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Abstract

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with
the aim to classify solvable complex Lie algebras the commutator ideals of which have
codimension 1 and are nilpotent Lie algebras of type {2n, 1, 1}.

1. Introduction. Classification results for solvable or nilpotent complex Lie algebras
are the subject of a large literature. For a nilpotent Lie algebra g with descending
central series g(i) =

[
g, g(i−1)

]
, M. Vergne defined in [19] the type {p1, . . . , pc} of g by

the integers pi := dim
(
g(i−1)/g(i)

)
. In the same paper, she defined and studied filiform

Lie algebras, that is, having type {2, 1, 1, . . . , 1}. Complex filiform Lie algebras became
thereafter the object of several works (e. g. [3], [4], [5], [11] and [17]) aiming to a thorough
classification in low dimension. Filiform n-dimensional Lie algebras g are precisely those
with characteristic sequence c(g) = (n− 1, 1), where the characteristic sequence c(g) of a
Lie algebra g was defined in [2] as the maximum sequence, in the lexicographic ordering,
of the dimensions of the Jordan blocks of adx. The breadth b(g) of a Lie algebra g has
been recently introduced in [15] as the maximum of the dimensions of the images of
adx, for all x ∈ g, in order to classify Lie algebras where this invariant is small, and the
connection between the breadth and the characteristic sequence has been pointed out in
[16]: if c(g) = (c1, . . . , ck, 1), then b(g) = c1 + . . .+ ck − k.

On the opposite side to filiform Lie algebras, the most simple nilpotent complex Lie
algebras are the (2n+ 1)-dimensional Heisenberg Lie algebras, which have type {2n, 1},
characteristic sequence c(g) = (2, 1, . . . , 1), breadth b(g) = 1, and are defined on a (2n+1)-
dimensional complex vector space h = V + 〈x〉 by means of a non-degenerate alternating
form F : V ×V → C putting [u, v] := F (u, v)x, for any u, v ∈ V . These algebras and their
real forms, often in connection with a left invariant metric, have been widely investigated
in the last thirty years (for instance in [13], [14], [18], [20]), as they offer a basic model
for nilmanifolds.

As well as the type {2n, 1} characterizes, up to a central summand, (2n+1)-dimensional
Heisenberg Lie algebras, the dimension of nilpotent Lie algebras of type {2n, 1, 1} deter-
mines them uniquely (see [6]). The minimal dimension for such algebras is four; more
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precisely, we have the filiform Lie algebra

n4 := 〈u1, u2, u3, u4〉C

defined through the relations

[u2, u4] = u1, [u3, u4] = u2, (1)

corresponding to the Lie algebra g1,0,1 with c(g1,0,1) = (3, 1) recently described in [12,
3.2, Example (2)] and in [16, 2.1, Prop. 6 (3)]. Manifestly n4 modulo its centre 〈u1〉C is
the 3-dimensional Heisenberg Lie algebra. More generally (see [6]), for any non-negative
integer n, up to a central summand the complex Lie algebra n of type {2n + 2, 1, 1}
decomposes, as a vector space, into the direct sum of vector spaces

n = n4 + v + w, (2)

where
v = 〈v1, v2, . . . , vn〉C, w = 〈w1, w2, . . . , wn〉C

are Abelian Lie subalgebras of dimension n which fulfill the relations

[vi, wj ] = δiju
1, (3)

that is, modulo the centre we obtain the direct sum of the 3-dimensional Heisenberg Lie
algebra by a 2n-dimensional Abelian Lie algebra. Hence n is a nilpotent Lie algebra of
breadth b(n) = 2 with characteristic sequence c(n) = (3, 1, . . . , 1), and as such it appears
in [16, 2.1, Prop. 6 (3)], and as a linear deformation of the Lie algebra g1,0,n−3 in [12,
3.2, Example (2)].

