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1 Introduction

This note is devoted to a particular family of topological *-algebras that
share with C*-algebras a crucial feature: they possess sufficiently many *-
representations. Throughout this paper, we term topological *-algebra a *-
algebra A0 equipped with a locally convex topology t such that, for each
a ∈ A0, the mappings x 7→ ax, a 7→ xa and the involution ∗ are continuous in
A0[t]. A *-representation of A0 is a *-homomorphism of A0 into the *-algebra
L†(D) of all weakly continuous endomorphisms of a pre-Hilbert space D. In
(16) one of us considered the case where A0 is faithfully representable, for short
an fr*-algebra, in the sense that, for every nonzero element a ∈ A0, there ex-
ists a continuous (in a sense that will be specified later) *-representation π

which does not vanish at a. The main scope of that paper was to identify ele-
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ments of A0 that are mapped into bounded operators by any *-representation
of A0 and for this reason they can deserve the name of bounded elements of
A0.

Bounded elements of topological *-algebras have a long story. This notion
was first introduced by Allan (1) whose goal was to develop a spectral theory
for topological *-algebras. The need of introducing bounded elements was
suggested by the successful spectral analysis for closed operators in Hilbert
space H: a complex number λ is in the spectrum σ(T ) of a closed (possibly,
unbounded) operator T if T − λI has no inverse in the *-algebra B(H) of
bounded operators. Allan’s definition sounds as follows: an element x of the
topological *-algebra A0[t] is Allan bounded if there exists λ 6= 0 such that the
set {(λ−1x)n; n = 1, 2, . . .} is a bounded subset of A0[t]. Of course one would
expect that Allan bounded elements of some topological *-algebra of (possibly)
unbounded operators (e.g., an O*-algebra) are its bounded operators; but
this is not the case as we shall see. Thus Allan bounded elements need not
be realized by bounded operators in some *-representation of A0 in Hilbert
space, as it would be natural to expect.

Bounded elements in purely algebraic terms have been considered by Vi-
dav (18) and Schmüdgen (11) with respect to some (positive) wedge. This
purely algebraic definition can be extended by considering as strongly posi-
tive elements those belonging to the t-closure in A0 of the, say, algebraic cone
of positive elements of a *-algebra. The main result is that order bounded
elements, as we call them, allow equivalent characterizations in terms of con-
tinuous positive linear functionals and also in terms of *-representations, that,
if the positive wedge is a cone, are sufficiently many to separate points of A0.

Of course, several other possibilities for defining bounded elements can be
considered. For instance, one may say that x is left t-bounded, if there exists
γx > 0 such that

pα(xy) ≤ γxpα(y), ∀α ∈ ∆; ∀y ∈ A0,

where {pα;α ∈ ∆} is a directed family of seminorms defining the topology
t of A0 (6); or spectrally bounded if its spectrum is a bounded subset of the
complex plane. Moreover some attempts to extend this notion to the larger



fr*-algebras 3

set-up of locally convex quasi *-algebras (12; 14; 15) or locally convex partial
*-algebras (4; 5) has been done. But in these cases, Allan’s notion cannot be
adopted, since powers of a given element x need not be defined.

The class of fr*-algebras considered here enjoys a series of nice properties.
In particular, order bounded elements are exactly those realized by bounded
operators by any continuous *-representation of A0 in Hilbert space. In (16),
a study of some spectral properties of an fr*-algebra was undertaken, under
the additional assumption that the set of bounded elements, which is often a
C*-normed algebra, is in fact a C*-algebra. This assumption is quite strong
and not fulfilled in general by topological unbounded operator algebras, which
are in a sense the model to which the whole study is aimed to. Removing this
assumption requires to invoke the theory of partial *-algebras or quasi *-
algebras (3) on which some similar studies have been performed in a recent
past (2; 5; 8).

The paper is organized as follows. After some preliminaries (Section 2),
we review in Section 3 the main properties of fr-algebras we will need in the
sequel. In Section 4 we revisit the spectral analysis begun in (16) by consid-
ering the topological *-algebra A0 where we started from as a subspace of a
conveniently constructed topological quasi *-algebra A. With this approach,
we can avoid the assumption that bounded elements of A0 constitute a C*-
algebra contained in A0, but, as a drawback, we are forced to go beyond the
original framework of topological *-algebras. This is not so surprising if we
consider that a spectral theory for unbounded operator algebras cannot be
successfully formulated within the same algebra, without dismissing the tra-
ditional spectral theory of closed (or closable) operators, considered as single
objects.

Topological algebras have been, as well-known, the main research subject
of the late Prof. Anastasios Mallios. His monography (9) remains one of the
cornerstones of the literature on this topic. One of the authors of this note
(C.T.) had many occasions of discussing Mathematics with him in Athens and
serves both a human and scientific indelible memory of him.
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2 Preliminaries and basic results

The following preliminary definitions will be needed in the sequel. For more
details we refer to (3; 10).

