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Abstract A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either
Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors
and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory
Commun. Math. Sci., 15: 1703-1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows
from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43-69 (2018). With the same starting point
but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of
compressible fluids. Explicit formulas for the coupling terms are obtained in two typical situations: for elastic
hard spheres on one hand, and for collisions corresponding to the inelastic interaction with a macroscopic dust

speck on the other hand.
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1 Boltzmann Equations for Multicomponent (Gases

As in [1] and [2], we consider a binary mixture consisting of microscopic gas molecules and
much bigger solid dust particles or liquid droplets. For the sake of simplicity, we assume from
now on that the dust particles or droplets are identical and that the gas is monatomic. We
denote by F' = F(t,z,v) > 0 the distribution function of dust particles or droplets, and by
f = f(t,z,w) > 0 the distribution function of gas molecules. These distribution functions
satisfy the system of Boltzmann equations

(0; +v-V)F=D(F, f)+B(F), (0;+w-V.)f=R(f,F)+C(f). (1)

The terms B(F') and C(f) are the Boltzmann collision kernels for pairs of dust particles or liquid
droplets and for gas molecules respectively. The terms D(F, f) and R(f, F') are Boltzmann
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type collision kernels describing the deflection of dust particles or liquid droplets subject to the
impingement of gas molecules, and the slowing down of gas molecules by collisions with dust
particles or liquid droplets respectively.

Collisions between molecules are assumed to be elastic, and satisfy therefore the usual local
conservation laws of mass, momentum and energy, while collisions between dust particles may
be inelastic, so that B(F') satisfies only the local conservation of mass and momentum. Since
collisions between gas molecules and particles preserve the nature of the colliding objects, the
collision integrals D and R satisfiy the local conservation laws of particle number per species
and local balance of momentum. The local balance of energy is satisfied only if all collisions
are elastic.

1.1 Dimensionless Boltzmann Systems

We assume for simplicity that the aerosol is enclosed in a periodic box of size L > 0, (z €
R3/LZ3). The system of Boltzmann equations (1) involves an important number of physical
parameters, which are listed in the table below.

Parameter Definition
L size of the container (periodic box)
Ny number of particles/L?
Ny number of gas molecules/L?
Vi thermal speed of particles
Vg thermal speed of gas molecules
Spp average particle/particle cross-section
Shpg average particle/gas cross-section
Sgg average molecular cross-section
n=mg/my mass ratio (molecules/particles)
p = (mgNy)/(mpNpy) mass fraction (gas/dust or droplets)
E=V,/V, thermal speed ratio (particles/molecules)
As in [1] and [2], we define a dimensionless position variable: Z := x/L, together with

dimensionless velocity variables for each species: v :=v/V},, @ = w/V,. We also define a time
variable, which is adapted to the slowest species, t:= tVp/L. Finally, we define dimensionless
distribution functions for each particle species: F(f,%,7) := V3F(t, x,0) /Ny, 7 0) =
%Sf(tv Z, w)/Ng :

The definition of dimensionless collision integrals is more complex and involves the average
collision cross sections Sy, Spg, Sgq, Whose definition is recalled below.

The collision integrals B(F'), C(f), D(F, f) and R(f, F') are given by expressions of the form
B(F)(v) = / / F()F ()T (v, do’ do)
R3xR3
F) [ Pl = vl - v do
R3
c)w = [[ )y . du du)
R3xR3

= 1) [ = Sy (o = w.]) do..



://Rgxm F') f(w' )y (v, dv’ dw')

=) [l = ulZ(o— u)du, )

)= [ Py )

= 1) | P@l =0l o= wi)do

=[] Py e’ )
A /R FQ) /R My, (W, v, w) AW do.

In these expressions, II,,, I ,, 1,4, 11,4, are nonnegative, measure-valued measurable functions
defined a.e. on R?, while ¥,,,%,,,%,, are nonnegative measurable functions defined a.e. on
R. This setting is the same as in [8], and is taken from chapter 1 in [8] (see in particular
formula (3.6) there).

We refer to [1] and [2] for the relation between the quantities IT and X.

