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Molecular Dynamics (MD) has become increasingly popular due to the development of hardware and software solutions 

and improvement in algorithms, that allowed researchers to scale up calculations in order to speed up them. MD 

simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile 

analysis over time. In recent years, the development of new tools able to deeply explore Potential Energy Surface (PES) 

allowed researchers to focus on the dynamic nature of binding recognition process and binding-induced protein 

conformational change. Moreover, modern approaches have demonstrated to be effective and reliable in calculating some 

kinetic and thermodynamic parameters behind the host-guest recognition process. Starting from all of these 

considerations, several efforts have been made in order to integrate MD within the virtual screening process in drug 

discovery. Knowledge retrieved from MD can be, in fact, exploited as a starting point to build pharmacophores or docking 

constraints in the early stage of the screening campaign as well as to define key features, in order to unravel hidden 

binding modes and help the optimisation of the molecular structure of a lead compound. Based on these outcomes, 

researchers are nowadays using MD as an invaluable tool to discover and target previously considered undruggable 

binding sites, including protein-protein interactions and allosteric sites on protein surface. As a matter of fact, the use of 

MD has been recognised as vital in the discovery of selective protein-protein interaction modulators. The use of a dynamic 

overview on how the host-guest recognition occurs and of the relative conformational modifications induced, allow 

researchers to optimise small molecules and small peptides capable to tightly interact within the cleft between the two 

proteins. 

In this review we point to present the most recent applications of MD as integrated tool to be used in the rational design 

of small molecules or small peptides able to modulate undruggable targets, such as allosteric sites and protein-protein 

interactions. 

Introduction 
The rational design of new selective chemical entities 

represents without any doubt the most important issue in 

Medicinal Chemistry, often referred to as rational drug design 

or simply rational design. In silico rational drug design is based 

on an early hypothesis of a desired effect due to the modulation 

of a specific biological target, structurally complementary to the 

designed molecule. This process is then characterized by the 

search of molecules that are directed to a specific target whose 

biological role within the pathology is known1. The main goal of 

a drug discovery process is the identification of a small molecule 

responsible for the modulation of a specific target. The hardest 

challenge for the medicinal chemist involved in this process is 

therefore the quest of the optimal affinity, selectivity, and 

stability of the designed molecules2. 
If on one side the first step of rational drug design is the target 

validation intended as its real and clear involvement in the 

biochemical process associated to the pathology, on the other 

hand there is a not negligible aspect to be considered for the 

target: its druggability. This term has been extensively adopted 

to explain, in different contexts, some properties of proteins, 

ligands or genes. In Medicinal Chemistry, the definition refers to 

the target capability of binding to a small molecule for the 

modulation of its activity3, and sometimes the term druggability 

is substituted by the synonyms “ligandability” or “bindability”4,5. 

In the last years, there has been a huge rise in the interest for 

undruggable sites to be deeply studied in order to find a 

strategic manner to target them anyhow. In 2017, a very 

interesting perspective on undruggable sites has been published 

on Nature Reviews, reporting the experts opinions on 

undruggable sites of targets involved in cancer6. In this work, 

Dang, Premkumar, Shokat and Soucek explain their own point 

of view on the definition of undruggable site. The most curious 

aspect of this work is the different point of view presented by 
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the different authors on the same issue. Dang mainly focuses on 

the protein-protein interaction (PPI) as one of the main 

undruggable targets because of the lack of well-defined and 

deep pockets7,8. Reddy states that the use of term undruggable 

is fairly exaggerate and it would be more correct to define those 

sites as difficult to drug. Actually, analysing the most common 

studied undruggable sites, during the years several small 

molecules has been identified as binders, with several 

candidates reaching the clinical trials (e.g. Bcl-2 family members 

and transcription factors as STAT3, MDM2 and others). Another 

important concept concerning undruggable sites is expressed by 

Shokat in the same manuscript. He points out that there are 

two main aspects that must be considered in order to classify a 

binding site as really undruggable. One is related to the 

chemical intractability of the target and the other one focuses 

on the need to have sufficient data demonstrating the clinical 

meaningfulness of a modulator towards that target. Laura 

Soucek, also contributes to the same topic expressing an 

interesting differentiation between those targets that have not 

been yet “drugged” because of structural difficulties, and those 

difficult to drug because not disease-specific for example in 

normal and cancer cells. In the latter case the intervention 

could produce severe side effects in normal cells expressing the 

same target. In recent years several methods to assess target 

druggability have been created with the most used mainly 

based on protein surface descriptors as curvature and 

lipophilicity. These features are considered to be fundamental 

for the recognition and consequent binding of small molecules9–

11. In the last years, massive advancements have been 

completed in the basic understanding of the biological 

properties and biochemical role of the undruggable sites 

especially thanks to the rise in the available structural insights 

provided both by X-ray crystallography and Nuclear Magnetic 

Resonance (NMR). Nevertheless, working on undruggable 

targets is not always possible using only experimental 

techniques because of the difficulties related to time, costs and 

not appropriate methods available. For example, the use of X-

ray structures provides a static picture of the protein, without 

any kind of information about how the target can structurally 

evolve in the presence of a modulator. On the other side, NMR 

presents some other limitations related to the target location, 

size and characteristics (not always it is possible to examine the 

whole protein-ligand complex with NMR techniques)12. 

Opportunely, at the same time, the computational methods 

reveal their usefulness, offering a valid and supportive 

alternative to the classical experimental methods13–17.  

Recently, the use of computational methods in drug discovery 

and development has expanded in popularity and 

implementation thanks to the good and reliable results showed. 

The implementation of computational methods within the drug 

design process, commonly called computer-aided drug design 

(CADD), gained its main success, in the early years of use, due to 

its capability of increasing the hit rate of novel drug compounds 

when compared to the classical high-throughput screening 

(HTS) approach. The main application of these methods is still 

the rapid use of virtual screening campaigns to cut the time-to-

market for the discovery of new chemical entities. For this 

purpose, the approach mostly used is the structure-based one, 

where the three-dimensional structure of the biological target, 

obtained through methods such as X-ray crystallography, NMR 

spectroscopy or homology modelling, is used to evaluate the 

binding capability of a small molecule library18,19. 
In the last years the advances in software and hardware 

performance allowed researchers to adopt Molecular Dynamics 

(MD) with great success20 to address drug discovery issues such 

as protein-ligand interaction stability21–24, binding kinetics25–29 

and binding process30–32. The understanding of molecular 

motions is basically the main issue related to molecular 

recognition and represents the evolution of the old idea of 

“Lock-and-key model” where a frozen receptor can house a 

small molecule without mutating its conformation33. The 

dynamic nature of the receptor has been, in fact, largely 

demonstrated and conformational changes have been related 

to ligand binding34,35. This dynamicity of protein conformation, 

related to the binding process of small molecules, has 

represented the key to unveil some strategies to target 

undruggable sites.  
On the light of these considerations, different approaches have 

been developed based on MD with the aim to explore protein 

flexibility and discover otherwise accessible hidden binding 

sites. One of the first methods to unveil undruggable sites 

through classical MD simulations was issued by Seco et al.36 In 

their work, an explicit restrained MD simulation was applied in 

order to evaluate the binding propensities of a probe addressed 

to the protein surface. Starting from the molecular trajectory, 

free energy calculations were performed to assess the 

molecular recognition process37. More recently a similar 

approach has been adopted by Bakan et al.38 to demonstrate 

that the approach of small molecules to proteins produce global 
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and local structural rearrangements of the protein that 

represent the starting point for increasing target druggability38. 

Nevertheless, some computational techniques adopted for such 

a kind of study, not always reproduce the native milieu in which 

proteins are normally plunged into the cells. It is actually 

important to maintain the maximum reliable conditions in order 

to avoid protein denaturation or wrong folding changes39. 

