Solvable extensions of nilpotent complex Lie algebras of type $\{2n, 1, 1\}^{*\dagger\ddagger}$

C. Bartolone, A. Di Bartolo, G. Falcone[§]

May 8, 2018

Abstract

We investigate derivations of nilpotent complex Lie algebras of type $\{2n, 1, 1\}$ with the aim to classify solvable complex Lie algebras the commutator ideals of which have codimension 1 and are nilpotent Lie algebras of type $\{2n, 1, 1\}$.

1. Introduction. Classification results for solvable or nilpotent complex Lie algebras are the subject of a large literature. For a nilpotent Lie algebra \mathfrak{g} with descending central series $\mathfrak{g}^{(i)} = [\mathfrak{g}, \mathfrak{g}^{(i-1)}]$, M. Vergne defined in [19] the type $\{p_1, \ldots, p_c\}$ of \mathfrak{g} by the integers $p_i := \dim(\mathfrak{g}^{(i-1)}/\mathfrak{g}^{(i)})$. In the same paper, she defined and studied filiform Lie algebras, that is, having type $\{2, 1, 1, \ldots, 1\}$. Complex filiform Lie algebras became thereafter the object of several works (e. g. [3], [4], [5], [11] and [17]) aiming to a thorough classification in low dimension. Filiform *n*-dimensional Lie algebras \mathfrak{g} are precisely those with characteristic sequence $c(\mathfrak{g}) = (n-1,1)$, where the characteristic sequence $c(\mathfrak{g})$ of a Lie algebra \mathfrak{g} was defined in [2] as the maximum sequence, in the lexicographic ordering, of the dimensions of the Jordan blocks of ad_x . The breadth $b(\mathfrak{g})$ of a Lie algebra \mathfrak{g} has been recently introduced in [15] as the maximum of the dimensions of the images of ad_x , for all $x \in \mathfrak{g}$, in order to classify Lie algebras where this invariant is small, and the connection between the breadth and the characteristic sequence has been pointed out in [16]: if $c(\mathfrak{g}) = (c_1, \ldots, c_k, 1)$, then $b(\mathfrak{g}) = c_1 + \ldots + c_k - k$.

On the opposite side to filiform Lie algebras, the most simple nilpotent complex Lie algebras are the (2n + 1)-dimensional Heisenberg Lie algebras, which have type $\{2n, 1\}$, characteristic sequence $c(\mathfrak{g}) = (2, 1, ..., 1)$, breadth $b(\mathfrak{g}) = 1$, and are defined on a (2n+1)-dimensional complex vector space $\mathfrak{h} = V + \langle x \rangle$ by means of a non-degenerate alternating form $F: V \times V \to \mathbb{C}$ putting [u, v] := F(u, v)x, for any $u, v \in V$. These algebras and their real forms, often in connection with a left invariant metric, have been widely investigated in the last thirty years (for instance in [13], [14], [18], [20]), as they offer a basic model for nilmanifolds.

As well as the type $\{2n, 1\}$ characterizes, up to a central summand, (2n+1)-dimensional Heisenberg Lie algebras, the dimension of nilpotent Lie algebras of type $\{2n, 1, 1\}$ determines them uniquely (see [6]). The minimal dimension for such algebras is four; more

^{*}AMS MSC: 17B05, 17B30

[†]Keywords: solvable Lie algebras, derivations of a nilpotent Lie algebras, generalized Heisenberg algebras. [‡]Supported by M.I.U.R. - P.R.I.N. 2017

[§]Corresponding author

precisely, we have the filiform Lie algebra

$$\mathfrak{n}_4 := \langle u^1, u^2, u^3, u^4 \rangle_{\mathbb{C}}$$

defined through the relations

$$[u^2, u^4] = u^1, \ [u^3, u^4] = u^2, \tag{1}$$

corresponding to the Lie algebra $\mathfrak{g}_{1,0,1}$ with $c(\mathfrak{g}_{1,0,1}) = (3,1)$ recently described in [12, 3.2, Example (2)] and in [16, 2.1, Prop. 6 (3)]. Manifestly \mathfrak{n}_4 modulo its centre $\langle u^1 \rangle_{\mathbb{C}}$ is the 3-dimensional Heisenberg Lie algebra. More generally (see [6]), for any non-negative integer n, up to a central summand the complex Lie algebra \mathfrak{n} of type $\{2n + 2, 1, 1\}$ decomposes, as a vector space, into the direct sum of vector spaces