2.1 Basics

Let H be a complex Hilbert space and D a dense subspace of H. We denote
by L†(D,H) the set of all (closable) linear operators X such that D(X) =
D, D(X*) ⊇ D and by L†(D) the subspace consisting of all operators X ∈
L†(D,H) such that XD ⊂ D, X*D ⊂ D. The set L†(D) is a *-algebra with
respect to the ordinary operations of addition, multiplication by scalars, multi-
plication (defined as composition of maps) and involution X 7→ X† := X*�D.
We denote by ID the identity operator in D. Clearly, ID is the unit of L†(D).
A *-subalgebra M of L†(D), containing the identity ID, is called an O*-algebra
(10).

Let M be a †-invariant subset of L†(D,H) (i.e., an O*-family on D),
containing the identity ID. The space D endowed with the graph topology
tM , defined by the seminorms

ξ ∈ D → ‖Xξ‖, X ∈M,

will be denoted by DM . If M is a closed O*-family, the collection of bounded
subsets of D[tM ] is the same of that corresponding to tL†(D,H) and it is denoted
by B.

A (closed) O*-family M on D can be endowed with some traditional op-
erator topologies:
– the weak operator topology τw defined by the seminorms

X ∈M→ pξ,η(X) := |〈Xξ|η〉|, ξ, η ∈ D;

– the strong operator topology τs defined by the seminorms

X ∈M→ pξ(X) := ‖Xξ‖, ξ ∈ D;
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– the strong* operator topology τs∗ defined by the seminorms

X ∈M→ p∗ξ(X) := max{‖Xξ‖, ‖X†ξ‖}, ξ ∈ D,

that mimick the corresponding topologies of bounded operator algebras.
The following uniform topologies τu , τu and τu∗ generalize the norm of

B(H).
– τu defined by the seminorms

pM(X) = sup
ξ,η∈M

|〈Xξ|η〉|; M∈ B;

– τu defined by the seminorms

pM(X) = sup
ξ∈M
‖Xξ‖; M∈ B

– τu∗ defined by the seminorms

pM∗ (X) = max{pM(X), pM(X†)}; M∈ B.

It is easily seen that M[τw] and M[τu] are topological *-algebras.
We list here some easy properties of the topologies defined above. For

every bounded subsetM of D[t], one has
– there exists γM > 0 such that pM(X) ≤ γM pM(X), ∀X ∈M.
– pM(X†X) = pM(X)2, ∀X ∈M.

As shown in (3, Prop. 4.2.3) L†(D,H)[τu∗ ] is complete. It is also complete when
endowed with the topology τs∗ .

Let A0 be a *-algebra and Dπ a dense domain in a certain Hilbert space
Hπ. A linear map π from A0 into L†(Dπ) such that:

(i) π(a∗) = π(a)†, ∀a ∈ A0,
(ii) if a, b ∈ A0, then π(ab) = π(a)π(b),

is called a *-representation of A0. Moreover, if A0 has a unit e ∈ A0, we assume
π(e) = IDπ , the identity of Dπ.

A *-representation π of a topological *-algebra A0[t] is said to be a (t, τw)-
continuous if, for every ξ, η ∈ Dπ, there exists a t-continuous seminorm p on
A0 such that

|〈π(a)ξ|η〉| ≤ p(a), ∀a ∈ A0.



6 C. Trapani and F. Tschinke

A linear functional ω on A0 is called positive if ω(a∗a) ≥ 0, for every
a ∈ A0. To every positive linear functional ω on A0 there corresponds a Hilbert
space Hω and a linear map λω from A0 into a dense subspace λω(A0) ⊂ Hω
and a *-representation πω acting on a dense domain Dπω such that λω(A0) ⊂
Dπω ⊂ Hπ and

ω(b∗xa) = 〈πω(x)λω(a)|λω(b)〉, ∀a, b, x ∈ A0.

The representation πω can be taken to be closed (10). If A0 has a unit e, then
there exists a vector ξω such that λω(A0) = {πω(a)ξω, a ∈ A0} and

ω(x) = 〈πω(x)ξω|ξω〉, ∀x ∈ A0.

We will refer to πω as to the GNS *-representation of A0 defined by ω.

2.2 Left t-boundness vs. Allan boundness

It is worth comparing the two notions of boundness already considered. We
have the following

Proposition 2.1. Let A0[t] be a topological *-algebra. If x ∈ A0[t] is left t-
bounded, then x is Allan bounded.