Indeed, the dynamic nature of proteins is particularly crucial for 

some targets exhibiting active, inactive and intermediate 

configuration alternation (e.g. GPCRs) and it should be taken 

into consideration when evaluating binding mode of small 

molecules, as demonstrated by Ferruz et al. in their recent 

publication40. In their work, authors used a combination of MD 

together with Markov state models (MSMs) to analyse binding 

mode and interaction pattern of a dopamine D3 receptor 

antagonist (PF-4363467). The use of aggregated MD through 

MSMs allowed researchers to unveil an otherwise hidden 

cryptic pocket, created by the positional shift of highly 

conserved residue F3466.52. The discovery of this cryptic pocket 

and the pose of the ligand observed by researchers could not be 

observed using canonical static docking approach. 
The aim of this review is to present how MD applications have 

been used in recent years to treat undruggable sites, in order to 

unravel targetable pockets using small molecules. Particularly, 

we have focused on the application of MD to two specific 

undruggable sites of main interest for medicinal chemists: 

Allosteric sites and protein-protein interactions (PPI). The next 

sections of this review will be dedicated to each of these two 

issues. Inside each part of the work, we will present the 

different approaches adopted by researchers in order to 

deepen the binding sites exploration and the design of selective 

modulators. 

Allosteric sites 

Proteins functions are strictly correlated to their flexibility and 

conformational transition causing cavities shape modifications 

and exposure. This dynamic process is fundamental for the 

recognition of chemical or biological guests useful to a 

particular biological process. As a matter of fact, biochemistry 

interest has always been focused on the conformational 

changes of proteins related to their biological role with specific 

regard to the possible cooperative functionalisation between 

different positions on the protein surface. Such a phenomenon 

is known as allostery and typically occurs when the protein 

binding process to a guest molecule transmits some 

conformational changes to some other proximal or distal 

different sites on the protein surface41,42. Some recent 

observations unveiled that allostery can be facilitated by 

dynamic and intrinsically disordered proteins offering new 

insights in the understanding of allosteric functional 

regulation43.The structural rearrangements associated to 

protein activity modulation can be referred to small side chains 

conformational changes as well as important modifications, 

within the quaternary structure, of spatial protein motifs 

distribution. Following the classical model of allostery proposed 

in the last years, the real definition should refer to the latter 

case44. Molecular modeling, and particularly molecular 

simulations can indeed help the understanding of such 

functional motifs rearrangement and movements within the 

protein. Considering the wide collection of molecular 

simulations approaches, it is imperative to underline that not 

every model is appropriate to completely explore the protein 

conformational space. Some classical simulations can in fact be 

limited to the exploration of only certain energy landscape 

portions because of their sampling capabilities44. When using 

MD it is difficult to correctly and widely sample the useful 

landscape for structure transition and it becomes essential to 

use biased MD techniques45–47 or other modified approaches 

such as supervised MD48. Using biased methods allow 

researchers to explore wide landscape of protein motions 

focusing on the energetic aspect of the allostery phenomenon. 

Moreover, the use of classical MD simulations not always is 

capable to provide useful information about conformational 

changes, unless long simulations are used49, but in the latter 

case it must be also considered that the longest the simulation 

is, the highest the approximation becomes50. Practically, the 

best way to catch all the useful conformational sampling 

information should be the use of enhanced sampling 

techniques51,52. One possible alternative to long simulations 

could be the use of multiple shorter simulations then analysed 

with Markov State Models to catch all the quantitative 

parameters to analyse53–55. In the latter, all the process must be 

well monitored in order to explore the structure and rebuild the 

whole process. In this section we will present the most recent 

approaches based on MD used to deepen allosteric regulation 

of proteins function related to their biological role. We will 

hereby present the most recent advances grouped based on the 

approach used (classical MD or Biased MD). 

Use of molecular probes in Molecular Dynamics for novel 

allosteric binding sites discovery 

Some of the below reported works present noteworthy 

approaches to study structural evolution of allosteric binding 
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site cavities and conformational shifting in proteins when 

targeted with probe molecules, that can act as modification 

inducers.  

One of the first assays in this field has been published by Bakan 

et al. in 201238. In their work, authors start from the definition 

of druggability as something related to affinity of small 

molecules towards binding sites available on the protein 

surface. The use of molecular probes designed on approved 

drugs scaffolds allowed researchers to effectively evaluate 

binding affinity and druggability for some challenging targets 

and especially for some hidden allosteric sites. The use of 

approved drugs with known experimental binding data 

constituted a method validation to check if theoretical binding 

affinities were correctly estimated. In this work, two main 

aspects were deepened, firstly the analysis of putative binding 

mode for several probe ligands towards different proteins, and 

secondly the consequent identification of the most druggable 

sites. Starting from collected data as geometry and energy 

parameters of the recognition and binding process, researchers 

could correctly evaluate the binding affinities. This methodology 

has been applied to several targets as protein tyrosine 

phosphatase 1B (PTP1B), lymphocyte function-associated 

antigen 1, vertebrate kinesin-5 (Eg5), and p38 mitogen-

activated protein kinase (MAPK). One of the most interesting 

aspects sharpened by this method is the possibility to unveil 

putative interaction spots on the protein surface, otherwise 

hidden. Remarkably, authors used probes with different 

physicochemical properties to harvest consistently more 

reliable predictions, not biased on a specific chemotype or 

physicochemical profile of ligand, therefore widening the type 

of putative binding sites that can be “gathered” within the 

protein. The use of mixed probes highlighted some interesting 

aspects of the binding process for the analysed targets, 

especially on the Eg5 and p38 MAPK. On the other side, using 

charged probes let authors to discover some important ligand 

features useful to bind phosphatase PTP1B catalytic sites.  

Benzene probes have been also used in a similar manner by Tan 

et al. in a very recent work56. In their study, authors charted 

putative oncoprotein MDM2 binding sites using a Ligand-

Mapping Molecular Dynamics (LMMD) simulation technique. In 

particular, this method allowed the discovery of two new sites 

both in the N-terminal domain of the protein. The first one 

situated between Tyr100 and Tyr104 was mapped in both apo 

and holo form of the protein, revealing an interaction region 

which in the X-ray crystal structure seemed inaccessible to any 

ligand. This region had been already demonstrated to be 

essential for the nutlin binding at the p53 cleft57. The second 

presumed site, in a region nearby the p53-Pro27 interaction 

site, was only identified during simulation of the apo protein. In 

the holo protein simulation, this region resulted occupied by 

the C-terminal of the p53 binding partner. The efficacy of the 

method adopted was then demonstrated by biophysical assays 

that proved the real existence of one of the predicted binding 

sites close to the consensus p53-binding cleft in MDM2, 

underlying how molecular simulations can be invaluable for the 

rational design of new drugs. Based on the simulations 

outcomes a series of hydrocarbon stapled peptides were 

proposed to target the binding site identified during simulations 

(Figure 1). The use of these peptides improved the activity of 

already known MDM2 ligands because of a cooperative action 

of the new discovered allosteric site with the canonical 

orthosteric site. Moreover, the structural knowledge of these 

new binding sites opened up to novel strategies of peptides 

optimisation, that can improve the binding mode of other 

ligands targeted for the MDM2/p53 interaction. 

A noteworthy application of molecular probes has been 

similarly presented by Luo et al.58. In their work, authors 

focused on a challenging target such as the two-pore domain 

potassium channel (K2P). This is a main actor in the membrane 

potential maintenance presenting a unique structural feature of 

extracellular cap formed by the E1 and E2 helices, not observed 

in other ion channels. Luo et al. adopted different 

computational chemistry techniques, mutagenesis, and 

electrophysiology experiments in order to characterise binding 

mode of N-(4-cholorphenyl)-N-(2-(3,4-dihydrosioquinolin-2(1H)-

yl)-2-oxoethyl) methanesulfonamide (TKDC), used as probe, to 

study the binding process to the extracellular cap of K2P 

channel, an allosteric and difficult site to be targeted. The study 

underlined important differences in the different binding mode 

of ligands on the different potassium channels (TREK, TRAAK 

etc.). The first stage of computational approach was conducted 

using molecular docking on the previously identified putative 

binding site. Following the docking outcomes, some 

mutagenesis experiments within the binding site were 

conducted in order to confirm the residues responsible for the 

Fig. 1: A stapled peptide (green chain) in complex with MDM2 protein (PDB 

ID: 4UE1) 
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binding mode retrieved from docking experiments in the 

different potassium channel models. Starting from the binding 

mode hypothesis, a chemical probe derived from TKDC was 

used for molecular dynamics to explore the extracellular 

binding site of the different channel models and further validate 

the proposed binding mode previously observed. These 

outcomes have been then exploited to supervise virtual 

screening of other molecules and find out new allosteric 

inhibitors of K2P (Figure 2A). 