Moreover, the ideal
h = 〈u1〉C + v + w,

is manifestly isomorphic to the (2n + 1)-dimensional Heisenberg algebra, hence n is the
direct sum with amalgamated centre of n4 and h:

n =
n4 × h

〈(u1,−u1)〉

Solvable extensions of nilpotent Lie algebras with any given characteristic sequence
have been the object of investigation in [1], whereas solvable extensions of nilpotent real
Lie algebras of type {n, 2} by a derivation contained in a compact Lie algebra have been
considered in [10] and [8]. This paper, instead, is a first step in classifying solvable
extensions of nilpotent complex Lie algebras of type {2n + 2, 1, 1}; more precisely, we
classify in section 3 extensions s of a nilpotent complex Lie algebra n of type {2n+2, 1, 1}
with dim s/n = 1 and s′ = n. In order to obtain the classification we determine in section
2 the full automorphism group of n and the Lie algebra of derivations of n. As the
Heisenberg algebra appears as the 3-codimensional ideal h of n, the automorphism group
and the derivation algebra of n contain the symplectic group and algebra, respectively,
as the Levi complements. Thus, it was necessary to know the orbits in sp(2n,C) under
the action of Sp(2n,C). This is a particular case of a classic problem, which goes back
to Weierstrass, Kronecker, and Frobenius, then continues with a series of papers by
Williamson, Zassenhaus, Wall, Cikunov, Springer and Steinberg, and Milnor, and which
is finally treated in a unified solution by Burgoyne and Cushman in [9], the paper from
which we take the description of the action of Sp(2n,C) on sp(2n,C).

A canonical form for a given derivation of n turned out to be parametrized by a com-
plex number and a set of eigenvalues, corresponding to the Jordan form of the derivation
(cf. Theorem 3).
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2. Automorphisms and derivations of n. Throughout the paper n will denote
the nilpotent complex Lie algebra of type {2n+ 2, 1, 1} given in (2) and defined through
the relations (1) and (3). Referring to the basis u1, . . . , u4, v1, . . . , vn, w1, . . . , wn, we
notice that an automorphism ϕ ∈ Aut(n) leaves the flag of ideals

z = 〈u1〉C, n′ = 〈u1, u2〉C, k1 = 〈u1, u2, u3〉C, k2 = 〈u1, u2, u3, v1, . . . , vn, w1, . . . , wn〉C

invariant, because the first is the centre of n, the second is the commutator ideal of
n, the fourth is the centralizer of n′ and the third is its centre. Notice that, putting
ϕ(u4) = α1u

1 + α2u
2 + α3u

3 + α4u
4 + p, for some p ∈ 〈v1, . . . , vn, w1, . . . , wn〉C, the

coefficient α4 must be different from zero, otherwise the image under ϕ of an arbitrary
element of n would be contained in k2.

Moreover, the ideal

k3 := 〈u1, u2, v1, v2, . . . , vn, w1, w2, . . . , wn〉C

is invariant, as well. In fact, the image ϕ(vi), which belongs to the invariant ideal k2, has,
for some q ∈ 〈v1, . . . , vn, w1, . . . , wn〉C, the shape

ϕ(vi) = β1u
1 + β2u

2 + β3u
3 + q.

In view of the defining brackets

[u2, u4] = u1, [u3, u4] = u2, [vi, wj ] = δiju
1

of n, we see directly that

0 = ϕ(0) = ϕ([vi, u4]) = [β1u
1 + β2u

2 + β3u
3 + q, α1u

1 + α2u
2 + α3u

3 + α4u
4 + p]

= β2α4u
1 + β3α4u

2 + [q, p] = γu1 + β3α4u
2,

because [q, p] ∈ 〈u1〉C. Since α4 6= 0, it follows that β3 = 0, that is, ϕ(vi) ∈ k3. The
same argument holds for the image ϕ(wi). Thus, with respect to the given basis, the
automorphism ϕ can represented by

L1
1 0 0 0 0 . . . 0 0 . . . 0

L2
1 L2

2 0 0 0 . . . 0 0 . . . 0
L3

1 L3
2 L3

3 0 0 . . . 0 0 . . . 0
L4

1 L4
2 L4

3 L4
4 M4

1 . . . M4
n N4

1 . . . N4
n

P 1
1 P 1

2 0 0 Q1
1 . . . Q1

n R1
1 . . . R1

n

...
...

