beside γ0, also on ϕ0 and X0, (7.2)
and (7.4) have to be coupled with the equation ruling the motion of the curve ϕ0:

(7.5) ∂τϕ0 = M v
0 |Y=0

and the equation ruling the dynamics of X0, that can be derived directly from the
definition of X0 given in (3.17)

(7.6) ∂τX0 = M u
0 |Y=0

The equations are initialized with

γ0(ξ ,τ = 0) = γ
in
0 (ξ ),

(
γ
+
0 − γ

−
0

)
(ξ ,τ = 0) = (γ+0 − γ

−
0 )in

ϕ0(ξ ,τ = 0) = ϕ
in(ξ ), X0(ξ ,τ = 0) = 0

where, obviously, γ in(ξ ) and (γ+0 − γ
−
0 )in can be computed from ω in.

An immediate consequence of the estimate on the BR and M operators, and
of the expression of M0|Y=0 given in (7.3), is the following estimate on M0|Y=0

Proposition 7.1. Let γ
(i)
0 ∈ B1,α

ρ , ϕ
(i)
0 ∈ B2,α

ρ and X (i)
0 ∈ B2,α

ρ for i = 1,2.

Then M [γ
(i)
0 ,ϕ

(i)
0 ,X (i)

0 ]|Y=0 ∈ B1,α
ρ , and

‖(M [γ
(1)
0 ,ϕ

(1)
0 ,X (1)

0 ]−M [γ
(2)
0 ,ϕ

(2)
0 ,X (2)

0 ])|Y=0‖
(α)
1,ρ ≤

c
(
‖δγ0‖(α)

1,ρ +‖δ (γ+0 − γ
−
0 )‖(α)

1,ρ +‖δϕ0‖(α)
2,ρ +‖δX0‖(α)

2,ρ

)
The system (7.2), (7.4), (7.5) and (7.6), with the use of the ACK Theorem, and

with the help of Propositions 6.5 and 6.6, can be easily proven to admit a unique
solution

[
γ0,γ

+
0 − γ

−
0 ,ϕ0,X0

]
in the appropriate analytic function space.

The following Proposition therefore holds:

Proposition 7.2. Suppose ω in ∈ B1,α
ρ0,θ0,µ0

and ϕ in ∈ B2,α
ρ0 , with ‖ϕ in‖(α)

2,ρ < 1/4.
Then there exist β0 > 0 and T0 > 0 such that the system (7.2), (7.4), (7.5) and (7.6)
has a unique solution

[
γ0,γ

+
0 − γ

−
0 ,ϕ0,X0

]
with γ0 ∈ B1,α

ρ0,β0,T0
, γ

+
0 − γ

−
0 ∈ B1,α

ρ0,β0,T0
,

ϕ0 ∈ B2,α
ρ0,β0,T0

and X0 ∈ B2,α
ρ0,β0,T0

.

The above Proposition states the a priori analyticity of the zero-th order total
vorticity strength γ0 and of the zero-th order approximation of the base curve ϕ0.

This ends the proof of Theorem 5.2

Remark 7.3. In the equation for ω0, that we shall analyze in Section 9, the functions
that we have just constructed, γ0, γ

+
0 − γ

−
0 , ϕ0 and X0 appear through their first

derivatives. One can see this, for example considering the convective term along
the Y direction where is present the term ∂ξ M u

0 ; this operator involves the BR
operator (and therefore γ0 and X0) as well γ

+
0 −γ

−
0 and ϕ0. Therefore we shall need

higher regularity. This can be accomplished simply by shrinking the analyticity
strip and by making shorter the time of the existence of the solution; therefore we
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can say that γ0 ∈ B2,α
ρ̃0,β̃0,T̃0

where ρ̃0 < ρ0, β̃0 > β0 and T̃0 < T0. To keep the notation
simpler we rename the new widths of analyticity and the new time of existence to
say that:

γ0 ∈ B2,α
ρ0,β0,T0

, γ
+
0 − γ

−
0 ∈ B2,α

ρ0,β0,T0
, X0 ∈ B3,α

ρ0,β0,T0
, and ϕ0 ∈ B3,α

ρ0,β0,T0
.

8 Potential estimates

In this Section we shall state some basic estimates that will be crucial in our
development.

Define:

Hu(x,y) =
1

8π2
sinh(2y)

sin2 (x)+ sinh2 (y)

Hv(x,y) = −
1

8π2
sin(2x)

sin2 (x)+ sinh2 (y)
.

The velocity field (U,V ) generated by a vorticity Ω has the following expression:

U(x,y, t) =
∫ x+ π

2

x− π

2

∫
∞

−∞

Hu(x− x′,y− y′)Ω
(
x′,y′, t

)
dx′dy′

V (x,y, t) =
∫ x+π/2

x−π/2

∫
∞

−∞

Hv(x− x′,y− y′)Ω
(
x′,y′, t

)
dx′dy′

We want now to write the velocity in a frame adapted to the curve ϕ(ξ ). Recall
that the comoving variables (ξ ,Y ) adapted to the curve ϕ0 are defined as:

x = ξ +X(ξ ,τ) y = εY +ϕ(ξ )

where the Lagrangian factor X is given by (3.16).
In terms of the comoving variables ξ and Y the Biot-Savart kernel takes the

form:

Hu(ξ ,ξ
′,Y −Y ′) =(8.1)

1
8π2

sinh2 [ε(Y −Y ′)+ϕ(ξ +X)−ϕ(ξ ′+X ′)]
sin2 (ξ −ξ ′+X−X ′)+ sinh2 [ε(Y −Y ′)+ϕ(ξ +X)−ϕ(ξ ′+X ′)]

Hv(ξ ,ξ
′,Y −Y ′) =(8.2)

− 1
8π2

sin2(ξ −ξ ′+X−X ′)
sin2 (ξ −ξ ′+X−X ′)+ sinh2 [ε(Y −Y ′)+ϕ(ξ +X)−ϕ(ξ ′+X ′)]

,

so that the velocity field, in its dependence on the real variables ξ and Y is written
as:

U(ξ ,Y,τ) =
∫

ξ+ π

2

ξ− π

2

∫
∞

−∞

Hu(ξ ,ξ
′,Y −Y ′)Ω

(
ξ
′,Y ′,τ

)
J(ξ ′,τ)dξ

′dY ′(8.3)

V (ξ ,Y,τ) =
∫

ξ+ π

2

ξ− π

2

∫
∞

−∞

Hv(ξ ,ξ
′,Y −Y ′)Ω

(
ξ
′,Y ′,τ

)
J(ξ ′,τ)dξ

′dY ′(8.4)
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FIGURE 8.1. The path P(Y )

where:

(8.5) J(ξ ,τ) = 1+∂ξ X(ξ ,τ).

The above expressions assume ξ and Y real. Following [4] we now show how
the above expressions can be extended analytically for (ξ ,Y ) ∈D(ρ)×Σ(θ). First
we notice that, concerning the variable ξ = ξR+ iξI , by a contour deformation, one
can take the path of integration parallel to the real axis and passing through ξ , i.e.
ξ ′ = ξ ′R + iξI; the expressions (8.3) and (8.4) for U and V can be written as:

U(ξ ,Y,τ) =
∫

ξR+
π

2

ξR− π

2

∫
P(Y )

Hu(ξ ,ξ
′,Y −Y ′)Ω

(
ξ
′
R + iξI,Y ′,τ

)
J dξ

′
RdY ′(8.6)

V (ξ ,Y,τ) =
∫

ξR+
π

2

ξR− π

2

∫
P(Y )

Hv(ξ ,ξ
′,Y −Y ′)Ω

(
ξ
′
R + iξI,Y ′,τ

)
J dξ

′
RdY ′(8.7)

where P(Y ) is a path of integration in Σ(θ). By contour deformation we can choose
P(Y ) such that P(Y )⊂ (Σ(θ)−C(Y ))∪{Y} where the cone C(Y ) is defined in the
following way:

C(Y )≡ {a+ ib ∈ Σ(θ) : |YR−a|< |YI−b|, |YI|> |b|, YI ·b > 0}.

With the same procedure adopted in Proposition I.1 of [4] one can see that (8.6)
and (8.7) define two analytic functions in D(ρ)× Σ(θ). We now show how to
conveniently parametrize P(Y ) choosing, as parameter, the variable Y ′R, see Fig.8.1.

In fact, take

(8.8) P(Y ) = Y ′R + ip(Y,Y ′R)

where p(Y,Y ′R) is chosen to satisfy: 1) p(Y,Y ′R) = 0 when |YR−Y ′R|> |YI|+∆, with
∆ > 0; and 2) p(Y,Y ′R) = Y ′R + iYI in a sufficiently small neighborhood of Y . This
choice of the path of integration will allow, when evaluating the difference between
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velocities calculated at two points (ξ ,Y ) and (ξ̄ ,Ȳ ) (which is needed to bound the
Hölder modulus of continuity), to choose the same path of integration when YI = ȲI ,
or two paths of integration differing by a small circuit, of size |YI − ȲI| otherwise,
see Appendix E.3.

The function p(Y,Y ′R) can be chosen to be C2, with bounded norm, and with
bounded derivatives. The bound can be chosen to be independent from Y . Using
the path P(Y ) the velocity can therefore be written

U(ξ ,Y,τ) =
∫

ξR+
π

2

ξR− π

2

∫
P(Y )

Hu(ξ ,ξ
′,Y −Y ′R− ip(Y,Y ′R)) ·

Ω
(
ξ
′
R + iξI,Y ′R + ip(Y,Y ′R),τ

)
J (1+ i∂Y ′R p)dξ

′
RdY ′R(8.9)

V (ξ ,Y,τ) =
∫

ξR+
π

2

ξR− π

2

∫
P(Y )

Hv(ξ ,ξ
′,Y −Y ′R− ip(Y,Y ′R)) ·

Ω
(
ξ
′
R + iξI,Y ′R + ip(Y,Y ′R),τ

)
J (1+ i∂Y ′R p)dξ

′
RdY ′R(8.10)

8.1 The basic potential estimates
The following Proposition gives an estimate of the ‖ ·‖(α)-norm of the velocity

(U,V ) in terms of the ‖ · ‖(α)-norm of the rescaled vorticity.

Proposition 8.1. Let (U,V ) be expressed by (8.9) and (8.10), where Ω ∈ Bα
ρ,θ ,µ ,

ϕ ∈ B1,α
ρ and X ∈ B1,α

ρ , with ‖ϕ‖(α)
1,ρ ≤ Cϕ , and with ‖X‖(α)

1,ρ ≤ CX , being Cϕ ,CX

two constants sufficiently small (for example smaller than 1/4). Then U,V ∈ Bα
ρ,θ ,

and the following estimates hold:

‖U‖(α)
ρ,θ ≤ c‖Ω‖(α)

ρ,θ ,µ(8.11)

‖V‖(α)
ρ,θ ≤ c‖Ω‖(α)

ρ,θ ,µ(8.12)

The proof of the above Proposition has been postponed to Appendix E.
We remark that the above Proposition would be valid also in the usual Hölder

spaces, as it is apparent form the proof where it is clear that analyticity is only a
complication.

The velocity (U,V ), as given by (8.3) and (8.4) depends also on the curve ϕ

and on the Lagrangian factor X , as it is apparent from the expressions (8.1) and
(8.2) of the Biot-Savart kernel. Denoting with (U [Ω,ϕ,X ],V [Ω,ϕ,X ]) the velocity
field in its dependence from [Ω,ϕ,X ] we now give the Lipschitz estimate.

Proposition 8.2. Let [Ω(i),ϕ(i),X (i)] ∈ Bα
ρ,θ ,µ ×B1,α

ρ ×B1,α
ρ for i = 1,2. Then the

following estimate holds:

‖U [Ω(1),ϕ(1),X (1)]−U [Ω(2),ϕ(2),X (2)]‖(α)
ρ,θ ≤ c

[
‖δΩ‖(α)

ρ,θ ,µ +‖δϕ‖(α)
1,ρ +‖δX‖(α)

1,ρ

]
‖V [Ω(1),ϕ(1),X (1)]−V [Ω(2),ϕ(2),X (2)]‖(α)

ρ,θ ≤ c
[
‖δΩ‖(α)

ρ,θ ,µ +‖δϕ‖(α)
1,ρ +‖δX‖(α)

1,ρ

]
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The proof of the above Proposition is postponed to Appendix F.
The two above Propositions will be applied in Section 9 to the velocity field

(u0,v0), (u1,v1) generated by the vorticity ω0 and ω1.

8.2 Approximation of the velocity field inside the layer.
An important ingredient in the construction of the solution ω1 are the next re-

sults saying that the term R is O(ε) inside the layer and that outside the layer the
growth in Y is linear in Y so that it will be easily tamed by the exponential decay
of the vorticity. We stress that for these results to hold one must have sufficient
regularity for the vorticity, the curve and the lagrangian factor.

Proposition 8.3. Let Ω ∈ B2
ρ,θ ,µ , ψ ∈ B3

ρ and X ∈ B3
ρ . Then the following estimate

holds:
‖R(Ω,ψ,X)(·,Y )‖(α)

ρ ≤ cε(1+Y )
where the value of the constant c depends only on ‖Ω‖2,ρ,θ ,µ , ‖ψ‖3,ρ and ‖X‖3,ρ .

If one looks at the expression (3.11) one can see how the size O(ε) derives
from the difference between 1/K ε

ψ and 1/K 0
ψ : however the difference of the two

kernels gives rise to a stronger singularity that must be compensated by the fact
that T (ξ ,ξ ′,Y ′) = 0 at ξ ′ = ξ . To exploit this fact, however, one must have higher
regularity. The details can be found in Appendix G.1.

We now consider the more specific case when Ω = ω0, ψ = ϕ = ϕ0 + εϕ1 and
X = X0 + εX1.

Proposition 8.4. Let ω0 ∈ B1,α
ρ,θ ,µ , ϕ0,X0 ∈ B2,α

ρ , while ϕ1,X1 ∈ B1,α
ρ . Then the

following estimate holds:

‖R(ω0,ϕ0 + εϕ1,X0 + εX1)(·,Y )‖(α)
ρ ≤ cε(1+Y )

where the constant c depends on the norms of ω0 in B1,α
ρ,θ ,µ , of ϕ0,X0 in B2,α

ρ , and

of ϕ1,X1 in B1,α
ρ .

The idea behind the proof of the above Proposition is that, shrinking the strip
of analyticity of ω0, ϕ0 and X0, one can get the regularity required by Proposition
8.3. On the other hand, the higher order correction deriving from ϕ1 and X1, it is
already O(ε), and one does not need to use the smallness of the difference between
1/K ε

ψ and 1/K 0
ψ , so that higher regularity for ϕ1 and X1 is not necessary. Some

more details is given in Appendix G.2.
We now pass to proving the Lipschitz property of the operator R. We denote:

δR = R(Ω(1),ϕ0 + εϕ1
(1),X0 + εX (1)

1 )−R(Ω(2),ϕ0 + εϕ1
(2),X0 + εX (2)

1 )

δω0 = ω
(1)
0 −ω

(2)
0 , δϕ1 = ϕ1

(1)−ϕ1
(2), δX1 = X (1)

1 −X (2)
1

Notice how, in computing the variation of R, we are holding fixed the leading order
approximation of the base curve ϕ0 and of the lagrangian factor X0. This is appro-
priate because the Proposition below will be used in constructing (beside ω0 and
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ω1) the corrections ϕ1 and X1, given that the leading order ϕ0 and X0 have already
been constructed in Section 7, Proposition 7.2, and therefore will be considered as
given.

Proposition 8.5. Suppose ω
(i)
0 ∈ B1,α

ρ,θ ,µ , ϕ0 and X0 ∈ B2,α
ρ , while ϕ1

(i) and X (i) ∈
B1,α

ρ . Then the following estimate holds:

‖δR‖(α)
ρ ≤ cε

[
(1+Y )‖δω0‖1,ρ,θ ,µ +‖δϕ1‖(α)

1,ρ +‖δX1‖(α)
1,ρ

]
where the constant c depends on the norms of ϕ0 and X0 in B2,α

ρ .