Biased Molecular Dynamics for allosteric modulators design 

In the last years several MD applications have been used to 

better understand the allosteric sites role within the proteins. 

One of the most attractive approaches is based on Supervised 

Molecular Dynamics (SuMD). In this technique, ligand–receptor 

recognition is well-investigated in a relatively short time period 

(ns). The method relies on the use of a specific algorithm 

capable to focus on the binding process between protein and 

ligand speeding up the recognition trajectory. Such an approach 

allows to deepen some crucial aspects  of the binding event 

with special focus on the meta-binding sites or allosteric sites59. 

In their work, Deganutti et al. applied SuMD to GPCR A3 

adenosine receptor to study the effect of a positive allosteric 

modulator (LUF6000, Figure 2B)48. This work represents one of 

the first applications of MD for studying allosteric recognition 

mechanism. Indeed, it effectively revealed its importance in the 

elucidation of what experimentally observed, opening up to two 

different hypotheses of binding and subsequent regulation of 

LUF6000 on A3 adenosine receptor. In their experiment, the 

authors placed the allosteric modulator about 60 Å away from 

the orthosteric binding site, occupied by the natural agonist 

adenosine. 

The binding process pathway obtained from the simulation 

enlightened two possible ways through which the ligand may 

act on the receptor. In the first hypothesis, LUF6000 produced 

conformational changes inside the protein empowering the 

adenosine to strengthen interactions previously formed in the 

binding pocket. The other mechanism proposed was the 

formation of a ternary complex LUF6000-receptor-adenosine 

where the role of LUF6000 was to act as a sort of cap stabilising 

the binding of the other two interacting partners. Another 

biased MD technique widely used for allosteric modulators 

discovery is MetaDynamics (MetaD). The great intuition behind 

this method relies into the use of an additive potential applied 

to the system analysed in order to overcome some energy 

barriers of the Potential Energy Surface (PES) allowing the 

complete exploration of the energy landscape in the protein 

conformation shift.  

 

  

28NH TKN1 TKN2 

 

  

LUF6000   

Fig. 2: (A) Allosteric inhibitors of K2P - 28NH, allosteric inhibitor of TREK channels; 

TKN1 and 2, allosteric inhibitors of TRAAK. (B) Positive allosteric modulator, 

LUF6000. 

MetaD was firstly applied by Laio and Parrinello and it is usually 

adopted for molecular simulations in order to expand protein 

conformational changes exploration60. As a matter of fact, the 

use of this technique is particularly indicated for allosteric 

modulation studies because of its capability to deeply explore 

all the conformational changes in a target. In 2015, Grazioso et 

al. applied MetaD together with Essential Dynamics to Alpha7 

nicotinic receptor to give a mechanistic hypothesis of the 

allosteric modulation61. In detail, the application of these 

techniques allowed researchers to explore the free energy 

landscapes related to the open and closed states of the protein 

loop C. In this study, the effect of different modulators 

(including an agonist, a positive allosteric modulator, and a 

newly reported ago-allosteric modulator) on the conformational 

change of the protein was investigated. Every ligand considered 

showed a unique particular free energy profile, and most 

importantly, the possible interaction between orthosteric site in 

the loop C and M helices within the protein structure. This 

specific interaction was evidenced by the ago-allosteric 

modulator GAT107. In fact, when bound to the allosteric 

binding site, GAT107 induced a loop C rearrangement typical of 

a full agonist, thus providing a possible explication of the 

experimentally demonstrated ago-allosteric properties of 

GAT107. The results obtained from the computational approach 

were in perfect agreement with what observed in the 

(A) 

(B) 
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experimental assays and represented an outstanding 

advancement in the nicotinic receptor biology knowledge. 

In 2017, Gomez-Gutierrez et al. used accelerated MD for 6 µs to 

identify putative allosteric modulators for p38α MAP kinase62. 

The method63 is based on an enhanced-sampling algorithm  for 

sampling conformational space by reducing energy barriers, 

thus modifying the potential energy profile. Fixed a defined 

energy level, the algorithm does not affect energy-profile points 

above this zone, while it rises up wells that are below the fixed 

threshold energy level. As a result, the energy profile barriers 

are reduced allowing a wider exploration of the entire potential 

energy surface otherwise not easily scouted. In their work, 

Gomez-Gutierrez et al. let p38α MAP kinase to undergo a 6 µs 

accelerated dynamics collecting all the structures during the 

trajectory and clustering all the ensemble. Clusters were 

created using Principal Component Analysis (PCA) first and 

Cluster Analysis after, in order to collect the most 

representative structures during the simulation. The collected 

structures represented the starting point for a hot spot analysis 

conducted on FTMap. Through this approach, it was possible to 

confirm all the canonical well-known sites of the protein such as 

DFG pocket, lipid binding pocket, DEF site and others. 

Moreover, this study unveiled new allosteric binding sites 

named NP1 and NP10. These two contacts areas in particular 

caused protein structural rearrangement involving elements 

responsible for the protein activation (e.g. the activation loop, 

the catalytic loop, the glycine-rich loop and others). 

Classical Molecular Dynamics for allosteric modulators design 

Classical MD has been widely applied for studying allosteric 

modulation of biological targets. One interesting application of 

molecular simulation to comprehend the structural mechanism 

associated to signalling pathways of lymphocyte function has 

been recently published by Abdullahi et al.64. In their work, the 

authors applied molecular modeling to examine lymphocyte 

function activation, through an allosteric shape shifting of the 

lymphocyte-associated antigen, when it is bound to a specific 

modulator (ICAM Binding Enancher-667 – IBE-667). During the 

simulations, several parameters were collected in order to 

deepen and understand the succession of events leading to the 

active conformation of protein. Particular attention was given 

to variations in residual distances, dihedral angles, triCα angles 

to evaluate how the structural rearrangement was related to 

these variations. The conformational change between the 

inactive and active state of the target was characterised by 

significant fluctuation in residues positions and in energy 

stability of the complex. The shape shifting was strictly 

accompanied by a α7 helix movement driven by metal-ion 

dependent adhesion active site (MIDAS domain), both 

synergistically cooperating to the activation of LFA-1 Integrin 

responsible for lymphocyte function. The strength behind this 

work was the capability of demonstrating a synergistically 

interplay between MIDAS domain region and downward α7 

helix motion necessary for the biological activity.  

MD, in the last years, has been widely applied to the 

identification of new scaffolds and new chemical entities, 

integrating the classical virtual screening techniques to 

prioritise hit molecules and elucidate their binding mode within 

the protein cavity. Some mitotic kinesin Eg5 allosteric 

modulators have been identified thanks to MD application by 

Makala and Ulaganathan in their work published in 201765. Eg5 

is a well-known target for cancer therapy, but all the discovered 

compounds so far were addressed to the canonical orthosteric 

binding site because of its ease of access for small molecules 

and the availability of structural data. In this work, the authors 

firstly docked some free available molecular libraries on the 

allosteric site (site2) of the target and ranked molecules 

prioritising them based on the docking score. The best 5 poses 

retrieved from the docking were then submitted to MD to 

evaluate conformational rearrangement and stability of the 

ligand-protein complex. The results obtained from this study 

suggested the pyridazine scaffold as an optimal starting point 

for further Eg5 allosteric modulators development. 

