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A B S T R A C T

This paper compares two mathematical models (Model I and Model II) to predict greenhouse gases emission from
a University Cape Town (UCT) – membrane bioreactor (MBR) plant. Model I considers N2O production only
during denitrification. Model II takes into account the ammonia-oxidizing bacteria (AOB) formation pathways
for N2O. Both models were calibrated adopting real data. Model comparison was performed in terms of (i)
sensitivity analysis (ii) best fit and (iii) model prediction uncertainty. On average 6% of factors of Model I and
9% of Model II resulted to be important. In terms of best fit, Model II had a better capability of reproducing the
measured data. The average efficiency related to the N2O model outputs was equal to 0.33 and 0.38 for Model I
and Model II, respectively. On average, 73% (Model I) and 86% (Model II) of measured data lay inside the
uncertainty bands.

1. Introduction

In recent years, attention on wastewater treatment plants (WWTPs)
as sources of greenhouse gases (GHGs) (e.g., carbon dioxide, CO2, ni-
trous oxide, N2O, and methane, CH4) has increased considerably

(Mannina et al., 2016a). Among the GHGs produced by WWTPs, N2O is
the most environmentally hazardous due to its strong global warming
potential (GWP) (298 higher that CO2) and its capacity to deplete the
stratospheric ozone layer (IPCC et al., 2007).

An accurate quantification and mitigation of N2O emissions is
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imperative for environmental protection. In this regard, the adoption of
mathematical models allows the selection of appropriate design and/or
operating choices aimed at reducing the total amount of GHG emissions
from WWTPs.

Several efforts have been performed to establish the best tool to
predict/quantify GHG emissions (Mannina et al., 2016a; Spérandio
et al., 2016; Pocquet et al., 2016). However, the N2O estimation is still a
major crucial aspect in GHG modelling since its formation mechanisms
are still under review (Ni et al., 2015). Current knowledge on N2O
emissions suggests that it can be produced both during nitrification and
denitrification processes. Autotrophic ammonia-oxidizing bacteria
(AOB) can contribute to N2O production by means of two pathways: (i)
the nitrifier denitrification (ND) pathway, where N2O represents the
terminal product of nitrite reduction (Law et al., 2012) and (ii) the
incomplete hydroxylamine (NH2OH) oxidation (NN) pathway, where
N2O is an intermediate product during the NH2OH oxidation (Pocquet
et al., 2016). In this regard, literature suggests that mechanistic math-
ematical models that include both AOB contribution pathways should
better reproduce the measured data (Peng et al., 2015). However, this
has two critical aspects (i) the numerical handling of detailed models
and (ii) the current knowledge has been acquired on non-advanced
WWTPs.

The inclusion of detailed N2O processes makes the GHG mathema-
tical models complex in terms of number of involved factors, state
variables and processes. Therefore, the modeler has often to face the
need to combine the huge numerical requirements of such models with
fast and stable performance of the model response.

Sensitivity and uncertainty analyses can provide reliable support to
the modeler for improving the model prediction despite the model
complexity. Sensitivity analysis allows the selection of the key factors
that mainly affect the model response, thus favoring the reduction of
the computational time required for model calibration (Mannina et al.,
2017). Further, uncertainty analysis indicates the confidence that can
be placed in the model results (Sweetapple et al., 2013). Moreover,
sensitivity and uncertainty analysis can allow better coding of the in-
terrelationship between the processes, which is particularly relevant
when both biological and physical processes are involved, such as in
integrated membrane bioreactor (MBR) models. However, despite the
usefulness of uncertainty analysis, only few such studies have been
performed with complex Activated Sludge Models (ASM) including
GHG formation and emission (Mannina et al., 2017; Sweetapple et al.,
2013).