...
...

...
. . .

...
...

. . .
...

Pn
1 Pn

2 0 0 Qn
1 . . . Qn

n Rn
1 . . . Rn

n

S1
1 S1

2 0 0 T 1
1 . . . T 1

n U1
1 . . . U1

n

...
...

...
...

...
. . .

...
...

. . .
...

Sn
1 Sn

2 0 0 Tn
1 . . . Tn

n Un
1 . . . Un

n



.

Now, we have

[u2, u4] = u1 =⇒ L2
2L

4
4 = L1

1;

[u3, u4] = u2 =⇒ L3
2L

4
4 = L2

1 and L3
3L

4
4 = L2

2

and for i = 1, 2, . . . , n,

[u4, vi] = 0 =⇒
∑n

j=1(M4
jR

i
j −N4

jQ
i
j) = L4

4P
i
2 ;

[u4, wi] = 0 =⇒
∑n

j=1(M4
j U

i
j −N4

j T
i
j ) = L4

4S
i
2;
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whereas the fact that the ideal h = 〈u1〉C +v+w is isomorphic to the Heisenberg algebra,
that is, the conditions [vi, vj ] = [wi, wj ] = 0 and [vi, wj ] = δiju

1, says that

± 1√
L1

1



Q1
1 . . . Q1

n R1
1 . . . R1

n

...
. . .

...
...

. . .
...

Qn
1 . . . Qn

n Rn
1 . . . Rn

n

T 1
1 . . . T 1

n U1
1 . . . U1

n

...
. . .

...
...

. . .
...

Tn
1 . . . Tn

n Un
1 . . . Un

n


∈ Sp(2n,C)

Summing up, we obtain a Levi decomposition of Aut(n) by taking the matrices

(L4
4V

3
3 )2 0 0 0 0 . . . 0 0 . . . 0

L3
2L

4
4 L4

4(V 3
3 )2 0 0 0 . . . 0 0 . . . 0

L3
1 L3

2 (V 3
3 )2 0 0 . . . 0 0 . . . 0

L4
1 L4

2 L4
3 L4

4 M4
1 . . . M4

n N4
1 . . . N4

n

P 1
1 −N4

1V
3
3 0 0 L4

4V
3
3 . . . 0 0 . . . 0

...
...

...
...

...
. . .

...
...

. . .
...

Pn
1 −N4

nV
3
3 0 0 0 . . . L4

4V
3
3 0 . . . 0

S1
1 M4

1V
3
3 0 0 0 . . . 0 L4

4V
3
3 . . . 0

...
...

...
...

...
. . .

...
...

. . .
...

Sn
1 M4

nV
3
3 0 0 0 . . . 0 0 . . . L4

4V
3
3


(4)

as the solvable radical, and the matrices(
I4

X

)
with X ∈ Sp(2n,C) (5)

as a Levi complement.
Accordingly, a Levi complement L of Der(n) = Lie(Aut(n)) is given, with respect to

the same basis, by the matrices of the shape(
0

X

)
with X ∈ sp(2n,C), (6)

the nilradical N of Der(n) is given by the matrices of the shape

0 0 0 0 0 . . . 0 0 . . . 0
A3

2 0 0 0 0 . . . 0 0 . . . 0
A3

1 A3
2 0 0 0 . . . 0 0 . . . 0

A4
1 A4

2 A4
3 0 G4

1 . . . G4
n D4

1 . . . D4
n

D1
1 −D4

1 0 0 0 . . . 0 0 . . . 0
.
..

.

..
.
..

.

..
.
..

. . .
...

.

..
. . .

...
Dn

1 −D4
n 0 0 0 . . . 0 0 . . . 0

G1
1 G4

1 0 0 0 . . . 0 0 . . . 0
...

...
...

...
...

. . .
...

...
. . .