The results in the above Propositions will be fundamental in compensating the
ε−1 terms appearing in the equation for ω1; in particular in the terms G2 and G4,
defined in Section 9.2 below. The meaning of the above estimate is that the velocity
inside the layer is well approximated by the operator M and, given that the M −
M0 = O(ε), by M0 also. Looking at the expression (3.14) for M0 it means that:

u− iv =

BR(ω0,ϕ0,X0) +
1
2

[∫
∞

Y
ω0(ξ ,Y ′)dY ′−

∫ Y

−∞

ω0(ξ ,Y ′)dY ′
]

t̃∗0 +O(ε) ∀ Y <C

C being a constant independent from ε . The above formula means that inside the
layer the dominant contribution to the velocity is given by the Birkhoff-Rott motion
of the curve plus a local (in the sense that involves only the vorticity at the point ξ )
integral operator.

From Proposition 8.3, however, one immediately sees that the discrepancy
grows with Y so that outside the layer the velocity field is not well approximated
by M : a different approximation is in fact valid far away from the layer.

8.3 The far field approximation
Outside the layer the velocity field converges to the velocity field generated

by the vorticity concentrated on the curve; i.e. by a vortex sheet of total vorticity
strength γ where γ(ξ ) =

∫
∞

−∞
Ω(ξ ,Y ′)dY ′. We therefore define the far field velocity

as:

u f + iv f ≡F [Ω,ψ]≡
1

2πi ∑n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

Ω(ξ ′,Y ′)
ξ −ξ ′+X−X ′+ i [ψ−ψ ′+ εY ]

dξ
′dY ′ =

1
2πi ∑n

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

γ(ξ ′)

ξ −ξ ′+X−X ′+ i [ψ−ψ ′+ εY ]
dξ
′

(8.13)

where, as usual, X = X(ξ ), X ′ = X(ξ ′), ψ = ψ(ξ +X) and ψ ′ = ψ(ξ ′+X ′). We
can now state the following Proposition:
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Proposition 8.6. Let Ω ∈ B2
ρ,θ ,µ , ψ,X ∈ B2,α

ρ with ‖ψ‖(α)
2,ρ < 1/4, ‖X‖(α)

2,ρ < 1/4.
Moreover let |Y |> ε−1. Then:

‖u+ iv− (u f + iv f )‖(α)
1,ρ ≤ c

[(
1
|Y |

+ f (Y )
)
+O(e−µ/(3ε))

]
where f (Y )≥ 0 has a rate of decay in Y rapid enough to make it integrable in Y .

We recall that τ is present in the stretching factor X =
∫

τ

0 u(ξ ,Y = 0,τ ′)dτ ′.
From the proof one can see that the decay of f (Y ) is O(Y−2). We also remark that
the above estimate would also hold for Y > ε−κ with 0< κ < 1, the only difference
being the fact that the exponentially small term would be O(e−µ/(2εκ )). The proofs
of the above two Propositions are reported in Appendix G.

9 Construction of the vorticity distribution: proof of Theorem 5.4

This Section is devoted to the construction of the leading order vorticity ω0, of
the corrections ω1 and ϕ1 and X1, therefore, to the proof of Theorem 5.4.

The equations are (3.18), (3.21), (3.22) and (3.24). We recast these equation in
a form suitable for application of the ACK Theorem in the integrated in time form.
We define the vector:

Ψ≡ [ω0,ω1,ϕ1,X1]
T

so that equations (3.18), (3.21) and (3.22) can be written as

(9.1) Ψ+K(Ψ,τ) = 0

where K ≡ [Kω0 ,Kω1 ,Kϕ1 ,KX1 ]
T . The operators Kω0 , Kω1 , Kϕ1 and KX1 express the

righthandsides of equations (3.18), (3.21), (3.22) and (3.24), integrated in time;
their explicit expressions is given below in (9.3), (9.4), (9.6) and (9.7). To simplify
the notation we introduce the following definition

Definition 9.1. Let Bα
ρ,θ ,µ ≡ B1,α

ρ,θ ,µ×Bα

ρ,θ ,µ/2×B1,α
ρ ×B1,α

ρ . Then for Ψ∈Bα
ρ,θ ,µ

we define the following norm:

|||Ψ|||(α)
ρ,θ ,µ = ‖ω0‖(α)

1,ρ,θ ,µ +‖ω1‖(α)
ρ,θ ,µ +‖ϕ1‖(α)

1, ρ

2
+‖X1‖(α)

1,ρ .

Analogously, for t ∈ [0,T ] and β ,ρ,θ ,µ such that 2βT < min(ρ,θ ,µ) we define
Bα

ρ,θ ,µ,β ,T ≡ B1,α
ρ,θ ,µ,β ,T ×Bα

ρ,θ ,µ/2,β ,T ×Bα

1,ρ,β ,T ×Bα

1,ρ,β ,T and:

|||Ψ|||(α)
ρ,θ ,µ,β ,T = ‖ω0‖(α)

1,ρ,θ ,µ,β ,T +‖ω1‖(α)

ρ,θ , µ

2 ,β ,T
+‖ϕ1‖(α)

1,ρ,β ,T +‖X1‖(α)
1,ρ,β ,T .

Notice how, for the higher order vorticity ω0, we are requiring more regularity,
with respect to the variables x,Y , than for ω1, and a faster exponential decay when
|Y | → ∞. Analogously for ϕ1 and for X1 we require less regularity than what we
obtained for the leading order ϕ0 and X0.

The proof of Theorem 5.4 is based on the following Proposition:
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Proposition 9.2. Suppose that Ψ(1),Ψ(2) ∈Bα

ρ,θ ,µ,β ,T with:

|||Ψ(i)|||(α)
ρ,θ ,µ,β ,T ≤ R .

Moreover let τ < T and suppose that for all 0 < s < τ one has that 0 < ρ ′ < ρ(s)≤
ρ−β s, 0 < θ ′ < θ(s)≤ θ −β s and 0 < µ ′ < µ(s)≤ µ−β s. Then the following
estimate holds:

|||K(Ψ(1),τ)−K(Ψ(2),τ)|||(α)
ρ ′,θ ′,µ ′ ≤

c
∫

τ

0

 |||Ψ(1)−Ψ(2)|||(α)
ρ(s),θ ′,µ ′

ρ(s)−ρ ′
+
|||Ψ(1)−Ψ(2)|||(α)

ρ ′,θ(s),µ ′

θ(s)−θ ′
+
|||Ψ(1)−Ψ(2)|||(α)

ρ ′,θ ′,µ(s)

µ(s)−µ ′

ds .

(9.2)

To prove the above quasi-contractiveness property of the operator K≡ [Kω0 ,Kω1 ,Kϕ1 ,KX1 ]
T ,

we pass to analyze each component.

9.1 Contractiveness of Kω0

The operator Kω0 has the following expression

(9.3) Kω0(Ψ,τ)≡
2

∑
j=1

∫
τ

0
Fj(ω0,s)ds

with

F1(ω0,τ) =
[
M u

0 −M u
0|Y=0

] ∂ξ ω0

1+∂ξ X0

F2(ω0,τ) =−
∫ Y

0
∂ξ M u

0 dY ′
∂Y ω0

1+∂ξ X0
.

Notice how the operator Kω0 depends explicitly only on ω0. The fact that Kω0

satisfies the estimate (9.2) is an obvious consequence of the following Proposition
giving the quasi-contractiveness of the operators Fi.

Proposition 9.3. Suppose ω in ∈ B1,α
ρ0,θ0,µ0

and ϕ in ∈ B2,α
ρ0 , with ‖ϕ in‖α

2,ρ0
< 1/4. Let

ρ ′ < ρ < ρ0, θ ′ < θ < θ0, µ ′ < µ < µ0; then the operators Fi satisfy the following
estimate: ∥∥∥Fi(ω

(1))−Fi(ω
(2))
∥∥∥(α)

1,ρ ′,θ ′,µ ′
≤

c

∥∥ω(1)−ω(2)
∥∥(α)

1,ρ,θ ′,µ ′

ρ−ρ ′
+

∥∥ω(1)−ω(2)
∥∥(α)

1,ρ ′,θ ,µ ′

θ −θ ′
+

∥∥ω(1)−ω(2)
∥∥(α)

1,ρ ′,θ ′,µ

µ−µ ′

 i = 1,2

for any ω(1),ω(2) ∈ B1,α
ρ,θ ,µ .

The proof can be found in Appendix H.
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9.2 Contractiveness of Kω1

The operator Kω1 has the following expression:

(9.4) Kω1(Ψ,τ)≡
7

∑
j=1

G j(ω0,ω1,ϕ1,τ)

with

G1 ≡
1
ε

∫
τ

0

{[
M u−M u

Y=0
1+∂ξ X

−
M u

0 −M u
0|Y=0

1+∂ξ X0

]
∂ξ ω0

}
ds

G2 ≡
1
ε

∫
τ

0

{
Ru + εu1− (Ru + εu1)Y=0

1+∂ξ X
∂ξ ω0

}
ds

G3 ≡−
1
ε

∫
τ

0

{[
1

1+∂ξ X

∫ Y

0
∂ξ M udY ′− 1

1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′
]

∂Y ω0

}
ds

G4 ≡−
1
ε

∫
τ

0

{
1

1+∂ξ X

[∫ Y

0
∂ξ (R

u + εu1)dY ′
]

∂Y ω0

}
ds

G5 ≡
∫

τ

0

{
u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1

}
ds

G6 ≡−
∫

τ

0

{
1

1+∂ξ X

[∫ Y

0
∂ξ u0dY ′

]
∂Y ω1

}
ds

G7 ≡
∫

τ

0

{[
−∂ξ ϕ

u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
∂Y ω1

}
ds

The following Proposition gives the quasi-contractiveness of the operators Gi.

Proposition 9.4. Suppose that Ψ(i) ∈Bα

ρ,θ ,µ,β ,T
with ‖Ψ(i)‖(α)

ρ,θ ,µ,β ,T < R. More-
over let τ < T and suppose that for all 0 < s < τ one has that 0 < ρ ′ < ρ(s) ≤
ρ−β s, 0 < θ ′ < θ(s)≤ θ −β s and 0 < µ ′ < µ(s)≤ µ−β s. Then, for j = 1, ...,7
the following estimates hold:

‖G j(Ψ
(1),τ)−G j(Ψ

(2),τ)‖(α)
ρ ′,θ ′,µ ′/2 ≤

c
∫

τ

0

 |||Ψ(1)−Ψ(2)|||(α)
ρ(s),θ ′,µ ′

ρ(s)−ρ ′
+
|||Ψ(1)−Ψ(2)|||(α)

ρ ′,θ(s),µ ′

θ(s)−θ ′
+
|||Ψ(1)−Ψ(2)|||(α)

ρ ′,θ ′,µ(s)

µ(s)−µ ′

ds .

(9.5)

The fact that G1 and G3 are O(1) is a consequence of the fact that M −M0 =
O(ε), 1/(1+ ∂ξ X)− 1/(1+ ∂ξ X0) = O(ε). The operators G2 and G4 are O(1)
because R, inside the layer, is O(ε), while the linear growth outside the layer (see
Proposition 8.3) is bounded by the exponential decay of ω0.

The contractiveness of the operators G5, G6 and G7 is based on the use of the
Cauchy estimate, on the higher regularity of ω0, and on the potential estimate of u0
and u1 in terms of the vorticity ω0 and ω1 respectively.
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The details can be found in the Appendix I.

9.3 Contractiveness of Kϕ1 and KX1

The operators Kϕ1 and KX1 have the following expression:

(9.6) Kϕ1 ≡
1
ε

∫
τ

0
[M v−M v

0 +Rv + εv1]Y=0 ds

(9.7) KX1 ≡
1
ε

∫
τ

0
[M u−M u

0 +Ru + εu1]Y=0 ds

The contractiveness of these operators is an immediate consequence of Lemma I.2
and of Proposition 8.5 stating, besides the Lipschitz property, also the smallness
needed to compensate the factor ε−1.

This completes the proof of Proposition 9.2. One can therefore apply the ACK
Theorem to the system (9.1) and construct the solution [ω0,ω1,ϕ1,X1]

T . Theorem
5.4 is therefore proved.

10 Convergence to Birkhoff-Rott: proof of Theorem 5.5

In this Section we shall give a proof of Theorem 5.5, i.e. we shall prove that
the solution of BR equation, that we shall denote with (γs,ϕs), gives a good ap-
proximation of the dynamics of the vortex layer: namely the BR equation, up to
O(ε) terms, describes correctly both the vorticity intensity of the layer γ (i.e. the
vorticity integrated across the layer), and the curve ϕ around which the vorticity is
distributed.

To prove Theorem 5.5, given that γ = γ0 + εγ1 and ϕ = ϕ0 + εϕ1, where, after
shrinking the strip of analyticity,

‖γ1‖(α)
1,ρ1,β1,T1

< c, ‖ϕ1‖(α)
2,ρ1,β1,T1

< c

it will be enough to prove that:

‖γs− γ0‖(α)
1,ρ,β ,T < cε, ‖ϕs−ϕ0‖(α)

2,ρ,β ,T < cε .

Our proof will be based on the fact that the equations ruling the dynamics of γ0
and ϕ0, i.e. equations (7.2) and (7.5) respectively, when written in the Eulerian
frame, coincide, up to O(ε) corrections, with the BR equations (5.3)-(5.4). In fact
the equations for γ0 and ϕ0 can be written as:

∂tγ0 +∂x (γ0BRu
0) = E1(10.1)

∂tϕ0 +BRu
0∂xϕ0−BRv

0 = E2(10.2)

where the terms (E1,E2) = O(ε) have the following explicit expression:

E1 =− [uϕ −σMu
0 ]Y=0 ∂xγ0 +[1−σ ]∂x(γ0BRu

0)(10.3)
E2 =−{[uϕ −BRu

0]∂xϕ0 +BRv
0−Mv

0}Y=0(10.4)
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being the definition of σ given in (J.2). The details of the derivation of the above
system can be found in Appendix J. Notice how the system ruling (γ0,ϕ0) has the
same structure of the Birkhoff-Rott equations:

∂tγs +∂x (γsBRu[γs,ϕs]) = 0(10.5)
∂tϕs +BRu[γs,ϕs]∂xϕs−BRv[γs,ϕs] = 0(10.6)

the only difference being: the fact that (γ0,ϕ0) are transported by the BR operator
computed using γ0 and ϕ0 (we recall the notations BR0 = BR[γ0,ϕ0] while BR =
BR[γ0,ϕ]); and the presence of the terns Ei which however are O(ε). In fact the
following Lemma holds:

Lemma 10.1. Suppose to hold the hypotheses of Theorem 5.5. Then E = (E1,E2)
satisfies the following bound:

‖E‖(α)
1,ρ,β ,T ,< cε .

The proof can be found in Appendix J.
Given that (γ0,ϕ0) and (γs,ϕs) satisfy systems with the same structure, the

only difference being the presence of the O(ε) term E, and that they have the same
initial condition, to see that they remain at an O(ε) distance is straightforward.
The sketch of the prof goes as follows. Define e = (γ0− γs,ϕ0−ϕs)

T . Taking the
difference between (10.1) and (10.5), and between (10.2) and (10.6), one gets:

(10.7) ∂te+H(e, t) = E

where

(10.8) H =

(
∂x (e1 BRu[γ0,ϕ0])+∂x(γsW u)

W u∂xϕ0 +BRu[γs,ϕs]∂xe2−W v

)
being:

W = (W u,W v)T = BR[γ0,ϕ0]−BR[γs,ϕs] .

The forcing term is E = (E1,E2)
T .

Equation (10.7) governs the discrepancy between between the BR solution and
the vortex-layer solution. The initial condition is

e(x, t = 0) = 0 .

Define:
|||e|||(α)

ρ,β ,T = ‖e1‖(α)
1,ρ,β ,T +‖e2‖(α)

2,ρ,β ,T

Given that the forcing term satisfies:

‖E‖(α)
1,ρ,β ,T ,< cε .

and the fact that (see the estimate reported in Proposition 6.5 or [49, 12, 13]):

‖W‖(α)
1,ρ,β ,T < c|||e|||(α)

ρ,β ,T
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one can easily prove, through the ACK Theorem, that (10.7) admits a unique solu-
tion in B1,α

ρβ ,T ×B2,α
ρβ ,T and that

|||e|||(α)
ρ,β ,T < cε .