The use of MD as strategy for unveiling undruggable sites in 

membrane ion channels was employed by Martin et al. and 

Guan et al.66,67 to study respectively pentameric ligand-gated 

ion-channels and Calcium channels. In the first work, authors 

presented an extensive point of view on glutamate-gated 

chloride channel (GluCl) responsible for the intercellular 

synaptic communication. A biochemical mechanism of 

activation/deactivation for this target is not still well-recognised 

and this work was a first attempt to elucidate the shift from 

open to closed state of the channel. The experiment was 

conducted using the protein in its active state bound to L-

glutamate and the positive allosteric modulator (PAM) 

Ivermectin. On this system a μs-long simulation was run in order 

to explore the structural relaxation upon PAM modulator 

ejection. Analysing the MD trajectory two different transition 

states were retrieved, and most importantly, it was clarified 
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that the structural global twisting observed is the unique 

responsible feature for the channel pore closing, acting on the 

M2-M3 loop at the interface between extracellular and 

transmembrane domain. Further simulations in equal restrained 

conditions showed the same structural rearrangement opening 

up to a pharmacological mechanism clarification of PAMs in this 

neurotransmitter receptor family. The rearranged structure 

observed during the dynamics simulation was comparable to 

the X-ray crystal structure of GluCl, thus enforcing the reliability 

of Molecular Dynamics-based method. Glutamate receptors 

(PDB ID: 4OR2, Figure 3) represent one of the most important 

targets involved in neurological diseases and, in certain cases, 

they show low subtype selectivity for orthosteric modulators. 

For this reason, it is necessary to address new investigation 

strategies such as the allosteric modulation. Starting from this 

hypothesis, Jiang et al. led a study on mGluR1 receptor in order 

to discover putative new negative allosteric modulators (NAM) 

derived from Chinese herbs components68. In this research 

work, authors started from the crystal structure of the seven-

transmembrane domain of mGluR1 to detect the putative 

allosteric binding sites and run some pharmacophore screening. 

The authors combined the structure-based interaction 

pharmacophore with ligand-based approach in order to 

increase the specificity of virtual screening.  

The ligand-based approach exploited different scaffolds of 

known NAMs, thus allowing to have pharmacophore models 

differentiated into molecular classes. Starting from these first 

results, the models were validated using a test set and the most 

reliable model was then used for the prospective screening 

campaigns. The best ranked compounds based on 

pharmacophore features matching were then docked into 

allosteric binding site of the protein in order to evaluate their 

binding pose. Later, the best poses were submitted to MD to 

evaluate the effective stability of the ligand-protein complex 

and the interactions stability of the selected molecules. 

One of the most important outcomes from this study was the 

identification of some key protein residues (Leu757, Asn760, 

Trp798, Phe801, Tyr805 and Thr815) that revealed to be crucial 

for NAM selectivity and binding stabilisation. 

Another comprehensive sight of the possible use of MD to 

discover otherwise unrevealed undruggable sites has been 

proposed by Pabon and Camacho in a very exhaustive work 

published in 201769. In this study, the attention was focused on 

the apo form of anticancer target PD1, a particular hard-to-drug 

protein. The use of MD revealed a new hidden hydrophilic 

cavity around Asn66 and Ile126 residues participating to the 

ligand recognition pattern. 

 

Fig. 3: Metabotropic Glutamate receptor 1 in complex with a negative allosteric 

modulator (green molecule). 

The use of two PD1 ligands, L1 and L2, permitted to discover 

that, while the unbound PD1 presented a hard-to-target 

hydrophilic interface to host the ligand, the recognition of both 

L1 and L2 induced a complex conformational shift with the 

consequent opening up of a hydrophobic cavity otherwise 

unreachable by any small molecule. These outcomes opened up 

new strategies to rationally design selective compounds and 

suggest a possible efficient biophysical approach to the 

evaluation of the binding pathways as a mean for targeting 

undruggable proteins. 

As recently shown in a paper published by Marko Novinec70 

computational investigations helped also the discovery of 

allosteric effectors active on cathepsin K and other related 

endopeptidases. In his work, Novinec firstly presented an 

interesting scenario about allosteric targeting as a progressively 

winning strategy in drug discovery, even though not yet well 

explored mainly because of lack of structural information. 

Papain-like cysteine peptidase cathepsin K allosteric modulation 
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was investigated through MD, together with other peptidases, 

to catch any putative conformational shift primarily important 

for the protein activation process. In this approach, MD-derived 

conformational space was plotted for different cathepsin 

endopeptidases (L, K, S and V), using Principal Component 

Analysis in order to explore possible conformation “clusters”.  

Proteins of the same family adopted similar conformations 

during the MD trajectories. At a later stage, the author 

proceeded with a deeper analysis of cathepsin K to show how 

some known allosteric modulators, NSC13345 and NSC94914, 

affect conformational changes. During the simulations, these 

effectors were able to influence the active site conformational 

shift, affecting the region nearby sites S1 and S2 pockets. This 

portion is the tightest part of the active site cleft and it is 

responsible for specificity in ligand binding process. Using 

molecular docking on structures retrieved from MD, it was 

supposed that allosteric modulation starts stabilizing pre-

existing conformational state, prior to influence the binding of 

substrate into the orthosteric site. The comparison of this 

results to other of related enzymes confirmed this as a possible 

mechanism for allosteric modulators, thus the usefulness of MD 

in unveiling binding site otherwise difficult to be recognised and 

targeted. 

Another interesting application of MD to unveil allostery 

phenomenon has been published in 2017, by Latallo et al. In this 

work the authors used simulations to predict allosteric 

mutations responsible for increasing antibiotic resistance 

mediated by beta-lactamase71. This research topic starts from 

the evidence that allosteric mutations are really difficult to be 

predicted prospectively. In this work, allosteric mutants of CTX-

M9 enzyme have been used for MD simulations examining a 

wide range of antibiotics. Experimentally, mutated isoforms of 

CTX-M9 showed a rise in their catalytic activity and efficiency. 

When the same mutants were studied “statically”, starting from 

crystal structures, no differences were noted in comparison 

with the wild-type form of the enzyme. Based on this outcome, 

researchers concluded that the activity increase could be 

related to conformational changes within the structure, not 

observable with canonical static in silico screening, allowing the 

enzyme to enhance its activity. The use of machine learning 

techniques, applied to MD trajectories allowed to discover the 

most important allosteric mutations influencing the 

conformational rearrangement of the catalytic site. This study 

highlighted how conformation shift was important for the rising 

of the catalytic activity of the enzyme in developing drug 

resistance, not affecting the minimum-free energy. There are 

different theories about the conformational change 

propagation from  the allosteric sites to the core catalytic 

pocket72. In their work, Latallo et al., showed that such 

mutations substantially did not affect the catalytic site 

conformation in the apo form of the protein, leaving the 

general structure conformation unaltered. Thanks to the 

application of machine learning techniques to trajectories 

derived conformations, the authors found out that the catalytic 

activity variation could be connected to a particular set of 

protein residues involved in coordinating catalytic water within 

the substrate binding site or directly involved in the substrate 

positioning. These outcomes open up some interesting hints in 

the rational design of new antibiotics.  

Molecular Dynamics simulations were also applied to address 

the problem of allosteric modulation in A2A adenosine receptor. 

Recently an interesting work has been produced by Caliman et 

al.73 as a follow-up of a previous one where the same authors 

had already explored the conformational analysis of Apo A2A 

adenosine receptor through MD74. In the previous work, 

Molecular Dynamics analysis allowed to identify different non-

orthosteric sites on the active conformations, on both two 

intermediate conformations observed, and on the inactive 

conformations of the protein. In this more recent work, authors 

started from different structures retrieved from the previous 

dynamics simulations and 20 different X-ray structures of the 

same protein family, in order to map the previously retrieved 

allosteric sites using the fragment-based approach accessible by 

FTMap software73. This software, usually used to identify 

available non-orthosteric sites, revealed to be especially helpful 

for transmembrane proteins and especially for compounds that 

cannot target the extracellular part of the protein but go on the 

lipid bilayer of the membrane. The use of MD combined with 

FTMap allowed to mainly identify five allosteric binding sites 

that are present in both active, intermediate and inactive 

protein conformations. We here report a table of the five sites 

identified as was reported in the original paper (Table 1). Such a 

kind of study represents an invaluable help for the designing of 

new allosteric modulators for difficult targets where selectivity 

is difficult to be reached. As in the previous case, the Bartuzi 

research group extensively adopted MD on a GPCR receptor to 

simulate the activation and the interplay between allosteric 

sites in the human µ-opioid receptor (MOR)75,76. 