$$\mathfrak{n} = \mathfrak{n}_4 + \mathfrak{v} + \mathfrak{w},\tag{2}$$

where

$$\mathfrak{v} = \langle v^1, v^2, \dots, v^n \rangle_{\mathbb{C}}, \ \mathfrak{w} = \langle w^1, w^2, \dots, w^n \rangle_{\mathbb{C}}$$

are Abelian Lie subalgebras of dimension n which fulfill the relations

$$[v^i, w^j] = \delta^i_j u^1, \tag{3}$$

that is, modulo the centre we obtain the direct sum of the 3-dimensional Heisenberg Lie algebra by a 2*n*-dimensional Abelian Lie algebra. Hence \mathfrak{n} is a nilpotent Lie algebra of breadth $b(\mathfrak{n}) = 2$ with characteristic sequence $c(\mathfrak{n}) = (3, 1, \ldots, 1)$, and as such it appears in [16, 2.1, Prop. 6 (3)], and as a linear deformation of the Lie algebra $\mathfrak{g}_{1,0,n-3}$ in [12, 3.2, Example (2)].

Moreover, the ideal

$$\mathfrak{h} = \langle u^{\scriptscriptstyle 1} \rangle_{\mathbb{C}} + \mathfrak{v} + \mathfrak{w},$$

is manifestly isomorphic to the (2n + 1)-dimensional Heisenberg algebra, hence \mathfrak{n} is the direct sum with amalgamated centre of \mathfrak{n}_4 and \mathfrak{h} :

$$\mathfrak{n} = \frac{\mathfrak{n}_4 \times \mathfrak{h}}{\langle (u^1, -u^1) \rangle}$$

Solvable extensions of nilpotent Lie algebras with any given characteristic sequence have been the object of investigation in [1], whereas solvable extensions of nilpotent real Lie algebras of type $\{n, 2\}$ by a derivation contained in a compact Lie algebra have been considered in [10] and [8]. This paper, instead, is a first step in classifying solvable extensions of nilpotent complex Lie algebras of type $\{2n + 2, 1, 1\}$; more precisely, we classify in section 3 extensions \mathfrak{s} of a nilpotent complex Lie algebra \mathfrak{n} of type $\{2n+2,1,1\}$ with dim $\mathfrak{s}/\mathfrak{n} = 1$ and $\mathfrak{s}' = \mathfrak{n}$. In order to obtain the classification we determine in section 2 the full automorphism group of \mathfrak{n} and the Lie algebra of derivations of \mathfrak{n} . As the Heisenberg algebra appears as the 3-codimensional ideal \mathfrak{h} of \mathfrak{n} , the automorphism group and the derivation algebra of \mathfrak{n} contain the symplectic group and algebra, respectively, as the Levi complements. Thus, it was necessary to know the orbits in $\mathfrak{sp}(2n,\mathbb{C})$ under the action of $\operatorname{Sp}(2n, \mathbb{C})$. This is a particular case of a classic problem, which goes back to Weierstrass, Kronecker, and Frobenius, then continues with a series of papers by Williamson, Zassenhaus, Wall, Cikunov, Springer and Steinberg, and Milnor, and which is finally treated in a unified solution by Burgoyne and Cushman in [9], the paper from which we take the description of the action of $\text{Sp}(2n, \mathbb{C})$ on $\mathfrak{sp}(2n, \mathbb{C})$.

A canonical form for a given derivation of \mathfrak{n} turned out to be parametrized by a complex number and a set of eigenvalues, corresponding to the Jordan form of the derivation (cf. Theorem 3). **2.** Automorphisms and derivations of \mathfrak{n} . Throughout the paper \mathfrak{n} will denote the nilpotent complex Lie algebra of type $\{2n+2,1,1\}$ given in (2) and defined through the relations (1) and (3). Referring to the basis $u^1, \ldots, u^4, v^1, \ldots, v^n, w^1, \ldots, w^n$, we notice that an automorphism $\varphi \in \operatorname{Aut}(\mathfrak{n})$ leaves the flag of ideals

$$\mathfrak{z} = \langle u^1 \rangle_{\mathbb{C}}, \quad \mathfrak{n}' = \langle u^1, u^2 \rangle_{\mathbb{C}}, \quad \mathfrak{k}_1 = \langle u^1, u^2, u^3 \rangle_{\mathbb{C}}, \quad \mathfrak{k}_2 = \langle u^1, u^2, u^3, v^1, \dots, v^n, w^1, \dots, w^n \rangle_{\mathbb{C}}$$

invariant, because the first is the centre of \mathfrak{n} , the second is the commutator ideal of \mathfrak{n} , the fourth is the centralizer of \mathfrak{n}' and the third is its centre. Notice that, putting $\varphi(u^4) = \alpha_1 u^1 + \alpha_2 u^2 + \alpha_3 u^3 + \alpha_4 u^4 + p$, for some $p \in \langle v^1, \ldots, v^n, w^1, \ldots, w^n \rangle_{\mathbb{C}}$, the coefficient α_4 must be different from zero, otherwise the image under φ of an arbitrary element of \mathfrak{n} would be contained in \mathfrak{k}_2 .