Regarding the second critical aspect, literature on the N2O model-
ling is focused on conventional activated sludge systems (CAS) and
often rely on short-term data (Mannina et al., 2016a). Few studies have
been performed to model integrated MBR systems where physical se-
paration processes and biological processes affecting the membrane
fouling (e.g., soluble microbial products – SMP – formation/degrada-
tion) both have to be included. Recently, an integrated
ASM2d–SMP–GHG model (Model I) has been proposed (Mannina and
Cosenza, 2015). The model is to predict the N2O and CO2 emission from
a University Cape Town (UCT) – MBR plant. The model considers the
N2O production only during the denitrification according to the ap-
proach of Hiatt and Grady Jr (2008). A new integrated MBR model
including the two AOB formation pathways for N2O has been recently
proposed by (ASM2d-SMP-GHG-2P-AOB) (Model II). The purpose of
this study is to compare the response of the two models (i.e., Model I
and Model II) for GHG emissions from a MBR system. The comparison
has been performed in terms of three criteria (i) sensitivity analysis, (ii)
best fit and (iii) model prediction uncertainty.

2. Material and methods

2.1. Mathematical models description

Model I and Model II are each divided in two sub-models (physical
and biological) (Fig. 1). Table 1 summarizes the state variables of each
model. The same physical sub-model was adopted in both models. It
describes the key processes occurring during membrane physical se-
paration, including membrane fouling (involving 6 model factors and 2
state variables).

The physical sub-model takes into account the following processes:
(i) cake layer formation during the filtration and backwashing phases;
(ii) partial organic matter (in terms of COD) removal due to the cake-
layer; (iii) COD removal due to the physical retention effect of the
membrane as barrier; (iv) membrane fouling (Fig. 1). The membrane
fouling based on the n equal fractions (areal sections) approach of Li
and Wang (2006) was adopted. A different intensity of the fluid tur-
bulence (G) on the membrane surface applied to each areal section
depending on the distance from aerator.

For the membrane fouling description both reversible (which can be
removed during the ordinary backwashing) and irreversible (which
cannot be removed during the ordinary backwashing) were included.
For a detailed description of physical sub-model the reader is referred to

Fig. 1. Schematic overview of the structure of the integrated MBR Model I and II.
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the literature (Mannina et al., 2011a; Mannina and Di bella, 2012; Di
trapani et al., 2010).

The biological sub-models of Model I and Model II are both based on
the ASM2d and include the SMP formation/degradation processes
(Jiang et al., 2008; Henze et al., 2000). Furthermore, both models
consider CO2 as state variable according to the continuity-based model
interface as proposed by Vanrolleghem et al. (2005). Despite general
similarities, the biological sub-models of Model I and Model II are
significantly different (Fig. 1). Model I employs the Hiatt and Grady
(2008) approach for describing the processes of the N2O production.
Consequently, Model I includes a two-step nitrification process (invol-
ving AOB and nitrite oxidizing bacteria, NOB) and a four-step deni-
trification process (Fig. 1). In Model I the N2O is modelled as an in-
termediate product during the heterotrophic denitrification (see,
Mannina and Cosenza, 2015). In Model II the N2O formation takes both
heterotrophic and autotrophic biomass into consideration. Model II
describes the N2O formation during nitrification combining the two
major AOB formation pathways, according to the approach proposed by
Pocquet et al. (2016). Consequently, Model II contains an additional
five processes compared with Model I all mediated by XAOB: (i) NH3

oxidation to hydroxylamine (NH2OH); (ii) NH2OH oxidation to nitric
oxide (NO); (iii) NO oxidation to nitrite (NO2

–); (iv) NO reduction to
N2O; (v). NO2

– reduction to N2O. In Model II, the N2O formation during
the heterotrophic denitrification is described as in Model I.

Model II contains one state variable not considered in Model I, so-
luble hydroxylamine – SNH2OH and another seven model factors
(ηAOB,ND, ηAOB,NN, KNH2OH,AOB, KHNO2,AOB, KNO,AOB,HAO, KNO,AOB,NN and
KO,AOB,ND).

Finally, regarding the stripping of N2O and CO2 gas both Model I
and II employ an algorithm based on the diffusion coefficients
(Mannina et al., 2018).

Model I contains 24 state variables and 109 model factors (stoi-
chiometric, kinetic, fractionation and physical factors) while Model II
contains 25 state variables and 116 model factors (Fig. 1).