In the first work, the authors started from evidences on 

negative modulators of μ-opioid receptor, a GPCR receptor, for 
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identification of allosteric sites and modulation mechanisms. In 

detail, starting from homology modeling, known compounds 

were docked into the allosteric sites and then conformations 

and complex stability was evaluated using MD. In particular, 

Salvinorin A, a negative allosteric MOR modulator, was used to 

evaluate key residues in the binding process using a site-

directed  

mutagenesis. According to what reported in literature as 

experimentally proved, the residues Ile316 (7.39), Tyr320 (7.43), 

Gln115 (2.60), Tyr312(7.35), Tyr313 (7.36), and Tyr119 (2.64) 

demonstrated to be essential in the recognition and binding of 

allosteric modulators in κ-opioid receptor. From the results 

obtained, the authors suspected possible overlapping regions 

between the Salvinorin A interacting portion (TM I-TM II-TM VI 

interface) and orthosteric binding site. The main mechanism of 

action underlined for Salvinorin A consists in interfering with 

orthosteric ligands. The same authors went deeply in order to 

better understand possible interplay between two allosteric 

sites and agonist binding process. 

This time, 200 ns replica molecular simulations were run using a 

positive modulator, BMS986122 (BMS), to evaluate its influence 

in the binding process of the agonist (R)-Methadone (RME) and 

Na+. The simulations were able to differentiate for BMS and Na+ 

orientations within the TM VII. On the different trajectories, 

PCA was applied to investigate on possible clusters of common 

conformations and TM rearrangements. From the simulations 

analysis it was deducted that the agonist binding process was 

negatively influenced by the presence of the sodium ion 

interacting with conserved Asp2.50, as it was been already 

proposed both experimentally77 and computationally78,79. 

Focusing on the BMS, it was noted that its role was the 

stabilisation of the target−agonist interacRon, whereas the 

allosteric binding of the Na+ was instead disrupted. These data 

were in complete agreement to experimental findings, that is a 

BMS-induced increase in full agonists affinity towards MOR80. 

These results moreover highlighted a possible binding mode of 

the RME involving Asp3.32 with a consequent rearrangement of 

TM VII position. This conformational change seems to be driven 

by an influence on Trp7.35 in the binding pocket, causing the 

rotation of TM VII. This hypothesis was then confirmed by 

adding BMS, that stabilised the RME binding through a direct 

interaction with Trp7.35.  

Furthermore, during the revision process we found a “just 

published” work by Meng et al.81, where a great approach 

based on the use of MD/MSMs approach combined with multi-

source seeding strategy was used to explore different possible 

conformations and transition states of Abl Tyrosine kinase. The 

use of multi-source seeding strategy consists in using different 

source protein conformations (X-ray, homologs, “piecewise-

mixing” conformations from different crystal structures, 

previous MSMs retrieved conformations). The use of such an 

approach allowed researchers to widely explore the 

conformational space of Abl Tyrosine kinase, including the 

myristoyl-binding pocket situated at the C-terminus of the 

protein. This portion was identified as an allosteric site 

responsible to modulate conformational transitions between 

active and inactive state of the protein. From MSMs outcomes, 

researchers found out a specific conformational state of the 

allosteric site, promoting the DFG-out conformation and 

maintaining the protein into the inactive state. These findings 

represent a great value in the design of possible Abl allosteric 

inhibitors. 

Protein-Protein Interactions as undruggable targets 

In the last decades, PPI drew attention of the scientific research 

community across academia and industry, because of the 

increasing knowledge about their relevant role in cells for 

signalling and regulation of cellular life-cycle and vital functions 

(e.g. cellular growth, differentiation and apoptosis). The PPI 

targets space is consistently larger than the classical protein 

targets one, with putative relevant PPIs comprised between 

130.000 to 650.00082–85. Such a huge amount of potential 

targets is associated with biological implications in several 

diseases, for example cancer and neurodegenerative disorders. 

Site Location Regions Residues 

1 Intracellular 
crevice 

TM3/TM4/ 
TM5 

I3.40, F3.41, L3.44, A3.45, D3.49 
(TM3); I4.45, I4.48, C4.49 
(TM4); Y112 (ICL1); C5.46, 
P5.50 (TM5) 

2 G protein 
coupling site 

TM2/TM3/ 
TM6/TM7 

N39 (ICL1); T2.39, N2.40 

(TM2); D3.49, R3.50 (TM3); 
H6.32, S6.36, F6.44 (TM6); Y7.53 
(TM7); I292 (C-Term) 

3 The Lipid 
interface 

TM5/TM6 P5.50, M5.54 (TM5); V6.41, 
F6.44, W6.48 (TM6) 

4 C-terminus cleft TM1/TM7 L1.45, G1.49, L1.52 (TM1); 
V7.47, P7.50, F7.51 (TM7) 

5 Extracellular cleft TM3/TM4 C3.30, F3.31, V3.34 (TM3); 
L4.58, G4.57, F4.54 (TM4) 

Table 1: data taken from original paper73. 
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Unfortunately, to date less than 0,01% of PPIs belonging to 

human interactome presents approved modulators86. Protein-

protein interactions are particularly complex targets, usually 

labelled as undruggable, and thus there are few discovery 

programs as these are considered high-risk failure therapies82. 

Actually, cells are crowded environments where proteins 

behave as promiscuous macromolecules, i.e. able to take part 

to interaction networks, binding more than one partner, and in 

this way making difficult achieving specificity during a drug 

design process. Hence, targeting bi-molecular complexes 

requires an interdisciplinary approach to identify binding 

determinants at PPI interfaces and overcome issues tightly 

linked to the intrinsic nature and structural features of protein-

protein interactions87,88. Indeed, PPI interfaces are often 

shallow and lack deep grooves able to accommodate a ligand 

and recognise its shape in a complementary manner. While in a 

classical receptor-ligand interaction the first one presents a 

well-defined pocket with clear complementary binding 

recognition motifs, a protein-protein interaction occurs when 

both protein partners establish few high-affinity contacts 

through the so-called “hot spots” residues, exploiting 

complementary regions as well as several weaker interactions. 

However, hot spots are residues widely deployed within protein 

surfaces, and thus sequentially not connected among them 

within the same protein, creating a discontinuous epitope87,89. 

Another consideration is related to the size of PPI interface, that 

is wider (on average 1500 to 3000Å2) than receptor-ligand 

contacts areas of classical targets (about 300 to 1000Å2) (Table 

2)87. Furthermore, if a protein target takes part into the 

interaction with another protein, mainly providing protrusions 

and not just pockets for accommodation, managing the design 

of a small molecule able to cover a protrusion of the protein 

target appears rather unlikely82. 
Despite the above difficulties and the shortage of structural 

information about protein-protein complexes, PPIs are 

becoming more accepted and popular targets90, thanks to 

promising computational techniques, such as the MD. Here, we 

provide an overview of some case studies where Molecular 

Dynamics techniques proved its usefulness over the drug design 

and discovery process for thoroughly studying protein-protein 

interactions, but above all facing the intrinsic difficulties of this 

type of targets.  

Molecular Dynamics simulations for the identification of 

potential pockets and binding hot spots 

To date, many theoretical and computational tools have been 

developed to map a potential protein-protein binding site, 

some examples are AnchorQueryTM 91, and FTMap92. The 

limitation of these techniques relies on the static structures to 

be analysed. In this context, MD can represent a valuable tool. 

Actually, it has been used by numerous research groups to 

identify hot spots responsible for the interaction between two 

proteins93. 

The hot spots within a PPI interface represent less than 50% of 

contact area between proteins and they are defined as those 

amino acid residues that replaced with alanine, by alanine 

scanning mutagenesis, provoke a decrease of binding free 

energy of at least 2 kcal/mol94,95. The hot spots more frequently 

found into PPI interfaces are the amino acids Tyr, Trp e Arg95,96. 