Moreover, the ideal

$$\mathfrak{k}_3 := \langle u^1, u^2, v^1, v^2, \dots, v^n, w^1, w^2, \dots, w^n \rangle_{\mathbb{C}}$$

is invariant, as well. In fact, the image $\varphi(v^i)$, which belongs to the invariant ideal \mathfrak{k}_2 , has, for some $q \in \langle v^1, \ldots, v^n, w^1, \ldots, w^n \rangle_{\mathbb{C}}$, the shape

$$\varphi(v^{i}) = \beta_{1}u^{1} + \beta_{2}u^{2} + \beta_{3}u^{3} + q.$$

In view of the defining brackets

$$[u^2, u^4] = u^1, \quad [u^3, u^4] = u^2, \quad [v^i, w^j] = \delta^i_j u^1$$

of \mathfrak{n} , we see directly that

$$0 = \varphi(0) = \varphi([v^{i}, u^{4}]) = [\beta_{1}u^{1} + \beta_{2}u^{2} + \beta_{3}u^{3} + q, \alpha_{1}u^{1} + \alpha_{2}u^{2} + \alpha_{3}u^{3} + \alpha_{4}u^{4} + p]$$

= $\beta_{2}\alpha_{4}u^{1} + \beta_{3}\alpha_{4}u^{2} + [q, p] = \gamma u^{1} + \beta_{3}\alpha_{4}u^{2},$

because $[q, p] \in \langle u^1 \rangle_{\mathbb{C}}$. Since $\alpha_4 \neq 0$, it follows that $\beta_3 = 0$, that is, $\varphi(v^i) \in \mathfrak{k}_3$. The same argument holds for the image $\varphi(w^i)$. Thus, with respect to the given basis, the automorphism φ can represented by

1	L_1^1	0	0	0	0		0	0		0	\
	L_1^2	L_2^2	0	0	0		0	0		0	
	L_1^3	L_2^3	L_3^3	0	0		0	0		0	
	L_1^4	L_2^4	L_3^4	L_4^4	M_1^4		M_n^4	N_1^4		N_n^4	
	P_1^1	P_2^1	0	0	Q_1^1	•••	Q_n^1	R_1^1		R_n^1	
	÷	÷	÷	÷	÷	·	÷	÷	·	÷	.
	P_1^n	P_2^n	0	0	Q_1^n		Q_n^n	R_1^n		R_n^n	
	S_1^1	S_2^1	0	0	T_1^1		T_n^1	U_1^1		U_n^1	
	:	;	:	:	:	·	;	:	·	:	
	S_1^n	S_2^n	0	0	T_1^n		T_n^n	U_1^n		U_n^n)

Now, we have

$$\begin{split} & [u^2, u^4] = u^1 \Longrightarrow L_2^2 L_4^4 = L_1^1; \\ & [u^3, u^4] = u^2 \Longrightarrow L_2^3 L_4^4 = L_1^2 \text{ and } L_3^3 L_4^4 = L_2^2 \end{split}$$

and for i = 1, 2, ..., n,

$$\begin{split} & [u^4, v^i] = 0 \Longrightarrow \sum_{j=1}^n (M_j^4 R_j^i - N_j^4 Q_j^i) = L_4^4 P_2^i; \\ & [u^4, w^i] = 0 \Longrightarrow \sum_{j=1}^n (M_j^4 U_j^i - N_j^4 T_j^i) = L_4^4 S_2^i; \end{split}$$

whereas the fact that the ideal $\mathfrak{h} = \langle u^1 \rangle_{\mathbb{C}} + \mathfrak{v} + \mathfrak{w}$ is isomorphic to the Heisenberg algebra, that is, the conditions $[v^i, v^j] = [w^i, w^j] = 0$ and $[v^i, w^j] = \delta^i_j u^1$, says that

$$\pm \frac{1}{\sqrt{L_1^1}} \begin{pmatrix} Q_1^1 & \dots & Q_n^1 & R_1^1 & \dots & R_n^1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{Q_1^n & \dots & Q_n^n & R_1^n & \dots & R_n^n}{T_1^1 & \dots & T_n^1 & U_1^1 & \dots & U_n^1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ T_1^n & \dots & T_n^n & U_1^n & \dots & U_n^n \end{pmatrix} \in \operatorname{Sp}(2n, \mathbb{C})$$