2.2. Criteria for comparison

Model comparison was performed with the following criteria:

• sensitivity analysis, which was assessed with the following indices: (i)
similarities in the importance ranking of model factors, (ii) re-
levance (Rel), which represents the number of important model
factors relative to the total number of model factors. The Rel value
varies between 0 (no factor is important) and 100% (all factors are
important);

• best fit, which assesses model efficiency (EMOD, see Eqs. (3) and (4)
and root mean squared error (RMSE) of each ith model output cal-
culated comparing the observed (yobs,i) and the predicted value
(ysim,i);

• model prediction uncertainty, which was assessed by evaluating the p-
factor, the r-factor and the Average Relative Interval Length (ARIL)
as comparison indices (Yang et al., 2008; Jin et al., 2010): The p-
factor is the percentage of observations that lie within the band
width – high value (close to 100%) indicates a low uncertainty of
model predictions (Yang et al., 2008). The r-factor is evaluated ac-
cording to Eq. (1) (Yang et al., 2008).
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where ysim i,95%, and ysim i,5%, are the upper and lower boundary value of
the ith model output, n represents the number of observations for each
model output and σobs is the standard deviation of the measured data. A
r-factor value close to 1 indicates that the uncertainty band width is
very narrow. The ARIL has been evaluated according to Eq. (2).
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Symbols of Eq. (2) have been already defined. A low ARIL value
indicates a low uncertainty of the model predictions.

The combination of a low ARIL value and a high p-factor value
suggest a good performance of the model in terms of uncertainty, i.e. a
low uncertainty in the model predictions (Dotto et al., 2012; Freni et al.,
2009; Freni and Mannina, 2010).

2.3. Sensitivity analysis, model calibration and uncertainty analysis

For each model, sensitivity analysis has been performed by adopting
a global method. More precisely, the Standardized Regression
Coefficients (SRC) method has been applied (Saltelli et al., 2004). This
method is based on performing a multivariate regression between
model factors and model outputs. On the basis of the value of the slope
(βi) of the aforementioned regression it is possible to identify the in-
fluence of ith model factor (xi) on the model output y. The value of βi,
which range between −1 and +1, provides the degree of influence of
the ith factor on the y model output. The sign of βi indicates the type of
the influence: positive (increasing the ith factor means that value y in-
creases) or negative (the opposite direction of y). For each model, all
model factors having the absolute value of βi greater than 0.1 have been
selected as important. All model factors selected as important were
considered during the calibration, all the other model factors were fixed
at their value as suggested in literature.

The calibration of both models was performed by adopting the
protocol suggested by Mannina et al. (2011b). This protocol is based on
a stepwise procedure which groups the calibrated model factors into
sub-groups aligned with different aspects of the model which operate
relatively independently, i.e. changes of factors within one sub-group
result in minimal changes in model outputs related to other sub-groups.
For the selected sub-groups of model outputs, a calibration hierarchy is
established on the basis of the sum of the βi values of the model factors
that are important at least for one of the model output of the sub-group
(the sub-group having the highest sum of the βi values is calibrated as
first) Mannina et al. (2011b).

According to the calibration protocol, Nc model runs have to be
performed by varying only the model factors selected as important

Table 1
State variables related to the biological sub-model of Model I and Model II.

