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Abstract In the framework of preference rankings, the interest can lie in clustering individuals
or items in order to reduce the complexity of the preference space for an easier interpretation
of collected data. The last years have seen a remarkable flowering of works about the use of
decision tree for clustering preference vectors. As a matter of fact, decision trees are useful and
intuitive, but they are very unstable: small perturbations bring big changes. This is the reason
why it could be necessary to use more stable procedures in order to clustering ranking data.
In this work, a Projection Clustering Unfolding (PCU) algorithm for preference data will be
proposed in order to extract useful information in a low-dimensional subspace by starting from
an high but mostly empty dimensional space. Comparison between unfolding configurations
and PCU solutions will be carried out through Procrustes analysis.

Keywords Projetion pursuit · Preference data · Clustering rankings

Riassunto Nell’ambito delle classifiche di preferenza, uno degli obiettivi potrebbe consistere
nel raggruppare gli individui o gli oggetti al fine di ridurre la complessità dello spazio di prefe-
renza, per un’interpretazione più semplice dei dati raccolti. Gli ultimi anni hanno visto una
notevole fioritura di articoli sull’uso degli alberi decisionali per il raggruppamento dei vettori
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di preferenze. Tuttavia va detto che, se da un lato gli alberi decisionali sono utili e intuitivi,
dall’altro sono molto instabili: piccole perturbazioni possono condurre a grandi cambiamenti.
Questo è il motivo per cui potrebbe essere necessario utilizzare procedure più stabili al fine
di raggruppare i dati di ranking. In questo lavoro, verrà proposto un algoritmo di Projection
Clustering Unfolding (PCU) per i dati delle preferenze per estrarre informazioni utili in un
sottospazio a bassa dimensione partendo da uno spazio dimensionale alto ma per lo più vuoto.
Il confronto tra le configurazioni di proiezione e le soluzioni PCU sarà effettuato attraverso
l’analisi procustiana.
Parole chiave Tecniche di proiezione - Dati di prferenza - Tecniche di raggruppamento per
graduatorie

1 Introduction

Projection pursuit includes a lot of techniques for finding interesting projections of multivariate
data in low dimensional spaces (Friedman and Tukey, 1974). One particular structure is that
of clusters in the data. Projection Pursuit Clustering (PPC) is a synthesis of projection pursuit
and nonhierarchical clustering methods that simultaneously attempts to cluster the data and to
find a low-dimensional representation of this cluster structure. As introduced by Huber (1985),
a Projection Pursuit (PP) algorithm consists of two components: an index function I(α) that
measures the “usefulness” of projection and a search algorithm that varies the projection di-
rection so as to find the optimal projections, given the index function I(α) and the data set X.
In this work we propose an iterative strategy that combine suitable clustering methods for pref-
erence rankings with Multidimensional unfolding techniques. We call our proposal Projection
Clustering Unfolding. All the methodology is illustrated and evaluated on one real and well
known dataset.

2 Preference data

In every day life ranking and classification are basic cognitive skills that people use in order to
graduate everything that they experience. Grouping and ordering a set of elements is considered
easy and communicative, so often it happens to observe rankings of sport-teams, universities,
countries and so on. A particular case of ranking data is represented by preference data, in
which individuals show their preferences over a set of alternatives, items from now on. Since
preference rankings can be considered as indicators of individual behaviours, when subject-
specific characteristics are available, an important issue relies on the identification of profiles
of respondents giving same/similar rankings.
Ranking data arise when a group of judges is asked to rank a fixed set of objects (items)
according to their preferences. When ranking k items, labeled 1, . . . k, a ranking π is a mapping
function from the set of items {1, . . . , k} to the set of ranks {1, . . . , k}, endowed with the
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natural ordering of integers, where π(i) is the rank given by the judge to item i 1. When all k
items are ranked in k distinct ranks, we observe a complete ranking or linear ordering (Cook
et al., 1986). Yet, it is also possible that a judge fails to distinguish between two or more
objects and assigns them equally, thus resulting in a tied ranking or weak ordering. Besides
complete and tied rankings, partial and incomplete rankings exist: the first occurs when only
a specific subset of q < k objects are ranked by judges, while incomplete ranking occurs when
judges are free to rank different subsets of k objects (Cook et al., 1986). Obviously, different
types of ordering will generate different sample space of ranking data. With k objects there
are k! possible complete rankings; this number gets even larger when ties are allowed (for
the cardinality of the universe when ties are allowed refer to Good (1980) and Marcus (2013)).
From a methodological point of view, preference analysis often models the probability for certain
preference structures, finally providing the probabilities for choosing one single object. Many
models have been proposed over the years, such as order statistics models, distance-based
models and Bradley-Terry models. Moreover, in order to incorporate subject specific covariates,
extension of the above mentioned models have been proposed, such as distance based tree
models (Lee and Philip, 2010), decision tree models with ad-hoc impurity functions (Yu et al.,
2011; Plaia and Sciandra, 2017), distance-based multivariate trees for rankings (D’Ambrosio
and Heiser, 2016) and some log-linear version of standard Bradley-Terry models (Dittrich et al.,
1998). Recently, model-based clustering algorithms to analyse and explore ranking data have
been proposed in literature (Jacques and Biernacki, 2014; Biernacki and Jacques, 2013). Yet,
it is important to note that the classical cluster algorithm not always can be extended to
preference data, because the concept of clustering for this type of data is not unique: in presence
of preference data, clustering can be done over the individuals or over the objects. Often rank
data can reveal simultaneous clusters of both individuals and items.

