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Introduction

Mathematical and computational models are increasingly used in this century to
help modeling of living systems. Mathematical modeling presents many meth-
ods for studying and analyzing the behavior of biological systems, in particular,
cellular systems. As Bellomo (2008) [1], Bellouquid and Delitala (2006) [2], sug-
gest ” The modeling of living systems is not an easy task, it requests technically
complex mathematical methods to deal with the inner complexity of biological
systems which exhibit features and behaviors very different from those of inert
matter”.

Biology today is at a crossroads. The molecular paradigm has run its course.
Engineering discipline holds the promise of making biology an even more funda-
mental science, one that, along with physics, probes and defines the nature of
reality [3].

In complex biological systems, such as the propagation of an infection, or in
the anomalous proliferation of tumor cells, the early stage is mainly stochastic
while at large times, by some law of large numbers, the predominant effects are
deterministic, and the behavior can be described by deterministic equations with
random initial data. Before embarking on this topic, we will offer a concise
concept about what is the biological system under consideration and how it can
be modeled. What interests us in this thesis is the focus on modeling of complex
multicellular systems by a mathematical approach related to mathematical kinetic
theory.

”Darwinian” Evolution is a theory that transcends all of biology. Any ob-
servation of a living system must ultimately be interpreted in the context of its
evolution. Because of the tremendous advances over the last half-century, evolu-
tion has become a discipline that is based on precise mathematical foundations
[4]. Evolution is a change in the heritable characteristics of biological populations
of successive generations [5]. There are three basic building blocks of evolution-
ary dynamics: replication, selection, and mutation. These are the fundamental
principles of biological systems. They apply to any biological organization any-
where in our or other universes and do not depend on the particular details of
which chemistry was recruited to embody life. Any living organism is contin-
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uously modified by these three principles. An individual organism’s phenotype
results from both its genotype and the influence from the environment it has lived
in. A substantial part of the phenotypic variation in a population is caused by
genotypic variation [4].

Variation comes from mutations in the genome, reshuffling of genes through
sexual reproduction and migration between populations (gene flow). Despite the
constant introduction of new variation through mutation and gene flow, most of
the genome of a species is identical in all individuals of that species [6]. However,
even relatively small differences in genotype can lead to dramatic differences in
phenotype.

Darwinian evolution is truly relevant in cancer-immune system competition
because it provides a description of the changes of the successive generations of
immune cells, adapting to the specific antigens they fight.

In this thesis, the dynamics that the model presented in Chapters 3 and 4
should take into account is a Darwinian-type evolution of cell phenotypes con-
trasted with the immune system. The phenotypes correspond to the immune-
hallmarks of cancer, while the immune system develops a learning process from
innate immunity to acquired immunity. Generally, this contrast action is suffi-
cient to prevent the indefinite proliferation of cancer cells. However, for some
specific mutations, the Darwinian selections can generate highly aggressive cell
phenotypes that progress and proliferate with a speed that cannot be contrasted
by the learning process of the immune system [7].

The value of an evolutionary approach to medicine has become increasingly
recognized. There are several ways in which an evolutionary perspective can en-
rich medical education and improve medical practice [8]. For instance, evolution-
ary modelling approaches led to the proposal of a new therapeutic strategy that
aims to maintain a stable tumour population instead of trying to achieve maximal
cell kill. According to the strategy, killing clones is a resistance to treatment in a
competitive manner. A basic assumption of this strategy is that resistant clones
have a lower fitness than sensitive clones because they commit more resources
to maintain the resistant phenotype. This strategy has been tested in animal
models of ovarian cancer but proof of principle in humans is not yet available [9].
Cancer therapy selects for cancer cells resistant to treatment, a process that is
fundamentally evolutionary [10].