Proof. Let {pα;α ∈ ∆} be a directed family of seminorms defining the topol-
ogy t, and let us consider a left t-bounded element x ∈ A0[t], that is:

∃γx > 0 : pα(xy) ≤ γxpα(y), ∀α ∈ ∆,∀y ∈ A0.

In particular, we can put y = xn−1: in this way, we have: pα(xn) ≤ γxpα(xn−1),
then, iterating, pα(x

n

γnx
) ≤ 1

γx
pα(x). Hence, the set {(λ−1x)n; n = 1, 2, . . .} is a

bounded subset of A0[t] with λ = γx.

The converse is not necessarily true, as shown in the following example.

Example 2.2. Let us consider the topological *-algebra L†(D)[τw], where τw
is the weak operator topology. It is simple to verify that if X ∈ L†(D)[τw] is
left τw-bounded then X is a bounded operator. In fact, if X is left τw-bounded,
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then there exists γx > 0: |〈XY ξ|η〉| ≤ γx|〈Y ξ|η〉|, for all ξ, η ∈ D and for all
Y ∈ L†(D). If we choose Y = 1, we have

|〈Xξ|η〉| ≤ γx|〈ξ|η〉| ≤ γx‖ξ‖‖η‖, ξ, η ∈ D.

This implies that X is a bounded operator.
It is clear that if X is an unbounded operator of L†(D) such that X2 = 0,

then it is Allan bounded (as any nilpotent operator), but, X being unbounded,
cannot be left τw-bounded. In order to construct an operator X ∈ L†(D) such
that X2 = 0 we proceed as follows. Let {ek}k∈N+ be an ortonormal basis of
the separable Hilbert space H. Let D be the following subspace of H:

D :=
{
f =

∞∑
k=1

fkek ∈ H :
∞∑
k=1

|fk|2k2p <∞, ∀p ∈ N
}

and define
Xf :=

∑
k

kf2ke2k+1, f ∈ D.

Then X is an unbounded operator of L†(D) and X2f = 0.

3 fr*-algebras: an overlook

In this section we give a short overview to fr*-algebras, already studied in
(16).

Definition 3.1. A topological *-algebra A0[t] is called faithfully representable,
shortly an fr*-algebra, if for every x ∈ A0\{0} there exists a (t, τw)-continuous
*-representation π of A0 such that π(x) 6= 0.

Let Repc(A0) denote the family of all (t, τw)-continuous *-representation of
A0. Then, as shown in (16), the following statements are equivalent:
(i) A0 is an fr*-algebra;
(ii) For every x ∈ A0\{0}, there exists a t-continuous positive linear functional

ω such that ω(x∗x) > 0.
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The set of all t-continuous positive linear functionals on A0 will be denoted
by Pc(A0).

Remark 3.2. It is well known that in a C*-algebra every positive linear
functional is continuous. But, apart from C*-algebras, there exist nonnormed
topological algebras A0[t] that share the same property. For instance, every
Fréchet Q-algebra with unit has this property (7, Corollary 17.9). It is easily
seen that there is equivalence between the following two statements:

a) Every *-representation is (t, τw)-continuous.
b) Every positive linear functional is t-continuous.

3.1 Order structure

Let A0 be a *-algebra with unit e. We denote by

(A0)+
alg =

{
n∑
k=1

x∗kxk, xk ∈ A0, n ∈ N

}

the set (wedge) of positive elements of A0.
If A0[t] is a topological *-algebra, strongly positive elements of A0 are then

defined as members of (A0)+
alg

t
. We put (A0)+ := (A0)+

alg
t
.

The set (A0)+ is an m-admissible wedge in the sense of Schmüdgen (10,
Sect. 1.4); i.e.,
(1) e ∈ (A0)+;
(2) x+ y ∈ (A0)+, ∀x, y ∈ (A0)+;
(3) λx ∈ (A0)+, ∀x ∈ (A0)+, λ ≥ 0;
(4) a∗xa ∈ (A0)+, ∀x ∈ (A0)+, a ∈ A0.

The wedge (A0)+ defines an order on the real vector space (A0)h = {x ∈ A0 :
x = x∗} by x ≤ y ⇔ y − x ∈ (A0)+.

This order can be used to introduce a further notion of bounded element.
Let x ∈ A0; put <(x) = 1

2 (x+ x∗), =(x) = 1
2i (x− x

∗). Then <(x),=(x) ∈
(A0)h (the set of selfadjoint elements of A0) and x = <(x) + i=(x).
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An element x ∈ A0 is called order bounded if there exists γ ≥ 0 such that

±<(x) ≤ γe; ±=(x) ≤ γe.

We denote by (A0)b the family of order bounded elements. It can be proved
that (A0)b is a *-algebra.

For x ∈ (A0)h, put

‖x‖b := inf{γ > 0 : −γe ≤ x ≤ γe}.