Symbol Definition Unit

SO2 Dissolved oxygen kg COD m−3

SF Fermentable organic matter kg COD m−3

SA Fermentation product (acetate) kg COD m−3

SBAP Soluble biomass associated products kg COD m−3

SUAP Soluble utilisation associated products kg COD m−3

SNH4 Ammonia kg N m−3

SNH2OH* Hydroxilamine kg N m−3

SNO3 Nitrate kg N m−3

SNO2 Nitrite kg N m−3

SNO Nitric oxide kg N m−3

SN2O Nitrous oxide kg N m−3

SN2 Dissolved nitrogen gas kg N m−3

SPO4 Soluble inorganic phosphorus kg P m−3

SI Soluble undegradable organics kg COD m−3

SALK Alkalinity (HCO3) mol HCO3 m−3

SCO2 Dissolved carbon dioxide kg C m−3

XI Particulate undegradable organics from the influent kg COD m−3

XS Particulate diodegradable organics kg COD m−3

XH Heterotrophic organisms kg COD m−3

XPAO Phosphorus Accumulating Organisms kg COD m−3

XPP Stored polyphosphates in PAOs kg P m−3

XPHA Storage compound in PAOs kg COD m−3

XAOB Ammonia Oxidizing Bacteria kg COD m−3

XNOB Nitrite Oxidizing Bacteria kg COD m−3

XTSS Total suspended solids kg COD m−3
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within an established variation range (the widest factor variation range
found in literature was adopted). For each run the efficiency related to
each model output (Yj) and set of model factors (θi) is evaluated by
comparing measured and simulated data (Eq. (3)).
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Where −σMj Oj
2 is the sum of squared errors between modelled value (Mj,i)

and measured one (Oj,i) of the jth model output; σOj
2 is the sum of the

squared errors between Oj,i and the average value Oj of the measured jth
model output for the period under analysis.

The calibrated set of model factors is selected on the basis of the
maximum value (EMOD) of the weighted sum (Ei) of the model efficiency
of the n model outputs on the θi set of model factors (Eq. (4)).
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Where αj is a constant that represent the weight of the jth model output.
In order to perform uncertainty analysis Nu Monte Carlo runs were

performed by varying only the important model factors for all the
model outputs taken into account. The uncertainty bands related to the
5% percentile and 95% percentile of the model likelihood distributions
were also evaluated. The results of the Monte Carlo runs were also
analyzed on the basis of cumulative distribution function (CDF) for
each model output, 5% and 95% percentiles.

2.4. Model application and numerical settings

Model I and Model II were applied to a pilot plant in a University of
Cape Town (UCT) MBR scheme (anaerobic, anoxic, aerobic and MBR
reactors in series) treating 20 L h−1 of real wastewater. The plant was

equipped by an ultrafiltration hollow fiber membrane module for the
solid-liquid separation. Each reactor was equipped with a cover to
guarantee the off-gas accumulation and the subsequent gas samples
withdrawal.

The pilot plant was operated for 45 days during which the key
compounds of the influent, effluent and intermediate plant reactors
were analyzed two times per week. The following physical/chemical
compounds were measured: total suspended solid (TSS), volatile sus-
pended solids (VSS), total chemical oxygen demand (unfiltered,
CODTOT), supernatant COD (CODSUP), ammonium nitrogen (NH4-N),
nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), total nitrogen (TN),
phosphate (PO4-P), total phosphorus (TP), biochemical oxygen demand
(BOD), pH, dissolved oxygen (DO), temperature. Off-gas and dissolved
nitrous oxide (N2O) concentration were measured by using a gas
chromatograph (Thermo Scientific™ TRACE GC) equipped with an
electron capture detector. Details on the N2O sampling and analysis are
found in Mannina et al. (2016b).

For the SRC method application 1200 model runs were performed
according to the literature (Vanrolleghem et al., 2015; Cosenza et al.,
2013). This number guarantees the stability of the sensitivity measure.

For the model calibration, Nc was set equal to 10,000 for each sub-
group of model outputs. The broadest factor variation range drawn
from literature was adopted. Finally, Nu (Monte Carlo runs for the un-
certainty analysis) was set equal to 1000. The value of Nu was estab-
lished by employing independent runs (increasing the number of si-
mulations from 100 to 1000, at steps of 100) and verifying the stability
of the uncertainty results (Bertrand-Krajewski et al., 2002; Dotto et al.,
2012).

3. Results and discussion

For sake of conciseness, only the results related to the N2O model

Table 2
Ranking of all model factors which are important for at least one model output related to the GHG for Model I and Model II. *Rel refers to all model factors.