...
Gn

1 G4
n 0 0 0 . . . 0 0 . . . 0


(7)

(hence its nilpotency class is 3, that is, [N , [N ,N ]] is central) and one of its complements
T in the solvable radical R = T +N of Der(n) is given by the diagonal matrices

diag(2A3
3 + 2A4

4, 2A
3
3 +A4

4, 2A
3
3, A

4
4, A

3
3 +A4

4, . . . , A
3
3 +A4

4). (8)
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A direct computation shows that the only element in N which commutes with all the
elements in T is the trivial one, that is, the 2-dimensional toral subalgebra T is a Cartan
subalgebra of R. Moreover, [T ,L] = 0, hence T ⊕ L is the centralizer of T in Der(n) =
R+L, and, since L is isomorphic to sp(2n,C), a maximal toral subalgebra M of Der(n)
is M = T ⊕ D, where

D = {diag(0, 0, 0, 0, z1, . . . , zn,−z1, . . . ,−zn) : zk ∈ C}

is the subalgebra of diagonal matrices of L. Consequently, any element y in the centralizer
of M in Der(n) is the sum y = y0 + y1 with y0 ∈ T and y1 in the centralizer of M in L,
hence, a fortiori, in the centralizer of D in L. Since L is simple, the element y1 has to be
contained in D, thus M is also a Cartan subalgebra of Der(n), and the rank of Der(n) is
n+ 2.

3. A solvable extension of n. Note that, as L is simple, the largest extension
of n, whose solvable radical is n and which has no semisimple ideal, is the non-splitting
extension g = n + L. On the other hand, a solvable extension s, for which n is the
nilpotent radical, has an Abelian quotient algebra s/n, and in the following we show that
the case where n is maximal can be thoroughly described.

Assume s is a solvable complex Lie algebra the commutator ideal of which is a nilpotent
Lie algebra n of type {2n+ 2, 1, 1} having codimension one in s; more precisely, we have

s = 〈s〉C + n

with s defining a derivation δ : x 7→ [s, x] of n that we may represent, with respect to
the given basis, by the sum of the matrices in (6), (7), and (8). Also, up to the inner
derivation

x 7→
[
−A4

1u
2 −A4

2u
3 +A3

2u
4 −

∑n
i=1G

i
1v

i +
∑n

i=1D
i
1w

i, x
]
,

we may take in (7) A4
1 = A4

2 = A3
2 = Gi

1 = Di
1 = 0 (i = 1, 2, . . . , n). Since we are

assuming s′ = n, the square sub-matrix determined by the last 2n+ 2 rows and columns
must be non-singular and this requires that the eigenvalues 2A2

2 − A1
1 and A1

1 − A2
2 are

both 6= 0: thus, we may take A1
1 = 2A2

2 − 1 up to replacing s by s
2A2

2−A1
1
, and we can

represent δ by the matrix

2A2
2 − 1 0 0 0 0 . . . 0 0 . . . 0
0 A2

2 0 0 0 . . . 0 0 . . . 0
A3

1 0 1 0 0 . . . 0 0 . . . 0
0 0 A4

3 A
2
2−1 G1

2 . . . Gn
2 −D1

2 . . . −Dn
2

0 D1
2 0 0 A2

2 − 1
2

+B1
1 B1

n F 1
1 . . . F 1

n

...
...

...
...

...
. . .

...
...

. . .
...

Dn
2 0 0 Bn

1 A2
2 − 1

2
+Bn

n F 1
n . . . Fn

n

0 G1
2 0 0 H1

1 . . . H1
n A2

2 − 1
2
−B1

1 −Bn
1

...
...

...
...

...
. . .

...
...

. . .
...

0 Gn
2 0 0 H1

n . . . Hn
n −B1

n A2
2 − 1

2
−Bn

n



. (9)

Using automorphisms of the solvable radical (4) of Aut(n) having null entries M4
i and

N4
i , i = 1, 2, . . . , n, we have

Proposition 1 . Up to automorphisms of n, the upper-left 4 × 4 minor A in (9) is one
of the following:
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i)


−1 0 0 0
0 0 0 0
0 0 1 0
b 0 0 −1

, b = 1 or b = 0;

ii)


3 0 0 0
0 2 0 0
0 0 1 0
0 0 c 1

, c = 1 or c = 0;

iii


2a− 1 0 0 0

0 a 0 0
0 0 1 0
0 0 0 a− 1

 , a 6= 0, 1, 2.