As we know, the immune system works to protect the body from all threats,
and eliminate malignant cells during initial transformation in a process termed
immune surveillance, but after cancer exposure, the process will become some-
what complicated, because cancer has the ability to escape immune recognition
and subsequent destruction. This will require a therapeutic intervention using
the strategies of immunotherapy, which includes cancer vaccines, adoptive cellular
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immunotherapy, immune checkpoint blockade, and oncolytic viruses. Scientists
have known for decades that cancer cells are particularly effective in suppress-
ing the body’s natural immune response, which is why most treatments exploit
other means, such as surgery, radiation therapy and chemotherapy, to eliminate
neoplastic cells. Cancer therapy has long relied on the strategy of attacking can-
cer cells directly to treat patients. Cancer immunotherapy, the treatment that
harnesses the patient’s immune system to treat cancer has become an important
addition to conventional therapies. Immune checkpoint blockade therapy, in par-
ticular, has undoubtedly been one of the most impressive advancements made
in cancer therapeutics in recent years [11]. The mathematical models help to
design therapeutic strategies (external actions, therapeutical actions or other ex-
ternal agents). Many recent studies have been devoted to this field, for example,
the paper by De Angelis and Jabin [12] consider different types of therapeutical
actions such as the activation of the immune system, angiogenesis inhibition fac-
tors, and weakening of tumor cells by chemotherapeutical actions, while paper
[13] considers a Boltzmann transport model for dose calculation in radiotherapy.

Here we deal with multicellular systems that experience cell proliferation,
cell death and immune supervision. According to the mathematical approach,
these cells are characterized by biological functions and the ability to organize
their dynamics and interactions with other cells [1, 2]. Mathematical models are
useful to describe the system under consideration using mathematical concepts
and language. A model may help to explain a system and to study the effects of
different components and to make predictions about behaviour.

The mathematical approach used in this dissertation is based on the Kinetic
Theory of Active Particles (KTAP), that has been specifically developed to model
a variety of complex systems [14–17], as for instance vehicular traffic flow [18],
immune competition [7] and social systems [19], while the papers [20] and [21]
present a model of virus mutations and evolution of epidemics in a system of
interacting individuals. The approach to living systems was initiated by the
pioneer paper [22] and developed and applied by various authors [2, 7, 17, 23–
32]. According to KTAP, the overall system is divided into different populations
(functional subsystems) each of them consisting of entities, called active parti-
cles, which collectively express the same function, called activity, which is related
to the intrinsic biological function of particles. The evolution of each functional
subsystem is described by a distribution function whose time evolution is gov-
erned by interactions, while the overall state of the system is described by the
probability distribution function over microscopic states.

The modeling of biological systems can be developed at the cellular scale
(microscopic scale), where the physical state of each single object is individually
described, or at the macroscopic scale when the model refers to the evolution of
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quantities obtained by local averages of the microscopic state. The mathemat-
ical approach attempts to describe the statistical evolution of large systems of
interacting particles by derivation of evolution equations.

The aim of this thesis is the detailed mathematical study of the immune
competition with Darwinian dynamics, and its modeling and simulations. In
particular, the competition between the immune system and cells carrier of a
pathological state. As a theoretical background, we say that the immune system
has the ability to activate a defence of immune cells against infectious agents and
mutated cells. The derivation of models must deal with the analysis of microscopic
interactions, due to the presence of proliferation, mutations and/or destruction
of cells.

The thesis is made up of four chapters: Chapter 1 is the starting point to
enlightening the topic under study. This chapter is focused on a general pre-
sentation of the mathematical tools of the kinetic theory of active particles and
presents a concise description of the mathematical tools ”concepts” and ”defi-
nitions” used in this thesis. In Chapter 2, we provide a concise introduction to
the immune system and cancer cells. This chapter provides a phenomenological
description of some aspects of the biology of the system we are dealing with,
while the following chapters are based on studying of a model describing the
competition between the immune system and cancer cells. Chapter 3, deals with
the modeling of interactions between the immune system and cancer cells. The
model was proposed in the paper by Bellouquid et al. (2013) [7], which assumed
discrete values of the activity of cancer and immune cells. Further, in this chap-
ter, we have made a number of simulations with the aim to investigate how the
state of the various cell populations evolves in time depending on the choice of
the free parameters. In addition, we present a proposal for modify the parameter
that characterizes the probability density function. In Chapter 4, we present a
generalization of the model proposed by Bellouquid et al. (2013) [7]. The model
is obtained by replacing the discrete activity values by continuous values, choos-
ing suitable relations to describe the interactions between active particles. This
chapter also deals with the derivation from the model at the cellular scale of a
model at the macroscopic scale, that considers as variables quantities obtained
by local averages of the microscopic state.

In the introduction of each chapter, we explain the specific motivations for
such analysis, and we discuss the state of the art in research. During each chapter,
we make some remarks, that are recalled in the final discussions of this thesis.