The proof of Theorem 5.5 is therefore achieved.

11 Conclusions

In fluid dynamics, configurations where vorticity is very intense and highly
concentrated are ubiquitous and very relevant. They typically arise when a high
Reynolds number flow, interacting with a solid boundary, generates huge amount
of vorticity that eventually detaches from the boundary in the form of strong vor-
tex cores or layers of intense vorticity. From the mathematical point of view the
analysis of these configurations is challenging: the presence of strong, potentially
unbounded gradients, makes classical estimates useless.

A solution that has been adopted was to tackle directly the singular data, as-
suming the vorticity to be concentrated on zero measure sets. This approach, for
the case of a vortex sheet and with a combination of heuristics and classical po-
tential theory, led to the derivation of the Birkhoff-Rott equation, describing the
evolution of the shape of the sheet and of the vorticity intensity. More advanced
mathematical arguments, pioneered by DiPerna and Majda in late eighties, led to
Delort’s result, establishing the existence of a solution for 2D Euler (or Navier-
Stokes [37]) equations with a distinguished sign Radon measure as vorticity initial
datum. The question of uniqueness was left unsolved and no indication on the
possible relationship with the BR equation was given.

In this paper we have considered the 2D Euler equations, with a sequence of
data consisting of vorticity layers centered around a curve; the main hypotheses
are the analytic regularity of the initial vorticity distribution and the exponential
decay away from the curve. The size of the layer is O(ε) while the vorticity inten-
sity is O(ε−1). We have shown that the Euler equations, written in the comoving
frame, admit a unique solution and that this solution remains exponentially decay-
ing away from a curve that moves, to the leading order, as predicted by the BR
equation; therefore giving a rigorous justification of the BR equation. In this sense
analyticity seems to be unavoidable, because the BR equations are subject to ill-
posedness due to Kelvin-Helmholtz instability. Alternatively, one can consider our
result as a partial answer to the problems left unsolved by Delort’s theory, showing
uniqueness of the solution and persistence of the layer structure when the initial da-
tum has the kind of analytic regularity we have considered, even without assuming
the vorticity to be of distinguished sign.

Several problems suggest themselves as consequences of our analysis, and here
we mention three of them. First, the Theorems proved in this paper are short time,
meaning that after a certain time, that however does not depend on the size of the
layer, our equations may develop a singularity and the layer structure is lost. It
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would be interesting to know whether the break-up of our construction is due to
the ejection of vorticity from within the layer into the outer (i.e away from the
curve) flow, maybe due to the unbounded growth of the normal velocity; or it is
simply due to the development of BR curvature singularity of the curve supporting
the vorticity, a possibility that however in some cases [20], is ruled out; or to the
development of some other kind of instability. Second, in the present paper we
have neglected the role played by the viscosity, and therefore the justification of
BR equation as a good zero-viscosity approximation of the Navier-Stokes equa-
tions remains open. Usually viscosity is a regularizing phenomenon but there are
cases where its presence can trigger instability: a noticeable example is encoun-
tered in boundary layer theory, where inviscid Prandtl equations are well posed
[26], while the full Prandtl system is probably ill-posed [24]. Finally it is worth
mentioning that the present analysis is restricted to the 2D case, where the exis-
tence of the solutions is not an issue, due to the global existence results. In 3D,
however, initializing Euler equations with data of the kind we have considered
here, would lead to solutions existing for a time that would shrink to zero with the
size of the layer. Extending our result to the 3D case would establish the existence
of the layer solutions for the Euler equations and therefore would be an interesting
achievement.

Appendix A: Derivation of the Euler-VL equations in the comoving
frame

Consider the change of variables (x,y, t)→ (ξ ,Y,τ) defined as:

(A.1) x = ξ +X(ξ ,τ), y = εY +ψ(ξ ,τ), τ = t

where

(A.2) X(ξ ,τ)≡
∫

τ

0
u(x(ξ ,τ ′),Y = 0,τ ′)dτ

′

We make the following Remarks:

Remark A.1. When ∂τ acts on the (vector or scalar) quantity F it holds:

∂tF = ∂τF −
∂ r
∂τ
·∇F

To prove the above Remark we denote the old variable (x,y) with r, and the new
variable with r′. Therefore:

∂τF (r(r′,τ), t(τ)) =
∂ r
∂τ
·∇F +

∂ t
∂τ

∂tF =
∂ r
∂τ
·∇F +∂tF

from which the Remark follows.

Remark A.2. One has that
∂ r
∂τ

= uψ x̂+ vψ ŷ
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where x̂ and ŷ are the cartesian base vector. In fact by definition one has that
r = xx̂+ yŷ, and to prove the above Remark one has just to consider that ∂τx = uψ

because of (A.1) and that ∂τy = vψ because of (A.1) and of the fact that, having
imposed the curve to be transported by the flow, one has that ∂τψ(ξ ,τ) = vψ .

Remark A.3. One has that, for the scalar quantity F :

∇F = x̂
[
1+Xξ (ξ ,τ)

]−1
∂ξ F +

1
ε

(
−
[
1+Xξ (ξ ,τ)

]−1
∂ξ ψ x̂+ ŷ

)
∂Y F

To prove the Remark we use the following expression for the gradient (see [50]
pag.630, Eq.(93)):

∇F = a1
∂ξ F +a2

∂Y F

where ai can be found using ai ·a j = δ i
j (see [50], pag.624 Eq.(67)), being:

a1 = x̂∂ξ x+ ŷ∂ξ y , a2 = x̂∂Y x+ ŷ∂Y y ,

see [50] pag.628 Eq.(82). From (A.1) one gets that ∂ξ x = 1+∂ξ X , ∂ξ y = ∂ξ ψ , and
one immediately finds:

a1 = x̂
[
1+Xξ (ξ ,τ)

]−1
, a2 = ε

−1
(
−∂ξ ψ

[
1+Xξ (ξ ,τ)

]−1 x̂+ ŷ
)

where we have introduced the notation:

(A.3) X(ξ ,τ) =
∫

τ

0
u(ξ ,Y = 0,τ ′)dτ

′ Xξ (ξ ,τ) =
∫

τ

0
∂ξ u(ξ ,Y = 0,τ ′)dτ

′

Therefore the Remark follows.

Using all the above three Remarks, one can finally write:

(A.4) ∂tF = ∂τF−
uψ[

1+Xξ (ξ ,τ)
]∂ξ F− 1

ε

(
vψ − uψ[

1+Xξ (ξ ,τ)
]∂ξ ψ

)
∂Y F .

Using the same expression for the gradient given in Remark A.3 one can also cal-
culate

(A.5) u ·∇F =
u[

1+Xξ (ξ ,τ)
]∂ξ F +

1
ε

(
v− u[

1+Xξ (ξ ,τ)
]∂ξ ψ

)
∂Y F

Using Eqs. (A.4) and (A.5) one can write the Euler equation (2.4) in the co-
moving frame:

∂τω +
(u−uψ)[

1+Xξ (ξ ,τ)
]∂ξ ω +

1
ε

[
−∂ξ ψ

(u−uψ)[
1+Xξ (ξ ,τ)

] +(v− vψ)

]
∂Y ω = 0 .

If one write the above equation using the rescaled vorticity ω̃ ≡ ω , one obtains
(2.10).

To get the incompressibility condition we use the formula for the divergence
given in [50] pag.631, before Eq.(106):

∇ ·u = a1 ·∂ξ u+a2 ·∂Y u
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Expressing u= ux̂+vŷ, and using the fact that x̂ and ŷ are constant, one immeditely
gets (2.14).

Appendix B: Decomposition of the velocity

The decomposition formula for the velocity can be derived from the expression
(3.2) through the following computations:

u− iv =
1

2πi

∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

Ω(x′,Y ′)−Ω(x,Y ′)
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′+

1
2πi

∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

Ω(x,Y ′)
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′ =

1
2πi

∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

Ω(x′,Y ′)−Ω(x,Y ′)
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′+

1
2πi

∞

∑
n=−∞

∫
∞

−∞

dY ′Ω(x,Y ′)
∫ x+π(2n+1)/2

x+π(2n−1)/2

t̃∗(x′)(1+ i∂xψ(x′))
Kε

ψ(x− x′,Y −Y ′)
dx′ =

1
2πi

∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

Ω(x′,Y ′)−Ω(x,Y ′)
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′+

1
2πi

∞

∑
n=−∞

∫
∞

−∞

dY ′Ω(x,Y ′)
∫ x+π(2n+1)/2

x+π(2n−1)/2

(t̃∗(x′)− t̃∗(x))(1+ i∂xψ(x′))
Kε

ψ(x− x′,Y −Y ′)
dx′+

− 1
2πi

∞

∑
n=−∞

∫
∞

−∞

dY ′Ω(x,Y ′)t̃∗(x)
∫ x+π(2n+1)/2

x+π(2n−1)/2

(1+ i∂xψ(x′))
Kε

ψ(x− x′,Y −Y ′)
dx′ =

1
2πi

∞

∑
n=−∞

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2
T (x′,Y ′)

1
Kε

ψ(x− x′,Y −Y ′)
dx′dY ′+

−1
2

[∫ Y

−∞

Ω(x,Y ′)dY ′−
∫

∞

Y
Ω(x,Y ′)dY ′

]
t̃∗(x)

(B.1)

where we have defined

T (x,x′,Y ′) = Ω(x′,Y ′)−Ω(x,Y ′)+Ω(x,Y ′)
(
t̃∗(x′)− t̃∗(x)

)
(1+ i∂xψ(x′))

The first equality above is simply a consequence of the fact t̃∗(x′)(1+ iψ(x′)) = 1.
The last equality can be justified as follows. Introduce the change of variable ζ =
x′+ iψ(x′) and define z = x+ i[ψ(x)+ε(Y −Y ′)]. This allows to write the integral
in x′ as a path integrals in C; the paths Ln are defined as Ln = {x′+ iψ(x′) with x′ ∈
[x+π(2n−1)/2,x+π(2n+1)/2]}, and L≡

⋃
n Ln. Therefore

∑
n

1
2πi

∫ x+π(2n+1)/2

x+π(2n−1)/2

(1+ i∂xψ(x′))
Kε

ψ(x,x′,Y −Y ′)
dx′ =

1
2πi

∫
L

1
ζ − z

dζ =±1
2
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being the value of the integral +1/2 if the point z lies above the curve (i.e. when
Y > Y ′) and −1/2 if the point z lies below the curve (i.e. when Y < Y ′).

To the expression (B.1) above we now add and subtract the following quantity:

1
2πi ∑n

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

T (x,x′,Y ′)
K0

ψ(x− x′)
dx′dY ′ .

Using, see [42], the following identity

∑
n

1
2πi

∫ x+π(2n+1)/2

x+π(2n−1)/2

(1+ i∂xψ(x′))
K0

ψ(x− x′)
dx′ =

1
2πi

∫
L

1
ζ −ζ0

dt = 0 ,

where ζ0 = x+ iψ(x) is a point on the path L, one can see that:

1
2πi ∑n

∫
∞

−∞

∫ x+π(2n+1)/2

x+π(2n−1)/2

T (x,x′,Y ′)
K0

ψ(x− x′)
dx′dY ′ = BR[γ,ψ]

Therefore, from (B.1) the decomposition (3.3) follows.

Appendix C: Details of the derivation of equations (3.18) and (3.21)

We write (2.10) introducing the asymptotic expansion:

ω̃ = ω0 + εω1 , ϕ = ϕ0 + εϕ0 , u = u0 + εu1

where the zero-th order velocity u0 (which is the velocity generated by ω0 through
the Biot-Savart law) can be decomposed as:

u0 = M (ω0,ϕ)+R(ω0,ϕ);

and in fact we shall use the above decomposition for the terms involving the con-
vection of the leading order vorticity ω0. As base curve of the reference frame we
shall use the correct ϕ; i.e., in (2.10) we choose ψ = ϕ . One gets:

∂τ (ω0 + εω1)+

M u +Ru + εu1− (M u +Ru + εu1)Y=0
1+∂ξ X

∂ξ ω0 + ε
u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1 +

1
ε

[
−∂ξ ϕ

M u +Ru + εu1− (M u +Ru + εu1)Y=0
1+∂ξ X

+

M v +Rv + εu1− (M v +Rv + εu1)Y=0

]
∂Y ω0 +[

−∂ξ ϕ
u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
+ v0 + εu1− (v0 + εu1)Y=0

]
∂Y ω1 = 0(C.1)

Notice that in the above equation we have used the shorthand notations M =
M (ω0,ϕ) R = R(ω0,ϕ). We also introduce the quantity M0 defined as follows

M0 ≡BR[γ0,ϕ0]+
1
2

[∫
∞

Y
ω0dY ′−

∫ Y

−∞

ω0dY ′
]
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being the difference, with respect to M = M (ω0,ϕ), as defined in section 3.1, in
the fact that the BR operator is computed using ϕ0 instead of ϕ .

Both (u0,v0) and (u1,v1) are incompressible flow fields. We write the incom-
pressibility condition for (u0,v0) as

∂ξ (M
u +Ru)

1+∂ξ X
+

1
ε

[
−∂ξ ϕ

∂Y (M u +Ru)

1+∂ξ X
+∂Y (M

v +Rv)

]
= 0

that, integrated along the normal direction from 0 to Y , gives:

1
1+∂ξ X

[∫ Y

0
∂ξ (M

u +Ru)dY ′
]
+

1
ε

[
−∂ξ ϕ

M u +Ru− (M u +Ru)Y=0

1+∂ξ X
+M v +Rv− (M v +Rv)Y=0

]
= 0 .

(C.2)

One can analogously derive the incompressibility condition in the integrated form
for (u1,v1):

(C.3)
1

1+∂ξ X

∫ Y

0
∂ξ u1dY ′+

1
ε

[
−∂ξ ϕ

u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
= 0 .

Using the above incompressibiity condition in the integrated form, one can
rewrite (C.1):

∂τω0 +
M u−M u

Y=0
1+∂ξ X

∂ξ ω0 +
Ru + εu1− (Ru + εu1)Y=0

1+∂ξ X
∂ξ ω0−

1
1+∂ξ X

[∫ Y

0
∂ξ (M

u +Ru + εu1)dY ′
]

∂Y ω0 +

ε∂τω1 + ε
u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1−

ε

1+∂ξ X

[∫ Y

0
∂ξ u0dY ′

]
∂Y ω1 +

ε

[
−∂ξ ϕ

u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
∂Y ω1 = 0(C.4)

Notice that, in writing the third line above, we have also used the incompressibility
condition for (u1,v1) while, in writing the last term, expressing how the vortic-
ity ω1 is convected along the normal direction by (u1,v1), we have not used the
incompressibility condition.

In equation (C.4) the leading order vorticity ω0 is convected by M , which
involves explicitly the curve ϕ = ϕ0 + εϕ1. Moreover, in the convection of ω0 it is
involved the Lagrangian factor X , which depends also on u1 and R. Given that our
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goal is to write an equation for ω0 that involves only the leading order quantities
ϕ0 and M0, we rewrite (C.4) as follows:

∂τω0 +
M u

0 −M u
0|Y=0

1+∂ξ X0
∂ξ ω0 +

[
M u−M u

Y=0
1+∂ξ X

−
M u

0 −M u
0|Y=0

1+∂ξ X0

]
∂ξ ω0 +

Ru + εu1− (Ru + εu1)Y=0

1+∂ξ X
∂ξ ω0−

1
1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′∂Y ω0−
[

1
1+∂ξ X

∫ Y

0
∂ξ M udY ′− 1

1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′
]

∂Y ω0−

1
1+∂ξ X

[∫ Y

0
∂ξ (R

u + εu1)dY ′
]

∂Y ω0 +

ε∂τω1 + ε
u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1−

ε

1+∂ξ X

[∫ Y

0
∂ξ u0dY ′

]
∂Y ω1 +

ε

[
−∂ξ ϕ

u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
∂Y ω1 = 0

(C.5)

Finally we write the equation ruling the dynamics of ω0 where the first two
terms of the first line, and the first term of the the third line of (C.5) appear.