The dimensionless quantities associated to X, X4, and X, are (4,5 = p,g) flu(|3|) =
Zii(Vil21)/ i s 25 ([21) = 245 (Vj[2])/ S5 - Likewise

ﬁpp(i’\ v’ dv,) = (v, dv' dvi)/sppV; )
Mgy (@, A’ dd,) = Tgq(w, dw’ duw’)/SygVy),
Ty (7, d0' d') = (v, dv’ dw')/Spy Vi,
I, (@, v d@') = Iy (w, dv’ dw') /Sy VyVE .

With the dimensionless quantities so defined, we arrive as in [1] and [2] at the following
dimensionless form of the multicomponent Boltzmann system:

- ~ Voo o~ PN
O-F + 7-V-F :J\/gSngVgD(F, )+ N, S, LB(F)

&f+ Vg @W-Vof = NySpgL gn(f F) + NySgq Ly ().
Throughout the present study, we shall always assume that
NpSppL < 1, (4)

so that the collision integral for dust particles or droplets NSy, LB(F) is considered as formally
negligible (and will not appear anymore in the equations).
We now present the Euler scaling, which is significantly different from that of [1] and [2].
We assume that the thermal speed V}, of dust particles or droplets is of the same order of
magnitude as the thermal speed V; of gas molecules, so that

E= v, =1, (5)
and the scaled Boltzmann system (3) becomes
{ OF +7-V-F =N, Sngﬁ(lj,f) B -
3;f+w-V;f=NpSngR( JF) +NySgeLC(f).



Recalling that 7 is the mass ratio, we shall assume that

N, 1 1
N, Syy L =1, szn>>1’ NgSggL=:§>>1,

so that we end up with the scaled system:

I (7)

Note that the scaling above implies that © = 1. In the sequel, we shall let  and ¢ tend to
0 without assuming any relationship between those two parameters.

Henceforth, we drop hats on all dimensionless quantities and variables introduced in this
section, and only dimensionless variables, distribution functions and collision integrals will be
considered.

We also use V, W as variables in the positive part of the collision operators D and R, in
order to avoid confusions.

We define therefore the (n-dependent) dimensionless collision integrals

cpw) = [ H) g du )
— 1) [ 7w = .l 0 = w.]) du. )
DS = [ POV aw)
=) [l vl (o - u)du, )
RUPYw) = [ P00y 0.0V )
~ 1) | P@l =0l o= ) do. (10)

With the notation defined above, the scaled Boltzmann system (7) is then recast as:

. _1
{atF +v-V.F = D(F, f), )

Wf+w-Vof =R(f, F)+ sC(f).

1.2 Explicit Formulas for the Collision Integrals
In the previous section, we have introduced a general setting for the various collisional processes

involved in gas-particle mixtures. The explicit formulas for the examples of collision integrals
considered in this work are given in the next three paragraphs.

1.2.1 The Boltzmann Collision Integral for Gas Molecules

The dimensionless collision integral C(f) is given by the formula

e = [[ | (sl = F) fw)elw = w.,w) du.ds, (12)
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for each measurable f defined a.e. on R3 and rapidly decaying at infinity, where

w = w(w, we,w) = w — (W —wy) - ww,

13
wh, =W (w, ws,w) = Wi+ (W — ws) - Ww (13)

(see formulas (3.11) and (4.16) in chapter II of [4]). The collision kernel ¢ is of the form
(= w2, w) = [w— w7y (| — w. ] cos(w = wr,w)]), (14)

where o044 is the dimensionless differential cross-section of gas molecules. In other words,

1
Sagl(21) = 47 [ oyg(12] 0 .
while
Mgy (w,-) = // AW dw 8y (1,10, ) @ O’ (1,1, w) C(W — Wi, ). (15)
R3xS?2 ’ '

We recall that the collision integral C satisfies the conservation of mass, momentum and
kinetic energy — (see formulas (1.16)—(1.18)) in chapter II of [3].

Since our analysis is formal, we do not write down precise assumptions on o44. We shall in
fact only use the fact that the solutions to C(f) = 0 are the Maxwellian functions of w. This is
a direct consequence of Boltzmann’s H theorem, which holds for all classical cross sections (cf.