Model output Model I Model II

SN2O,1 SN2O,2 SN2O,3 SN2O,4 SN2O,5 SN2O,1 SN2O,2 SN2O,3 SN2O,4 SN2O,5 SNH2OH,1 SNH2OH,2 SNH2OH,3 SNH2OH,4 SNH2OH,5
Rel* [%] 3.81 4.76 5.71 8.57 8.57 6.25 8.93 8.04 15.18 15.18 4.46 4.46 8.04 9.82 9.82

Factors Ranking Ranking

kH 47 70 24 3 3 52 79 32 7 7 100 89 66 73 73
ko 50 25 10 2 2 56 34 15 6 6 39 63 25 20 20
μH 6 5 7 6 6 11 10 11 13 13 84 11 3 3 3
KNH,H 87 46 42 8 8 93 54 49 16 16 79 85 51 62 62
qPP 17 8 9 24 24 22 14 14 33 33 85 7 6 4 4
μPAO 27 10 30 12 12 33 16 38 20 20 28 6 8 7 7
μaut,AOB 3 3 3 26 26 5 4 7 35 35 6 18 2 2 2
YH 13 29 6 5 5 17 37 9 12 12 92 108 17 18 18
YPAO 23 11 15 27 27 35 24 20 44 44 57 39 10 9 9
YPO4 30 75 79 50 50 29 20 21 36 36 74 12 11 11 11
fUAP 2 4 2 4 4 4 8 6 9 9 110 79 29 32 32
Fxi 28 56 12 9 9 34 64 18 17 17 89 103 55 61 61
iN,xi 11 14 8 7 7 91 69 78 48 48 51 56 71 64 64
iNxs 64 60 99 23 23 15 23 12 15 15 9 8 23 19 19
k,LaT,1 75 88 5 14 14 99 94 27 41 41 35 59 78 76 76
k LaT,2 105 105 46 57 57 81 96 90 56 56 61 74 109 107 107
k LaT,4 101 96 97 1 1 108 105 105 5 5 11 29 47 53 53
ηg2 18 57 31 70 70 2 6 3 10 10 21 35 22 24 24
ηg3 99 45 59 65 65 3 7 5 22 22 88 80 65 83 83
ηg4 4 2 4 20 20 7 2 8 28 28 31 70 20 22 22
ηg5 1 1 1 16 16 1 1 1 24 24 95 110 77 86 86
η,AOB,ND – – – – – 27 9 2 2 2 5 5 7 8 8
KNH,AOB – – – – – 45 78 106 3 3 104 30 19 30 30
KNH2OH,AOB – – – – – 53 17 17 11 11 3 3 1 1 1
Kl,O,AOB – – – – – 18 12 4 1 1 47 23 9 10 10
KO,AOB,ND – – – – – 9 3 10 14 14 4 4 14 16 16
KO,AOB1 – – – – – 10 5 22 4 4 1 1 4 5 5
Ko,AOB2 – – – – – 6 19 29 8 8 2 2 5 6 6

In bold important model factors; the two model factors for each model outputs having the highest βi value.
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outputs (both dissolved and off-gas concentration within each reactor of
the UCT-MBR pilot plant) will be presented and discussed.

3.1. Sensitivity analysis

Table 2 summarizes the importance ranking of the model factors
(both for Model I and Model II) which are important for at least one of
the N2O model outputs. Furthermore, Table 2 reports for each model
output the value of Rel.

A quite high correspondence in terms of set of important model
factors occurred between the two models. Almost all model factors
found to be important for Model I are also important for Model II
(Table 2). In some cases, the results show a perfect correspondence in
terms of importance ranking of the most important model factor
(number of ranking equal to 1). Indeed, for both models SN2O,1 (anae-
robic reactor), SN2O,2 (anoxic reactor) and SN2O,3 (aerobic reactor) are
mostly influenced by the correction factor for heterotrophic anoxic
growth reducing N2O to N2 (ηg5).