All these three residues take part in hydrophobic interactions, 

since the main driven force for protein-protein complexes 

formation is precisely the hydrophobicity88. 

In a work published in 2014, Sing Tan et al. showed how MD 

simulations present a remarkable potential for detecting 

hydrophobic hot spots and for ligand-mapping. Indeed, these 

computational techniques allowed to unveil cryptic binding sites 

on specific proteins (RAD-51 and MDM2) surfaces by MD 

simulations of 5 ns and 20 ns. The authors suggest to use 

shorter simulations (5 ns) for mapping protein X-ray crystal 

structures and simulations of 20 ns for NMR-resolved structures 

to ensure a careful exploration of protein cavity. 

While shorter simulations allowed to identify pockets buried by 

amino acid side chains and protein backbone in MDM2 and 

RAD-51, respectively, those of 20 ns were able to unveil the hot 

spot Leu26, that is the most buried of the three MDM2 residues 

responsible for p53-binding. Furthermore, in the same paper, 

the authors focused on the capacity of MD techniques to unveil 

Host-guest interaction pocket attributes 

 Protein-Ligand Protein-Protein 

Shape Deep Shallow, flat 

Size ~300 to 1000Å
2 

1150-1200Å2 small interfaces 97,98 
1200-2000Å

2
 medium interfaces 

2000-4660Å
2
 large interfaces 

97,99,100 

Types of 

interaction 

Electrostatic 

interactions, 

hydrogen bonds, 

hydrophobic contacts, 

π−stacking 

Hydrophobic contacts (for protein-

protein complexes formation), 

and electrostatic interactions (for 

PPI stabilization) 

Table 2: data from original paper88. 
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hydrophobic regions able to bind hydrocarbon-stapled peptides 

at interfaces of proteins, such as MCL-1 and BH3 α−helices of 

Bcl-2 family proteins93. The hydrocarbon-stapled peptides are 

peptides folded as α-helix, which present all-hydrocarbon 

“braces” (staples), that make them suitable pharmacological 

candidates to disrupt protein-protein interactions101. For this 

purpose, small molecules probes (benzene, propane and 

isopropanol) were used to mimic most of protein residues 

interactions between and hydrocarbon-stapled peptides. In 

particular, exploiting the ligand-mapping MD simulations it was 

possible to detect a new binding site, previously unexplored, 

and design a peptide inhibitor (SAHB8-12) of the hydrophobic 

interactions between the two protein partners93.  
Another example of MD application to PPI modulators design, is 

reported in the work of Saez and co-workers published in 2015. 

They carried out MD studies concerning the investigation of hot 

spots involved in the interaction of the acid-sensing ion channel 

1a (ASIC1a) and its selective inhibitor Psalmotoxin-1 (PcTx1), a 

peptide extracted from spider venom. ASIC1a is a member of 

degenerin/epithelial sodium channel family102,103, involved in 

several diseases including chronic pain104 and ischaemic 

stroke105. To date, the most potent and selective inhibitor 

discovered for this ion channel is precisely the peptide 

Psalmotoxin-1, that binds and fixes the desensitized state of 

ASIC1a106,107. Saez et al. analysed the interaction of these two 

protein partners to elucidate the nature of the binding contacts 

and to identify the crucial hot spots108. Starting from a crystal 

structure resolved by Dawson et al. in 2012109, the authors 

observed that the two protein partners established 57 

intermolecular contacts, which authors defined as “pairwise 

interactions < 5 Å”. The bulk of this network was reduced by 

MD simulations of 30 ns carried out with GROMACS 3.3.3 

(GROMOS54a7 force field). The interaction network rate was 

analysed out of 600 frames for each simulation, setting a cut-off 

of 5 Å for non-bonded interactions and 2,5 Å for hydrogen 

bonds. The MD trajectory analysis halved pairwise interactions 

to almost 31 intermolecular contacts. These outcomes were 

further examined in depth by alanine scanning mutagenesis, 

which led to the identification of a smaller amount of hot spots, 

thus paving the way to novel selective compounds design for 

ASIC1a108. 
Furthermore, in a recent article, Biswas et al. presented a study 

on TRAF6/Basigin interaction implicated in melanoma 

metastasis. Basigin (BSG) protein is able to stimulate the 

overexpression of matrix metalloproteinases (MMPs), which 

contribute to cancer development, and to interact with tumour 

necrosis factor receptor-associated factor 6 (TRAF6), promoting 

the invasiveness of melanoma cells110–113. Biswas and 

collaborators performed MD simulations of individual proteins 

and complex through GROMACS 5.0.5114 package with 

CHARMm force field. Simulations times were 70 ns (BSG), 50 ns 

(TRAF-6), and 120 ns (BSG-TRAF6 complex). MD results allowed 

to observe a conformational change of BSG transmembrane 

region, participating to the PPI, which as a consequence of 

TRAF6 binding acquired a helical conformation. Besides, these 

simulations provided information about the interacting hot 

spots of TRAF6, recognizing residues more contributing to 

binding free energies MD proved to be a useful instrument to 

recognise residue contacts previously not identified between 

protein partners, as compelling aid for drug design and 

development. 
Another interesting work published in 2017 by Xue and 

collaborators concerns the use of a recent MD technique, the 

Steered Molecular Dynamics (SMD). The aim of this work aimed 

at obtaining information about an interaction between two 

chaperones, Hsp70 (also called Hsc70) and Hsp40 (or auxilin)115. 

These two proteins take part in a cellular ATP-consuming 

network, which ensures the correct proteins folding, membrane 

translocation and protein degradation115–117. In order to 

extensively analyse Hsp70 nucleotide-binding domain (NBD) 

and Hsp40 J domain interaction, the SMD turned out to be 

useful. SMD is a methodology which involves an unequilibrated 

system and consists in applying external forces to the system 

under consideration forcing the protein complex 

dissociation115,118–121. During the simulations, binding energy 

changes were registered and values were reported into a curve 

against the simulation time. In an early phase, starting from a 

PDB file (1Q2G) containing Hsc70-auxilin complex, Xue et al. 

equilibrated the system performing a classical MD simulation of 

20 ns at pH 7.0 and 300 K (using GROMACS 4.5 program115,122, in 

constant NPT and periodic boundary conditions). RMSD (Root-

Mean-Square Deviation) was calculated and allowed to 

extrapolate the stabilised structure at 7 ns of simulation as a 

starting point for SMD studies. Later, the equilibrated system 

was submitted to a SMD simulation of 2 ns, applying a spring 

constant of 300 kJ mol-1 nm-2. This value was chosen as more 

suitable for the complex under consideration, given that it 

produced reliable and detectable rupture forces responsible for 

Hsc70-auxilin complex dissociation. Binding energies values (kJ 

mol-1 nm-2) against simulation time (ps) were reported into two 
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curves according to different types of interaction involved 