3)-
1.2.2 The Collision Integrals D and R for Elastic Collisions

For each measurable F and f defined a.e. on R? and rapidly decaying at infinity, the dimen-
sionless collision integrals D(F, f) and R(f, F') are given by the formulas

DED) = [ (P~ F) f)ho = 0.w) duds,
RUPw) = [ )P = F) )Mo = w.0) dvds,

where
2n (
1+1n

12 1 2
w’' = w" (v,w,w):=w —
1+n

(see formula (5.10) in chapter II of [4]). The collision kernel b is that of hard spheres, that is

vV (v, w,w) =v — v —w) ww,

S
Il

(16)
(w—v) - ww

b(v — w,w) = [v — w| | cos(v = w,w)|), (17)

while
HPQ(”? ) = // dw dw |(U - w) : w| 51}"(”7%&1) ® 6w”(v,w,w) ,
R3xS? (18)
Hgp(w,-) = // dv dw (v — w) - W[ Gy (v,u,w) B G (v,w,0) -
R3xS?

The reduced mass of the dust particles or droplets and gas molecules defined by formula
(5.2) in chapter II of [4] is
mpmg Mg _ Mpl]

mp+mg 1+n  1+n’



These formulas explain how the mass ratio n appears in the definition of v" and w” above.

We recall that the operators D and R defined in this subsection satisfy separately the con-
servation of the number of particles and molecules, and jointly the conservation of momentum
(involving both operators):

D(F, f)(v)v dv+77/ R(f, F)(w)wdw=0. (19)
R3 R3
These properties can be easily checked using the formulas

v+ npuw’ =v+nw, v —w" = R,(v —w), (20)

where R, is the reflection defined by R,w = w — 2(w - w)w for each w € S2.

1.2.3 An Inelastic Model of Collision Integrals D and R

Dust particles or droplets are macroscopic objects when compared to gas molecules. This
suggests using the classical models of gas-surface interaction to describe the impingement of
gas molecules on dust particles or droplets. Perhaps the simplest such model of collisions has
been introduced by F. Charles in [5], with a detailed discussion in Section 1.3 of [6] and in [7].
We briefly recall this model below.

First, the (dimensional) particle-molecule cross-section is

Spg =m(rg + Tp)Qv

where 7,4 is the molecular radius and 7, the radius of dust particles or droplets. Then, the
dimensionless particle-molecule cross-section is

Epg(|” —w|)=1.

The formulas for S,y and ¥,, correspond to a binary collision between two balls of radius 7,
and 7.
Next, the measure-valued functions II,, and Il,, are defined as follows:

I,y (v, dV dW) = Kpg(v, V, W) dVdW

21
My (w, dV dW) = K gp(w, V, W) dVAW , (21)
where
_ Loty L lnNg VW2
KPQ(U’V’W)'_ZNQ( " )ﬁ exp( 25( 0 )’v +n ))
V+ngW
></S2(n-(V—W))+<n-( e —v))+dn, (22)
_ 1 404 1 2 V+nW |2
Kg”(w’v’w)'_%?(prn)ﬁeXp(_26 (1+m) ‘w_ 1+7 ‘)
V4+ngW
(V=W . _ dn. 93
X/s2(n ( ))+(n (w I tn ))+ n (23)
In these formulas
B=),
B kBTsurf’

where kp is the Boltzmann constant and T,y the surface temperature of the particles.



For this inelastic model, the collision integrals are then:

D(F, f)(v) ://RSst AVAW F (V) f(W) 1 <1+Tl>4

22\ 7
T A
X /SQ(n-(V - W))+<n (Vl‘:—??:/ —v))ern

~PW) [ o —widu,

RUFYw) = [[ v awr) vy, 1+
o (s )

X /Sz(n~(V —W))+ (n (w - Vl_:_n??/))ern

~ fw) [ P —ula.

or, in weak form,

D(F, [)(v)p(v) dv = /R ) /R S, WVAVEW)FW)[(0) = 9(V)] i (1+n)4

R3 271'2 n

<otem (= () o= T)