Chapter 1

Mathematical Tools of the
Kinetic theory of Active Particles

This chapter provides an introduction to the mathematical tools that will be used
in this thesis. The approach is based on a suitable generalization of methods of
classical kinetic theory. So the mathematical tools offer a conceptual framework
to modeling the complex system under consideration and allow modeling the dy-
namics of large systems of interacting particles. These interactions are ruled not
only by laws of classical mechanics but also by biological functions. The presen-
tation is organized into three parts corresponding to the following three sections.
Section 1.1 provides a brief description of the complex living system object of the
modeling as well as the strategy to derive the mathematical structures needed
by the modeling approach. Section 1.2 deals with the derivation of mathematical
structures suitable to model the microscopic interactions in the internal system
and derivation of the structure for a closed system. Finally, Section 1.3 shows how
these structures can be modified to include external actions such as therapeutical
actions.

1.1 From Multiscale Features and Evolution to

Mathematical Structures

In this section, we begin by presenting the concept of (biological) system. In
general, a biological system is a complex network of several biologically relevant
entities. The microscopic entities in biology, said cells in a multicellular system,
are characterized by biological functions and the ability to organize their dynamics
and interactions with other cells [33]. So these systems of the real world consist
of a very large number of interacting elements, whose state is described by a set
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of microscopic variables, and the overall system is defined by an extremely large
number of evolution equations corresponding to the dynamics of their elements.
These equations are linked together owing to the interactions. For instance, the
kinetic theory of active particles has been applied to ensembles of bees, of birds, of
fishes,... considered as self-propelled particles, with some rules relating their speed
and direction of motion to their mutual respective distances. Impressive successes
have been achieved in reproducing the collective motion of such animals, which
in some occasions may exhibit very strong fluctuations in local density and local
speed, whereas in some other situations it has a very regular and efficient pattern
of motion. This is in contrast with the motion of usual atoms or molecules, which
are not self-propelled, and shows that the techniques of kinetic theory are much
more powerful than its classical use in the kinetic theory of gases.

The first conceptual step in the mathematical distribution of biological sys-
tem is the choice of the representation scale of the observed phenomena. So the
mathematical models can be derived at the microscopic scale when the evolution
of each element is individually described, or at the macroscopic scale when the
model refers to the evolution of quantities obtained by local averages of the mi-
croscopic state. The first kind of approach leads to a large number of equations
due to a large number of particles involved in the system, while their numer-
ical solution needs a very large computational time, making the approach too
cumbersome and expensive. The above modeling approach can be replaced by
a macroscopic description, typical of continuum mechanics, which reduces the
complexity by dealing with quantities which are averaged locally in space.

Now we consider that the overall behavior of complex systems of many inter-
acting entities is determined by the dynamics of their interactions. Specifically, in
the large systems of interacting elements, the microscale refers to individual en-
tities, while the macro-scale is related to observable, locally averaged, quantities
corresponding to the overall dynamics. Many studies that examine the models
of biological systems have relied on the paper of Hartwell, et al. (1999), where
a conceptual framework for the mathematical approach to biological system was
proposed. They wrote: ”Biological systems are very different from the physical or
chemical systems analyzed by statistical mechanics or hydrodynamics. Statistical
mechanics typically deals with systems containing many copies of a few interact-
ing components, whereas cells contain from millions to a few copies of each of
thousands of different components, each with very specific interactions. ... In
addition, the components of physical systems are often simple entities, whereas
in biology each of the components is often a microscopic device in itself, able to
transduce energy and work far from equilibrium” [2].

So, for the large system described above, the microscopic description of the
biological system is more complicated than that in a physical system. Therefore
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it is necessary to move from a higher level of analysis to view this complexity.
At the same time, a biological system cannot simply be observed and interpreted
at a macroscopic level, where it shows only the output of the cooperative and
organized behaviors which instead may not be apparent at the cellular scale.

From the above, the following technical definitions can be given:

Definition 1.1.1. Micro-scale is the scale at which the entities of the interact-
ing system are identified.

Definition 1.1.2. Micro-state is the variable that identifies the biological state
of each interacting entity, while the collective behavior is that observed, at the
macro-scale, on the overall system.

Definition 1.1.3. Macro-scale is the scale where variable sets of activated
individuals interact. It is characterized by the evolution of the activity from one
state to another.

Since the micro-scale and the macro-scale change during the development pro-
cess, we need to define a distribution function for each set of interacting elements.

Definition 1.1.4. The distribution function is the function which describes
the activity of cells at a given time. It is defined as the number of cells that at a
time t is in a specific microscopic state.