A low correspondence in terms of importance ranking occurred for
SN2O,4 (MBR reactor) and SN2O,5 (permeate). For example, for Model I
SN2O,4 (MBR) and SN2O,5 (permeate) are mostly influenced by the
overall oxygen transfer coefficient related to MBR tank (KLaT,4).
Conversely, for Model II SN2O,4 and SN2O,5 are mostly influenced by the
N2O factor for production inhibition by O2 (KI,O2,AOB). This discrepancy
is mainly related to the fact that in Model II the biological processes
occurring inside the aerobic reactor have a predominant effect on the
dissolved N2O concentration inside the MBR reactor and consequently
in the permeate. Conversely, for Model I the stripping processes due to
the MBR aeration have a predominant effect on the dissolved N2O
variation.

The sensitivity analysis demonstrates an influence of the model
factors related to the phosphorus transformation processes (e.g., qPP
and μPAO) on SNH2OH,3, SNH2OH,4 and SNH2OH,5. Such a result has a
particular interest since it underlines that even the PAOs activity could
have an indirect effect on the N2O emission for Model II. The oxygen
consumption due to the aerobic PAOs growth could indirectly influence
the AOB NH2OH oxidation. Low dissolved oxygen concentration, inside
the aerobic reactor, could lead to the incomplete NH2OH oxidation with
the consequent N2O formation as intermediate. This suggests that when
phosphorus removal processes are included, the modeler must take
consider all the factors related to PAOs activity in order to reduce the
N2O emissions.

In terms of Rel, it can be observed that despite the greater number of
model factors in Model II, the Rel values of all model outputs are higher
for Model II than Model I (Table 2). For example, for SN2O,4 the Rel
value is 8.6 and 15% for Model I and Model II, respectively (Table 2).
This shows that the introduction in Model II of new processes and
model factors related to the N2O production during nitrification has
strongly influenced the model results in terms of GHG emissions from
each section of the pilot plant. Indeed, the new model factors in-
troduced in Model II are indicated to be important for almost all the

model outputs (Table 2).
Fig. 2 shows the Venn Diagram of the model factors important for

the dissolved N2O in the aerated reactors (SN2O,3 and SN2O,4). From
Fig. 2 it is possible to identify the important model factors for SN2O,3
(Fig. 2a) and SN2O,4 (Fig. 2b) for each model. Moreover, the overlapping
area in Fig. 2 contains the model factors important for Model I and
Model II. Fig. 2 shows, especially for the MBR, that a great part of the
model factors in common between the two models are important for
both SN2O,3 (Fig. 2a) and SN2O,4 (Fig. 2b). Moreover, almost all the new
model factors of Model II are also important (see for example Fig. 2b).

3.2. Best fit

Table 3 summarizes the results of the two indices adopted for
comparing Model I and Model II in terms of best fit. Specifically, the
total model efficiency (EMOD) and the average efficiency for both
models in terms of N2O are reported.

In terms of total model efficiency, a slight improvement of the re-
sults was found for Model II.

Indeed, the total model efficiency value for Model II is 0.56, while
for Model I it is 0.55 (Table 3). In general, the values of EMOD (the
maximum value is equal to 1) are only slightly higher than 0.5
(Table 3). This suggests that the response of both models could be
improved. Indeed, both models slightly overestimate the dissolved and
off-gas N2O for some cases. This result is likely due to the discrete
sampling. Continuous sampling would likely improve the results.

Results in terms of single model output show that sometimes a
substantial variation in terms of efficiency occurred between Model I
and Model II. For example, the efficiency related to the SN2O,2 (anoxic
reactor) was equal to 0.38 and 0.43 for Model I and Model II, respec-
tively. This is mainly due to the improvement of the N2O description in
the aerated reactor for Model II, which influences the amount of dis-
solved N2O recycled from the aerated to the anoxic (Section 2) reactors.
More precisely, the introduction of the XAOB pathways in Model II has
led to the increase of the efficiency of SN2O,3 (aerobic reactor) from 0.36
to 0.38 in Model I and Model II respectively. Similarly, the efficiency of
SN2O,4 (MBR) increased from 0.30 (Model I) to 0.40 (Model II). Con-
sequently, the efficiency of the off-gas N2O model outputs for the MBR
increased from 0.35 (Model I) to 0.45 (Model II).

