MDA-9/Syntenin-NF-κB-RKIP loop in triple negative breast cancers (TNBC) and human liver carcinoma

P. Poma, M. Labbozzetta, M. Notarbartolo.

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, School of Science, University of Palermo, Italy.

paola.poma@unipa.it

We analyzed the presence of a regulation loop like that between MDA-9/Syntenin - NF-κB - RKIP in three TNBC cell lines (SUM 149, SUM 159 and MDA-MB-231) and in three cell lines of human liver carcinoma (HA22T/VGH, Hep3B and HepG2). Both these cancers are characterized by high aggressive phenotype, poor prognosis and few therapeutic possibilities.

Transient transfection was performed with siRNA anti-MDA-9/Syntenin. Expression of different factors was evaluated by Real time-PCR and Western blotting, while NF-kB activation by TransAM assay. Invasion capacity was analyzed by Matrigel Invasion Assay.

We observed that silencing of MDA-9/Syntenin expression by anti-MDA-9/Syntenin siRNA induced NF- κ B downregulation and contemporary restored expression of an important metastasis suppressor like RKIP in all cancer models; interestingly, RKIP increase in liver cancer models occured only at mRNA levels. Lastly, in our cell models MDA-9/Syntenin downregulation caused a reduction of invasion ability.

Our data confirmed the key role of MDA-9/Syntenin in cancer biology and for the first time showed that is part of a regulation loop among NF-κB and RKIP in TNBC and in liver cancer cell lines. This loop could constitute a new potential pharmacological target and provide new therapeutic approaches.