The features of a general modeling approach, as mentioned in the paper [26],
are as follows:

• understanding the links between the dynamics of living systems and their
complexity features;

• derivation of a general mathematical structure, consistent with the aforesaid
features, with the aim of offering the conceptual framework toward the
derivation of specific models;

• design of specific models corresponding to well-defined classes of systems
according to a detailed interpretation of the dynamics at the micro-scale;

• validation of models by comparison of the dynamics predicted by them with
that resulting from empirical data;

• analysis of the gap between modeling and mathematical theory.
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Modeling biological systems need to understand the multi-scale, where the
dynamics of the cell is ruled by sub-cellular entities, while most phenomena can
be observed effectively only at the macroscopic scale. So the multi-scale ap-
proach shows how macroscopic equations can be obtained from the microscopic
descriptions given by the underlying mathematical kinetic theory for multicellular
systems.

The mathematical kinetic theory for multicellular systems is defined by a sys-
tem of integro-differential equations which describes the evolution in time and
space of the distribution functions over the microscopic state of cells of each pop-
ulation.

Based on the above system, the following nomenclatures will be proposed,
which will be addressed in the next sections:

• The system is said to be closed if it cannot exchange material.

• The system is said to be open if it can share material with abroad.

Remark 1.1.1. In this work, we study closed systems. This does not mean that
our analysis is unable to incorporate the action of medical drugs. Such action
will be reflected through the modification of the internal parameters of immune
cells (β2, ε26, ε27, ε28) (In the case that the drugs are aimed to stimulate them) or
of the internal parameters of the cancer cells (β1, ε1) (If the drugs are aimed at
weakening the resistance of cancer cells). When we refer to closed systems, we
mean: a) no new immune cells are incorporated from the outside to the system;
b) no cancer cells are removed from the systems in a direct way, i.e. without
the action of medical drugs. Thus, the ”closed-system hypothesis” applies to the
different kinds of cells (which are the particles considered in our analysis) but not
to the drugs because they are not described by an evolution equation, but through
the values of the parameters.

1.2 Derivation of a Structure for Closed System

This section deals with the mathematical approach which is based on the develop-
ment of a mathematical kinetic theory of large systems of active particles. It is a
quite natural approach considering that classical models of the kinetic theory, for
example, the Boltzmann and Vlasov equations, lead to models which describe the
collective behavior of classical particles which cannot be individually identified
in a large system, while single interactions are modeled within the framework of
classical mechanics [32].
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The kinetic theory of active particles, KTAP, has been developed in the last
two decades to model complex systems constituted by a large number of interact-
ing particles (called active particles), whose microscopic state includes not only
geometrical and mechanical variables (typically position and velocity) but also
biological functions called activities which are related to the intrinsic biological
function of particles. According to KTAP, the overall system is divided into a
number of subsystems each of them composed of particles that collectively express
the same biological function (functional subsystems). The evolution of each
functional subsystem is described by a distribution function over the microscopic
state of the particles, and the time evolution of the subsystem is governed by
interaction, which changes both the microscopic state (conservative interaction)
and the number of particles (non-conservative interaction). Essentially, complex
biological closed systems are composed of a large number of interacting individ-
uals, in the absence of any effective external action. The mathematical kinetic
theory methods describe the system by identifying the microscopic state of the
entities interacting within a large system, and the distribution function over this
state.

Remark 1.2.1. The biological microscopic state of the active particles is a scalar
variable u ∈ Du, ( Du is the domain of existence of the variable u ), which defines
the physical state of active particles. The same variable is used for all particles,
yet this variable attains different values for each particle.

In accordance with what has been mentioned above, the following assumptions
can be made:

Assumption 1.2.1. The system consists of a large number of interacting en-
tities called active particles, each one belonging to several different populations.
whose state, called microscopic state, includes not only geometrical and mechani-
cal variables, typically position and velocity, but also an additional variable called
activity, which represents the biological functions expressed by suitable collections
of active particles.

Assumption 1.2.2. Active particles are subdivided into functional subsystems
identified by the specific activity they express.

Assumption 1.2.3. The state of each functional subsystem is defined by a suit-
able, time-dependent, distribution function over the microscopic state.

Assumption 1.2.4. The evolution of the distribution of each functional subsys-
tem is obtained by a balance of particles within an elementary volume of the space
of the microscopic states, where the dynamics of inflow and outflow of particles
is related to interactions at the microscopic scale.
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Assumption 1.2.5. Interactions are modeled by games, more precisely stochastic
games, where the state of the interacting particles and the output of the interac-
tions are deduced from probability laws. Only binary interactions are possible.