X /SQ(n-(V—W))+<n- (Vl‘:—UZV —v))ern

and

R F)(w)glw) du

R
[ avawav r)zaviotw) - w14 0!
ol e Y

X /s2(n (V-W))t (n (w - V1++n:/>>+dn

2 Passage to the Limit

We denote here by (f%7, F") a solution to system (11).
Recalling that the Maxwellian functions of w are the only functions f such that C(f) = 0,
we see that fo" — M([n,u,6/m,] as § — 0, where

n(t, x) _ _ 2
M n,u79 m t,x,w — ’ e mglw—u(t,z)| /26(t,r)7
ot 0Fmallts 20 = (1t ), o2
the quantities n,u, 6 being identified as § — 0 respectively ast the (number) density, mean
velocity and temperature of the gas. In principle, these quantities still depend upon 7, but we
do not write explicitly this dependence.
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By integrating the equation for f% in the space of velocities against mg, Mg w and % my |wl|?,
we get the local (in time and space) conservations laws for the mass, momentum and kinetic
energy of the gas.

my s my s
8t/ mMgw fomdw + diva:/ w mgw Fo dw
B2\ amglw|? R > mglw|?

My
:/ mgw R(f‘s’”,F‘;"’)(w)dm
R? émg|w|2

so that when § — 0, still at the formal level, we get

My Mg
875/3 Mg W , M[n,u,@/mg]dw+div$/3w g , Min,u,0/mgldw
R\ 2myg [w] R 2 Mg|w|
0
:/ mg w R(M[n,u,8/mgy|, F)dw.
R? %mg |w|2

The computation of the two first terms is classical and leads to:

mg p
/3 Mg W , Mn,u,0/mgldw = ) qu , )
R\ 3myg [w] Splul? + ono
and
my pu
/ w mgw M(n,u,0/mgldw = pu®? +nol ,
R3 smg |w|? sypulul® + Snub

where p := mgyn.
Also, starting from the first equation in (11), we see that

1
OF*" + v -V Fo1 = D(F>1, fomy,
n
so that letting § — 0, we end up (at the formal level) with the equation
1
8tl? + v V:EF = nD(F,M[n,U, H/mg]) ’

where once again the quantities F', n,u, @ still depend upon 1 (but we do not write explicitly
this dependence).
In order to go further in the computation, we need to let 7 — 0 in the term

mg p
/ Mg W M(n,u,8/mgldw = pU )
R\ Jmg Jw|? splul? + 3no

and in the term )

Ui

(or in a weak version of this term).

- é(v)D(F, M[n,u,0/mg])(v)dv



The result will however depend upon the type of collisions that we will consider.

2.1 Computation for the Elastic Model

We now specifically look to the case of elastic hard spheres collisions. We start with the equation
for the particles.

2.1.1 Equation for the Particles

We compute (for a test function ¢)

! [ S0P Min..6/m, ) (e}

// [ 90 = 60 M, w0/} F@)] (0 ) - v,
so that

Y[ b)D(E, M, 0/m,)) (0)do

=— 2//}13 - Min,u,0/mg|(w)F (v)V,¢(v) - /82 w(v —w) - w|(w —v) - w|dwdwdv + O(n)
__ 27r//RBXR3 [, 10, 8,/my) () F(0) Vo $(0) - (0 — w)|w — vldwdo + O(1)

:_QMmQ/RS F(0)Voé(v) (\//mg)dv+0()

with

q(a) = (2m)73/2 /R3 e*‘w; la —wl| (a —w) dw.

Finally, at the formal level (that is, working with F', n,u, 0 as if they were not depending on
n);

0 v—u
:27Tn\/mg - d(v) Vy - [ (\/G/mg) (v — u)}dv,

where ¢ is defined in Lemma 3.3.
We now turn to the equation for the gas molecules.

2.1.2 Equation for the Gas Molecules

We observe that

/Rs ( o ) R(M(n, u,8/myg), F)(w)dw

oMy |w|2

oy ([ (s~ ) M0/ ) )P 0 0) -l

where w” is defined in (16).
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First, we see that

///R (w” — w)Mn, u, 0/mg)(w)F (v)|(w — v) - w|dwdvde
=21y [ M mAIE ) [ =)l =) ety

1
:—271'1+n/AgXRSM[n,u,@/mg](w)F(v)(w—v)|w—v|dwdv
)dv+O( ).