∂τω0 +
M u

0 −M u
0|Y=0

1+∂ξ X0
∂ξ ω0−

1
1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′∂Y ω0 = 0
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All the other terms appear in the equation for ω1.

∂τω1 +
1
ε

[
M u−M u

Y=0
1+∂ξ X

−
M u

0 −M u
0|Y=0

1+∂ξ X0

]
∂ξ ω0 +

1
ε

Ru + εu1− (Ru + εu1)Y=0

1+∂ξ X
∂ξ ω0−

1
ε

[
1

1+∂ξ X

∫ Y

0
∂ξ M udY ′− 1

1+∂ξ X0

∫ Y

0
∂ξ M u

0 dY ′
]

∂Y ω0−

1
ε

1
1+∂ξ X

[∫ Y

0
∂ξ (R

u + εu1)dY ′
]

∂Y ω0 +

u0 + εu1− (u0 + εu1)Y=0

1+∂ξ X
∂ξ ω1−

1
1+∂ξ X

[∫ Y

0
∂ξ u0dY ′

]
∂Y ω1 +[

−∂ξ ϕ
u1−u1|Y=0

1+∂ξ X
+ v1− v1|Y=0

]
∂Y ω1 = 0(C.6)

Appendix D: Details of the derivation of equation (3.22)

To derive the equation ruling the dynamics of the correction ϕ1, we consider
the equation ruling the motion of a generic curve in the adapted frame, Eq.(2.11)
specifying ϕ ≡ ϕ0 + εϕ1, and write this equation in the reference frame with base
curve ψ = ϕ0 + εϕ1. Therefore, given that ϕ = ψ , the convective term along the
curve cancels, and the equation for ϕ assumes the simple form:

∂τ(ϕ0 + εϕ1) = [M v(ω0,ϕ,X)+Rv(ω0,ϕ,X)+ εv1]Y=0

where we have also used that, by definition, see (3.13), v0 = M v(ω0,ϕ,X) +
Rv(ω0,ϕ,X).

Given that we have set the equation for ϕ0 to be (3.19), one can immediately
write the following equation for ϕ1:

∂τϕ1 =
1
ε
[M v(ω0,ϕ,X)+Rv(ω0,ϕ,X)−M v

0 (ω0,ϕ0,X0)+ εv1]Y=0

Appendix E: Proof of Proposition 8.1

To prove Proposition 8.1 one has to prove the estimates (8.11) and (8.12). To
prove (8.11) and (8.12) we shall give an explicit estimate of the Hölder modulus
of continuity of the velocity, i.e. we have to bound |U |(α)

ρ,θ and |V |(α)
ρ,θ , being the

estimate of |U |ρ,θ and |V |ρ,θ easier.
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Therefore we have to prove the following bounds:

sup
ξ ,ξ̄∈D(ρ),Y∈Σ(θ)

|U(ξ ,Y )−U(ξ̄ ,Y )|
|ξ − ξ̄ |α

≤ c‖Ω‖(α)
ρ,θ ,µ(E.1)

sup
ξ∈D(ρ),Y,Ȳ∈Σ(θ)

|U(ξ ,Y )−U(ξ ,Ȳ )|
|Y − Ȳ |α

≤ c‖Ω‖(α)
ρ,θ ,µ(E.2)

and analogous estimates for V . We recall that U,V are given by the Biot-Savart
law (8.3)-(8.4), with H given in (8.1)-(8.2) and the Jacobian J given in (8.5). We
introduce the following change of variables:

η = ξ
′−ξ , z = Y ′−Y

so that the Biot-Savart law now reads as:

U(ξ ,Y ) =
∫

π/2

−π/2

∫
∞

−∞

Hu(η ,z,ξ )Ω(η +ξ ,z+Y )J(η +ξ )dηdz

V (ξ ,Y ) =
∫

π/2

−π/2

∫
∞

−∞

Hv(η ,z,ξ )Ω(η +ξ ,z+Y )J(η +ξ )dηdz

where the Biot-Savart kernel (8.1)-(8.2), in terms of the new variables (η ,z), is
given by

Hu(η ,z,ξ ) =
1

8π2
sinh2 [εz+ϕ(η +ξ )−ϕ(ξ )]

sin2 [η +X(η +ξ )−X(ξ )]+ sinh2 [εz+ϕ(η +ξ )−ϕ(ξ )]

Hv(η ,z,ξ ) =− 1
8π2

sin2 [η +X(η +ξ )−X(ξ )]

sin2 [η +X(η +ξ )−X(ξ )]+ sinh2 [εz+ϕ(η +ξ )−ϕ(ξ )]
.

Notice also the abuse of notation where, with ϕ(ξ ), we have indicated the compo-
sition ϕ ◦ (Id +X).

First we shall consider the case when the variables ξ , ξ̄ ,Y,Ȳ are real. In sub-
section E.3 we shall see the necessary modifications to deal with the case when
ξ , ξ̄ ,Y,Ȳ are complex.

We introduce the notation I ≡ [−π/2,π/2[×R. We shall also define δ > 0 as

δ

2
=
[
|ξ − ξ̄ |2 + ε

2|Y − Ȳ |2
]1/2

and the ball centered in (ξ ,Y ) as:

Bx,δ ≡
{
(ξ ′,Y ′) ∈ Iξ : |ξ −ξ

′|2 + ε
2|Y −Y ′|2 ≤ δ

2} ,
so that (ξ̄ ,Ȳ ) ∈ ∂Bx,δ/2. Therefore |ξ − ξ̄ |= O(δ ) while |Y −Ȳ |= O(ε−1δ ). This
means that, to prove for example the estimates (E.1) and (E.2), we have to show,
respectively, that:
(E.3)
|U(ξ ,Y )−U(ξ̄ ,Y )| ≤ cδ

α‖Ω‖(α)
ρ,θ ,µ , |U(ξ ,Y )−U(ξ ,Ȳ )| ≤ cε

−α
δ

α‖Ω‖(α)
ρ,θ ,µ .
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E.1 The case of (ξ ,Y ),(ξ̄ ,Ȳ ) real, with ξ = ξ̄

We shall prove that:

|U(ξ ,Y )−U(ξ ,Ȳ )| ≤ c|Y − Ȳ |α |V (ξ ,Y )−V (ξ ,Ȳ )| ≤ c|Y − Ȳ |α

where the constant c depends on ‖Ω‖(α)
ρ,θ ,µ . We shall show how to prove the first of

the above inequalities, being the second analogous.
Introducing the notations Hu = Hu(η ,z,ξ ), Ω = Ω(η + ξ ,z +Y ) and Ω̄ =

Ω(η +ξ ,z+ Ȳ ), J = J(η +ξ ), one can estimate U(ξ ,Y )−U(ξ ,Ȳ ) as follows:

|U(ξ ,Y )−U(ξ ,Ȳ )|=∣∣∣∣∫I
Hu
[
Ω− Ω̄

]
J dηdz

∣∣∣∣≤∣∣∣∣∫I
Hue−µ|z+Y |/2

[
Ωeµ|z+Y |/2− Ω̄eµ|z+Ȳ |/2

]
J dηdz

∣∣∣∣+∣∣∣∣∫I
Hueµ|z+Ȳ |/2

Ω̄

[
e−µ|z+Y |/2− e−µ|z+Ȳ |/2

]
J dηdz

∣∣∣∣≤
c|Y − Ȳ |α‖Ω‖(α)

ρ,θ ,µ

∫
I
Hue−µ|z+Y |/2dηdz+

c|Y − Ȳ |α |Ω|ρ,θ ,µ
∫

I
Hue−µ|z+Ȳ |/2dηdz≤

c|Y − Ȳ |α‖Ω‖(α)
ρ,θ ,µ .(E.4)

The estimate in the case of (ξ ,Y ),(ξ̄ ,Ȳ ) real, with ξ = ξ̄ is thus achieved. To get
the last inequality we have used the following Lemma:

Lemma E.1. Suppose to hold the hypotheses of Proposition 8.1. Then the follow-
ing estimate hold: ∫

I
|H (η ,z,ξ )|e−µ ′|z+Y |dηdz≤ c,

where H denotes both Hu and Hv. The above Lemma is a consequence of the
following estimate on the Biot-Savart kernel:

Lemma E.2. Suppose to hold the hypotheses of Proposition 8.1. Moreover let
(η ,z) 6= (0,0). Then:

|H (η ,z,ξ )| ≤ cmax

(
1,

1

(η2 + ε2z2)1/2

)
.

The meaning of the above Lemma is that the Biot-Savart kernel has a square-
root singularity in the origin while, away from the origin, it is bounded by a con-
stant. This fact, together with the presence of the exponential decaying factor,
allows to prove Lemma E.1. The proofs of the above Lemmas are postponed to
Section E.4.1 and Section E.4.2.
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E.2 The case of (ξ ,Y ),(ξ̄ ,Ȳ ) real, with Y = Ȳ

We have to prove that:

|U(ξ ,Y )−U(ξ̄ ,Y )| ≤ c|ξ − ξ̄ |α |V (ξ ,Y )−V (ξ̄ ,Y )| ≤ c|ξ − ξ̄ |α

where the constant c depends on ‖Ω‖(α)
ρ,θ ,µ . We shall see how to prove the first of

the above inequalities, being the second analogous.

Introducing the notations Hu = Hu(η ,z,ξ ), H̄u = Hu(η ,z, ξ̄ ), Ω = Ω(η +

ξ ,z+Y ), Ω̄ = Ω(η + ξ̄ ,z+Y ), J = J(η +ξ ), J̄ = J(η + ξ̄ ), one can write:∣∣U(ξ ,Y )−U(ξ̄ ,Y )
∣∣=∣∣∣∣∫I

HuΩJdηdz−
∫

I
H̄uΩ̄J̄dηdz

∣∣∣∣≤∣∣∣∣∫I

(
Hu−H̄u

)
ΩJdηdz

∣∣∣∣+ ∣∣∣∣∫I
H̄u
(
Ω− Ω̄

)
Jdηdz

∣∣∣∣+ ∣∣∣∣∫I
H̄uΩ̄(J− J̄)dηdz

∣∣∣∣=
J1 + J2 + J3.(E.5)

To estimate the term J1 one needs the following Lemma.

Lemma E.3. Suppose to hold the hypotheses of Proposition 8.1. Then the follow-
ing estimate hold:

∫
I

∣∣H (η ,z,ξ )−H (η ,z, ξ̄ )
∣∣e−µ|z+Y |dηdz≤ c|ξ − ξ̄ |α

This Lemma is a consequence of the following estimate on the modulus of
continuity of the Biot-Savart kernel:

Lemma E.4. Suppose to hold the hypotheses of Proposition 8.1. Moreover let
(η ,z) 6= 0 and 0≤ β ≤ 1. Then:

|H (η ,z,ξ )−H (η ,z, ξ̄ )| ≤ c|η |
(
|η |+ |ξ − ξ̄ |

)
max

(
1,

1
η2 + ε2z2

)
,(E.6)

|H (η ,z,ξ )−H (η ,z, ξ̄ )| ≤ c|ξ − ξ̄ |
(
|η |+ |ξ − ξ̄ |

)
max

(
1,

1
η2 + ε2z2

)
,

(E.7)

|H (η ,z,ξ )−H (η ,z, ξ̄ )| ≤ c|η |β |ξ − ξ̄ |1−β
(
|η |+ |ξ − ξ̄ |

)
max

(
1,

1
η2 + ε2z2

)
.

(E.8)
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The estimate of J1 goes as follows:

J1 =

∣∣∣∣∫I

(
Hu−H̄u

)
ΩJdηdz

∣∣∣∣≤∫
I

∣∣Hu−H̄u
∣∣e−µ|z+Y ||Ω|eµ|z+Y ||J|dηdz≤

c|Ω|ρ,θ ,µ
∫

I

∣∣Hu−H̄u
∣∣e−µ|z+Y |dηdz≤

c‖Ω‖(α)
ρ,θ ,µ |ξ − ξ̄ |α

In the last inequality we have used Lemma E.3.
The term J2 and J3 are easily bounded, using Lemma E.1, with the same proce-

dure adopted in Section E.1.

E.3 Complexified variables
Here we show how the above estimates on the velocity can be performed, with

small variations with respect to the cases examined in the two previous Subsec-
tions, when the variable ξ and Y are complex with ξ ∈ D(ρ) and Y ∈ Σ(θ).

The main difficulty arises in the analysis of the Hölder modulus of continuity,
because the paths of integration used in evaluating U(ξ̄ ,Ȳ ) and U(ξ ,Y ) can be in
principle different. This difficulty can be more easily overcome for the paths of
integration in the ξ variable because in D(ρ), by contour deformation, one can
always chose a path parallel to the real axis. This difficulty is more severe for the
variable Y because, given the angular shape of the domain of analyticity Σ(θ), one
cannot chose a path of integration parallel to the real axis. However, following [4],
one can adopt, as integration path in Y , the path P(Y ) defined in (8.8), see Figure
8.1. From this choice one can see that:

a) when Y and Ȳ have the same imaginary part, i.e. YI = ȲI , the two paths of
integration can be easily chosen to be the same. Therefore, in the evaluation of the
Hölder modulus of continuity, the estimate performed in the previous two sections
still holds true with integration in Y performed along P(Y ) rather than R and with
obvious modifications.

b) when Y and Ȳ have the same real part, i.e. YR = ȲR, the two paths of inte-
gration must be different; however, after changing the integration variable so that
both paths pass through the origin of C (where the singularity of the kernel is now
located), one of the two contours can be deformed to coincide with the other. In
fact (to fix the idea suppose |ȲI|> |YI|) U(ξ ,Y ) can be computed as:

U(ξ ,Y ) =∫
ξ+ π

2

ξ− π

2

∫
∞

−∞

Hu(ξ
′,ξ ,Y −Y ′)Ω(ξ ′,Y ′)J(ξ ′)dξ

′dY ′

∫ π

2

− π

2

∫
P(Y )−Y

Hu(η +ξ ,ξ ,z)Ω(η +ξ ,z+Y )J(η +ξ )dηdz
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where we have defined the integration variable η ≡ ξ ′−ξ (we recall that by con-
tour deformation we can suppose the path of integration in the ξ ′ variable to be
parallel to the real axis, i.e. ξ ′ = ξ ′R + iξI , being ξI the imaginary part of ξ ); and
the integration variable z = Y ′−Y , with z ∈ P(Y )−Y where P(Y ) is the path de-
fined in (8.8), see also figure 8.1. Clearly the integration path can be parametrized
using zR, in the same way P(Y ) is parametized using Y ′R in (8.9) and (8.10).

For U(ξ ,Ȳ ) one can write

U(ξ ,Y ) =∫ π

2

− π

2

∫
P(Ȳ )−Ȳ

Hu(η +ξ ,ξ ,z)Ω(η +ξ ,z+ Ȳ )J(η +ξ )dηdz.

Given that δ < 1 one can deform the contour P(Y )−Y to make it coincide with
P(Ȳ )− Ȳ , with z+Y still in Σ.

The estimates performed in the previous two Sections can therefore be carried
out with obvious modifications.

c) The general case, when YR 6= ȲR and YI 6= ȲI , can be easily treated using the
cases a) and b) above.

E.4 Proof of the technical Lemmas
E.4.1 Proof of Lemma E.1

We shall prove the estimate for Hu being the estimate for Hv analogous. It is
easy to see that∫

I
|Hu(η ,z,ξ )|e−µ ′|z+Y |dηdz≤ c

∫
I
|Hu(η ,z,ξ )|e−µ ′|z|dηdz≤ c

so that we can assume, without loss of generality, that Y = 0. Therefore:∫
I
|Hu(η ,z,ξ )|e−µ ′|z|dηdz =∫

B0,1

|Hu(η ,z,ξ )|e−µ ′|z|dηdz+
∫

I−B0,1

|Hu(η ,z,ξ )|e−µ ′|z|dηdz =

L1 +L2

The term L2 is easily estimated using the exponentially decaying factor and the fact
that, outside B0,1, the kernel H is bounded by a constant, see Lemma E.2.