Assumption 1.2.6. The effect of drugs will be reflected as a change in the pa-
rameters describing the internal state of the cells. Because of our assumption of
closed systems, we cannot describe the time evolution of the cells as a consequence
of a supply of drugs implying a change of internal parameters, but we may com-
pare the evolution of systems with different values of the internal parameters, and
thus to explore which kind of medical actions would be the most promising ones.

This section is organized in four subsections. The first subsection deals with
the mathematical representation of an isolated system (closed system). The sec-
ond subsection is devoted to modeling the microscopic interactions between indi-
viduals. The third one shows the general mathematical structure for the evolution
equation of the distribution function. The forth subsection deal with the spatially
homogeneous model that will be used in the Chapters 3 and 4.

1.2.1 Mathematical Representation

A large system of objects, or individuals, is constituted by some differential pop-
ulations of interacting entities called active particles.

Definition 1.2.1. The physical variable denoting the state of each active particle
is called the microscopic state, and is denoted by w, which is formally written
as follows:

w = (x,v, u) ∈ Dx ×Dv ×Du,

where x ∈ Dx is the geometrical microscopic variable (position), v ∈ Dv

is the microscopic mechanical variable (velocity), and u ∈ Du characterizes
the biological microscopic internal state, of each subject. Moreover, Dx,
Dv, and Du refer to the domains of existence of these variables, while the space
Dw = Dx ×Dv ×Du of microscopic states is called the state space.

Definition 1.2.2. The dependent variable

fi = fi(t,x,v, u) = fi(t,w) : [0, T ]×Dx ×Dv ×Du → R
+

for i = 1, 2, . . . ,M , defines the distribution at the time t, of individuals of the
i-th functional subsystem, over the microscopic state w.

Each distribution function fi(t,w)dw denotes the number of particles, whose
state at time t, is in the elementary volume of the space of the microscopic states
[w,w + dw], defined as [w,w+ dw] = [x,x+ dx]× [v,v + dv]× [u, u+ du].
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If the distribution functions fi are known, then macroscopic quantities can
be computed, under suitable integrability assumptions, as moments weighted of
the above distribution functions [2] and [26]. For instance, the zero-th order
moments of the functions fi provide information on the number density of each
population.

According to KTAP, the following definitions are used:

• The number density or local size of the ith population at time t and position
x in the domain Dx is given by

ni[fi](t,x) =

∫ ∫

Du×Dv

fi(t,x,v, u)dvdu. (1.1)

The total size of the whole population n is given by the sum of all ni. The
local initial size of the ith population at t0 is denoted by ni0, while the local
size for the whole population at t0 and position x is denoted by n0 and is
given by

n0(x) = n(t0,x) =
n

∑

i=1

ni0(x) (1.2)

• The total number of individuals of the ith population at time t in a domain
Dx is given by

Ni[fi](t) =

∫

Dx

ni(t,x)dx, (1.3)

which may depend on time due to proliferation or destruction phenomena
that occur. The total size of all population N is given by the sum of all Ni,
so

N(t) =

n
∑

i=1

Ni(t)

and the total size at the time t0 denoted by N0. In all practical cases, it may
be appropriate to normalize the distribution functionfi taking into account
the total size N0 at t0, so that each size is related to an initial condition.

Using the previous quantities, one can calculate the following classical mechanical
quantities:

• Local momentum is obtained by the first order momenta as follows

q[fi](t,x) =
1

ni(t,x)

∫

Du×Dv

vf(t,x,v, u)dvdu. (1.4)
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• The local energy is given by

e[fi](t,x) =
1

ni(t,x)

∫

Du×Dv

v2f(t,x,v, u)dvdu; (1.5)

• The global quantities of the local momentum and energy are given respec-
tively by

Q[fi](t) =

∫

Dx

q[fi](t,x)dx

ε[fi](t) =

∫

Dx

e[fi](t,x)dx (1.6)

• Moreover, according to the quantities with a relevant local momentum, one
can define the activation at time t and position x of the ith population, as
follows:

Ai[fi](t,x) =

∫

Dv×Du

uf(t,x,v, u)dvdu (1.7)

• and the quadratic activation is given by

Ei[fi](t,x) =

∫

Dv×Du

u2f(t,x,v, u)dvdu (1.8)