3 Projection pursuit

Projection pursuit includes a lot of techniques for finding interesting projections of multivariate
data in low dimensional projections (Friedman and Tukey, 1974). One particular structure is
that of clusters in the data. Projection Pursuit Clustering (PPC) is a synthesis of projection
pursuit and nonhierarchical clustering methods that simultaneously attempts to cluster the
data and to find a low-dimensional representation of this cluster structure.
One of the most important features of PP is that it is one of the few multivariate methods able
to bypass the “curse of dimensionality” problem. Many of the methods of classical multivariate
analysis turn out to be special cases of PP, for example principal components and discriminant
analysis.
How does PP work? When PP is performed on a small number of dimension, it is possible
to examine essentially all such projections to select those of interest: the appearance of the

1 Preference rankings can be represented through either rank vectors (as in this paper) or order vectors
D’Ambrosio et al. (2015).
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projected data set does not change abruptly as the projection direction changes, and the space
of projection directions will be of low dimensionality. When the projection is made up in higher
dimensions, the appearance of the projected data will still smoothly change, but it becomes
increasingly impractical to explore possible projections exhaustively (Tukey and Tukey, 1981).
Projection pursuit works by associating a function value to each and every low-dimensional
projection. This function value must be a measure of ”interestingness” so it should be large for
projections revealing interesting structure, and small for uninteresting ones. Then, PP could
be defined as the process of making such selections by the local optimisation over projection
directions of some index of “interestingness”. The notion of “interesting projecion” has usually
been defined referring to departure from normality (Huber, 1985), but several alternatives have
been proposed also looking for multimodality (Nason and Sibson, 1992) or clustering. Once an
objective function I, called projection index and depending on a normalized projection vector α,
is assigned to every projection characterizing the structure present in the projection, interesting
projection are then automatically picked up through a numerical optimization of the projection
index. One of the most common problems in PP is the oscillating behaviour of the projection
indices: often procedures looking for the most interesting projection stop at the nearest local
optimum from the starting point. So several authors devoted their works to avoid the local
property of the optimization algorithm (Hall, 1988; Posse, 1995). A way for catching all and
only all significantly interesting projections is to extract them in a monotonic way from the
most structured projection to the less but still useful solution. In its classical notation a PP can
be summarized as follows. Let X be either a P−dimensional random vector (distributional) or
some P × N data matrix (sample). To form a univariate linear projection of X onto the real
line we require a P−vector a. This vector might as well be of unit length, since it is only the
direction of projection that is of interest. The projected data, Z , are formed by Z = a>X.
For a linear projection onto K (K < P ) dimensions we require a P × K matrix A, and the
projected data, Z, are formed by Z = A>X. If the columns of A form an orthonormal set then
the projection will be orthogonal.
The measure of “interestingness” evaluated by the projection index I, then will be expressed
as

I(Z) = I(A>X) = I(A).

These interesting projections will be evidence of structure within the multivariate set and may
form the basis of hypotheses which may be confirmed by more traditional statistical methods.