Summing up, we obtain a Levi decomposition of $\operatorname{Aut}(\mathfrak{n})$ by taking the matrices

$$\begin{pmatrix} (L_4^4 V_3^3)^2 & 0 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ L_2^3 L_4^4 & L_4^4 (V_3^3)^2 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ L_1^3 & L_2^3 & (V_3^3)^2 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \frac{L_1^4 & L_2^4 & L_3^4 & L_4^4 & M_1^4 & \dots & M_n^4 & N_1^4 & \dots & N_n^4 \\ \hline P_1^1 & -N_1^4 V_3^3 & 0 & 0 & L_4^4 V_3^3 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{P_1^n & -N_n^4 V_3^3 & 0 & 0 & 0 & \dots & 0 & L_4^4 V_3^3 & \dots & 0 \\ \frac{S_1^1 & M_1^4 V_3^3 & 0 & 0 & 0 & \dots & 0 & L_4^4 V_3^3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ S_1^n & M_n^4 V_3^3 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & L_4^4 V_3^3 \end{pmatrix}$$

as the solvable radical, and the matrices

$$\left(\begin{array}{c|c} I_4 \\ \hline \\ \hline \\ \hline \\ \end{array}\right) \text{ with } X \in \operatorname{Sp}(2n, \mathbb{C}) \tag{5}$$

as a Levi complement.

Accordingly, a Levi complement \mathcal{L} of $\text{Der}(\mathfrak{n}) = \text{Lie}(\text{Aut}(\mathfrak{n}))$ is given, with respect to the same basis, by the matrices of the shape

$$\left(\begin{array}{c|c} 0 \\ \hline \end{array}\right) \text{ with } X \in \mathfrak{sp}(2n, \mathbb{C}), \tag{6}$$

the nilradical \mathcal{N} of $\text{Der}(\mathfrak{n})$ is given by the matrices of the shape

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ A_2^3 & 0 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ A_1^3 & A_2^3 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ A_1^4 & A_2^4 & A_3^4 & 0 & G_1^4 & \dots & G_n^4 & D_1^4 & \dots & D_n^4 \\ \hline D_1^1 & -D_1^4 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ D_1^n & -D_n^4 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \hline G_1^1 & G_1^4 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ G_1^n & G_n^4 & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$
(7)

(hence its nilpotency class is 3, that is, $[\mathcal{N}, [\mathcal{N}, \mathcal{N}]]$ is central) and one of its complements \mathcal{T} in the solvable radical $\mathcal{R} = \mathcal{T} + \mathcal{N}$ of $\text{Der}(\mathfrak{n})$ is given by the diagonal matrices

$$\operatorname{diag}(2A_3^3 + 2A_4^4, 2A_3^3 + A_4^4, 2A_3^3, A_4^4, A_3^3 + A_4^4, \dots, A_3^3 + A_4^4).$$
(8)

A direct computation shows that the only element in \mathcal{N} which commutes with all the elements in \mathcal{T} is the trivial one, that is, the 2-dimensional toral subalgebra \mathcal{T} is a Cartan subalgebra of \mathcal{R} . Moreover, $[\mathcal{T}, \mathcal{L}] = 0$, hence $\mathcal{T} \oplus \mathcal{L}$ is the centralizer of \mathcal{T} in $\text{Der}(\mathfrak{n}) = \mathcal{R} + \mathcal{L}$, and, since \mathcal{L} is isomorphic to $\mathfrak{sp}(2n, \mathbb{C})$, a maximal toral subalgebra \mathcal{M} of $\text{Der}(\mathfrak{n})$ is $\mathcal{M} = \mathcal{T} \oplus \mathcal{D}$, where

$$\mathcal{D} = \{ \text{diag}(0, 0, 0, 0, z_1, \dots, z_n, -z_1, \dots, -z_n) : z_k \in \mathbb{C} \}$$

is the subalgebra of diagonal matrices of \mathcal{L} . Consequently, any element y in the centralizer of \mathcal{M} in $\text{Der}(\mathfrak{n})$ is the sum $y = y_0 + y_1$ with $y_0 \in \mathcal{T}$ and y_1 in the centralizer of \mathcal{M} in \mathcal{L} , hence, *a fortiori*, in the centralizer of \mathcal{D} in \mathcal{L} . Since \mathcal{L} is simple, the element y_1 has to be contained in \mathcal{D} , thus \mathcal{M} is also a Cartan subalgebra of $\text{Der}(\mathfrak{n})$, and the rank of $\text{Der}(\mathfrak{n})$ is n+2.