The estimate of L1 goes as follows:

(E.9) L1 ≤ c
∫

B0,1

1√
η2 + ε2z2

e−µ ′|z|dηdz = c
1
ε

∫ 2π

0
dθ

∫ 1

0
e−µ ′r sinθ/εdr
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where we have used polar coordinates η = r cosθ and εz = r sinθ . Therefore:

L1 ≤ c
1
ε

∫ 2π

0
cosθdθ

∫ 1

0
e−µ ′r sinθ/εdr+ c

1
ε

∫ 2π

0
(1− cosθ)dθ

∫ 1

0
e−µ ′r sinθ/εdr =

c
1
ε

∫ 2π

0

1− cosθ

sinθ
dθ

∫ 0

1

ε

µ ′
d
dr

e−µ ′r sinθ/εdr ≤

c
∫ 2π

0

1− cosθ

sinθ
dθ ≤ c

The proof of Lemma E.1 is thus achieved.

E.4.2 Proof of Lemma E.2
To simplify the notation we introduce the following definition:

E = η +X(η +ξ )−X(ξ ), Z = εz+ϕ(η +ξ )−ϕ(ξ ), D = sin2 E + sinh2 Z.

Moreover we recall that, according to the hypotheses of Proposition 8.1, Cϕ and CX
denote two sufficiently small constants (say less than 1/4) that bound the norms of
ϕ and X

‖ϕ‖(α)
1,ρ ≤Cϕ < 1/4 ‖X‖(α)

1,ρ ≤CX < 1/4.
We can therefore make the following Remark

Remark E.5. Suppose the hypotheses of Proposition 8.1 hold. Then, ∀(η ,z) ∈ I(
1
2
−C2

X

)
|η |2 ≤ |E|2 ≤

[
5
4
|η |
]2

(E.10) [
|εz|2

2
−C2

ϕη
2

]
≤ |Z|2 ≤C

(
η

2 + ε
2z2)(E.11)

We prove the bounds on Z, being the bounds on E easier.

Z2 = |εz+ϕ(η +ξ )−ϕ(ξ )|2 =
∣∣εz+∂ξ ϕ(η∗)η

∣∣2 ≤
2
(
ε

2z2 +C2
φ η

2)≤C
(
η

2 + ε
2z2)

Z2 = |εz+ϕ(η +ξ )−ϕ(ξ )|2 ≥

[
|εz|2

2
−|ϕ(η +ξ )−ϕ(ξ )|2

]
≥[

|εz|2

2
−C2

ϕη
2

]
,

where we have used the fact that (a+b)2 ≥ a2/2−b2. Remark E.5 is thus proved.
We notice that, being CX and Cϕ less than 1/4, one has that

A2 ≡ 2
π2

(
1
2
−C2

X

)
−C2

ϕ > 0.

One can therefore make the following Remark
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Remark E.6. Suppose the hypotheses of Proposition 8.1 hold. Then ∀(η ,z) ∈ I

(E.12) D≥ A2
η

2 +
1
2

ε
2z2 ≥ c

[
η

2 + ε
2z2]

In fact:

sin2 E ≥ 2
π2 |η |

2
(

1
2
−C2

X

)
which is a consequence of of (E.10) and of the elementary fact that, if a∈ [−5π/8,5π/8],
then sin2 a≥ 2a2/π2 .

One can analogously write:

sinh2 Z ≥ |Z|2 ≥

[
|εz|2

2
−C2

ϕη
2

]
.

Therefore the first of the inequality in (E.12) follows, while the second is obvious
taking c≡min(A2,1/2). The Remark E.6 is proven.

We can now prove Lemma E.2 distinguishing three cases:
The case η2 + ε2z2 ≤ 1 In this case one can immediately write:

|Hu(η ,z,ξ )|=
∣∣∣∣ sinh2Z
sin2 E + sinh2 Z

∣∣∣∣≤ c
|sinhZ|

sin2 E + sinh2 Z
≤

≤ c
1√

sin2 E + sinh2 Z
≤ c

1√
η2 + ε2z2

,

where, first, we have used that |Z| ≤ c (see (E.11)) and, finally, the estimate on D
given in Remark E.6.

The case η2 + ε2z2 ≥ 1 and |Z| ≤ 1/2 In this case, using the fact that |Z| is
bounded and Remark E.6, one can write

|Hu(η ,z,ξ )|=
∣∣∣∣ sinh2Z
sin2 E + sinh2 Z

∣∣∣∣≤ c
1

sin2 E + sinh2 Z
≤ c

1
η2 + ε2z2 ≤ c

The case η2 + ε2z2 ≥ 1 and |Z| ≥ 1/2 In this case one has to use the fact that
the growth of the numerator is compensated by the denominator:

|Hu(η ,z,ξ )|=
∣∣∣∣ sinh2Z
sin2 E + sinh2 Z

∣∣∣∣= ∣∣∣∣sinh2Z
sinh2 Z

∣∣∣∣ 1
sin2 E/sinh2 Z +1

≤ c

One can analogously estimate Hv. The proof of Lemma E.2 is thus achieved.

E.4.3 Proof of Lemma E.3

To prove Lemma E.3 we shall distinguish the case |ξ − ξ̄ | < ε and the case
|ξ − ξ̄ | > ε . In the first case the crucial estimate is given in (E.6) while, in the
second case, one has to use (E.7).
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The case ε < |ξ − ξ̄ |. We can write

∫
I

∣∣Hu(η ,z,ξ )−Hu(η ,z, ξ̄ )
∣∣e−µ|z+Y |dηdz≤∫

B0,1

|η |
(
|η |+ |ξ − ξ̄ |

) 1
η2 + ε2z2 e−µ|z+Y |dηdz+ c

∫
I−B0,1

e−µ|z+Y |dηdz =

A1 +A2

where we have used the estimate (E.6). The term A2 is easily estimated using the
exponentially decaying factor. Concerning A1 one can write:

A1 = c
∫

B0,1

|η |
(
|η |+ |ξ − ξ̄ |

) 1
η2 + ε2z2 e−µ|z+Y |dηdz≤

= c
∫

B0,1

(
|η |+ |ξ − ξ̄ |

) 1√
η2 + ε2z2

e−µ|z+Y |dηdz≤

c
∫

B0,1

e−µ|z+Y |dηdz+ c|ξ − ξ̄ |
∫

B0,1

1√
η2 + ε2z2

e−µ|z+Y |dηdz

The second of the above integrals is bounded by a constant, and this can be proved
as in the estimate of the term L1 defined in (E.9).

Concerning the first of the above integrals, it is easy to see that, without loss of
generality, one can consider the case Y = 0. Therefore, passing to polar coordinates
η = r cosθ , εz = r sinθ , one can write:

∫
B0,1

e−µ|z|dηdz =
1
ε

∫ 2π

0
dθ

∫ 1

0
re−µr sinθ/εdr =

1
ε

∫ 2π

0
cosθdθ

∫ 1

0
re−µr sinθ/εdr+

1
ε

∫ 2π

0
(1− cosθ)dθ

∫ 1

0
re−µr sinθ/εdr =

ε

∫ 2π

0

1− cosθ

sin2
θ

dθ

∫ sinθ/ε

0
Re−µRdR

cε

∫ 2π

0

1− cosθ

sin2
θ

dθ ≤ cε ≤ c|ξ − ξ̄ |

Therefore, in the case ε < |ξ − ξ̄ |, we have proven that

∫
I

∣∣Hu(η ,z,ξ )−Hu(η ,z, ξ̄ )
∣∣e−µ|z+Y |dηdz≤ c|ξ − ξ̄ |.

The case |ξ − ξ̄ |< ε .
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In this case we can write:∫
I

∣∣Hu(η ,z,ξ )−Hu(η ,z, ξ̄ )
∣∣e−µ|z+Y |dηdz≤∫

B0,1

|ξ − ξ̄ |α |η |1−α
(
|η |+ |ξ − ξ̄ |

) 1
η2 + ε2z2 e−µ|z+Y |dηdz+

c
∫

I−B0,1

e−µ|z+Y |dηdz =

B1 +B2

where we have used the estimate (E.8). Again, the term B2 is obviously bounded.
Concerning the term B1 one can write:

B1 =

|ξ − ξ̄ |α
[∫

B0,1

|η |2−α

η2 + ε2z2 e−µ|z+Y |dηdz+
∫

B0,1

|ξ − ξ̄ ||η |1−α

η2 + ε2z2 e−µ|z+Y |dηdz

]
≤

c|ξ − ξ̄ |α
[∫

B0,1

e−µ|z+Y |√
η2 + ε2z2

dηdz+
∫

B0,1

|ξ − ξ̄ |
(η2 + ε2z2)(1+α)/2 e−µ|z+Y |dηdz

]
The first of the above two integrals can be bounded as in the estimate of the term L1
defined in (E.9) (again, without loss of generality one can consider the case Y = 0).
The second integral can be bounded as follows:∫

B0,1

1

(η2 + ε2z2)(1+α)/2 e−µ|z|dηdz =
1
ε

∫ 2π

0
dθ

∫ 1

0

1
rα

e−µr sinθ/εdr =

1
ε

[∫ 2π

0
cosθdθ

∫ 1

0
re−µr sinθ/εdr+

∫ 2π

0
(1− cosθ)dθ

∫ 1

0

1
rα

e−µr sinθ/εdr
]
=

1
εα

∫ 2π

0

1− cosθ

(sinθ)1−α
dθ

∫ 1

0

1
Rα

e−µRdr ≤ c

One can therefore conclude (of course, in the estimate of the modulus of continuity,
one can always assume that |ξ − ξ̄ | ≤ 1) that:

B1 ≤ c|ξ − ξ̄ |α .
Lemma E.3 is proved.

E.4.4 Proof of Lemma E.4
We introduce the following notations:

E = η +X(η +ξ )−X(ξ ), Z = εz+ϕ(η +ξ )−ϕ(ξ ),

Ē = η +X(η + ξ̄ )−X(ξ̄ ), Z̄ = εz+ϕ(η + ξ̄ )−ϕ(ξ̄ ).

Remark E.7.

|E− Ē| ≤ c|η |(|η |+ |ξ − ξ̄ |) |Z− Z̄| ≤ c|η |(|η |+ |ξ − ξ̄ |)
|E− Ē| ≤ c|ξ − ξ̄ |(|η |+ |ξ − ξ̄ |) |Z− Z̄| ≤ c|ξ − ξ̄ |(|η |+ |ξ − ξ̄ |)
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|E− Ē| ≤ c|η |α |ξ − ξ̄ |1−α(|η |+ |ξ − ξ̄ |)
|Z− Z̄| ≤ c|η |α |ξ − ξ̄ |1−α(|η |+ |ξ − ξ̄ |)

Assuming that η > 0, being the case η < 0 analogous, the Remark can be
proven as follows:

|E− Ē|= |X(η +ξ )−X(ξ )−
(
X(η + ξ̄ )−X(ξ̄ )

)
|=

|η ||∂ξ X(ξ ∗)−∂ξ X(ξ ∗∗)|=
|η ||∂ 2

ξ
X(ξ ∗∗∗)|ξ ∗−ξ

∗∗| ≤ c|η |(|η |+ |ξ − ξ̄ |).

In the above estimate ξ < ξ ∗ < ξ +η and ξ̄ < ξ ∗∗ < ξ̄ +η , which implies |ξ ∗−
ξ ∗∗| ≤ |η |+ |ξ − ξ̄ |. Clearly ξ ∗∗∗ is between ξ ∗ and ξ ∗∗. The second derivative of
X can be assumed bounded due to analyticity.

This proves the first estimate concerning |E− Ē|. The second estimate is anal-
ogous:

|E− Ē|= |X(η +ξ )−X(η + ξ̄ )−
(
X(ξ )−X(ξ̄ )

)
|=

|ξ − ξ̄ ||∂ξ X(ξ ∗)−∂ξ X(ξ ∗∗)|=
|ξ − ξ̄ ||∂ 2

ξ
X(ξ ∗∗∗)|ξ ∗−ξ

∗∗| ≤ c|ξ − ξ̄ |(|η |+ |ξ − ξ̄ |).

In the above estimate (assuming ξ̄ > ξ ), ξ +η < ξ ∗ < ξ̄ +η and ξ < ξ ∗∗ < ξ̄ , so
that again |ξ ∗−ξ ∗∗| ≤ |η |+ |ξ − ξ̄ |.

The estimates for Z are analogous.
An immediate consequence of the above Remark is the following.

Remark E.8. Let 0≤ β ≤ 1. Then:

|E− Ē| ≤ c|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)

|Z− Z̄| ≤ c|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)

In fact, one can simply write:

|E− Ē|= |X(η +ξ )−X(ξ )−
(
X(η + ξ̄ )−X(ξ̄ )

)
|=

|X(η +ξ )−X(ξ )−
(
X(η + ξ̄ )−X(ξ̄ )

)
|1−β ·

|X(η +ξ )−X(η + ξ̄ )−
(
X(ξ )−X(ξ̄ )

)
|β

and proceed as in the estimates of Remark E.7.
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Remark E.9.

|sin2 E− sin2 Ē| ≤ c(|sinE|+ |sin Ē|) |η |(|η |+ |ξ − ξ̄ |)(E.13)

|sin2 E− sin2 Ē| ≤ c(|sinE|+ |sin Ē|) |ξ − ξ̄ |(|η |+ |ξ − ξ̄ |)(E.14)

|sinh2 Z− sinh2 Z̄| ≤ c(|sinhZ|+ |sinh Z̄|)cosh
(

Z + Z̄
2

)
|η |(|η |+ |ξ − ξ̄ |)

(E.15)

|sinh2 Z− sinh2 Z̄| ≤ c(|sinhZ|+ |sinh Z̄|)cosh
(

Z + Z̄
2

)
|ξ − ξ̄ |(|η |+ |ξ − ξ̄ |)

(E.16)

The proof of the above Remark can be easily achieved using elementary prop-
erties of trigonometric functions and Remark E.7.

Remark E.10. Let 0≤ β ≤ 1. Then:

|sin2 E− sin2 Ē| ≤ c(|sinE|+ |sin Ē|) |η |β |ξ − ξ̄ |1−β (|η |+ |ξ − ξ̄ |),

|sinh2 Z− sinh2 Z̄| ≤

c(|sinhZ|+ |sinh Z̄|)cosh
(

Z + Z̄
2

)
|η |β |ξ − ξ̄ |1−β (|η |+ |ξ − ξ̄ |)

The proof of the above Remark can be easily achieved using elementary prop-
erties of trigonometric functions and Remark E.8.

Remark E.11.

|sinh2Z|√
sin2 E + sinh2 Z

1√
sin2 Ē + sinh2 Z̄

≤ cmax

(
1,

1√
η2 + ε2z2

)
To prove the above Remark we distinguish three different cases:
The case η2 + ε2z2 ≤ 1 In this case, Z is bounded because of (E.11), and there-

fore sinh2Z/
√

sin2 E + sinh2 Z < c, while 1/
√

sin2 Ē + sinh2 Z̄ ≤ 1/
√

η2 + ε2z2

because of (E.12) written for D̄ = sin2 Ē + sinh2 Z̄.
The case η2 + ε2z2 ≥ 1 and |Z|< 2 In this case one can proceed in the same

way as before.
The case η2 + ε2z2 ≥ 1 and |Z|> 2 In this case, first, one can notice that |Z−

Z̄|= |ϕ(η +ξ )−ϕ(ξ )−ϕ(η + ξ̄ )−ϕ(ξ̄ )| ≤ 1, so that |sinhZ/sinh Z̄| ≤ c. Then
one can simply write:

|sinh2Z|√
sin2 E + sinh2 Z

1√
sin2 Ē + sinh2 Z̄

=∣∣∣∣ sinh2Z
sinhZ sinh Z̄

∣∣∣∣ |sinhZ|√
sin2 E + sinh2 Z

|sinh Z̄|√
sin2 Ē + sinh2 Z̄

≤ c

This concludes the proof of Remark E.11.
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Remark E.12.

cosh [(Z + Z̄)/2]√
sin2 E + sinh2 Z

, and
cosh [(Z + Z̄)/2]√

sin2 Ē + sinh2 Z̄
≤ cmax

(
1,

1√
η2 + ε2z2

)

The proof of the above remark is analogous to the proof of Remark E.11.