Then, ‖ · ‖b is a seminorm on the real vector space ((A0)b)h and, if A0 ∩
(−(A0)+) = {0}, ‖ · ‖b is a norm on ((A0)b)h.

fr*-algebras can be characterized as follows.

Proposition 3.3. Let A0[t] be a topological *-algebra with unit e. The follow-
ing statements are equivalent.
(i) (A0)+ ∩ (−(A0)+) = {0}, i.e. (A0)+ is a cone.
(ii) Pc(A0) is sufficient; i.e., for every a ∈ A0 \ {0}, there exists ω ∈ Pc(A0)

such that ω(a∗a) > 0.
(iii)A0[t] is an fr*-algebra.

Remark 3.4. The notion of fr*-algebra looks very much close to that of
*-semisimple topological *-algebra. It is convenient to compare the two defi-
nitions. We remind that, if A0[t] is a topological *-algebra, one can consider
the set R′(A0) of all bounded topologically irreducible *-representations π on a
Hilbert space H that are continuous from A0[t] into B(H)[‖ · ‖]. The *-radical
of A0 is then defined by

R∗A0 :=
⋂
{Ker(π); π ∈ R′(A0)}.

A topological *-algebra A0[t] is called *-semisimple if R∗A0 = {0}.
Following a similar path we can consider the set

R∗A0 :=
⋂
{Ker(π); π ∈ Repc(A0)}.

Clearly a topological *-algebra is an fr*-algebra if, and only if, R∗A0 = {0}.
Since R′(A0) ⊆ Repc(A0), then R∗A0 ⊆ R∗A0 . Thus every *-semisimple

topological *-algebra is an fr*-algebra. The converse is false in general. In-
deed, let M be an O*-algebra on a domain D of Hilbert space H, endowed
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with the weak operator topology. The identical *-representation ιM, ιM : X ∈
M→ X ∈M, is clearly faithful, so that if M has no nontrivial invariant sub-
spaces, then R∗M reduces to {0}. Thus M is an fr*-algebra. This applies in
particular to the O*-algebra M(q, p) on the Schwartz space S(R), generated
by the operator q of multiplication by the real variable x and the operator
p = −i ddx . This algebra does not admit any bounded representation; thus the
notion of *-semisimplicity becomes meaningless in this case.

Proposition 3.5. Let A0[t] be an fr*-algebra with unit e.
Assume that the following condition (P) holds

(P) If y ∈ A0 and ω(y) ≥ 0, for every ω ∈ Pc(A0), then y ∈ (A0)+.

Then, for an element x ∈ A0, the following statements are equivalent.
(i) x ∈ (A0)+;
(ii) ω(x) ≥ 0, for every ω ∈ Pc(A0)
(iii)π(x) ≥ 0, for every π ∈ Repc(A0).

Theorem 3.6. Let A0[t] be a topological *-algebra with unit e and assume
that condition (P) holds. For x ∈ A0, the following statements are equivalent.
(i) x is order bounded.
(ii) There exists γx > 0 such that

|ω(a∗xa)| ≤ γxω(a∗a), ∀ω ∈ Pc(A0), a ∈ A0.

(iii)There exists γx > 0 such that

|ω(b∗xa)| ≤ γxω(a∗a)1/2ω(b∗b)1/2, ∀ω ∈ Pc(A0), a, b ∈ A0.

(iv)π(x) is a bounded operator, for every π ∈ Repc(A0), and

sup{‖π(x)‖, π ∈ Repc(A0)} <∞.

Let x be order bounded and define

q(x) = sup{|ω(b∗xa)|; ω ∈ Pc(A0), a, b ∈ A0;ω(a∗a) = ω(b∗b) = 1}.

Then, q(x) = ‖x‖b, for every x = x∗ ∈ (A0)b. Since q extends ‖ · ‖b, we adopt
the notation ‖ · ‖b for both. By (iv) it follows easily that, for every x ∈ (A0)b,

‖x‖b = sup{‖π(x)‖, π ∈ Repc(A0)}. (1)



fr*-algebras 11

It is easy to see that ‖ · ‖b is a norm on (A0)b such that, for every x, y ∈
(A0)b,
(i) ‖x∗‖b = ‖x‖b;
(ii) ‖xy‖b ≤ ‖x‖b ‖y‖b;
(iii)‖x∗x‖b = ‖x‖2

b .

4 Spectral properties revisited

In what follows a crucial role will be played by an auxiliary topology which
stems from the family Pc(A0) of t-continuous positive linear functionals. We
define in fact the strong* topology ts∗ , on A0 by the family of seminorms

x ∈ A0 → ω(x∗x)1/2 + ω(xx∗)1/2, ω ∈ Pc(A0).