3. A solvable extension of \mathfrak{n} . Note that, as \mathcal{L} is simple, the largest extension of \mathfrak{n} , whose solvable radical is \mathfrak{n} and which has no semisimple ideal, is the non-splitting extension $\mathfrak{g} = \mathfrak{n} + \mathcal{L}$. On the other hand, a solvable extension \mathfrak{s} , for which \mathfrak{n} is the nilpotent radical, has an Abelian quotient algebra $\mathfrak{s}/\mathfrak{n}$, and in the following we show that the case where \mathfrak{n} is maximal can be thoroughly described.

Assume \mathfrak{s} is a solvable complex Lie algebra the commutator ideal of which is a nilpotent Lie algebra \mathfrak{n} of type $\{2n + 2, 1, 1\}$ having codimension one in \mathfrak{s} ; more precisely, we have

$$\mathfrak{s} = \langle s \rangle_{\mathbb{C}} + \mathfrak{n}$$

with s defining a derivation $\delta : x \mapsto [s, x]$ of \mathfrak{n} that we may represent, with respect to the given basis, by the sum of the matrices in (6), (7), and (8). Also, up to the inner derivation

$$x \mapsto \Big[-A_1^4 u^2 - A_2^4 u^3 + A_2^3 u^4 - \sum_{i=1}^n G_1^i v^i + \sum_{i=1}^n D_1^i w^i, \, x \Big],$$

we may take in (7) $A_1^4 = A_2^4 = A_2^3 = G_1^i = D_1^i = 0$ (i = 1, 2, ..., n). Since we are assuming $\mathfrak{s}' = \mathfrak{n}$, the square sub-matrix determined by the last 2n + 2 rows and columns must be non-singular and this requires that the eigenvalues $2A_2^2 - A_1^1$ and $A_1^1 - A_2^2$ are both $\neq 0$: thus, we may take $A_1^1 = 2A_2^2 - 1$ up to replacing s by $\frac{s}{2A_2^2 - A_1^1}$, and we can represent δ by the matrix

$(2A_2^2)$	-1 0	(0	0	0		0	0		0	\	
0) A	$\frac{2}{2}$	0	0	0		0	0		0		
A	${}^{3}_{1} 0$		1	0	0		0	0		0		
0) 0	A	1^{4}_{3}	$A_2^2 - 1$	G_2^1		G_2^n	$-D_{2}^{1}$		$-D_2^n$		
0) D	$\frac{1}{2}$	0	0	$A_2^2 - \frac{1}{2} +$	$-B_1^1$	B_n^1	F_{1}^{1}		F_n^1	1	
	:		:	:	÷	·	:	:	·	÷		(9)
	D	$\frac{n}{2}$	0	0	B_1^n	A_{2}^{2} -	$-\frac{1}{2}+B_n^n$	F_n^1		F_n^n		
0) G	$\frac{1}{2}$	0	0	H_1^1		H_n^1	$A_2^2 - \frac{1}{2} -$	B_1^1	$-B_1^n$	1	
	:		:	:	÷	·	÷	:	·			
	G	$\frac{n}{2}$	0	0	H_n^1		H_n^n	$-B_n^1$	A	$a_{2}^{2} - \frac{1}{2} - B_{n}^{n}$)	

Using automorphisms of the solvable radical (4) of $\operatorname{Aut}(\mathfrak{n})$ having null entries M_i^4 and N_i^4 , $i = 1, 2, \ldots, n$, we have

PROPOSITION 1. Up to automorphisms of \mathfrak{n} , the upper-left 4×4 minor A in (9) is one of the following:

$$i) \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ b & 0 & 0 & -1 \end{pmatrix}, \quad b = 1 \text{ or } b = 0;$$

$$ii) \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & c & 1 \end{pmatrix}, \quad c = 1 \text{ or } c = 0;$$

$$iii \begin{pmatrix} 2a - 1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & a - 1 \end{pmatrix}, \quad a \neq 0, 1, 2.$$

Proof. Automorphisms

$$\left(\begin{array}{c|c} L & 0\\ \hline 0 & L_4^4 V_3^3 I_{2n} \end{array}\right),$$

of the solvable radical of $\operatorname{Aut}(\mathfrak{n})$ move A to LAL^{-1} . We list, for each item in the statement, the conditions on the entries of L we need to achieve the claimed canonical form for A.