• while the corresponding activation density and quadratic activation density
are given respectively by

Ai[fi](t,x) =
Ai[fi](t,x)

ni[fi](t,x)
(1.9)

Ei[fi](t,x) =
Ei[fi](t,x)

ni[fi](t,x)
(1.10)

The above description of a large system refers to the general model of the kinetic
theory, where all components of the microscopic state (geometric, mechanical and
biological) are important in the description of the system. The special cases where
the microscopic state is identified only by the activity variable will be presented
later.
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1.2.2 Modeling Microscopic Interactions

The KTAP is a new mathematical approach that develops methods of mathe-
matical kinetic theory to deal with active particles (cells, for example) rather
than with classical particles. Thus, according to the modeling of microscopic
interactions, particles are classified into three types [26]:

• Test particles of ith functional subsystem with microscopic state, at time t,
delivered by the variable w = (x,v, u), whose distribution function is

fi = fi(t,x,v, u) = fi(t,w).

The test particle is assumed to be representative of the whole system.

• Field particles of the kth functional subsystem with microscopic state, at
time t, defined by the variablew∗ = (x∗,v∗, u∗), whose distribution function
is

fk = fk(t,x
∗,v∗, u∗) = fk(t,w

∗).

• Candidate particles, of the hth functional subsystem, with microscopic state,
at time t, defined by the variable w∗ = (x∗,v∗, u∗), whose distribution
function is

fh = fh(t,x∗,v∗, u∗) = fh(t,w∗).

The above definitions depend upon modeling of microscopic interactions based
on binary interactions involving test or (candidate) particles and field particles,
where the field particles enter into the action domain of the test particles. In
this modeling, there are two types of microscopic interactions for derivation the
mathematical framework [1] and [2]:

Definition 1.2.3. The short-range binary interactions refer to the mutual
actions between test and field cells, when the test cell enters into the action domain
Σ ⊂ Dx of the field cell; Σ is relatively small with respect to Dx and only binary
encounters are assumed to be relevant.

Definition 1.2.4. Long range mean-field interactions refer to the action
over the test active particles applied by all field active particles which are in the
long-range action domain Dx ⊆ R

3 of the field particle. The action is still of the
type of binary encounters.

For both types of interactions, we consider the following classifications:

• Conservative interactions which modify the state, mechanical and/or
activity, of the interacting active particles, but not their number.
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• Non-Conservative (Proliferative or Destructive) interactions which gen-
erate birth or death of active particles respectively due to pair interactions.

Assumption 1.2.7. Microscopic state of individuals is going to change after
the interaction between individuals. Each interaction depends on the microscopic
state of interacting individuals and can generate changes in the population of
different species too. They do not preserve the total number of individuals of each
population because proliferation or destruction of individuals are both possible.

1.2.3 Mathematical Structures

This subsection deals with the derivation of a general structure for the evolution
of the distribution functions.

The features of the approach to derive the aforesaid mathematical structures
according to what has been mentioned above, can be summarized as follows [26]:

• The overall system is divided into a number of functional subsystems, where
each subsystem contains a number of active particles that develop the strat-
egy by interactions;

• The activity defines the overall action expressed by the cells, and it describes
the biological function of each functional subsystem;

• Active particles interact within the same functional subsystem and with
particles of other subsystems. The interactions can be non-local and non-
linearly additive, and are modeled by theoretical tools of stochastic games;

• The evolution of the distribution function is obtained by a balance of par-
ticles within an elementary volume of the space of microscopic states, the
inflow and outflow of particles being related to the aforementioned interac-
tions.

Let us consider a large system of interacting active particles subdivided into
M functional subsystems labeled by the subscript i. The evolution equation
for each distribution function fi, is obtained by balance of particles within the
microscopic state w in the elementary volume [w,w+ dw], that means, equating
the rate of variation of the distribution functions in the elementary volume of
the state space to the net flux of the active particles which reach the state w
(due to the conservative interactions, proliferations and mutations), minus that
leaving the state w (due to conservative interactions, destructive interactions and
natural cells death); all this in the absence of fluxes from the outer environment,
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namely, no external action is influencing the particles, recall that the effect of
drugs here may be taken into account through different initial sets of values of
the parameters describing the internal state of the different kinds of cell. Thus,
we have

Variation rate of the number of active particles

= inflow rate caused by conservative interactions

- outflow rate caused by conservative interactions

+ inflow rate caused by proliferative interactions

- outflow rate caused by destructive interactions

+ inflow rate caused by mutations

- outflow rate caused by natural death .