From the definition itself it follows that ts∗ is coarser than t and that
every ω ∈ Pc(A0) is also ts∗ -continuous. Moreover, by an easy application of
the Cauchy-Schwarz inequality and by the definition itself of the topology ts∗ ,
the sesquilinear form ϕω defined by

ϕω(x, y) = ω(y∗x), x, y ∈ A0. (2)

is jointly continuous for ts∗ .

Proposition 4.1. Let A0 be a fr*-algebra with unit e. Then ‖ · ‖b is a C∗-
norm on (A0)b. Moreover if A0 is ts∗-complete, then (A0)b is a C*-algebra with
norm ‖ · ‖b.

4.1 Constructing a locally convex quasi *-algebra over
(A0)b

In (16) a notion of spectrum was proposed, under the assumption that (A0)b
is a C*-algebra contained in A0. We remove this condition, but we suppose
that (A0)b is ts∗ -dense in A0. For doing this, as announced in the Introduction,
we need to build up a larger structure (actually, a quasi*-algebra (3)), having
A0 as a subspace. The construction runs as follows.
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Lemma 4.2. For every x ∈ (A0)b, the multiplications a 7→ ax, a 7→ xa,
a ∈ A0, are ts∗-continuous.

Proof. We first observe that, if ω ∈ Pc(A0) and y ∈ A0, the linear functional
ωy on A0 defined by ωy(b) = ω(y∗by), b ∈ A0, is t-continuous, since the
multiplication in A0 is separately continuous; i.e. ωy ∈ Pc(A0). If x ∈ (A0)b
we have, using (ii) of Theorem 3.6,

ω(x∗a∗ax)1/2 + ω(axx∗a)1/2 = ωx(a∗a)1/2 + ω(axx∗a∗)1/2

≤ (ωx(a∗a)1/2 + ωx(aa∗)1/2) + γx∗x(ω(a∗a)1/2 + ω(aa∗)1/2)

which proves that the map a 7→ ax is ts∗ -continuous in A0. The continuity of
the map a 7→ xa follows easily by taking adjoints.

Let us denote by A := Ã0[ts∗ ], the completion of A0[ts∗ ]. The assumption that
(A0)b is ts∗ -dense in A0, implies, obviously, that A := (̃A0)b[ts∗ ]. Then, if a ∈ A

there exists a net (aα), of elements of (A0)b, ts∗ -converging to a. Hence, taking
into account Lemma 4.2, we can define multiplications as follows

a · x := lim
α
aαx, x · a := lim

α
xaα, x ∈ (A0)b, a ∈ A

and the involution by
a∗ := lim

α
a∗α.

It is easily seen that these maps are well-defined (i.e., they do not depend on
the particular net chosen for approximating a).

Proposition 4.3. Let A0 be an fr*-algebra, such that (A0)b is ts∗-dense in
A0. Then, A[ts∗ ] is a locally convex quasi *-algebra over (A0)b.

Proof. By the definition itself of the topology of the completion A, it follows
that both the continuity properties stated in Lemma 4.2 are preserved when
a runs over A. Similarly, the involution a 7→ a∗ is continuous.

Remark 4.4. As a quasi *-algebra A, over (A0)b, A is a particular partial
*-algebra (3). The latter is characterized by the two lattices FL, FR of, re-
spectively, left- and right-multipliers, respectively L(S), R(S), of a subset
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S ∈ A. For the quasi *-algebra A over (A0)b constructed here, we simply have,
for a ∈ A

L(a) = R(a) =

{
A if a ∈ (A0)b
(A0)b if a ∈ A \ (A0)b.

4.2 Ips-forms

In order to explore spectral properties of A0[t] we need to introduce a particular
class of positive sesquilinear forms on A = Ã0[ts∗ ].

Let ϕ be a positive sesquilinear form on A× A. Then we have

ϕ(x, y) = ϕ(y, x), ∀x, y ∈ A, (3)

|ϕ(x, y)|2 6 ϕ(x, x)ϕ(y, y), ∀x, y ∈ A. (4)

We put
Nϕ = {x ∈ A : ϕ(x, x) = 0}.

By (4), we have

Nϕ = {x ∈ A : ϕ(x, y) = 0, ∀ y ∈ A},

and so Nϕ is a subspace of A and the quotient space A/Nϕ := {λϕ(x) ≡
x + Nϕ;x ∈ A} is a pre-Hilbert space with respect to the inner product
〈λϕ(x)|λϕ(y)〉 = ϕ(x, y), x, y ∈ A. We denote byHϕ the Hilbert space obtained
by completion of A/Nϕ.