We can now pass to the proof of Lemma E.4. We first prove estimate (E.6).

|H (η ,z,ξ )−H (η ,z, ξ̄ )|=
∣∣∣∣ sinh(2Z)
sin2 E + sinh2 Z

− sinh(2Z̄)
sin2 Ē + sinh2 Z̄

∣∣∣∣≤∣∣∣∣∣ sinh(2Z)
(
sin2 E− sin2 Ē

)(
sin2 E + sinh2 Z

)(
sin2 Ē + sinh2 Z̄

)∣∣∣∣∣+∣∣∣∣∣ sinh(2Z)
(
sinh2 Z− sinh2 Z̄

)(
sin2 E + sinh2 Z

)(
sin2 Ē + sinh2 Z̄

)∣∣∣∣∣+∣∣∣∣sinh(2Z)− sinh(2Z̄)
sin2 Ē + sinh2 Z̄

∣∣∣∣=
A1 +A2 +A3

We shall see how to estimate the term A2, being the estimate of A1 and A3 similar.

A2 =

∣∣∣∣∣ sinh(2Z)
(
sinh2 Z− sinh2 Z̄

)(
sin2 E + sinh2 Z

)(
sin2 Ē + sinh2 Z̄

)∣∣∣∣∣≤
c

∣∣∣∣∣sinh(2Z)(|sinhZ|+ |sinh Z̄|)cosh [(Z + Z̄)/2](
sin2 E + sinh2 Z

)(
sin2 Ē + sinh2 Z̄

) ∣∣∣∣∣ |η |(|η |+ |ξ − ξ̄ |)≤

(|sinhZ|+ |sinh Z̄|)cosh [(Z + Z̄)/2]√
sin2 E + sinh2 Z

√
sin2 Ē + sinh2 Z̄

max

(
1,

1√
η2 + ε2z2

)
|η |(|η |+ |ξ − ξ̄ |)≤

cmax
(

1,
1

η2 + ε2z2

)
|η |(|η |+ |ξ − ξ̄ |)

In the above estimate the first inequality is due to estimate (E.15) of Remark E.9,
the second inequality to Remark E.11 while the third inequality to Remark E.12.

The estimate (E.7) can be proven in the same way, using estimate (E.16) of
Remark E.9.

The estimate (E.8) can be proven in the same way, using Remark E.10.

The proof of Lemma E.4 is therefore complete.
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Appendix F: Proof of the Lipschitz property of the Biot-Savart
operator

The proof of Proposition 8.2 is based on the same ideas we used in the proof of
Proposition 8.1. To simplify the notation we define:

Ω
(i) = Ω

(i)(η +ξ ,z+Y ), Ω̄
(i) = Ω

(i)(η + ξ̄ ,z+ Ȳ )

J(i) = Ω
(i)(η +ξ ), J̄(i) = J(i)(η + ξ̄ )

X (i) = X (i)(ξ ), X̄ (i) = X (i)(ξ̄ ), X (i)′ = X (i)(η +ξ ), X̄ (i)′ = X (i)(η + ξ̄ )

ϕ
(i) = ϕ

(i)(ξ ), ϕ̄
(i) = ϕ

(i)(ξ̄ ), ϕ
(i)′ = ϕ

(i)(η +ξ ), ϕ̄
(i)′ = ϕ

(i)(η + ξ̄ )

H
(i)

u ≡H
(i)

u (η ,ξ ,z) =
1

8π2

sinh2
[
εz+ϕ(i)′−ϕ(i))

]
sin2 (

η +X (i)′−X (i)
)
+ sinh2 [

εz+ϕ(i)′−ϕ(i))
]

H̄
(i)

u ≡ H̄
(i)

u (η ,ξ ,z) =
1

8π2

sinh2
[
εz+ ϕ̄(i)′− ϕ̄(i))

]
sin2 (

η + X̄ (i)′− X̄ (i)
)
+ sinh2 [

εz+ ϕ̄(i)′− ϕ̄(i))
]

with analogous expressions for Hv and H̄v. We also define the operator δ as:

δΩ = Ω
(1)−Ω

(2), δ Ω̄ = Ω̄
(1)− Ω̄

(2)

δJ = J(1)− J(2), δ J̄ = J̄(1)− J̄(2)

δH = H (1)−H (2), δH̄ = H̄ (1)−H̄ (2)

δU =U [Ω(1),ϕ(1),X (1)]−U [Ω(2),ϕ(2),X (2)]

δV =V [Ω(1),ϕ(1),X (1)]−V [Ω(2),ϕ(2),X (2)]

Therefore one has:

δU(ξ ,Y ) =∫
δΩH

(1)
u J(1) dηdz+

∫
Ω

(2)
δHu J(1) dηdz+

∫
Ω

(2)H
(2)

u δJ dηdz

One can write an analogous expression for δU(ξ̄ ,Ȳ ), so that

δU(ξ ,Y )−δU(ξ̄ ,Ȳ ) = Γ1 +Γ2 +Γ3

where

Γ1 =
∫

δΩH
(1)

u J(1)dηdz−
∫

δ Ω̄H̄
(1)

u J̄(1)dηdz

Γ2 =
∫

Ω
(2)

δHu J(1)dηdz−
∫

Ω̄
(2)

δH̄u J̄(1)dηdz

Γ3 =
∫

Ω
(2)H

(2)
u δJdηdz−

∫
Ω̄

(2)H̄
(2)

u δ J̄dηdz

It is clear that the term Γ1 can be estimated using exactly the same ideas used in the
previous Appendix E; in fact for Γ1 one can make the same estimate (E.4) (when
ξ = ξ̄ ) or use the same decomposition (E.5) (when Y = Ȳ ) with δΩ, H

(1)
u and J(1)

instead of Ω, Hu and J respectively. The estimate of the term Γ3 is analogous.
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The only term that requires to be estimated is therefore Γ2 where, instead of
the kernel Hu, appears δHu. We shall prove the two Lemmas below that are the
correspective of Lemma E.2 and Lemma E.4 of the previous Appendix E.

Lemma F.1. Suppose to hold the hypotheses of Proposition 8.2. Moreover suppose
(η ,z) 6= 0. Then:

|δHu| ≤ cmax

(
1,

1

[η2 + ε2z2]1/2

)(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
|δHv| ≤ cmax

(
1,

1

[η2 + ε2z2]1/2

)(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
The proof is postponed to Section F.1

Lemma F.2. Suppose to hold the hypotheses of Proposition 8.2. Moreover suppose
(η ,z) 6= 0. Then the following estimate holds:∣∣δHu−δH̄u

∣∣≤ cmax
{

1,
1

η2 + ε2z2

}
· |η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)(

‖δX‖(α)
1,ρ +‖δϕ‖(α)

1,ρ

)
Analogously:∣∣δHv−δH̄v

∣∣≤ cmax
{

1,
1

η2 + ε2z2

}
· |η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)(

‖δX‖(α)
1,ρ +‖δϕ‖(α)

1,ρ

)
The proof is postponed to Section F.2.
Using the two above Lemmas the proof of the estimate of the term Γ2 can now

proceed exactly as in the previous Appendix E: the details are omitted.

F.1 Proof of Lemma F.1
We shall show the estimate for δHu, being the estimate for δHv similar. More-

over we shall focus on the case η2 + ε2z2 ≤ 1, which is the most difficult to han-
dle. At the end of this section we shall briefly mention how to handle the case
η2 + ε2z2 > 1. To simplify the notation we define

N(i) =
1

8π2 sinh2
[
εz+ϕ

(i)−ϕ
(i)′)
]

D(i) = sin2
(

η +X (i)−X (i)′
)
+ sinh2

[
εz+ϕ

(i)−ϕ
(i)′)
]
,

so that
(F.1)

δHu =
N(1)

D(1) −
N(2)

D(2) =
N(1)−N(2)

D(1) +N(2)
(

1
D(1) −

1
D(2)

)
≡ (δHu)A +(δHu)B

We make the following Remarks:
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Remark F.3. Let η2 + ε2z2 ≤ 1 with (η ,z) 6= 0. Then:

|N(1)−N(2)| ≤ c
(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
|η |

This can be proved simply recalling that sinh2a(1)−sinh2a(2)= 2sinh(a(1)−a(2))cosh(a(1)+a(2));
moreover, being η2 + ε2z2 ≤ 1, then the cosh term is bounded by a constant and
the sinh term is bounded by its argument times a constant.

Remark F.4. Let η2 + ε2z2 ≤ 1 with (η ,z) 6= 0. Then:

1
D(i)
≤ c

1
η2 + ε2z2

This Remark is simply a consequence of Remark E.6
The above two Remarks immediately give the desired estimate for (δHu)A

when η2 + ε2z2 ≤ 1, i.e.:

(δHu)A ≤
c√

η2 + ε2z2

(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
To prove the same estimate for (δHu)B we need the following two additional

Remarks

Remark F.5. Let η2 + ε2z2 ≤ 1 with (η ,z) 6= 0. Then:

|D(2)−D(1)| ≤ c
(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)[
η

2 + ε
2z2]

If one defines
Z(i) = εz+ϕ

(i)′−ϕ
(i)

it is obvious that
|Z(i)| ≤ c

[
η

2 + ε
2z2]1/2

|Z(2)−Z(1)| ≤ c
(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
|η |

The Remark then follows from the identity

sinh2 Z(2)−sinh2 Z(1)= sinh
[
(Z(2)−Z(1))/2

]
cosh

[
(Z(2)−Z(1))/2

]
(sinhZ(2)+sinhZ(1))

and from a similar indentity involving sin2.

Remark F.6. Let η2 + ε2z2 ≤ 1 with (η ,z) 6= 0. Then:∣∣∣∣∣N(2)

D(2)

∣∣∣∣∣≤ 1[
D(2)

]1/2

This can be proved simply recalling that sinh2a = 2sinhacosha and again us-
ing the boundedness of the cosh term.
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With the help of the above Remarks one can easily estimate (δHu)B as follows:

|(δHu)B| ≤ c

∣∣∣∣∣ N(2)

D(1)D(2)

∣∣∣∣∣(‖δX‖(α)
1,ρ +‖δϕ‖(α)

1,ρ

)[
η

2 + ε
2z2]≤

c

∣∣∣∣∣N(2)

D(2)

∣∣∣∣∣(‖δX‖(α)
1,ρ +‖δϕ‖(α)

1,ρ

)
≤ c

1[
D(2)

]1/2

(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
≤

c

[η2 + ε2z2]1/2

(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
This concludes the proof of Lemma F.1 when η2 + ε2z2 ≤ 1.

To handle the case η2 + ε2z2 > 1 one can: first handle the case when Z(i) < C
are bounded, so that sinhZ(i) and coshZ(i) are bounded; second, when Z(i) > C,
with C sufficiently large, one does not have any singularity of the kernels and one
has to make sure of the boundedness for large Z(i), which is easily accomplished.

F.2 Proof of Lemma F.2
We prove the estimate involving δHu, being the estimate involving δHv simi-

lar. The difference between δHu and δH̄u

δHu−δH̄u =
[
(δHu)A− (δH̄u)A

]
+
[
(δHu)B− (δH̄u)B

]
where we have used the decomposition of δHu given in section F.1. We shall focus
on the estimate of

[
(δHu)B− (δH̄u)B

]
being the estimate of

[
(δHu)A− (δH̄u)A

]
easier.

[
(δHu)B− (δH̄u)B

]
= N(2)

[
1

D(1) −
1

D(2)

]
− N̄(2)

[
1

D̄(1) −
1

D̄(2)

]
=(

N(2)− N̄(2)
)[ 1

D(1) −
1

D(2)

]
+ N̄(2)

{[
1

D(1) −
1

D(2)

]
−
[

1
D̄(1) −

1
D̄(2)

]}
=

(
N(2)− N̄(2)

)[ 1
D(1) −

1
D(2)

]
+ N̄(2)

{[
D(2)−D(1)

D(1)D(2) −
D(2)−D(1)

D̄(1)D(2)

]
+[

D(2)−D(1)

D̄(1)D(2) −
D(2)−D(1)

D̄(1)D̄(2)

]
+

1
D̄(1)D̄(2)

[
D(2)−D(1)−

(
D̄(2)− D̄(1)

)]}
(F.2)

The estimate of the above quantity is immediately achieved thanks to the following
Remarks.

Remark F.7. Let (η ,z) 6= 0 and 0≤ β ≤ 1. Then:∣∣∣∣∣N(2)− N̄(2)

D(i)

∣∣∣∣∣≤ cmax
{

1,
1

η2 + ε2z2

}
|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)
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The proof of the above Remark can be achieved with the help of Remark E.10
of the previous Section.

Remark F.8. Let (η ,z) 6= 0. Then:∣∣∣∣∣D(2)−D(1)

D(i)

∣∣∣∣∣≤ c
(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
, i = 1,2

The proof of the above Remark is based on the same considerations used to
prove Remark F.5.

With the use of the above two Remarks one immediately bounds the first term
in (F.2).

It is now useful to introduce the notations:

Z̄(i) = εz+ ϕ̄
(i)′−ϕ

(i),

as well as
E(i) = η +X (i)′−X (i)

Ē(i) = η + X̄ (i)′−X (i)

Remark F.9. Let (η ,z) 6= 0 and 0≤ β ≤ 1. Then: ∣∣∣∣∣D(i)− D̄(i)

D( j)

∣∣∣∣∣≤
cmax

{
1,

1
[η2 + ε2z2]1/2

}
· |η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)

The proof of the above Remark follows from Remark E.10.
With the help of the above Remark and of Remark F.6, one can easily bound

the second and the third term in (F.2).

Remark F.10. Let (η ,z) 6= 0 and 0≤ β ≤ 1. Then:

1
[D̄(1)]

∣∣∣D(1)−D(2)−
(

D̄(1)− D̄(2)
)∣∣∣≤

c|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)
(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
max

{
1,

1
[η2 + ε2z2]1/2

}
The proof is based on Remark E.10, which gives (focusing on the case η2 +

ε2z2 ≤ 1) that∣∣∣D(1)−D(2)−
(

D̄(1)− D̄(2)
)∣∣∣= ∣∣∣D(1)− D̄(1)−

(
D(2)− D̄(2)

)∣∣∣≤
c|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)

∣∣∣sinE(1)+ sin Ē(1)− (sinE(2)+ sin Ē(2))
∣∣∣+

c|η |1−β |ξ − ξ̄ |β (|η |+ |ξ − ξ̄ |)
∣∣∣sinhZ(1)+ sin Z̄(1)− (sinZ(2)+ sin Z̄(2))

∣∣∣
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The proof then follows from the fact that:∣∣∣sinE(1)− sinE(2)
∣∣∣≤ c|η |

(
‖δX‖(α)

1,ρ +‖δϕ‖(α)
1,ρ

)
and similar estimates involving Ē, Z and Z̄. This concludes the proof of the above
Remark.

The above Remark together with Remark F.6 give the bound of the fourth term
in (F.2), which concludes the proof of Lemma F.2.