- *i*) Let $A_1^1 = -1$ and $A_2^2 = 0$. Take $L_1^3 = \frac{A_1^3 L_3^3}{2}$, $L_2^3 = L_2^4 = 0$, $L_3^4 = -\frac{A_3^4 L_4^4}{2}$ and, if $A_1^3 A_3^4 \neq 0$, $L_3^3 = -\frac{A_1^3 A_3^4}{L_4^4}$.
- *ii*) Let $A_1^1 = 3$ and $A_2^2 = 2$. Take $L_1^3 = -\frac{A_1^3 L_3^3}{2}$, $L_2^3 = L_2^4 = 0$, $L_1^4 = -\frac{A_1^3 (2L_3^4 + A_3^4 L_4^4)}{4}$ and, if $A_3^4 \neq 0$, $L_3^3 = A_3^4 L_4^4$.

iii) Let the eigenvalues of A be distinct. Take $L_1^3 = -\frac{A_1^3 L_3^3}{2(A_2^2 - 1)}$, $L_2^3 = L_2^4 = 0$, $L_1^4 = -\frac{A_1^3 A_3^4 L_4^4}{(A_2^2 - 2)A_2^2}$, $L_3^4 = \frac{A_3^4 L_4^4}{(A_2^2 - 2)}$. \Box

Since the Levi complement of the automorphism group of \mathfrak{n} , isomorphic to $\operatorname{Sp}(2n, \mathbb{C})$, operates on the subalgebra of derivations in (6) with A = D = G = 0, isomorphic to $\mathfrak{sp}(2n, \mathbb{C})$, looking at the Table II in [9] we see that

PROPOSITION 2. Conjugations by automorphisms in the Levi complement (5) allow one to put the submatrix (B_j^i) in (9) into Jordan canonical form, as well as make H zero and F diagonal with diagonal entries 0 and 1 where, if $F_i^i = 1$, the corresponding row B^i of (B_j^i) is zero. Moreover, coordinates can be chosen in such a way (B_j^i) and $-(B_j^i)^T$ do not share nonzero eigenvalues. \Box

In order to get the desired canonical representation for δ , we have only to arrange the columns D_2 and G_2 of the sub-matrices D and G in (9) by using automorphisms which preserve the results obtained by Propositions 1 and 2, automorphisms such as the ones belonging to the solvable radical (4) of Aut(\mathfrak{n}) with $L_j^i = \delta_j^i$.

Choose coordinates in such a way that, if (B_j^i) has eigenvalue $\frac{1}{2}$ the Jordan sub-matrix of (B_j^i) corresponding to such an eigenvalue is confined in the last n-m rows and columns $(0 \le m < n)$. As (B_j^i) and $-(B_j^i)^{\mathrm{T}}$ do not share nonzero eigenvalues (Proposition 2), we obtain non-sigular matrices, say Y and Z, taking the first m rows and columns of $\frac{1}{2}I_n + (B_j^i)$ and $\frac{1}{2}I_n - (B_j^i)^{\mathrm{T}}$. Then it is well-defined the automorphism in the solvable radical (4) with $L_s^r = \delta_s^r$, $P_1^j = S_1^j = 0$ for all j, $M_k^4 = N_k^4 = 0$ for $m+1 \le k \le n$ and

$$(M_1^4, \dots, M_m^4) = -(G_2^1, \dots, G_2^m)Y^{-1};$$

$$(N_1^4, \dots, N_m^4) = -((D_2^1, \dots, D_2^m) + (M_1^4, \dots, M_m^4)F)Z^{-1}.$$

Such an automorphism turns (G_2^1, \ldots, G_2^m) and (D_2^1, \ldots, D_2^m) into zero vectors: thus, we may assume that $\frac{1}{2}$ is the unique eigenvalue of (B_j^i) .

As above, we can make zero all the entries G_2^i (i = 1, ..., n) as well as all the entries D_2^i , provided the corresponding column of $\frac{1}{2}I_n - (B_j^i)^T$ is not zero. Let $D_2^{i_1}, D_2^{i_2}, ..., D_2^{i_m}$ be the entries corresponding to the zero columns of $\frac{1}{2}I_n - (B_j^i)^T$: clearly $i_m = n$ and we can arrange coordinates in such a way $i_1 \leq i_r - i_{r-1} \leq i_{r+1} - i_r$ for all 1 < r < m.