Comparing RMSE, a lower discrepancy between predicted and
measured results was found with Model II than with Model I. Indeed,
for both models the RMSE value of all model outputs is quite low when
compared with the average measured value (Table 3). This result sug-
gests that both models provide a quite good description of the measured
data. However, the improvement of the results obtained for Model II, as
discussed above, is confirmed by the RMSE results. For example, the
RSME values related SN2O,2 and Off-gasN2O,2 and obtained by Model I
(0.009mg L−1 and 0.014mg L−1, respectively) are higher than those of
Model II (0.008mg L−1 and 0.011mg L−1, respectively) (Table 3).

Fig. 2. Venn diagram related to the results of the sensitivity analysis for SN2O of the aerated reactors SN2O,3 (a) and SN2O,4 (b). In bold model factors related only to
Model II.
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3.3. Models prediction uncertainty

Results related to the comparison between the two models in terms
of model prediction uncertainty are summarized in Table 4, which
summarizes the p-factor, r-factor and ARIL values obtained by Model I
and Model II.

In general, the results in Table 4 confirm the global improvement of
Model II compared with Model I also in terms of model uncertainty
prediction. Indeed, for all the N2O model outputs, a lower uncertainty
was obtained for Model II when compared to Model I. This is indicated

by the higher p-factor values and the ARIL values close to 1 for almost
all the outputs of Model II.

In the interests of brevity, only the results related to the N2O model
outputs (both dissolved and off-gas) of the anoxic and aerobic reactors
will be discussed. These two reactors (anoxic and aerobic) were selected
because the key processes in them are quite different (directly or in-
directly) in the two models.

Fig. 3 shows the measured, calibrated, 5% and 95% percentiles for
the SN2O,2 (anoxic reactor) predicted by Model I and Model II (Fig. 3a
and b, respectively) and for Off-gasN2O,2 (anoxic reactor) predicted by

Table 3
Values of the indices adopted for comparing Model I and Model II in terms of best fitting.

Model Index SN2O,1 SN2O,2 SN2O,3 SN2O,4 SN2O,5 Off-gasN2O,1 Off-gasN2O,2 Off-gasN2O,3 Off-gasN2O,4 EMOD

I Ej [–] 0.37 0.38 0.36 0.3 0.29 0.27 0.39 0.39 0.35 0.55
RSME [mg L−1] 0.013 0.009 0.009 0.01 0.013 0.021 0.014 0.013 0.014

II Ej [–] 0.32 0.43 0.38 0.4 0.27 0.29 0.4 0.39 0.45 0.56
RSME [mg L−1] 0.013 0.008 0.01 0.012 0.014 0.02 0.011 0.012 0.012

Table 4
Values of the indices adopted for comparing Model I and Model II in terms of model prediction uncertainty.

Model Index SN2O,1 SN2O,2 SN2O,3 SN2O,4 SN2O,5 Off-gasN2O,1 Off-gasN2O,2 Off-gasN2O,3 Off-gasN2O,4

I p-factor [%] 71 86 86 86 71 71 86 43 57
r-factor [–] 0.001 0.732 0.470 0.000 0.098 0.254 0.981 0.321 0.144
ARIL [–] 0.008 2.805 0.790 0.000 0.440 2.358 4.987 3.148 2.789

II p-factor [%] 86 86 86 86 86 86 86 86 86
r-factor [–] 0.388 1.110 0.114 1.007 1.233 0.879 1.457 1.249 0.751
ARIL [–] 1.434 1.065 0.672 1.646 1.405 1.124 1.15 1.125 1.041

Fig. 3. Measured, calibrated, 5% and 95% percentiles for the SN2O,2 concentration predicted by Model I (a) and Model II (b) and for Off-gasN2O,2 concentration
predicted by Model I (c) and Model II (d).
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Model I and Model II (Fig. 3c and d, respectively).
For SN2O,2 an improvement of the model response was obtained for

Model II. Indeed, despite the quite high p-factor of SN2O,2 and equal for
both models (86%), Fig. 3a and b show that the calibrated and the 95%
percentile of day 21 for Model II are closer to the measured data.
Further, the values of the r-factor and ARIL for SN2O,2 (1.11 and 1.065,
respectively) of Model II are both very close to 1 which, combined with
the high p-factor value, suggest an excellent response of the model in
terms of uncertainty (Table 4). Specifically, compared with Model I, for
which quite different r-factor and ARIL values of SN2O,2 (0.732 and
2.805, respectively) were obtained, a lower prediction uncertainty was
determined for Model II.