Proof. Automorphisms (
L 0

0 L4
4V

3
3 I2n

)
,

of the solvable radical of Aut(n) moveA to LAL−1. We list, for each item in the statement,
the conditions on the entries of L we need to achieve the claimed canonical form for A.

i) Let A1
1 = −1 and A2

2 = 0. Take L3
1 =

A3
1L

3
3

2
, L3

2 = L4
2 = 0, L4

3 = −A4
3L

4
4

2
and, if

A3
1A

4
3 6= 0, L3

3 = −A3
1A

4
3

L4
4

.

ii) Let A1
1 = 3 and A2

2 = 2. Take L3
1 =−A3

1L
3
3

2
, L3

2 =L4
2 = 0, L4

1 = −A3
1(2L

4
3+A4

3L
4
4)

4
and,

if A4
3 6= 0, L3

3 = A4
3L

4
4.

iii) Let the eigenvalues of A be distinct. Take L3
1 = − A3

1L
3
3

2(A2
2−1)

, L3
2 = L4

2 = 0, L4
1 =

− A3
1A

4
3L

4
4

(A2
2−2)A2

2
, L4

3 =
A4

3L
4
4

(A2
2−2)

. 2

Since the Levi complement of the automorphism group of n, isomorphic to Sp(2n,C),
operates on the subalgebra of derivations in (6) with A = D = G = 0, isomorphic to
sp(2n,C), looking at the Table II in [9] we see that

Proposition 2 . Conjugations by automorphisms in the Levi complement (5) allow one
to put the submatrix (Bi

j) in (9) into Jordan canonical form, as well as make H zero and
F diagonal with diagonal entries 0 and 1 where, if F i

i = 1, the corresponding row Bi of
(Bi

j) is zero. Moreover, coordinates can be chosen in such a way (Bi
j) and −(Bi

j)
T do

not share nonzero eigenvalues. 2

In order to get the desired canonical representation for δ, we have only to arrange the
columns D2 and G2 of the sub-matrices D and G in (9) by using automorphisms which
preserve the results obtained by Propositions 1 and 2, automorphisms such as the ones
belonging to the solvable radical (4) of Aut(n) with Li

j = δij .
Choose coordinates in such a way that, if (Bi

j) has eigenvalue 1
2

the Jordan sub-matrix
of (Bi

j) corresponding to such an eigenvalue is confined in the last n−m rows and columns
(0 ≤ m < n). As (Bi

j) and −(Bi
j)

T do not share nonzero eigenvalues (Proposition 2),
we obtain non-sigular matrices, say Y and Z, taking the first m rows and columns of
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1
2
In + (Bi

j) and 1
2
In − (Bi

j)
T. Then it is well-defined the automorphism in the solvable

radical (4) with Lr
s = δrs , P j

1 = Sj
1 = 0 for all j, M4

k = N4
k = 0 for m+ 1 ≤ k ≤ n and

(M4
1 , . . . ,M

4
m) = −(G1

2, . . . , G
m
2 )Y −1;

(N4
1 , . . . , N

4
m) = −

(
(D1

2, . . . , D
m
2 ) + (M4

1 , . . . ,M
4
m)F

)
Z−1.

Such an automorphism turns (G1
2, . . . , G

m
2 ) and (D1

2, . . . , D
m
2 ) into zero vectors: thus,

we may assume that 1
2

is the unique eigenvalue of (Bi
j).