3.1 Projection Indexes

The aim of projection pursuit is to reveal possible non-linear and therefore interesting structures
hidden in the high-dimensional data. As introduced before, to what extent these structures are
“interesting” is measured by an index. Principal components analysis, for example, can be seen
as a projection pursuit method in which the index of “interestingness” I(a) is in this case the
proportion of the total variance accounted for by a linear combination a>X subject to the
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normalizing constraint a>a = 1. In this particular case, this projection index is simple to max-
imize and has an algebraic solution; however this is the exception rather than the rule. Most
projection indexes require an algorithm that will calculate I at values of a and maximize I
according to some numerical optimization routine.
Several projection indexes have been proposed in literature. Since the work of Huber (1985),
and more recently Hall and Li (1993), the notion of an “interesting projection” has been clearly
defined as one exhibiting departure from normality. Consequently, test for non-normality were
thought as suitable projection indexes. But it has also been shown that in order a projec-
tion index to be considered efficient, must satisfy basic requirements, namely affine invariance
(Huber, 1985), consistency (Hall, 1988), simplicity and sensitivity to departure from normal-
ity in the core rather than in the tails of the distribution. Friedman and Tukey (1974) de-
veloped a hill-climbing optimisation methods to find interesting projections. The index they
used for 1-dimensional projection pursuit can be written as a combination of two components
I(a) = s(a)d(a), where s(a) measures the general spread of the data, and d(a) measures the
local density of the data after projection onto a projection vector a. In defining a projection
index, Frieman and Tukey (1974) thought was interesting within a projection and tried to op-
timise a projection index to maximise this; as an alternative, Jones and Sibson (1987) defined
a measure of un-interesting projections and attempted to maximise divergence away from it.
Other projection indexes were based on some measure of entropy (Yenyukov, 1989); Jones and
Sibson (1987) developed an approximation to the entropy index, called the moment index,
which is based on summary statistics of the data (more precisely the third and fourth outer
product tensors). Very few projection pursuit indices incorporate class or group information in
the calculation. Hence, they cannot be adequately applied in supervised classification problems
to provide low dimensional projections revealing class differences in the data. Aim of the pro-
jection Pursuit Clustering (PPC) is to recover clusters in lower dimensional subspaces of the
data by simultaneously performing dimension reduction and clustering. Threfore, results from
a PPC algorithm could make possible to use them as a first step of unsupervised classification
problems.

4 Projection pursuit clustering

Bolton and Krzanowski (2003) define Projection Pursuit Clustering as the synthesis of a pro-
jection pursuit algorithm and nonhierarchical clustering methods that simultaneously attempts
to cluster the data and to find a low-dimensional representation of this cluster structure. Aim
of the PPC is to seek, in high dimensional data, a few interesting low-dimensional projection
that reveal differences between classes. PPC works as follows: iteratively it finds both an opti-
mal clustering for a subspace of given dimension and an optimal subspace for this clustering.
Some authors have already associated PP with clustering; for example Eslava and Marriott
(1994) proposed the use in a PP algorithm of projection indexes with class information able
to uncover low-dimensional cluster structure; Lee et al. (2005) proposed the LDA (linear dis-
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criminant analysis) projection pursuit index using class information through an extension of
the linear discriminant analysis idea. Lee and Cook (2010) developed a Penalized Discriminant
Analysis (PDA) index useful when data exhibit high correlation data or for situations with a
small number of observations over a large number of variables.
Other contributions looked at MDS (multidimensional scaling) in terms of projection pursuit
by identifying the stress function with the projection index and constrain the multidimensional
configuration to orthogonal projections of the data Borg and Groenen (1997). In a more recent
work Lee and Philip (2010) developed a projection pursuit classification tree, a new approach
to build a classification tree using projection pursuit indices with class information. A PP step
is performed at each node so that the best projection is used to separate two groups of classes
using various projection pursuit indices with class information. One class is assigned to only
one final node and the depth of the projection pursuit classification tree cannot be greater
than the number of classes. The projection coefficients of each node can be interpreted as the
importance of the variables to the class separation of each node; then the way in which these
coefficients change should be useful to explore how classes are separated in a tree.