Appendix G: Proof of the estimate on R and of the far field
approximation

G.1 Proof of Proposition 8.3

We consider the expression (3.11) for R and notice that we can rewrite it as:

R(Ω,ψ,X) =

∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
T (ξ ,ξ ′,Y ′)

[
1

K ε
ψ

− 1
K 0

ψ

]
J(ξ ′)dξ

′dY ′ =

∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
T (ξ ,ξ ′,Y ′) ·

ε(Y −Y ′)
[

1
Dε
− ε(Y −Y ′)(ϕ−ϕ ′)

DεD0 −2
(ϕ−ϕ ′)2

DεD0

]
J(ξ ′)dξ

′dY ′ =

A1 +A2 +A3(G.1)

where we have defined

D0 ≡ (ξ −ξ
′)2 +(ϕ−ϕ

′)2

Dε ≡ (ξ −ξ
′)2 +

[
(ϕ−ϕ

′)+ ε(Y −Y ′)
]2

The term ε(Y −Y ′), together with the exponential decay in Y ′ of the function
T (ξ ,ξ ′,Y ′), gives the ε(Y +1) behavior expressed in the thesis of the Proposition.
The difficulty in the estimate of the remaining term is in their singular character at
the origin: the fact that T (ξ ,ξ ,Y ′) = 0, together with the regularity of T , gives
a O(ξ −ξ ′) behavior which, compared with the quadratic behavior of Dε and D0,
would lead to logarithmic singularities in each of the Ai. However, using cancel-
lation properties, one can estimate each of Ai. In what follows by Ai

n=0 we shall
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denote, in the n-series in (G.1), the terms with n = 0, which are the singular ones:

A1
n=0 ≡

∫
∞

−∞

∫
ξ+π/2

ξ−π/2
T (ξ ,ξ ′,Y ′)ε(Y −Y ′)

1
Dε

J(ξ ′)dξ
′dY ′ ≈∫

∞

−∞

∫
ξ+π/2

ξ−π/2
∂ξ T (ξ ,ξ ,Y ′)(ξ −ξ

′)ε(Y −Y ′)
1

Dε
J(ξ ′)dξ

′dY ′ ≈∫
∞

−∞

ε(Y −Y ′)∂ξ T (ξ ,ξ ,Y ′)
∫

ξ+π/2

ξ−π/2

(ξ −ξ ′)

(ξ −ξ ′)2 +
[
ε(Y −Y ′)+∂ξ ϕ(ξ )(ξ −ξ ′)

]2 J(ξ )dξ
′dY ′

where by the simbol ≈ we mean equal up to nonsingular terms. The cancellation
property can be shown as follows. Define ξ ′′ as:

ξ −ξ
′ = a(ξ −ξ

′′)−b where a≡ 1√
1+[∂ξ ϕ(ξ )]2

, b≡ ε(Y −Y ′)∂ξ ϕ(ξ )a2

and rewrite A1
n=0 as

A1
n=0 ≡

∫
∞

−∞

ε(Y −Y ′)∂ξ T (ξ ,ξ ,Y ′)J(ξ ) ·∫
ξ+π/(2a)−b/a

ξ−π/(2a)−b/a

[
(ξ −ξ ′′)

(ξ −ξ ′′)2 + ε2(Y −Y ′)2 −
b

(ξ −ξ ′′)2 + ε2(Y −Y ′)2

]
dξ
′′dY ′

Both terms inside the integration are singular; however, for the first term, the singu-
larity cancels because the function is odd with respect to the singularity ξ ′′= ξ . For
the second term, introducing z≡ (ξ−ξ ′′)/(ε(Y−Y ′)) one immediately recognizes
that, after integration in dz, one obtains a finite constant (notice that b∼ ε(Y−Y ′)).
The term A1 is thus estimated.

The estimate of A2 and A3 can be easily achieved using the same ideas.

G.2 Proof of Proposition 8.4
Looking at the expression for T (3.7), and inserting Ω = ω0, ψ = ϕ0 + εϕ1

and X = X0 + εX1 one recognizes that T can be decomposed as T = T0 + εT1,
where in the leading order part T0 appear only ω0, ϕ0 and X0. Shrinking the strip of
analyticity of ω0, ϕ0 and X0 one can get the regularity properties required to use the
same procedure used in the proof of Proposition 8.3 reported above. Concerning
the term εT1, being already O(ε), one does not need to use the fact the difference
1/K ε

ψ −1/K 0
ψ is O(ε), and the desired estimate follows estimating separately the

terms involving 1/K ε
ψ and 1/K 0

ψ separately. These estimates are easily achieved
using standard arguments. This concludes the proof of Proposition 8.4.

G.3 Proof of Proposition 8.5
To simplify the notation we use the complex variable and define:

K ε(i)=(ξ−ξ
′)+X0+εX (i)

1 −(X
′
0+εX (i)′

1 )+i
[
ε(Y −Y ′)+ϕ0 + εϕ

(i)
1 − (ϕ0

′+ εϕ1
(i)′)
]
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K 0(i) = (ξ −ξ
′)+X0 + εX (i)

1 − (X ′0 + εX (i)′

1 )+ i
[
ϕ0 + εϕ

(i)
1 − (ϕ0

′+ εϕ1
(i)′)
]

where, as usual, the primed quantities are computed in ξ ′.
Looking at the expression of R one sees that δR can be conveniently written

as:
δR = B1 +B2 +B3

where

B1 = ∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
δT (ξ ,ξ ′,Y ′)

[
1

K ε(1) −
1

K 0(1)

]
J(1)(ξ ′)dξ

′dY ′

B2 = ∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
T (2)(ξ ,ξ ′,Y ′)δ

[
1

K ε
− 1

K 0

]
J(1)(ξ ′)dξ

′dY ′

B3 = ∑
n

∫
∞

−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2
T (2)(ξ ,ξ ′,Y ′)

[
1

K ε(2) −
1

K 0(2)

]
δJ(ξ ′)dξ

′dY ′

The term B3 can be easily estimated given that J = 1+X , so that δJ = εδX1. To
estimate the term B1 one has to use again, as we did in Section G.2 above, the
decomposition T = T0 + εT1, and write:

δT0(ξ ,ξ
′) = δ

[
ω0(ξ

′)−ω0(ξ )
]
+δω0(ξ )

[
t̃∗(1)0 (ξ ′)− t̃∗(1)0 (ξ )

]
(1+ i∂ξ ϕ0

(1))+

ω
(2)
0 (ξ )δ

[
t̃∗0(ξ

′)− t̃∗0(ξ )
]
(1+ i∂ξ ϕ0

(1))+ω
(2)
0 (ξ )

[
t̃∗(2)0 (ξ ′)− t̃∗(2)0 (ξ )

]
iδ∂ξ ϕ0

Using the fact that δT0(ξ ,ξ
′)ξ=ξ ′ = 0, and the fact that δT0 depends only on ω0,

ϕ0 and X0, i.e. on quantities that can be supposed to have the necessary regularity,
one can adopt the same procedure of Section G.1, and get the desired estimate. The
term εδT1, being already O(ε), can be estimated using standard arguments.

To estimate B2 it is enough to write that:

δ
1

K ε
= ε

δ [X1(ξ )−X1(ξ
′)]+δ [ϕ1(ξ )−ϕ1(ξ

′)]

K ε(1)K ε(2)

with a similar expression for δ (1/K 0). In the above expression, given that ϕ1
(i),X (i)

1 ∈
B1,α

ρ/2, one can use the fact that the numerator is zero when ξ = ξ ′ to lower the sin-
gularity of the denominator. The order one singularity of the denominator can
therefore be estimated as done in Section G.1. This completes the proof of Propo-
sition 8.5.

G.4 Proof of Proposition 8.6
Given that Y > ε−1 we can approximate the velocity as:

u− iv =
1

2πi ∑n

∫ Y/3

−Y/3

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

Ω(ξ ′,Y ′)
K ε

ψ (ξ ,ξ ′,Y −Y ′)
Jdξ

′dY ′+O(e−µ/(3ε)) ,

In the rest of our analysis we shall neglect the exponentially small term. We now
make the following remark:
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Remark G.1. Given that ‖X‖(α)
1,ρ < 1/4 and ‖ϕ‖(α)

1,ρ < 1/4, then:

∣∣ξ −ξ
′+X−X ′+ i

[
ψ(ξ )−ψ(ξ ′)+ εY

]∣∣≥ 1√
2

√
|ξ −ξ ′|2 + ε2Y 2

The estimate above can be obtained as follows:

∣∣ξ −ξ
′+X−X ′+ i

[
ψ(ξ )−ψ(ξ ′)+ εY

]∣∣≥[
3(ξ −ξ

′)2/4−3(X−X ′)2 +(εY )2/2− (ψ−ψ
′)2]1/2 ≥

1√
2

√
|ξ −ξ ′|2 + ε2Y 2(G.2)

The first of the above inequalities follows from the elementary facts: 2AB≥−(A2/4+
4B2) and 2AB≥−(A2/2+2B2). The second inequality in (G.2) is an obvious con-
sequence of supξ |∂ξ ψ(ξ )|< 1/4 and supξ |X(ξ )|< 1/4.

We now define

a =
iεY ′

ξ −ξ ′+X−X ′+ i [ψ(ξ +X)−ψ(ξ ′+X ′)+ εY ]
,

and, given that |Y ′| ≤Y/3 and the above Remark, one immediately recognizes that
|a|< 1.

Using |a|< 1 we can write

1
ξ +X−ξ ′−X ′+ i [ψ−ψ ′+ ε(Y −Y ′)]

=

1
ξ +X−ξ ′−X ′+ i [ψ−ψ ′+ εY ]

1
1−a

1
ξ +X−ξ ′−X ′+ i [ψ−ψ ′+ εY ]

∞

∑
k=0

ak .

Therefore, in computing the difference between the velocity and the far field, the
term with k = 0 cancels:

u+ iv−u f − iv f =

1
2πi

∞

∑
n=−∞

∫ Y/3

−Y/3

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

∞

∑
k=1

Ω(ξ ′,Y ′)(iεY ′)k Jdξ ′dY ′

{ξ −ξ ′+X−X ′+ i [ψ−ψ ′+ εY ]}k+1(G.3)
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We can now give the following estimate:∣∣∣∣∣ 1
2πi

∞

∑
n=−∞

∫ Y/3

−Y/3

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

∞

∑
k=1

Ω(ξ ′,Y ′)(iεY ′)k Jdξ ′dY ′

{ξ −ξ ′+X−X ′+ i [ψ−ψ ′+ εY ]}k+1

∣∣∣∣∣≤
c‖Ω‖0,ρ,σ ,µ

∞

∑
n=−∞

∞

∑
k=1

∫ Y/3

−Y/3

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

e−µ|Y ′| |εY ′|k dξ ′dY ′

|ξ −ξ ′+X−X ′+ i [ψ−ψ ′+ εY ]|k+1 ≤

c
∞

∑
k=1

∫ Y/3

−Y/3
dY ′e−µ|Y ′| ∣∣εY ′

∣∣k ∞

∑
n=−∞

∫
ξ+π(2n+1)/2

ξ+π(2n−1)/2

2(k+1)/2dξ ′

[|ξ −ξ ′|2 + ε2Y 2](k+1)/2 ≤

c
∞

∑
k=1

∫ Y/3

0
dY ′e−µY ′

∣∣∣∣Y ′Y

∣∣∣∣k ∫ ∞

−∞

2(k+1)/2dz

[z2 +1](k+1)/2 ≤

c
∞

∑
k=1

2(k+1)/2
∫ Y/3

0
dY ′e−µY ′

∣∣∣∣Y ′Y

∣∣∣∣k
Looking, in the above series, at the term with k = 1, one immediately recognizes
the boundedness an the 1/Y behavior in Y . We now consider the integral in [0,Y ]
of the generic term of the series and show: 1) the boundedness of the integral when
Y → ∞; and 2) the convergence of the series.

2(k+1)/2
∫ Y

0
dY ′

∫ Y ′/3

0
dY ′′e−µY ′′

[
Y ′′

Y ′

]k

=

2(k+1)/2
∫ Y/3

0
dY ′′

∫ Y

3Y ′′
dY ′e−µY ′′

[
Y ′′

Y ′

]k

≤

c
2(k+1)/2

(k−1)3k−1

∫ Y/3

0
dY ′′e−µY ′′Y ′′ ≤

c
1

2k/2

The proof of the far field estimate Proposition 8.6 is thus achieved.

Appendix H: Proof of Proposition 9.3

Remark H.1. From Remark 7.3 we know that γ0 ∈ B2,α
ρ0,β0,T0

, γ
+
0 − γ

−
0 ∈ B2,α

ρ0,β0,T0
,

ϕ0 ∈ B3,α
ρ0,β0,T0

X0 ∈ B2,α
ρ0,β0,T0

are known quantities. Taking T0 small enough, one can
suppose that 1+∂ξ X0 ≥ c > 0.

The above Remark is an obvious consequence of the fact that X0(ξ , t = 0) = 0.
Notice that in Remark 7.3 we have increased the regularity of γ0, ϕ0 and X0

because these quantities in the equation for ω0 appear through their derivatives:
directly the stretching factor X0 and through the BR operator the vorticity intensity
γ0 and the curve ϕ0. We can now pass to the proof of Proposition 9.3.
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We first estimate the operator F2. We write:

F2 ≡
∫ Y

0
∂ξ

[
BR0 +

1
2

(∫
∞

Y ′
ω0dY ′′−

∫ Y ′

−∞

ω0dY ′′
)]

dY ′
∂Y ω0

1+∂ξ X0
=

∂ξ BR0
Y ∂Y ω0

1+∂ξ X0
+

1
2

∫ Y

0

(∫
∞

Y ′
∂ξ ω0dY ′′−

∫ Y ′

−∞

∂ξ ω0dY ′′
)

dY ′
∂Y ω0

1+∂ξ X0
(H.1)

The first of these terms is easily estimated knowing that γ0 and ϕ0 are bounded
in the appropriate function spaces, using the properties of the BR operator, and
using the Cauchy estimate given in (6.4) to bound the linear growth of Y and the
Y -derivative.

We now show how to estimate the second of the three terms in the above ex-
pression for F2. We have to estimate this operator in the norm ‖ · ‖(α)

1,ρ,θ ,µ and
therefore we show separately how to estimate the Hölder norm of the ξ and of the
Y derivatives. The Y derivative is more easily estimated because, when it hits the
integral term, it is compensated by the integration in Y while, when it hits ∂Y ω0,
it is bounded using the Cauchy estimate. We are therefore left with estimating the
| · |(α) norm of the ξ -derivative. We can estimate the above norm estimating sepa-
rately | · |(α,ξ ) and | · |(α,Y ). We notice that the Hölder norm along the Y -direction
is more easily estimated because of the presence of the integration in Y and there-
fore we focus on the estimate of the Hölder norm along the ξ -direction. We show
explicitly how to estimate the case when ∂ξ hits the integral term:∥∥∥∥∫ Y

0

(∫
∞

Y ′
∂

2
ξ

ω0dY ′′
)

dY ′
∂Y ω0

1+∂ξ X0

∥∥∥∥(α,ξ )

ρ,θ ,µ

=

sup
Y>0

∥∥∥∥eµY
∫ Y

0
dY ′

∫
∞

Y ′
∂

2
ξ

ω0dY ′′
∂Y ω0

1+∂ξ X0

∥∥∥∥(α,ξ )

ρ

+

sup
Y<0

∥∥∥∥e−µY
∫ Y

0
dY ′

∫
∞

Y ′
∂

2
ξ

ω0dY ′′
∂Y ω0

1+∂ξ X0

∥∥∥∥(α,ξ )

ρ

≤

c
∥∥∥∂

2
ξ

ω0

∥∥∥(α,ξ )

ρ,θ ,µ
‖∂Y ω0‖(α,ξ )

ρ,θ ,µ · sup
Y>0

∣∣∣∣∫ Y

0
dY ′

∫
∞

Y ′
e−µY ′′dY ′′

∣∣∣∣+
c‖∂ 2

ξ
γ0‖(α,ξ )

ρ sup
Y<0
‖e−µYY ∂Y ω0‖(α,ξ )

ρ + csup
Y<0

∥∥∥∥e−µY
∫ Y

0
dY ′

∫ Y ′

−∞

∂
2
ξ

ω0dY ′′
∂Y ω0

1+∂ξ X0

∥∥∥∥(α,ξ )

ρ

≤

c

‖ω0‖(α)
1,ρ ′,θ ,µ

ρ ′−ρ
+
‖ω0‖(α)

1,ρ,θ ,µ ′

µ ′−µ


Notice how we have used the estimate on X0 given in Remark H.1. Moreover, in
the estimate above we have supposed Y to be real. When Y is complex the same
estimate can be carried out with minor modifications. The case when ∂ξ hits ∂Y ω0
is more easily handled through a direct use of the Cauchy estimate.
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The third term in the expression (H.1) for F2 can be handled analogously.
Using the linearity of the derivative and of the integral, the proof of the quasi-

contractiveness of F2 is now straightforward.
The quasi–contractiveness of the operator F1 is easily achieved through a Cauchy

estimate of the ξ -derivative and using the fact that the operator M0≡M (ω0,ϕ0,X0)
is bounded in terms of the norm of ϕ0 and X0 (which we know, from Proposition
7.2, to be a priori bounded in the appropriate analytic space) and in terms of the
norm of ω0.