=27mn (

my \/ /mg
Then, we also see that

//|2 _ |w|2 I

|w (v+nw) w)(w—-2v) w=—4(v -w)(w—2o) w4+ On).

4
(1+n)?
As a consequence

I = ot 0/l )P @)l =) - wldwdods
=— 4/R3 M(n, u, H/mg](w)F(v)(/s2 (v w)(w =) w|(w—2v) -w|dw)dwdv +0(n)

_47rn0 / Fv)v- q(\;/m)dv—i—O()

_4m\/mg | F@e (0= wg (\;_/mg)varO()

Working once again at the formal level, we let n — 0 and end up with an Euler-Vlasov
system:

Op + divy(pu) =0,

Or(pu) + div, (pu®? +nd 1) = 27m\/0mg/ F(v*)q( Gl ) (Ve — ) duy,
R3 VO/my

at(1p|u|2 + 3n0) + div, (u(;p|u|2 + ;nﬁ))

=27n/0m, / F(v ( ¢9/_7:g>( —u) - v, dos,

T:g div, (P (v (;9_/;; )Jw=w).

We recall that ¢ is defined in Lemma 3.3. It can be expressed in terms of usual functions
(including the Erf function), as shown in Lemma 3.3 and Lemma 3.4.

O F +v-V,F= 27m\/

2.2 Computation for the Inelastic Model

The computations of the previous subsection can be reproduced in the case of the inelastic
model defined in paragraph 1.2.3.
As previously, we start with the computation of the equation for the particles.
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2.2.1. Equation for the Particles
Defining M (v) := M[n,u,8/mg](v), we look for

1 1
lim D(F,M)(v)p(v)dv = lim
n—~0 n Jrs n—0 n

/ / dvdeVF(V)M(W)[¢(U)—¢(V)]271r2<1+n>4
R3 JR3 JR3

1 1+n>2‘ V+nW‘2)
4 _ 2 _
xﬁexp( 26( 0 v 14

« /52(n- (v =) (- (V1++";V ~v)), dn

Defining z = 717(1) - V1+ _:’;V) and letting n — 0, the previous formula becomes (at the formal

level)
i [ DEAN@)) o
:/ / / dzdWdV F(V)M(W)[Vyé(V)] - [z + W — V] 212ﬂ4 exp (- ;ﬁ?z?)
R3 JR3 JR3 ™
X /32 (n-(V-=W))t(—n-z)sdn.

We now define cos§ = (V~V)= and, using Lemma 3.1 of the Appendix and spherical

|W—V]||2]
coordinates with polar axis (\“;:%I) (so that z = —r cos5(|“;:%|) + rsind cos @i + rsin d sin ¢ ),

we get (after integrating in ¢ in (0, 27)):
1
lim D(F, M)(v)p(v) dv
n—01n Jrs

1l _

-1s /R AVEV)Tyo(V) /R 3
21 (W=V)
><3{T|W—V|

1 4 .
ny /R AVEW)vo)] - [ awmw)

R3
: {/ drr* exp ( - 152702) 2(W - V)/ dd sin 6 cos 0[sind + (m — &) cos 0]
0 2 3 0

dWM(W)/ drrz/ dd sin 0 exp ( - 1527"2)
0 0 2

cosd + W — V] |V — Wr[sind + (7 — ) cos d]

—|—/ d?"r?’exp(— 1ﬂ2r2>2(W—V)|W—V|/ ddsin&[sind—i—(w—d)cos&]}.
0 2 3 0

Thanks to the computations of Lemma 3.2 in the Appendix, we get the following formal
limit:

lim ! D(F, M)(v)p(v) dv

n—01n JRrs
_ Vor
=38 s dVF(V)[Vye(V)] - /R3 AWMW) W =V)

+/ dVF(V)[Vy (V)] / AWMW)(W = V)W = V|
R3 R3
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— 35 \/ . /R AVE(V)[Vyo(V ¢9/mg

L)

where we recall that ¢ is defined in Lemma 3.3 of the Appendix.
We finally compute the equation for the gas molecules, in the inelastic case.