We will remember that, the microscopic state w is defined as w = (x,v, u) as
indicated in Def. 1.2.1.

The evolution equation of the distribution function of the i-th population can
be written similarly as the Boltzmann equation, as follows:

(
∂

∂t
+ v · ▽x)fi(t,x,v, u) = Ji[f](t,x,v, u), ∀ i = 1, 2, ...,M, (1.11)

where ∇x is the gradient operator, and where

Ji[f](t,x,v, u) = (Ci+Pi+Mi−Di−Li)[f](t,x,v, u), ∀i = 1, 2, ...,M. (1.12)

The equation (1.11) refers to the general equation that describes the evolu-
tion for each fi specifically, the operators appearing in equation (1.12), will be
described as follows.

• Ji[f](t,x,v, u) models the flow, at time t ∈ [t0, T ], of particles that fall into
the state w of the functional subsystem i;

• Ci[f](t,x,v, u) is the net flux, at time t ∈ [t0, T ], into the state w ∈ Dw

of the functional subsystem i, due to conservative interactions. These only
modify the micro-state, but not the number of particles, and include the
flux rate C+

i and C−
i of particles which enter or leave the elementary volume

dw of the state space, therefore:

Ci[f](t,x,v, u) = C+
i [f](t,x,v, u)− C−

i [f](t,x,v, u). (1.13)

• Pi[f](t,x,v, u) is the inflow, at time t ∈ [t0, T ], into the state w ∈ Dw of
the functional subsystem i, due to proliferative events that occur within the
same functional subsystem, and generate the birth or gain of particles due
to pair interactions;
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• Mi[f](t,x,v, u), refers to the inflow, at time t ∈ [t0, T ], into the state w ∈
Dw of the functional subsystem i, due to mutation events, where daughter
particles occur in a subsystem different from that of the mother cell;

• Di[f](t,x,v, u) is the outflow, at time t ∈ [t0, T ], into the state w ∈ Dw

of the functional subsystem i, due to destructive events that generate the
death or the loss of particles due to pair interactions;

• Li[f](t,x,v, u), refers to the natural cell death (apoptosis, necrosis, mitotic
catastrophe).

The modeling of interactions at the micro-scale is based on the knowledge of
the following quantities:

• Interaction rates (Encounter rates), ηhk[f](w∗,w
∗) and µhk[f](w∗,w

∗);
these are parameters which model the frequency of the interactions be-
tween a candidate h-particle with state w∗ and a field k-particle with state
w∗. So the encounter rate depends both on the states and on the type of
populations of the interacting pairs. In general, different rates η and µ are
used corresponding to conservative and proliferative/mutation/destructive
interactions, respectively;

• Transition probability density Bi
hk[f] (w∗ → w;w∗), which denotes the

probability density that a candidate h-particle ends up into the state of the
test particle of the ith functional subsystem after an interaction (with rate
ηhk) with a field k-particle, while test i-particles interact with field particles
and lose their state;

• Proliferative term events P i
hk[f](w∗ → w;w∗), which models the prolif-

erative events for a candidate h-particle into the i-th functional subsystem
after interaction (with rate µhk) with a field k-particle;

• Mutation term eventsMi
hk[f](w∗ → w;w∗), which models the mutation

events for a candidate h-particle into the functional subsystem i 6= h after
interaction (with rate µhk) with a field k-particle;

• Destructive term events Dik[f] (w;w∗), which models the rate of de-
struction for a candidate i-particle in its own functional subsystem after an
interaction (with rate µik ) with a field k-particle.

• Relaxation and cell death events Li[f] (w), which models the natural
loss of activity and death (apoptosis, necrosis, mitotic catastrophe) of the
cells, due to their damage or age.
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Remark 1.2.2. In the above expressions f denotes the set of all distribution
functions: f = {fi}, i = 1, · · ·M .

Remark 1.2.3. The encounter rate depends both on the states and on the type
of populations of the interacting pairs.

The first quantities can be viewed in terms of rates by multiplying their in-
teraction rate with the terms modeling transition, proliferative, mutation and
destructive events. Therefore, one has:

- Transition rate: C i
hk[f] = ηhk[f]B

i
hk[f];

- Proliferation rate: P i
hk[f] = µhk[f]P

i
hk[f];

- Destruction rate: Dik[f] = µik[f]Dhk[f];

- Mutation rate: M i
hk[f] = µhk[f]Mik[f].