Similar results were also found for Off-gasN2O,2 (Fig. 3c,d). Despite
similar values of the r-factor (0.981 and 1.457) for Model I and Model II
respectively and the p-factor (86% for both models) were obtained for
Off-gasN2O,2, very different ARIL (4.987 and 1.150) values were ob-
tained for Model I and Model II (Table 4). The combination of the low
ARIL value and the high p-value for Model II indicates a better per-
formance than Model I in predicting Off-gasN2O,2.

Data related to the aerobic reactor are reported in Fig. 4, which
shows the measured, calibrated, 5% and 95% percentiles for the SN2O,3
(aerobic reactor) predicted by Model I and Model II (Fig. 4a and Fig. 4b,
respectively) and for Off-gasN2O,3 (aerobic reactor) related to Model I
and Model II (Fig. 4c and Fig. 4d, respectively).

For SN2O,3 no substantial differences were found in terms of un-
certainty of model predictions. Indeed, the p-factor (86%) value was
equal for both models. Further, similar ARIL values for SN2O,3 were
obtained (namely, 0.790 for Model I and 0.672 for Model II) (Table 4).
However, the r-factor of SN2O,3 was higher for Model I (0.47) than
Model II (0.114) (Table 4). This result suggests that the results of Model
I are better than those of Model II for SN2O,3 since the r-factor value

related to Model I is closer to 1 suggesting an achievement of rather
small uncertainty band.

In contrast, for Off-gasN2O,3 the results of Fig. 4b and c suggest that a
net improvement was obtained for Model II. More specifically, for Off-
gasN2O,3 a higher p-factor value was obtained with Model II (86%) than
with Model I (43%) (Table 4). Moreover, the ARIL and r-factor values of
Model II (1.125 and 1.249, respectively) are very close to 1, which
suggest a low uncertainty in the model response for Off-gasN2O,3
(Table 4 and Fig. 4c).

For sake of completeness in Fig. 5 are reported the uncertainty re-
sults in terms of CDF for SN2O,2 (a and e for Model I and Model II,
respectively), for Off-gasN2O,2 (b and f for Model I and Model II, re-
spectively), for SN2O,3 (c and g for Model I and Model II, respectively
and for Off-gasN2O,3 (d and h for Model I and Model II, respectively).

Data reported in Fig. 5 corroborate the improvement of the results
obtained with Model II respect to that of Model I. For example, contrary
to Model I for Model II the SN2O,2 (anoxic reactor) measured data lay all
within the 5% and 95% percentile CDFs.

No discussion on the measurement error propagation has been here
provided because was out of the scope of the study. Further future
studies will be performed in view of addressing such a issue (among
others, Freni and Mannina, 2010; Freni et al., 2009).

4. Conclusions

Two integrated GHGs MBR models have been compared. The fol-
lowing conclusions can be drawn:

1) Most of the model factors introduced into Model II were important
for the N2O model outputs. Therefore, detailed models (like Model
II) provide better results than more simple models (like Model I).

Fig. 4. Measured, calibrated, 5% and 95% percentiles for the SN2O,3 concentration related to Model I (a) and Model II (b) and for Off-gasN2O,3 concentration related to
Model I (c) and Model II (d).
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2) The introduction of the AOB pathways in Model II improved pre-
dictions in terms of best fit. The efficiency of the off-gas N2O model
outputs for the MBR increased from 0.35 (Model I) to 0.45 (Model
II).

3) The higher complexity of Model II did not negatively influence the
uncertainty in model prediction.
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