As above, we can make zero all the entries Gi
2 (i = 1, . . . , n) as well as all the entries

Di
2, provided the corresponding column of 1

2
In−(Bi

j)
T is not zero. Let Di1

2 , D
i2
2 , . . . , D

im
2

be the entries corresponding to the zero columns of 1
2
In − (Bi

j)
T: clearly im = n and we

can arrange coordinates in such a way i1 ≤ ir − ir−1 ≤ ir+1 − ir for all 1 < r < m.
Let

(Bi
j) = Ji1( 1

2
)⊕ Ji2−i1( 1

2
)⊕ . . . ⊕ Jim−im−1( 1

2
)

be the decomposition of (Bi
j) into Jordan blocks. Since the centralizer in GL(l,C) of the

l×l Jordan block Jl(λ) of eigenvalue λ is spanned by the powers Jl(0)k for k = 0, . . . , l−1,
the centralizer of (Bi

j)⊕−(Bi
j)

T in Sp(2n,C) consists of the matrices C ⊕ C−T with

C :=


C11 C12 . . . C1m
C21 C22 C2m

...
. . .

...
Cm1 Cm2 . . . Cmm

 , (10)

where each block Crs is either of the form K =
∑
ak(r, s)Jl(0)k, with ak(r, s) ∈ C, if

ir − ir−1 = is − is−1 = l, or of the form
(
K
0

)
, if ir − ir−1 > is − is−1 = l, or of the form

(0|K), if l = ir − ir−1 < is − is−1.
In order to make zero more entries Di

2, we have to change coordinates using the
automorphism of the Levi complement (5) of Aut(n) defined through (10), where we take
Crs = 0 for r > s, brs = . . . = crs = 0 for all r, s and arr 6= 0 for all r with m − 1
of the vectors (a11, . . . , a1m), (0, a22, . . . , a2m), . . . . . . , (0, . . . , 0, am−1m−1, am−1m),
(0, . . . , 0, amm) belonging to the vector hyperplane

∑m
r=1D

ir
2 xr = 0, and the remaining

one in the affine hyperplane
∑m

r=1D
ir
2 xr = 1: such an automorphism moves the column

vector D2 = (0, . . . , 0, Di1
2 , . . . . . . , 0, . . . , 0, D

im
2 ) to a vector with n − 1 entries zero

and the remaining one equal to 1 for some of the row indexes {i1, i2, . . . , im}. Thus, we
can state

Theorem 3 . Let s = 〈s〉C +n be a solvable extension of a complex nilpotent Lie algebra n
of type {2n+ 2, 1, 1}. n is the commutator ideal of s precisely if the derivation x 7→ [s, x]
of n can be represented by means of a matrix A 0 C

D E F
0 0 K


with

− A :=


2a− 1 0 0 0

0 a 0 0
b 0 1 0
0 0 c a− 1

 , where a 6= 1 and either b = c = 0, or b = 1 if

a = 0, or c = 1 if a = 2;
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− E ∈ GLn the direct sum E(e1)⊕E(e2)⊕ . . . ⊕E(et) of Jordan matrices of distinct
nonzero eigenvalues e1, . . . , et with

E(ei) = Ji1(ei)⊕ Ji2−i1(ei)⊕ . . . ⊕ Jim−im−1(ei) (i = 1, 2, . . . , t)

the decomposition of E(ei) into Jordan blocks, i1 ≤ ir−ir−1 ≤ ir+1−ir for all 1 < r < m;

− K := (2a− 1)In − ET;

− F ∈ Mn×n a diagonal matrix, where the only non-zero entries F j
j can possibly occur

if some ei is equal to a− 1
2

and j ∈ {i1, . . . , im}, and in this case F j
j = 1;

− D ∈ Mn×4, where at most one non-zero entries Dj
2 can possibly occur if some ei is

equal to a and j ∈ {i1, . . . , im}, and in this case Dj
2 = 1;

− C ∈ M4×n with entries Cr
s = 0, excepting C4

s = −Ds
2. 2

Remark 4 . From the proof of Theorem 3 it turns out that the parameter a and the Jordan
canonical form of E are invariants. Furthermore, if ei = a − 1

2
for some i ∈ {1, . . . , t},

the number of entries F j
j = 1, j ∈ {i1, . . . , im}, is also an invariant, as well as the size of

the row index j ∈ {i1, . . . , im} of the entry Dj
2 = 1 in case ei = a for some i ∈ {1, . . . , t}.
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de dimension 7, Archiv Math. 52 (1989), 175-185.
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