Let

$$(B_j^i) = J_{i_1}(\frac{1}{2}) \oplus J_{i_2-i_1}(\frac{1}{2}) \oplus \ldots \oplus J_{i_m-i_{m-1}}(\frac{1}{2})$$

be the decomposition of (B_j^i) into Jordan blocks. Since the centralizer in $\operatorname{GL}(l, \mathbb{C})$ of the $l \times l$ Jordan block $J_l(\lambda)$ of eigenvalue λ is spanned by the powers $J_l(0)^k$ for $k = 0, \ldots, l-1$, the centralizer of $(B_j^i) \oplus -(B_j^i)^{\mathrm{T}}$ in $\operatorname{Sp}(2n, \mathbb{C})$ consists of the matrices $C \oplus C^{-\mathrm{T}}$ with

$$C := \begin{pmatrix} C11 & C12 & \dots & C1m \\ C21 & C22 & & C2m \\ \vdots & & \ddots & \vdots \\ Cm1 & Cm2 & \dots & Cmm \end{pmatrix},$$
 (10)

where each block Crs is either of the form $K = \sum a_k(r,s)J_l(0)^k$, with $a_k(r,s) \in \mathbb{C}$, if $i_r - i_{r-1} = i_s - i_{s-1} = l$, or of the form $\left(\frac{K}{0}\right)$, if $i_r - i_{r-1} > i_s - i_{s-1} = l$, or of the form (0|K), if $l = i_r - i_{r-1} < i_s - i_{s-1}$.

In order to make zero more entries D_2^i , we have to change coordinates using the automorphism of the Levi complement (5) of Aut(\mathfrak{n}) defined through (10), where we take $C_{rs} = 0$ for r > s, $b_{rs} = \ldots = c_{rs} = 0$ for all r, s and $a_{rr} \neq 0$ for all r with m-1 of the vectors (a_{11}, \ldots, a_{1m}) , $(0, a_{22}, \ldots, a_{2m})$, $\ldots \ldots$, $(0, \ldots, 0, a_{m-1\,m-1}, a_{m-1\,m})$, $(0, \ldots, 0, a_{mm})$ belonging to the vector hyperplane $\sum_{r=1}^{m} D_2^{i_r} x_r = 0$, and the remaining one in the affine hyperplane $\sum_{r=1}^{m} D_2^{i_r} x_r = 1$: such an automorphism moves the column vector $D_2 = (0, \ldots, 0, D_2^{i_1}, \ldots, 0, \ldots, 0, D_2^{i_m})$ to a vector with n-1 entries zero and the remaining one equal to 1 for some of the row indexes $\{i_1, i_2, \ldots, i_m\}$. Thus, we can state

THEOREM 3. Let $\mathfrak{s} = \langle s \rangle_{\mathbb{C}} + \mathfrak{n}$ be a solvable extension of a complex nilpotent Lie algebra \mathfrak{n} of type $\{2n + 2, 1, 1\}$. \mathfrak{n} is the commutator ideal of \mathfrak{s} precisely if the derivation $x \mapsto [s, x]$ of \mathfrak{n} can be represented by means of a matrix

$$\left(\begin{array}{ccc} A & 0 & C \\ D & E & F \\ 0 & 0 & K \end{array}\right)$$

with

$$-A := \begin{pmatrix} 2a-1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ b & 0 & 1 & 0 \\ 0 & 0 & c & a-1 \end{pmatrix}, \text{ where } a \neq 1 \text{ and either } b = c = 0, \text{ or } b = 1 \text{ if } a = 0, \text{ or } c = 1 \text{ if } a = 2;$$

 $- E \in \operatorname{GL}_n$ the direct sum $E(e_1) \oplus E(e_2) \oplus \ldots \oplus E(e_t)$ of Jordan matrices of distinct nonzero eigenvalues e_1, \ldots, e_t with

$$E(e_i) = J_{i_1}(e_i) \oplus J_{i_2-i_1}(e_i) \oplus \ldots \oplus J_{i_m-i_{m-1}}(e_i) \quad (i = 1, 2, \ldots, t)$$

the decomposition of $E(e_i)$ into Jordan blocks, $i_1 \leq i_r - i_{r-1} \leq i_{r+1} - i_r$ for all 1 < r < m;

$$-K := (2a-1)I_n - E^T;$$

 $-F \in M_{n \times n}$ a diagonal matrix, where the only non-zero entries F_j^j can possibly occur if some e_i is equal to $a - \frac{1}{2}$ and $j \in \{i_1, \ldots, i_m\}$, and in this case $F_j^j = 1$;