_n\/ 0 vV E(WV)[Vyo(V)a(
mg R3

2.2.2 Equation for the Gas Molecules

We observe first that

RUF)w) (10 ) do

R3 m9|w|2

_ /R 3 /R L dwdwav e f) <5mT:(-"|1(U“|’2__V|VM)/|2))

< oot exn (= e+ nfu= " L))

X /s2(n (V- W))+(n (w - V1++n7?/>)+dn.

We get (at the formal level) that

lim [ R(f, F)(w )(1::%2) w

n—0 Jrs 2/tg

- /R 3 /R L dwdwav E@) W) (§mzl(g|£uu|)2_j?/w)/|2)>

< gratexn (= y 0= VE) [ eV = W))n (w= V))dn

“Je /R Jrteawaveemon (3 L )
szﬁ exp( ﬂ2|z| ) /( AV =W))t(n-2z)rdn.

Then, using Lemmas 3.1 and 3.2 of the Appendix, we see that

lim [ R(f, F)(w )(1:_(,1:'2) dw

n—0 Jgrs 9 gl
- / / AW dV F(V)M(W)
R3 JR3
V-w
/ / g(rc055|V_W|—|—V—W)
r 24 V|2 - |W|2+27‘c056|“; W V)

X ﬁ4exp< ﬂz 2) |V — W| [(m — &) cosd + sind] sind dodr

/R 3 /R WAV E(WV)M () Si
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my (' \/255(‘/ W) + 37r;4|V WiV - w))

1 3m 8 3 3m 2
oo (g golV =Wl \/;ﬁo(v—W).v+ 1 eIV = WGV = W)

n 2:1%/2 /Rs/deQdVF —-Q?/2
iy 0)
;‘V—u—\/T:gQ‘-l-;l\/;r(V—u—\/nng).V

REERIGER

oy o el ey, of)

X

n.- mgy

o /R AvE(W)
3(277)3/2\/;(1/—11)—}—6 RBe_Qz/Q‘V—u—\/ (V—u—\/ Q)dQ
/ eQ2/22)V—u—\/ ‘dQJr 27r3/2\/ (V—u)-V
R3 B
0
+ [3|V|2/RS e‘QQ/Q'V—u—\/TSgQ'dQ)

0
+ —B/RgeQ2/2|’_u—\/ggQHu+\/72gQ'2dQ>

=n [ dVF(V) ; 2y Vo0 Vmata( \; H;r:g )=
= 9 V—u
o (ﬁ2 Vmef + \/mge(W‘“'Q))QOQW/ng

0
“(afzmiv-nv)
0
+ (2\/m99q<‘ \‘;0;7::9’)(‘/ —u) - u— 9\/mg QQ(' \/H/Tng‘)) )

where we recall that ¢ is defined in Lemma 3.3 of the Appendix, and, for i = 0, 2,

. ._ -Q%/2y, ; dQ
e = [T a-alQ
We end up with an Euler-Vlasov system in the inelastic case, which writes therefore
Op + divy(pu) =0,
O (pu) + dive (pu®? +nb 1)



_n\/emg/RsF Vy) 35\/ \/mg +q ’\79/_7:9‘)} —u)dv,,
875( plul® + n&)—l—divgﬂ(u( plul? + nﬁ))
_n\/emg/ F(vs )[( + v —ul )q()(’\/*ﬁ/—n?g‘)
3ﬂ\/ \/mg - Vg +2q(’\/9/_m D —u) - u— q2( \1;9/_7::9’)} dvy

N

where qg, g2 and ¢ are defined in Lemma 3.3 of the Appendix. All those functions can be
expressed in terms of usual functions (including the Erf function), c¢f. Lemmas 3.3 and 3.4 of
the Appendix.

3 Appendix

We detail here some of the computations which are used in the Section 2 of this paper.

Lemma 3.1. Foralla,b € 52,
~ ~ . 2 .
/ (- a)s G- b). dii = [(m— 6) cosd + sin o],
S2

where § € [0, 7], cosd =a-b.

Proof.