5 Clustering preference data

In dealing with preference rankings, one of the main issues is to identify homogeneous sub-
populations of judges when heterogeneity among them is assumed. This is exactly the goal of
clustering methods. Projection pursuit-based clustering methods have been proposed over the
year in order to deal with a large variety of data (Friedman and Tukey, 1974; Bock, 1987; Heiser
and Groenen, 1997; Miasnikov et al., 2004). As a matter of fact, there are no proposals that allow
to deal with preference data. Preference rankings are characterized by a set of items, or objects,
and a set of judges, or individuals, that have to rank the items according to their preference.
Clustering methods for preference rankings can be done over the individuals (Murphy and
Martin, 2003; Jacques and Biernacki, 2014), or over the objects (Marden, 2014). Often rank
data can reveal simultaneous clusters of both individuals and items. Multidimensional unfolding
techniques can graphically show such a situation (De Soete and Heiser, 1993). Here we combine
suitable clustering methods for preference rankings with Multidimensional unfolding techniques.
Our approach is similar to the Cluster Differences Unfolding (CDU) (Vera et al., 2013), which
can be considered as the natural extension to Unfolding of the Cluster Difference Scaling (CDS)
(Heiser, 1993). The main difference is that CDU, which is devoted to metric Unfolding, performs
a cluster analysis over both the sets of individuals and objects, producing a configuration plot
that shows the bari-centers of the sets retaining their preference relationship.

Here we propose an iterative strategy that performs a non-hierarchical cluster analysis on only
one set, typically the individuals, leaving the other set free to be configured in the reduced
geometrical space in such a way that the relationships between the preference order of the indi-
viduals with respect to the items remain unchanged. We call our proposal Projection Clustering
Unfolding (PCU).
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5.1 The Projection Clustering Unfolding (PCU)

Unfolding can be seen as a particular Multidimensional Scaling technique for rectangular data,
in general showing preference of n persons for m objects. The most accepted formulation of
the problem in terms of a badness-of-fit function is given in a least squares framework by the
minimization of the stress function (Kruskal, 1964), defined as

σ2(A,B, ∆̂) =
n∑

i=1

m∑
j=1

(δ̂ij − dij)2, (1)

where ∆̂ is a n ×m matrix in which each entry δ̂ij represents the disparity or monotonically
transformed dissimilarity between the ith individual and the jth item, and dij = dij(A,B)
represents the Euclidean distance between the individuals’ (A) and items (B) configuration
points in P -dimensional space, i = 1, . . . , n, j = 1 . . . ,m (Borg and Groenen, 1997).
Here we assume that A = GX, where G is a n × K indicator matrix whose elements gik,
k = 1, . . . , K, are equal to one if the ith individual belongs to the kth cluster, and zero other-
wise. We assume that gik ∩ gil = ∅ for k 6= l = 1, . . . , K ∀i = 1, . . . , n. X is the k× P matrix of
the bari-centers of the K clusters, where P indicates the dimension of the Unfolding solution.
We propose an alternating optimization strategy that, given a configuration of both the indi-
viduals and the items, searches the optimum partition of the individuals in K clusters. Then,
given the optimal partition of the individuals, the configuration of both individuals and items
are updated. The first step consists in a first unfolding configuration with a random assignment
of the individuals to the K clusters. As Unfolding model, we use the PREFSCAL algorithm
(Busing et al., 2005), which is particularly feasible when dealing with ordinal Unfolding, that
penalizes the stress function and uses the SMACOF-3 algorithm (Heiser, 1981) as optimization
engine.

5.2 The Projection Clustering Unfolding: a real example

As an example, we analyse the well-known breakfast data set (Green and Rao, 1972). Breakfast
data contains the preferences of 42 individuals towards 15 breakfast items from the most pre-
ferred (1) to the least preferred (15). We set K = 4 clusters and the simplest approach to the
ties, i.e. untie tied observations. As the final solution is sensitive to the random choice of the
clusters at the first step, we repeated the analysis 20 times, obtaining the configuration shown
in Figure 1.
The figure shows the configuration of the 4 cluster centers in the 2-dimensional solution. We
expect that the closer the bari-centers are to the items, the higher is the preference of that
cluster to that items. We ran the Unfolding analysis without any restrictions on the same
data, and then we performed a Procrustes analysis (Borg and Lingoes, 1987) by considering
the unrestricted solution as target configuration. Procrustes analysis allows to evaluate the
ability to reproduce the configuration both graphically and with the L-statistic, which is the
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Fig. 1 Projection Clustering Unfolding solution. Items are coded as: toast=toast pop-up; bu-
toast=buttered toast; engmuff=English muffin and margarine; jdonut=jelly donut; cintoast=cinnamon
toast; bluemuff=blueberry muffin and margarine; hrolls=hard rolls and butter; toastmarm=toast and
marmalade; butoastj=buttered toast and jelly; toastmarg=toast and margarine; cinbun=cinnamon
bun; danpastry=Danish pastry; gdonut=glazed donut; cofcake=coffee cake; cornmuff=corn muffin
and butter.