Appendix I: Proof of Proposition 9.4

We first state a series of technical Lemmas that will be useful in the estimate of
the various G j.

Lemma I.1. Suppose ω0 ∈ B1,α
ρ,θ ,µ , ϕ0 ∈ B2,α

ρ , X0 ∈ B2,α
ρ , ϕ1 ∈ B1,α

ρ , X1 ∈ B1,α
ρ ,.

Then the following estimate holds:

(I.1) ‖M −M0‖(α)
ρ,θ ≤ cε

(
‖ϕ1‖(α)

1,ρ +‖X1‖(α)
1,ρ

)
where the constant c depends only on ‖ω0‖(α)

1,ρ,θ ,µ , ‖ϕ0‖(α)
2,ρ and ‖X0‖(α)

2,ρ .

To prove the above Lemma it is enough to recall that, by definition:

M ≡BR[γ0,ϕ0 + εϕ1,X0 + εX1]+
1
2

[∫
∞

Y
ω0dY ′−

∫ Y

−∞

ω0dY ′
]

t̃∗

M0 ≡BR[γ0,ϕ0,X0]+
1
2

[∫
∞

Y
ω0dY ′−

∫ Y

−∞

ω0dY ′
]

t̃∗0 .

Looking at the definition of t̃ and t̃0 (see (3.6) with ψ = ϕ and (3.15)) it is obvious
that ‖t̃− t̃0‖(α)

ρ ≤ cε‖ϕ1‖(α)
1,ρ .

Moreover, from the properties of the BR operator (see Proposition 6.5) one
immediately recognizes that:

‖BR[γ0,ϕ0 + εϕ1,X0 + εX1]−BR[γ0,ϕ0,X0]‖(α)
ρ,θ ≤ cε

(
‖ϕ1‖(α)

1,ρ +‖X1‖(α)
1,ρ

)
.

Lemma I.1 is therefore proved.

Lemma I.2. Suppose the hypotheses of Proposition 9.4 are satisfied. Then the
following estimate holds:

‖δ (M −M0)‖(α)
ρ,θ ,β ,T ≤ cε

(
‖δω0‖(α)

1,ρ,θ ,β ,T +‖δϕ1‖(α)
ρ,β ,T +‖δX1‖(α)

ρ,β ,T

)
To prove the Lemma it is enough to recall that, by definition

δ (M −M0) =(
M [ω

(1)
0 ,ϕ0 + εϕ1

(1),X0 + εX (1)
1 ]−M [ω

(1)
0 ,ϕ0,X0]

)
−(

M [ω
(2)
0 ,ϕ0 + εϕ1

(2),X0 + εX (2)
1 ]−M [ω

(2)
0 ,ϕ0,X0]

)
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and then use the estimate on M given in Proposition 6.6.

The following Lemma is an obvious consequence of the fact that ‖X (i)
1 ‖

(α)
1,ρ <

1/4 < 1.

Lemma I.3. Suppose the hypotheses of Proposition 9.4 are satisfied. Then the
following estimates hold: ∥∥∥∥∥∥ 1

1+∂ξ

(
X0 + εX (i)

1

)
∥∥∥∥∥∥
(α)

ρ

≤ c

∥∥∥∥∥∥ 1

1+∂ξ

(
X0 + εX (i)

1

) − 1
1+∂ξ X0

∥∥∥∥∥∥
(α)

ρ

≤ cε‖X (i)
1 ‖

(α)
ρ ,

∥∥∥∥δ
1

1+∂ξ (X0 + εX1)

∥∥∥∥(α)

ρ

≤ cε‖δX1‖(α)
1,ρ

I.1 Estimate on G1

The desired bound on G1 is an immediate consequence of the following esti-
mate: ∥∥∥∥δ

[(
M

1+∂ξ X
− M0

1+∂ξ X0

)
∂ξ ω0

]∥∥∥∥(α)

ρ ′,θ ′,µ ′/2
≤

∥∥∥∥δ

[(
M −M0

1+∂ξ X

)
∂ξ ω0

]∥∥∥∥(α)

ρ ′,θ ′,µ ′/2
+

∥∥∥∥δ

[
M0

(
1

1+∂ξ X
− 1

1+∂ξ X0

)
∂ξ ω0

]∥∥∥∥(α)

ρ ′,θ ′,µ ′/2
≤

cε

‖δω0‖(α)
1,ρ ′,θ ′,µ ′+

‖δX1‖(α)
1,ρ

ρ−ρ ′
+
‖δϕ1‖(α)

1,ρ

ρ−ρ ′


where to get the last inequality, we have used the Leibnitz properties of the δ

operator, Lemmas I.1, I.2 and I.3, and the higher regularity of ω0 to bound ∂ξ ω0.

I.2 Estimate on G2

To estimate G2 one has to consider separately the terms δ (Ru∂ξ ω0) and δ (εu1∂ξ ω0).
The latter term is easily estimated using the potential estimates given in Proposi-
tions 8.1 and 8.2 to bound u1 in terms of ω1. The estimate on δ (Ru∂ξ ω0) instead,

derives from Propositions 8.4 and 8.5. Here we show how to estimate δRu∂ξ ω
(1)
0 ,
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being the estimate on Ru(2)δ∂ξ ω0 similar.

‖δRu
∂ξ ω

(1)
0 ‖

(α)
ρ ′,θ ′,µ ′/2 ≤

sup
Y∈Σ(θ ′)

eµ ′|Y |/2‖δRu(·,Y )‖(α)
ρ ′ ‖∂ξ ω0(

(1)·,Y )‖(α)
ρ ′ ≤

cε sup
Y∈Σ(θ ′)

eµ ′|Y |/2
[
(1+Y )‖δω0‖1,ρ ′,θ ′,µ ′+‖δϕ1‖(α)

1,ρ ′+‖δX1‖(α)
1,ρ ′

]
‖∂ξ ω

(1)
0 (·,Y )‖(α)

ρ ′ ≤

cε

[
‖δω0‖1,ρ ′,θ ′,µ ′+‖δϕ1‖(α)

1,ρ ′+‖δX1‖(α)
1,ρ ′

]
‖ω(1)

0 ‖
(α)
1,ρ ′,θ ′,µ ′ ≤

cε

[
‖δω0‖1,ρ ′,θ ′,µ ′+‖δϕ1‖(α)

1,ρ ′+‖δX1‖(α)
1,ρ ′

]

The second inequality above is an application of Proposition 8.5, while the third
inequality is a consequence of the higher x-regularity of ω0 that allows to bound
the ξ -derivative, and of the stronger exponential decay rate in Y of ω0, that allows
to bound the linearly growing term (1+Y ).

I.3 Estimate on G3

The estimate of ‖δG3‖(α)
ρ ′,θ ′,µ ′/2 is based on the same ideas we used to estimate

G1, the only difference being that integration in Y gives rise to a linearly growing
factor. Such linear growth, however, is easily tamed by the exponential decay of
ω0, which in fact decays at rate µ ′.

I.4 Estimate on G4

To show how to estimate δG4 we first consider the term involving Ru. Given
the Leibnitz properties of the operator δ we consider the case when δ acts on Ru,
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being the other cases similar. ∥∥∥∥∥ 1

1+∂ξ (X0 + εX (2)
1 )

∫ Y

0
δ
(
∂ξ Ru)dY ′∂Y ω

(1)
0

∥∥∥∥∥
(α)

ρ ′,θ ′,µ ′/2

≤

∥∥∥∥∥ 1

1+∂ξ (X0 + εX (2)
1 )

∥∥∥∥∥
(α)

ρ ′

sup
Y∈Σ(θ ′)

eµ ′|Y |/2
(∫ Y

0

∥∥δ
(
∂ξ Ru(·,Y ′)

)∥∥(α)

ρ ′
dY ′
∥∥∥∂Y ω

(1)
0 (·,Y )

∥∥∥(α)

ρ ′

)
≤

c sup
Y∈Σ(θ ′)

eµ ′|Y |/2

(∫ Y

0

‖δ (Ru(·,Y ′))‖(α)
ρ

ρ−ρ ′
dY ′
∥∥∥∂Y ω

(1)
0 (·,Y )

∥∥∥(α)

ρ ′

)
≤

cε sup
Y∈Σ(θ ′)

eµ ′|Y |/2

∫ Y

0

[
(1+Y ′)‖δω0‖1,ρ,θ ′,µ ′+‖δϕ1‖(α)

1,ρ +‖δX1‖(α)
1,ρ

]
ρ−ρ ′

dY ′
∥∥∥∂Y ω

(1)
0 (·,Y )

∥∥∥(α)

ρ ′

≤
cε

[
‖δω0‖1,ρ,θ ′,µ ′+‖δϕ1‖(α)

1,ρ +‖δX1‖(α)
1,ρ

]
ρ−ρ ′

∥∥∥ω
(1)
0

∥∥∥(α)

1,ρ ′,θ ′,µ ′
≤

cε

[
‖δω0‖1,ρ,θ ′,µ ′+‖δϕ1‖(α)

1,ρ +‖δX1‖(α)
1,ρ

]
ρ−ρ ′

In the above estimate, the second inequality has been obtained using the Cauchy
estimate on ∂ξ δRu; the third inequality derives from the estimate on δR given in
Proposition 8.5; to get the fourth inequality we have used the higher exponential
decay rate in Y of ω0 to bound the quadratically growing term in Y deriving from
the integration.

I.5 Estimate on G5

The estimate on the term G5 is straighforward, and is obtained using a Cauchy
estimate to bound ∂ξ ω1, and using the potential estimates given in Section 8.1 to
bound u0 and u1 in terms of ω0 and ω1 respectively.

I.6 Estimate on G6

The estimate on the term G6 is similar to the estimate of G5, the only difference
being the fact that, to bound ∂ξ u0, one has to use, combined, the potential estimate
to get a bound in terms of ω0, and the higher regularity of ω0; finally, the linear
growth given by the integration in Y , is bounded using the Cauchy estimate given
in (6.4).

I.7 Estimate on G7

The estimate of the term G7 does not present any difficulty, and can be easily
achieved using the potential estimates to bound u1 and v1 in terms of ω1, and using
the Cauchy estimate to bound ∂Y ω1.
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Appendix J: Details on the convergence to Birkhoff-Rott

J.1 Derivations of equations 10.1 and 10.2
From Remarks A.1, A.2 and A.3 one has that, on the curve ϕ:

(J.1) ∂t = ∂τ −uϕ
∂ξ

1+∂ξ X
, ∂x =

1
1+∂ξ X

∂ξ

where X is the Lagrangian factor

X(ξ ,τ) =
∫

τ

0
uϕ(ξ ,τ ′)dτ

′ ,

having, as usual, indicated with (uϕ ,vϕ) the velocity computed on ϕ , i.e.

uϕ = u(ξ ,Y = 0,τ) = [u0 + εu1]Y=0 = [M u[ω0,ϕ]+Ru[ω0,ϕ]+ εu1]Y=0.

vϕ = v(ξ ,Y = 0,τ) = [v0 + εv1]Y=0 = [M v[ω0,ϕ]+Rv[ω0,ϕ]+ εv1]Y=0.

Equation (7.2), after some rearrangement, can be written as:

∂τγ0−
uϕ

1+∂ξ X
∂ξ γ0 +

1
1+∂ξ X

∂ξ (γ0BRu
0) = E1(ξ ,τ)

where

E1(ξ ,τ) =−
[

uϕ

1+∂ξ X
−

M u
0Y=0

1+∂ξ X0

]
∂ξ γ0 +

[
1

1+∂ξ X
− 1

1+∂ξ X0

]
∂ξ (γ0BRu

0)

Given the expressions (J.1), the equation for γ0, in the Eulerian reference frame,
can therefore be written:

∂tγ0 +∂x (γ0BRu
0) = E1(x, t)

where E1(x, t) = E1(ξ (x, t), t) has explicit expression:

E1 =− [uϕ −σMu
0 ]Y=0 ∂xγ0 +[1−σ ]∂x(γ0BRu

0)

where

(J.2) σ ≡
1+∂ξ X
1+∂ξ X0

.

We now pass to consider the equation satisfied by the curve ϕ0 which,written
in the Lagrangian frame is ∂τϕ0 = M v

0 . This equation can be rewritten as:

∂τϕ0−uϕ 1
1+∂ξ X

∂ξ ϕ0 +BRu
0

1
1+∂ξ X

∂ξ ϕ0−BRv
0 = E2

where

E2 =−
{
[uϕ −BRu

0]
1

1+∂ξ X
∂ξ ϕ0 +BRv

0−M v
0

}
Y=0

Written in the Eulerian frame, using (J.1), the equation for ϕ0 takes the form:

∂tϕ0 +BRu
0∂xϕ0−BRv

0 = E2
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where E2(x, t) = E2(ξ (x, t), t) can be written as:

E2 =−{[uϕ −BRu
0]∂xϕ0 +BRv

0−Mv
0}Y=0

J.2 Proof of Lemma 10.1
We prove that ‖Ei‖(α)

1,ρ,θ ,β ,T ≤ cε; this bound, given that Ei is related to Ei

through an analytic change of coordinate, will provide the proof of Lemma 10.1.
The bound ‖E1‖(α)

1,ρ,θ ,β ,T ≤ cε is an obvious consequence of the following esti-
mates:

(1) ‖M [ω0,ϕ]−M0‖(α)
1,ρ,θ ,β ,T ≤ cε , that is simply a version of Lemma I.1

with higher regularity;
(2) ‖RY=0‖(α)

1,ρ,θ ,β ,T ≤ cε , that is simply a version of Proposition 8.3, with
higher regularity, and with the operator R computed on the curve, so that
no linear growth in Y is present;

(3) ‖εu1‖(α)
1,ρ,θ ,β ,T ≤ cε , that is obvious;

(4) ‖σ−1‖(α)
1,ρ,θ ,β ,T ≤ cε , which is a consequence of the obvious fact that ‖X−

X0‖(α)
1,ρ,θ ,β ,T ≤ cε .

(5) ‖BR −BR0‖(α)
1,ρ,θ ,β ,T ≤ cε which derives from the definitions BR =

BR[γ0,ϕ], BR0 = BR[γ0,ϕ0] and from Proposition 6.5.

To get the bound ‖E2‖(α)
1,ρ,θ ,β ,T ≤ cε first we use the expression uϕ = [M u +Ru + εu1]Y=0,

second we recall that:

MY=0 = BR+
1
2
[
γ
+
0 − γ

−
0

]
t̃∗

M0Y=0 = BR0 +
1
2
[
γ
+
0 − γ

−
0

]
t̃∗0

and finally rearrange the expression for E2 in the following way:

E2 =−
{[

BRu−BRu
0 +

1
2
(
γ
+
0 − γ

−
0

)
t̃u +Ru + εu1

]
1

1+X
∂ξ ϕ0−

1
2
(
γ
+
0 − γ

−
0

)
t̃v
0

}
=

−
{[

BRu−BRu
0 +

1
2
(
γ
+
0 − γ

−
0

)
(t̃u− t̃u

0)+Ru + εu1

]
1

1+∂ξ X
∂ξ ϕ0+

1
2
(
γ
+
0 − γ

−
0

)[
t̃u
0

(
1

1+∂ξ X
− 1

1+∂ξ X0

)
+ t̃u

0
1

1+X0
∂ξ ϕ0− t̃v

0

]}
To see that E2 satisfy the bound of Lemma 10.1 one has to recall, besides the
already mentioned properties of R, BR−BR0 and X −X0, also the following
facts:

(1) ‖t̃− t̃0‖(α)
1,ρ,θ ,β ,T ≤ cε which derives from the definitions (3.6) ot t̃ with ψ =

ϕ and definition (3.15) of t̃0, and from the obvious ‖ϕ−ϕ0‖(α)
1,ρ,θ ,β ,T ≤ cε ,
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(2) the (approximate) tangent vector t̃0 is orthogonal to the (approximate) nor-
mal vector (∂ξ ϕ0/(1+∂ξ X0),−1), so that the last two terms in the last line
of the above computation cancels exactly.

This concludes the proof of Lemma 10.1.
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