(electrostatic interactions and van der Waals interactions) and 

the sums of each points of these two curves were plotted into 

another curve. This plot suggested that, in the early phases of 

SMD simulation, electrostatic interactions out-numbered van 

der Waals (VdW) interactions, on the contrary, in the second 

part of the simulation VdW interactions dominated. At the end 

of SMD simulation, the binding energies of the complex 

achieved the value zero, revealing a complete protein complex 

dissociation. Furthermore, in order to deepen which residues 

and how much these ones affect electrostatic and VdW 

interactions within the complex, Xue and co-workers also 

reported the residues involved in binding domains of proteins 

and the related binding energies. In this way, it was possible to 

identify key residues in the J domain of auxilin and in NBD of 

Hsc70. In view of the above, a host-guest complex dissociation 

process using SMD is not to be intended as the opposite of 

binding process between two interacting partners. Instead, this 

technique represents an aid to deepen the character of 

established interactions and the related effect within a given 

complex115. A very recent and modern approach based on MD, 

together with MSMs has been presented by Martinez-Rossell et 

al.123. In their work, authors adopted a MD-driven approach for 

fragment screening on CXCL12, a “hard-to-drug” chemokine 

because of its partial shallowness. The interesting and 

innovative point of view presented by authors consists in using 

combined methods for targeting CXCL12 and not its receptor 

CXCR4 as already done by others124. In their work, Martinez-

Rossell et al. used a series of short MD simulations on the target 

to explore possible conformations. On the obtained 

conformations docking was run using fragment libraries. Then, 

different cycles of short MD-MSM-adaptive respawn, based on 

the use of the target and solvated ligand, were run to produce 

putative binding poses to be analysed. One of the strengths of 

the method used is based on the short simulations as starting 

points for an adaptive sampling scheme, consisting of their 

concatenation using MSM approach in order to enhance the 

sampling capability. The use of stochastic method such as MSM 

allows the reduction of the single timescale simulations and at 

the same time open up the possibility of deeply study a wide 

landscape, allowing to create aggregate simulations of 29 to 45 

µs. Furthermore, the use of MSM in this work permitted to 

observe unbound and different bound states for the ligands 

screened, together with probabilities of complex creation and 

free energies associated. Besides, this approach allowed 

researchers to evaluate kinetics parameters (kon and koff) for the 

unbound/bound state of the ligands screened. 

Conformational shifts analysis as starting point for PPI 

modulators design 

The structures obtained by X-ray crystallographic do not permit 

to deeply explore each protein cavity, especially those transient, 

which could be responsible for protein-protein interactions. 

Furthermore, X-ray crystal structures do not account for 

flexibility and adaptation induced by both proteins that often 

result in complementarity between two protein partners125. In 

this case, starting from PDB files or homology models, MD 

methodology provides a dynamic trajectory over time of the 

positions and the velocities of all atoms in a system, allowing to 

investigate protein surface, reproducing conformational 

changes occurring into cellular environment, and detecting 

potential shallow pockets able to accommodate ligands88. 
In 2015, Cau et al. reported a study on g14-3-3 protein of the 

protozoan parasite Giardia duodenalis, which colonises the 

upper regions of small intestine in mammals, causing severe 

consequences to host health126,127. At present, there are no 

vaccines available and the number of useful drugs is rather 

limited, presenting also refractory cases127,128. As a 

consequence, targeting the interaction between g14-3-3 

protein, responsible of triggering invasive activity of the 

parasite, and host protein partners (phosphorylated Ser and Thr 

proteins – pSer/pThr proteins) represents a priority solution to 

address this unmet medical need. G14-3-3 protein is able to 

explicate its activity only upon phosphorylation on Thr214 

residue, producing a conversion from “open” conformation of 

apo form to “close” one of phosphorylated-form127,129,130. In 

early phases, Cau and co-workers conducted SGLD (Self-Guided 

Langevin Dynamics) simulations using SANDER on nine 

tripeptides belonging to the phosphorylation region. At a later 

time, classical MD studies were performed with PMEMD 

(Particle Mesh Ewald Molecular Dynamics) module of AMBER12 

with AMBER force field ff12SB in explicit water solvent on wild-

type g14-3-3 protein, pThr214-g14-3-3 protein (g14-3-3 protein 

with phosphorylated Thr214) and T214E-g14-3-3 protein (with 

phosphomimetic T214E mutation). The authors concluded that 

in the closed protein conformation (i.e. phosphorylated form) 

the structural rearrangement at the expense of α8-α9 flexible 

loop, containing Thr214, is stabilised not so much by interaction 

between the loop and neighbouring residues, but rather by a 

steric hindrance of side chains, which provokes a dihedral 
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angles restraint, allowing protein to interact with its partners. 

These results were fundamental to permit authors to 

investigate chemical and physico-chemical properties of the 

interaction region through X-ray crystallographic studies, and 

finally identify the key hot spot residues of g14-3-3 protein127. 
In an article released in December 2017, Vin Chan et al. 

reported a MD study on murine double minute 4 protein 

(MDMX) and tumour suppressor protein p53 interaction. 

MDMX is a regulation factor of protein p53, which under 

cellular stress conditions undergoes phosphorylation on 

Tyrosine 99 (Tyr99 or Y99) residue and releases protein p53, 

resulting in cell cycle arrest and apoptosis131–133. In their work 

MD is applied to integrate a study previously carried out by 

Zuckerman et al. 134. This study suggested that the release of 

protein p53 from MDMX was caused by a steric bump produced 

by phosphate group of pTyr99 in p53-binding site. This 

assumption didn’t account the negative feedback mechanism, 

which occurs upon Tyr99 phosphorylation, whereby another 

phosphorylation on Tyr55 brings MDMX back to a conformation 

able to rebind protein p53 and inhibit its activity. Through MD 

simulations on MDMX-pTyr99 and MDMX-pTyr99-pTyr55, Vin 

Chan and co-workers suggested that in addition to a steric clash 

there is a MDMX region, the N-terminal lid, which takes part in 

protein p53 release through a salt bridge formation between 

pTyr99 (phosphorylated Tyr99) and Arg18 (or R18) of the lid. 

Indeed, this salt bridge stabilises the lid in a “close state”, 

preventing MDMX-p53 interaction 133. Such results were 

validated by mutagenesis studies using a glutamate residue, as 

a phosphomimetic133,135,136. At the same time, MD simulations 

on MDMX-pTyr99-pTyr55 unveiled the formation of 

electrostatic interactions between phosphate group of pTyr55 

and three residues of the N-terminus of lid (Met1, Thr2, and 

Ser3), resulting in a shift of the lid towards an “open state” 

(away from p53-binding site). The starting structure for MD 

simulations was built with homology modelling using a PDB file 

of MDMX (missing N-terminal lid) as template. 200 ns MD 

simulations were performed as NPT ensemble, using PMEMD 

module of AMBER14 with ff99SB force field137,138. These studies 

turned out to be a valuable support, because they highlighted 

likely interactions not yet experimentally discovered, paving the 

way to further studies for deepening MD information and 

efficiently designing potential drugs133. 
Unlike classical targets, such us membrane receptors or 

enzymes, the complex nature of PPIs impacts on designing of 

modulators, and their chemical and physicochemical features. 

In most cases, protein-protein interactions do not have natural 

ligands or known active compounds to be exploited as 

templates for drug design, rendering hard the hit identification 

phase of PPI modulators (PPIMs) complementary to receptor 

binding pocket in terms of shape and chemical attributes87,88. 

Besides, classical virtual screening of drug-like compound 

libraries against a protein-protein binding site not always is able 

to provide reliable results both for structure- and fragment-

based approaches. Successful PPI modulators, in fact, usually 

have molecular weights two or three times larger than 

traditional drugs, and hence they have wider sizes86,139. In 

addition, due to shallowness and quite broad solvent exposure 

of PPI binding clefts, generally hits show low affinities for 

protein-protein interactions, with a Kd of 0.1-5 mM86,140,141. 

Generally, PPIMs are classified according to their mechanism of 

action into disruptor or stabiliser modulators. The PPI disruptors 

are able to compete in binding one of the two protein partners 

(orthosteric disruptors) or destabilise a protein-protein 

interaction through an interaction with a distal or proximal site 

on protein surface (allosteric disruptors), eliciting a decrease in 

PP affinity. On the contrary, PPI stabilisers increase protein 

complex binding affinity and stability either acting directly at 

interaction interface (orthosteric stabilisation) or binding to a 

remote site of the protein and causing an increasing of PP 

affinity142 (Figure 4). MD has become a valuable tool to validate 

the stability of a protein-protein-modulator complex and to 

deepen and unveil PPIMs binding modes. An example of 

complex stability validation can be found in a recent paper. In 

this article, Gupta and collaborators143 showed how MD came 

to support other techniques, confirming virtual screening 

results. In particular, the target under consideration is a NH (3)-

dependent nicotinamide adenine dinucleotide synthetase 

protein (GEM_3202 or NadE144) involved in a protein-protein 

interactions network responsible for infective activity of the 

opportunistic pathogen Burkholderia cepacia complex143,145–148. 