sum of the squared differences between the true and the fitted configuration after that both
configurations are set into optimal correspondence through Procrustean transformation. The
lower the Procrustes statistic, the better the fitted configuration. We used a normalized version
of the Procrustes statistic as suggested by Deun et al. (2007):

L(X, X̂) =
tr((X− X̂)T (X− X̂))

tr(XTX)
, (2)

where X is the true configuration and X̂ is the fitted one.
Figure 2 shows the Procrustes configuration plot limited to only the objects points. The recovery
is excellent, also confirmed by a value of L = 0.013.
Figure 3 shows the Procrustes plot for the individuals’point configurations (L = 0.161). This
figure gives and idea of the composition of the clusters in terms of the allocation of the indi-
viduals around the cluster centers.
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Fig. 2 Procrustes configuration plot: objects’ points unfolding configuration (green) vs objects’ points
PCU solution (red).

Figure 4 shows the overall Procrustes configuration plot (L = 0.091). This graphical represen-
tation shows that the PCU solution (red) is really similar to the unrestricted Unfolding analysis
(red) in terms of interpretation.
Both the graphical representation and the L-statistic confirm that the PCU procedure does not
distort the original Unfolding analysis. Of course, the technical settings have been set equal for
both Unfolding and PCU.

After the Procrustes analysis we performed a last allocation step. We first computed the
squared Euclidean distance between the unrestricted unfolding solution and the (fitted and
scaled) PCU configuration, and then we assigned the individuals to the clusters with a proce-
dure similar to the one of the K-means. We obtained the following confusion matrix:

Unfolding Aiignment
Cluster 1 Cluster 2 Cluster 3 Cluster 4

PCU

Cluster 1 8 0 0 0
Cluster 2 0 12 0 0
Cluster 3 0 0 16 0
Cluster 4 0 0 1 5.
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Fig. 3 Procrustes configuration plot: individuals’points unfolding configuration (green) vs individuals’
points PCU solution (red).

This matrix shows that there is only one individual that is wrongly ‘classified’ in the unre-
stricted Unfolding solution with respect to the PCU, that has been identified as the individual
number 19.

In order to check the homogeneity of the analysis in terms of preference rankings, we computed
the median ranking within each cluster. We obtained the results shown in Table 1. These
median rankings can be interpreted as the bari-centers in terms of preference rankings. We
noticed that the results are consistent with the graphical solution. Last row shows the averaged
τX rank correlation coefficient (Emond and Mason, 2002) within cluster, which informs about
the goodness of the solution of the median ranking problem. The last column shows the median
ranking of the entire data set. It can be noticed that the homogeneity in terms of τX rank
correlation coefficient is much larger within each cluster.

As a global homogeneity measure of the PCU, we can compute the quantityH =
∑K

k=1 τXk
πk,

where πk is the proportion of cases in the kth cluster. The shown configuration returns H =
0.575, which is about 1.877 times larger than the homogeneity of the entire data set.
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Fig. 4 Procrustes configuration plot: Unfolding (green) vs Clustered Unfolding solution (red).

6 Conclusions

In dealing with preference rankings, one of the main issues is to identify homogeneous sub-
populations of judges when heterogeneity among them is assumed. In this work a Projection
pursuit-based clustering method has been proposed in order to deal with preference data. The
Projection Clustering Unfolding algorithm combines suitable clustering methods for preference
rankings with Multidimensional unfolding techniques. The strengths of the proposed algorithm
have been shown through an application to a real dataset: a Procrustes analysis, used to perform
a comparison between the PCU and the Unfolding without restriction configurations, gives
excellent results.



 Electronic copy available at: https://ssrn.com/abstract=3209215 

12 Mariangela Sciandra et al.

Table 1 Median ranking within cluster

Item Cluster 1 Cluster 2 Cluster 3 Cluster 4 Median ranking Breakfast data

toast 13 13 15 7 15
butoast 1 10 11 1 11
engmuff 2 3 7 8 6
jdonut 15 12 3 6 7

cintoast 5 5 8 13 8
bluemuff 6 2 6 9 3

hrolls 4 9 14 2 12
toastmarm 8 8 10 2 10

butoastj 7 7 9 2 9
toastmarg 3 11 12 3 13

cinbun 12 4 5 10 4
danpastry 10 4 1 4 1

gdonut 14 6 4 5 5
cofcake 9 1 2 11 2

cornmuff 11 6 13 12 14

τX 0.554 0.520 0.647 0.514 0.306
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