T 27
/ (7 -a)s (7 b)s dﬁ:/ sin39d6/ [cos( + 6/2)] 1 [cos(é — 6/2)]+ dé
S2 0

0
T T/2—6/2
:/ (1 — cos® ) sin @ d6 cos(¢ + 0/2) cos(¢p — §/2) do
0 —mw/246/2
1 T/2—6/2 ) .
:/ (1- uQ)du/ cos(2¢) + cosd do
—1 —n/245/2 2

zz [(m — 0) cosd + sin d].

Lemma 3.2. The following results hold for all 8 > 0:

> 3 _527‘2 _ 2 /oo 4 _627‘ _\/71’ 3 /OO 5 _527‘ 8
r’e 2 dr= _ ., rte dr = , r’e dr= __,
/0 Bt Jo 285 Jo Bo

/ [cosO(m — ) + sin 6] sin&al@z?;Z7 / [cosO(m — 0) +sin ] cos6 sinedﬁzg
0 0

Proof. All those formulas can be obtained thanks to suitable integrations by parts. a
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Lemma 3.3. For all a € R3,
qo(lal) 1 _lw?dy
(q2<|a|>) :/ (|y|2) e ampy
1 2lalka(lal) + el T(lal) + 2Js(al) + ol s (a])

2 2 )
V27 \ 2lalfy(lal) + ol To(laD) + 2J5(Jal) + § laf* s Ja]

where (fork e N, z € Ry)

Lu(z) = / P Pl2dn, Ju(a) = / et/ gy,
0 x

Moreover
@= [ @-pla-sle™ 2 ~alaa
q L RS y y (27T)3/2_q 9
where
1 4 4 2. 4 8, 9 8
alal) =, {2elLa(lal) + o= Laal) = | lal = ollal) + | Ja* a(la]) +  (lal)}.

Proof. We first notice that

a—yles 3

Iyl2 T

:/ / T“|a| (r* + |a|?® = 27|a|u)/? r? dudr

0 1 .2

o Ylaln

— [ | 7y ZClal) | o

0 |al

r2Y

where (for r > 0)

Y(al.r) = g [0+ la? = 7 = o).
ZAal.7) = 3 gz [+ 1617 6+ o) = b= all") = (i -+al)® = I = ol ]

We see that when r > |a],

2 |a|? 2 2 |al?
Y =2 7 - _
(|a’|7r) 7"+ 3 r ? (|CL|7T) 3|a| + 15 7,2
and when r < |al,
r? 2 2 73
Y 2 Z =
(|CL|7 ) |CL|+ 3|CL|7 (|CL|77") 3 + 15|CL|2
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r2+|a|2

Then we observe that using the substitution w = Salr — U, ONE gets
1
/ (% + |a|? — 2r|alu)*/? du
-1
12410l
et [ = L (sl - - )
=(2|a|r w w = r+lal)’ —1|r—|a
e g 3la|r
and
1 T22\+a‘\ar‘2+1 r? + |a)?
/ (r? + |a]* — 2r|a|u)1/2udu = (2|a|r)1/2/ [ wh/? — w?’/ﬂ dw
1 il 2|a|r

2 1

= 3’!‘ CLS—’I“—CL5
=3 (2lalr) ((r+ lal)® = Ir = lal ).

2 [(7“2 +1al) [ +lal) = Ir = lall"] -

The result is obtained by cutting the integral between the part when r > |a| and the part
when r < |a|. In particular,

2d 2 2 2 2
[ovta=slem ™ 50 = Dol Satulal = Jlal " ali(la) + | laPad(al) = Jaia)

27
O
Lemma 3.4. We define for k € N the integrals:
Iu(z) = / e Cld, Ju(a) = / 1 et/ gy,
0 T
Then the following formulas hold:
22 22 22
Ji(z)=e 2, J3(x) = (2 +2)e 2, Js = (z* +42® 4 8)e 2,
22 22 22
L(x) =Ig(x) —xe 2, Li(z) =3Ig(zx) —x3e” 2 —3xe 2,
Is(z) = 15I5(x) —x%e™ 2 —5x3e™2 —15ze 2.
Proof. These formulas are directly obtained by successive integrations by parts. a
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