Let us consider an ips-form ϕ with core (A0)b , that is ϕ is a positive
sesquilinear form on A× A satisfying
(ips1)λϕ((A0)b) is dense in Hϕ ;
(ips2)ϕ(ax, y) = ϕ(x, a*y), ∀ a ∈ A,∀x, y ∈ (A0)b ;
(ips3)ϕ(a*x, by) = ϕ(x, (ab)y), ∀ a ∈ L(b), ∀x, y ∈ (A0)b.

In other words, an ips-form is an everywhere defined biweight with core (A0)b,
in the sense of (3).

To every ips-form ϕ on A, with core (A0)b, there corresponds a triple
(πϕ, λϕ,Hϕ), where Hϕ is a Hilbert space, λϕ is a linear map from (A0)b into
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Hϕ and πϕ is a *-representation on A in the Hilbert space Hϕ. We refer to
(3) for more details on this celebrated GNS construction.

If ω ∈ Pc(A0), the positive sesquilinear form ϕω on A0 ×A0, defined as in
(2), is, as we already remarked, jointly continuous with respect to ts∗ . Then
ϕω extends by continuity to A× A. Let us call ϕ̃ω this extension.

Lemma 4.5. If ω ∈ Pc(A0), then ϕ̃ω is an ips-form on A× A with core A0.

Proof. It is easy to check that the conditions (ips2) and (ips3) are satisfied
and since each ϕω, ω ∈ Pc(A0) is jointly ts∗ -continuous, then (ips1) is also
satisfied, so that every ϕ̃ω, ω ∈ Pc(A0) is an ips-form (see (4, Sect.4)).

Let us denote by M(A) the family of ips-forms on A × A defined as above
starting from Pc(A0); i.e.,

M(A) = {ϕ = ϕ̃ω; ω ∈ Pc(A0)}.

As in (4), we extend to families of ips-forms, the notion of sufficiency in
the following way.

Definition 4.6. A familyM of ips-forms on A×A is sufficient if x ∈ A and
ϕ(x, x) = 0, for every ϕ ∈M, imply x = 0.

By Proposition 3.3, we know that, for a fr-*-algebra A0, Pc(A0) is sufficient.
However the corresponding family of ips-forms M(A) need not be sufficient
in the sense of Definition 4.6.

Definition 4.7. We say that the fr-*-algebra A0 is full if the familyM(A)
is sufficient.

It is not always simple to determine the whole setM(A). But it is clear that
if some subset N of M(A) is sufficient so is M(A). So that in what follows
we suppose that M(A) has a sufficient subset N which is balanced in the
following sense (17; 13): if ϕ ∈ N then ϕa ∈ N , for every a ∈ (A0)b where
ϕa(x, y) = ϕ(xa, ya), x, y ∈ A. This choice reveals to be more flexible for
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examining examples. The term balanced is borrowed by Yood, who gave a
similar definition for positive functionals (19).

Remark 4.8. Let N be a balanced subset ofM(A). The sesquilinear forms
of N can be used to define on A several topologies. We will only consider the
topology tNs∗ defined by the following family of seminorms:
tNs∗ : x 7→ ϕ(x, x)1/2 + ϕ(x∗, x∗)1/2, ϕ ∈ N .
It is easily seen that tNs∗ induces on A0 the topology ts∗ .

For full fr*-algebras we can define extensions of the multiplication in the fol-
lowing way. We prevent the raeder that what follows is an application of results
obtained in (5) to the present situation. Proofs which are simple adaptations
of those given in the quoted paper are therefore omitted.

Definition 4.9. Let A0 be a full fr*-algebra with unit e and x, y ∈ A and
N a sufficient balanced subset ofM(A).
– We say that the weak multiplication x2y is well-defined if there exists

z ∈ A such that:

ϕ(ya, x∗b) = ϕ(za, b), ∀ a, b ∈ (A0)b, ∀ϕ ∈ N .

In this case, we put x2y := z.
– We say that the strong multiplication x • y is well-defined (and x ∈ Ls(y)

or y ∈ Rs(x)) if there exists w ∈ A such that:

ϕ(wa, z∗b) = ϕ(ya, (x∗z∗)b) whenever z ∈ L(x), ∀ϕ ∈ N , ∀ a, b ∈ (A0)b,

and

ϕ(w∗a, vb) = ϕ(x∗a, (yv)b) whenever v ∈ R(y), ∀ϕ ∈ N , ∀ a, b ∈ A0.

In this case, we put x • y := w.

It is obvious that the these defifinitions depend on the choice of N . The
following result is immediate.
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Proposition 4.10. If the fr-*-algebra A0 is full, then A is a partial *-algebra
with respect to the weak multiplication defined by any sufficient balanced subset
N ofM(A).