 $-D \in M_{n \times 4}$, where at most one non-zero entries D_2^j can possibly occur if some e_i is equal to a and $j \in \{i_1, \ldots, i_m\}$, and in this case $D_2^j = 1$;

 $-C \in \mathcal{M}_{4 \times n}$ with entries $C_s^r = 0$, excepting $C_s^4 = -D_2^s$. \Box

REMARK 4. From the proof of Theorem 3 it turns out that the parameter a and the Jordan canonical form of E are invariants. Furthermore, if $e_i = a - \frac{1}{2}$ for some $i \in \{1, \ldots, t\}$, the number of entries $F_j^j = 1, j \in \{i_1, \ldots, i_m\}$, is also an invariant, as well as the size of the row index $j \in \{i_1, \ldots, i_m\}$ of the entry $D_2^j = 1$ in case $e_i = a$ for some $i \in \{1, \ldots, t\}$.

References

- J. M. Ancochea Bermúdez, R. Campoamor-Stursberg, Proof of the rigidity of model nilpotent Lie algebras by means of the Internal Set Theory in A mathematical tribute to Professor José María Montesinos Amilibia, ISBN 978-84-608-1684-3, (2016), 63-73
- [2] J. M. Ancochea Bermúdez, M. Goze, Sur la classification des algbres de Lie nilpotentes de dimension 7, C. R. Acad. Sci., Paris, Sér. I 302 (1986) 611-613.
- [3] J. M. Ancochea Bermúdez, M. Goze, Classification des algèbres de Lie filiformes de dimension 8, Archiv Math. 50 (1988), 511-525.
- [4] J. M. Ancochea Bermúdez, M. Goze, Classification des algèbres de Lie nilpotentes de dimension 7, Archiv Math. 52 (1989), 175-185.
- [5] J. M. Ancochea Bermúdez, M. Goze, On the varieties of nilpotent Lie algebras of dimension 7 and 8, J. of Pure and Appl. Algebra 77:2 (1992), 131-140.
- [6] C. Bartolone, A. Di Bartolo and G. Falcone, Nilpotent Lie algebras with 2dimensional commutator ideals, Linear Algebra Appl. 434 (2011), 650-656.
- [7] G. Belitskii, R. Lipyanski and V. V. Sergeichuk, Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild, Linear Algebra Appl. 407 (2005), 249-262.
- [8] Biggs R., Falcone G., A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms, Diff. Geom. Appl. 54 (2017), 251263.
- [9] Burgoyne N., Cushman R., Coniugacy classes in linear groups, J. Algebra 44 (1977), 339-362.
- [10] Falcone G., Figula Å., The action of a compact Lie group on nilpotent Lie algebras of type {n, 2}, Forum Math., 28 (2016), 795-806.

- [11] Gómez J.R., Jimenéz-Merchána A., Khakimdjanova, Y. Low-dimensional filiform Lie algebras, J. Pure Appl. Algebra 130 (1998), 133-158.
- [12] Goze, M., Remm, E. k-step nilpotent Lie algebras Georgian Math. Jour., 22 (2015), 219-234
- [13] A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), 127-136.
- [14] Kaplan A., On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35-42.
- [15] Khuhirun, B., Misra, K.C., Stitzinger, E., On nilpotent Lie algebras of small breadth Jour. of Algebra 444 (2015), 328-338
- [16] Remm E., Breadth and characteristic sequence of nilpotent Lie algebras, Comm. in Algebra 45 (2017), 2956-2966
- [17] Seeley C., Some nilpotent Lie algebras of even dimensions, Bull. Austral. Math. Soc. 45 (1992), 71-77.
- [18] Tamaru H. and Yoshida H., Lie groups locally isomorphic to generalized Heisenberg groups, Proc. Amer. Math. Soc. 136 (2008), 3247-3254.
- [19] Vergne M., Cohomologie des algébres de Lie nilpotentes. Application á l'étude de la variété des algebres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81-116.
- [20] Wilson E. N., Isometry groups on homogeneous nilmanifolds, Geom. Dedicata 12 (1982), 337-346.

C. Bartolone, A. Di Bartolo, G. Falcone

Dipartimento di Matematica e Informatica, Università di Palermo,

Via Archirafi 34, I90123 Palermo, Italy

 $Email:\ claudio.bartolone@unipa.it;\ alfonso.dibartolo@unipa.it;\ giovanni.falcone@unipa.it;\ alfonso.dibartolo@unipa.it;\ giovanni.falcone@unipa.it;\ alfonso.dibartolo@unipa.it;\ alfonso.$