Gupta et al. exploited MD simulations to check the stability of 

the interaction between drug target and two potential hits 

(ZINC83103551 and ZINC38008121) identified through virtual 

screening. MD simulations were performed in triplicate on a 

validated homology model of the protein, using GROMACS 4.5.5 

package.  

The radius of gyration (Rg) fluctuations were calculated for both 

NadE-ZINC83103551 and NadE-ZINC38008121 interactions and 

revealed both complexes showed high structural solidity, 

obtaining on average 1.87-1.95 nm. Moreover, the measured 
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RMSD values of protein with ligands were low (~0.41-0.45nm 

for NadE-ZINC83103551 and ~0.15nm for NadE-ZINC38008121), 

confirming the high stability of the complexes143. In December 

2017, another interesting work on PPI modulators design was 

published by Nath Jha et al.149. 

 
Fig. 4: PPI modulators mechanism of action. 

It concerns α-Synuclein (α-Syn) protein, responsible for 

dopaminergic neurons death in Parkinson’s Disease. Recent 

studies demonstrated that the decrease of oligomeric α-

Synuclein species and the acceleration of amyloid fibrils 

formation represent a potential entry point target strategy for 

novel drugs design149–152. According to this hypothesis, Nath Jha 

et al. conducted MD studies on three hexapeptides in presence 

of full-length α-Synuclein. The three peptides were designed on 

the basis of the hydrophobic region of α-Synuclein responsible 

for self-association and aggregation, non-amyloid-β component 

(NAC) region (α-Syn-71-82)153.  

The rationally designed peptide sequences were VAQKTV (or 

peptide C, corresponding to amino acids 77-82 of NAC), VRQKTV 

(called R78, due to the mutation A78R), and VPQKTV (named 

P78, due to the mutation A78P). MD simulations for all three 

hexapeptides were performed in explicit solvent (TIP3P), 

keeping the ratio 1:5 (8 full-length α-Synuclein molecules and 

40 hexapeptides) and a random orientation without 

interactions between proteins. After an early step of 

minimization and equilibration of 20 ns, MD simulations were 

performed for 100 ns at NPT conditions. The results suggested 

that the hexapeptide containing arginine (VRQKTV) showed 

major capacity to establish hydrogen bonds with α-Synuclein, 

with larger number of H-bond interactions and higher 

occupancy of contacts than the other two peptides. 

Furthermore, MD trajectories analysis brought to the 

identification of contact area between full-length α-Synuclein 

and peptide R78, i.e. the negatively charged C-terminus of α-

Syn and positively charged Arg78 of peptide R78. These results 

paved the way to further study and design of novel specific 

peptide ligands able to stimulate α-Syn oligomers aggregation 

and prevent their cytotoxic activity149. Beyond the PPI 

disruptors and stabilisers, Fischer et al.142 provided a further 

category of PPI modulators, that is the modulators of protein 

dynamics (or interfacial dynamic modulators). These, in fact, do 

not necessarily affect the binding affinity of a protein-protein 

complex, but they bind to clefts produced through homo- or 

hetero-oligomerisation, modifying the dynamic properties of 

the individual protein partners.  
An example of the MD application to support the identification 

of this type of modulators was provided by Hammoudeh et 

al.154 in an article released in 2014. The target considered was 

the dimeric form of bacterial enzyme dihydropteroate synthase 

(DHPS), implicated in a key step of folate biosynthetic pathway. 

The most commonly used drugs for this target are now 

beginning to show antimicrobial resistance phenomenon and 

for this reason, targeting DHPS became a health emergence. 

Hammoudeh et al. were capable to discover an allosteric PPI 

inhibitor (compound 11, Figure 5), which at low micromolar 

concentration reduces enzyme Km and Vmax. In this study, MD 

simulations were used to observe the fluctuations of loop1 and 

loop2, involved in the active site, in four different situations: 

without any binder, in presence of a natural substrate, with 

compound 11, and in presence of both natural ligand and 

inhibitor. MD simulations highlighted that compound 11 was 

able to bind the dimeric interface of DHPS and loop7 through its 

distal half.  

This interaction causes a conformational change which is 

transmitted to the enzyme active site, thus reducing 

considerably loop1 and loop2 fluctuations, responsible for 

natural substrate binding. 

An interesting work concerning thermodynamics and kinetics 

analysis of a protein-protein association was published by 

Plattner et al. in 2017155. The authors carried out a cutting-edge 

study using all-atom MD simulations and MSMs to explore 

states and properties, unlikely experimentally captured, of two 

proteins known to form a tightly bound complex, barnase and 

barstar. Plattner et al. performed a large number of aggregate 

MD simulations of overall 2 milliseconds, consisting in 1.7 

milliseconds of individual trajectories and 0.30 milliseconds of 

multiple parallel adaptive MD runs. One of the main advantages 

of adaptive MD runs is that allow to speed up biological 

processes presenting high energy barriers decomposing them 

into smaller paths with relative lower energy barriers. Starting 
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from the unbound state of the two proteins, hidden Markov 

model (HMM) was used to explore proteins states (early 

intermediates, late intermediates, pre-bound and bound 

states),  

the related interacting contacts, the binding free energies and 

the transition rates, up to obtain the bound complex of the two 

protein partners. This latter was a complex form in equilibrium 

condition between “loosely bound” (5% population) and “tightly 

bound” states (95% population), with the last one consistent 

with the crystal structure by PDB database (PDB ID: 1BRS). 

Average heavy-atoms RMSD values between PDB crystal 

structure and “loosely bound” form was of 0.3 nm and 0.21 nm 

in comparison with the “tightly bound” form. This results are 

remarkably important for medicinal chemists, demonstrating a 

good reliability of Markov modelling method in reproducing 

information potentially consistent with experimental data, and 

exploring the conformational space of a finite number of 

biological molecules states and the related transition rates. 

Conclusions and future perspectives 
The main goal of Medicinal Chemistry is identifying chemical 

entities with optimal affinity, selectivity and safety for patients. 

Nowadays, computational techniques applied to drug discovery 

represent an invaluable tool for rationally designing novel 

chemical entities. Indeed, at present these methodologies have 

allowed researchers to discover small molecules or small 

peptides with good drug-like properties2, speeding up the drug 

discovery process and decreasing research-associated costs. 

However, research activities in the field of Medicinal Chemistry 

have not yet been able to drug a wide range of biological 

targets, labelling them as undruggable, responsible for several 

diseases aetiology. Nevertheless, in the last years, there has 

been a huge rise in the interest for these pharmacological 

targets together with the increased use of Molecular Dynamics 

simulations to explore the related binding sites. Medicinal 

chemists were thus able to deeply investigate shallow and/or 

buried grooves, particularly those transient, impossible to be 

detected through the only observation of NMR and X-ray crystal 

data12. In this review, we have provided an overview of 

successful MD techniques mainly adopted in the last decade, to 

deepen undruggable targets-related drug discovery issues, such 

as protein-ligand/protein-protein interaction stability21–24, 

binding kinetics25–29 and interaction mode30–32. In particular, we 

have focused on the application of MD on two specific types of 

considerably important undruggable targets, allosteric sites and 

protein-protein interactions.   

In this work, we have reported several case studies, whereby 

MD techniques resulted in the identification of binding cavities, 

contacts areas, or ligands binding modes. In conclusion, we 

would like to underline an important point of view as future 

perspective, recently presented by Pérez et al. in their latter 

current opinion paper
156. In this work a scenario about the use 

of MD in synergism with machine learning (ML) approaches is 

presented. The combination of these two methods seems to be 

crucial in order to improve predictions accuracy and speed up 

the MD analysis process. ML/MD combined approach, together 

with a continuous increasing simulation timescale, as observed 

by Martinéz-Rossell et al.157 in their recent overview,  depict 

without any doubt an encouraging landscape for researchers, 

paving the way for “drugging the undruggable targets”. 
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Molecular Dynamics has been demonstrated to be crucial for unveiling otherwise hidden binding 

sites especially for undruggable targets challenge 
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