Remark 4.11. The uniqueness of each element z, w in the previous proposi-
tion results from the sufficiency of the family N . Moreover, it is clear that if
x•y is well-defined, then x� y is well-defined too. In particular, if x, y ∈ (A0)b
then, x • y and x� y are both well defined and x • y = x� y = xy.

An easy consequence of the previous definitions is the following form of the
associative law.

Proposition 4.12. Let x, y, z ∈ A. Assume that x2y, (x2y)2z and y • z are
all well-defined. Then x ∈ L(y • z) and

x2(y • z) = (x2y)2z.

An element x has a strong inverse if there exists x−1 ∈ A such that x • x−1 =
x−1 • x = e. The mixed associativity of Proposition 4.12 implies that, if a
strong inverse of x exists, then it is unique.

Definition 4.13.
An element x ∈ A is called N -bounded if there exists γ > 0 such that:

|ϕ(xa, b)| ≤ γ ϕ(a, a)1/2ϕ(b, b)1/2, ∀ϕ ∈ N , a, b ∈ A0 .

Remark 4.14. It is clear that if, x ∈ A0, then x is M(A)-bounded, if and
only if it is order bounded, by Theorem 3.6.

Let us now define:

qN (x) := inf{γ > 0 : ϕ(xa, xa) ≤ γ2ϕ(a, a), ∀ϕ ∈ N , ∀ a ∈ (A0)b}

= sup{ϕ(xa, xa)1/2 : ϕ ∈ N , a ∈ (A0)b, ϕ(a, a)1/2 = 1}

and
D(qN ) := {x ∈ A : x is N -bounded}.

It is clear that (A0)b ⊆ D(qN ).
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Then the following holds:

Proposition 4.15. Let x, y be N -bounded elements of A. The following state-
ments hold:
(i) x∗ is N -bounded also, and qN (x) = qN (x∗);
(ii) If x2y is well-defined, then x2y is N -bounded and

qN (x2y) ≤ qN (x) qN (y).

The proof of (ii) is a consequence of the following inequality (5).
Let x, y ∈ D(qN ) then, for every ϕ ∈ N and for every a, b ∈ (A0)b we get

|ϕ(ya, x∗b)| ≤ ϕ(ya, ya)1/2ϕ(x∗b, x∗b)1/2 (5)

≤ qN (x)1/2qN (y)1/2ϕ(a, a)1/2ϕ(b, b)1/2.

As we have seen at the beginning of this section, to every ϕ ∈ N there cor-
responds a Hilbert space Hϕ constructed from cosets λϕ(a), a ∈ A. Then (5)
can be read as follows. Let us define, for x, y ∈ A fixed, the sesquilinear form
on λϕ((A0)b)

Θx,y(λϕ(a), λϕ(b)) := ϕ(ya, x∗b), a, b ∈ (A0)b.

Then, by (5), Θx,y is a bounded sesquilinear form on λϕ((A0)b) × λϕ((A0)b)
and it extends to Hϕ×Hϕ. Hence, there exist a bounded operator Bϕ,x,y such
that

Θx,y(λϕ(a), λϕ(b)) = ϕ(ya, x∗b) = 〈Bϕ,x,yλϕ(a)|λϕ(b)〉, ∀a, b ∈ (A0)b).

Assume now that the following condition hold
(wb)there exists z ∈ A such that, for every ϕ ∈ N , Bϕ,x,yλϕ(a) = λϕ(za) for

every a ∈ (A0)b.

In this case, x2y is well defined and equals z.
If the condition (wb) is satisfied for every x, y ∈ D(qN ), then we say that

N is well-behaved. In this case, D(qN ) is a C*-algebra with the weak or strong
multiplication and the norm qN . This has been proved in (5), under a stronger
condition.
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The above discussion makes clear that requiring that D(qN ) is a C*-
algebra, as we did in (5), is a quite strong condition, rarely fulfilled in concrete
examples. But in any case we have:

Proposition 4.16. D(qN ) is complete under the norm qN .

Proof. Let {xn} be a Cauchy sequence with respect to the norm qN . Then
{x∗n} is Cauchy too. Since, for every ϕ ∈ N and a ∈ (A0)b the sesquilinear
form ϕa, with ϕa(x, y) = ϕ(xa, ya), belongs to N , we have

ϕ((xn − xm)a, (xn − xm)a)→ 0, as n,m→∞

and
ϕ((x∗n − x∗m)a, (x∗n − x∗m)a)→ 0, as n,m→∞.

Therefore, {xn} is Cauchy also with respect to tNs∗ . Then, there exists x ∈ A

such that xn
tNs∗→ x. Since

ϕ(xa, xa) = lim
n→∞

ϕ(xna, xna) ≤ lim sup
n→∞

qM(xn)2ϕ(a, a)

and lim supn→∞ qM(xn)2 <∞ (by the boundedness of the sequence {qM(xn)}),
we conclude that x is N -bounded. Finally, by the Cauchy condition, for every
ε > 0, there exists nε ∈ N such that, for every n,m > nε, qM(xn − xm) < ε.
This implies that

ϕ((xn − xm)a, (xn − xm)a) < εϕ(a, a), ∀ϕ ∈ N , a ∈ A0.

Then, for fixed n > nε and m→∞, we obtain

ϕ((xn − x)a, (xn − x)a) ≤ εϕ(a, a), ∀ϕ ∈ N , a ∈ A0.

This implies that qN (xn − x) ≤ ε.

Since qN (a) = ‖a‖b, for every a ∈ (A0)b, for making notations lighter, we
adopt the notation ‖ · ‖b for both of them.

Corollary 4.17. If (A0)b is dense in D(qN )[‖ · ‖b], then D(qN )[‖ · ‖b] is a
C*-algebra, possibly not contained in A0.
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4.3 The spectrum

Let now A0 be an fr*-algebra with unit e and such that (A0)b is ts∗ -dense in
A0. We assume, in addition that D(qN )[‖ · ‖b] is a C*-algebra.

Then we define the resolvent ρ◦(x) of x ∈ A0 is defined by

ρ◦(x) =
{
λ ∈ C : the strong inverse (x− λe)−1exists in D(qN )

}
.

The spectrum of x is defined as σ◦(x) := C \ ρ◦(x).
In similar way as in (12) it can be proved that: (a) ρ◦(x) is an open subset

of the complex plane; (b) the map λ ∈ ρ◦(x) 7→ (x−λe)−1 ∈ (A0)b is analytic
in each connected component of ρ◦(x).

As usual, we define the spectral radius of x ∈ A0 by

r◦(x) := sup{|λ| : λ ∈ σ◦(x)}.

Now we conclude by proving that bounded elements of A0 can be charac-
terized in terms of the spectrum. We have, in fact

Theorem 4.18. Let A0 be an fr*-algebra with unit e and such that (A0)b is
ts∗-dense in A0. Assume, in addition, that D(qN )[‖ · ‖b] is a C*-algebra. Let
x ∈ A0. Then, r◦(x) <∞ if and only if x ∈ (A0)b.

Proof. If x ∈ (A0)b, then σ◦(x) coincides with the spectrum of x as an element
of the C*-algebra D(qN )[‖ · ‖b] and so σ◦(x) is compact. Conversely, assume
that r◦(x) < ∞. Then the function λ 7→ (x − λe)−1 is ‖ · ‖b-analytic in the
region |λ| > r◦(x). Therefore it can be expanded in a ‖·‖b-convergent Laurent
series

(x− λe)−1 =
∞∑
k=1

ak
λk
, |λ| > rM(x),

with ak ∈ D(qN ) for each k ∈ N. As usual

ak = 1
2πi

∫
γ

(x− λe)−1

λ−k+1 dλ, k ∈ N,

where γ := {λ ∈ C : |λ| = R : R > r◦(x)} and the integral on the r.h.s. is
meant to converge with respect to ‖ · ‖b.
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Using the previous integral representation and the continuity, for every
ϕ ∈ N and b, b′ ∈ (A0)b, we have

ϕ(xakb, b′) = ϕ(ak+1b, b
′).

This implies that xak = ak+1.
Similarly, one shows that xa1 = −x. Thus, in conclusion, x = −a2 ∈

D(qN ) ∩ A0 = (A0)b.

Corollary 4.19. Let A0 be an fr*-algebra A0, with unit e. Then{
r◦(x) ≤ ‖x‖b if x ∈ (A0)b
r◦(x) = +∞ if x 6∈ (A0)b.

Example 4.20. The maximal O*-algebra L†(D) on a domain D, endowed
the topology t = τu is an fr-algebra. For every ξ ∈ D the positive linear
functional ωξ defined by ωξ(X) = 〈Xξ|ξ〉 is τu-continuous. Let N be the
family of extensions of the set of forms {ϕωξ , ξ ∈ D}, defined as in (2). The
topology tNs∗ coincides with τs∗ . The *-algebra (L†(D))b is exactly the *-algebra
L†b(D) = {X ∈ L†(D) : X ∈ B(H)} of all elements of L†(D) that are bounded
operators. This *-algebra is τs∗ − dense in L†(D). The completion of L†b(D) is
the partial *-algebra L†(D,H) whose bounded part consists of the restrictions
to D of the elements of B(H). The weak- and strong multiplications defined
here are nothing but the weak- and strong multiplications of L†(D,H) (see,
e.g. (3; 5)). Finally, as shown in (4), the spectrum of an element Y ∈ L†(D)
as defined in this section coincides with the ordinary spectrum of the closed
operator Y .
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