The modeling of these terms can take advantage of suitable elaboration of the
concept of distance between particles for the encounter rate, and of game theory
for the transition probability density, while proliferative and destructive terms
occur with the said encounter rate with an intensity depending on the properties,
namely state and functional subsystem, of the interacting active particles.

Finally, the rate of relaxation and cell death events is modeled as:

- Relaxation and cell death rate: Li[f] = Li[f], where Li[f](w) = λi[fi(t,w)−
fi(t0,w0)], w0 is the microscopic state in the time t0 and λi is a positive
constant, refer to the relaxation time related to the normalized density.

Remark 1.2.4. An important concept that is useful in the definition of the en-
counter rate, is the introduction of a distance dhk between the cells of the h-th
and the k-th functional subsystems.

ηhk[f ] = ηhk(dhk[f ]).

In general the encounter rate depends on the distance between the interacting
particles. There are different concepts of distance can play an important role in
the interaction dynamics [26].

In some situations one expects that the encounter rate decays with the distance
dhk(u∗, u

∗) = |u∗ − u∗| between the activity state of the interacting particles.
In other cases dhk may depend on distribution function fh(t) and fk(t). A

simple possibility is to consider the distance induced by the norm L1:

dhk[f ](t) = ‖fh(t)− fk(t)‖ . (1.14)
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Remark 1.2.5. The function Bi
hk has the structure of a probability density func-

tion with respect to the variable w:
∫

Dw

Bi
hk(w∗,w

∗;w)dw = 1 (1.15)

In the equation (1.13), Ci = C+
i + C−

i ; C
+
i refers to the gain term, which is

the number of test particles of the ith population appearing in the state w, after
interactions between candidate particles of the same population with microscopic
state w∗, and field particles of the ith population with microscopic state w∗. The
term C+

i can be written as follows:

C+
i [f ](x,v, u) =

M
∑

h,k=1

∫

(Ω×D2
u
×D2

v
)[f]

ηhk[f](x,x
∗,v∗,v

∗, u∗, u
∗)

· Bi
hk[f](v∗ → v, u∗ → u;v∗,v

∗, u∗, u
∗)

· fh(t,x,v∗, u∗)fk(t,x
∗,v∗, u∗)dx∗dv∗dv

∗du∗du
∗. (1.16)

The term C−
i refers to the loss term which is the number of test particles which

leave the state w∗, per unit of time and volume, after having interacted with field
particles with state w∗, the loss term is defined as:

C−
i [f](x,v, u) = fi(t,x,v, u)

M
∑

k=1

∫

(Ω×Du×Dv)[f ]

ηik[f](x,x
∗,v,v∗, u, u∗)

· fk(t,x
∗,v∗, u∗)dx∗dv∗du∗, (1.17)

while the terms Pi, Mi, Di and Li, corresponding to proliferation, mutation,
destruction, and relaxation are defined respectively as:

Pi[f](x,v, u) =

M
∑

h,k=1

∫

(Ω×D2
u
×D2

v
)[f]

µhk[f](x,x
∗,v∗,v

∗, u∗, u
∗)P i

hk[f ](u∗ → u; u∗)

· fh(t,x,v∗, u∗)fk(t,x
∗,v∗, u∗)dx∗dv∗dv

∗du∗du
∗ (1.18)

Mi[f](x,v, u) =

M
∑

h,k=1

∫

(Ω×D2
u
×D2

v
)[f]

µhk[f](x,x
∗,v∗,v

∗, u∗, u
∗)Mi

hk[f ](u∗ → u; u∗)

· fh(t,x,v∗, u∗)fk(t,x
∗,v∗, u∗)dx∗dv∗dv

∗du∗du
∗, i 6= h (1.19)

Di[f](x,v, u) = fi(x,v, u)
M
∑

k=1

∫

(Ω×Du×Dv)[f]

µik[f](x,x
∗,v,v∗, u, u∗)Dik[f](u, u

∗)

· fk(t,x
∗,v∗, u∗)dx∗dv∗du∗ (1.20)
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Li[f](x,v, u) = λi [fi(t,x,v, u)− fi(t0,x0,v0, u0)] (1.21)

The system of evolution equations is obtained substituting the formal expres-
sions given in equations (1.16)– (1.21) into the equation (1.11).

1.2.4 Spatially Homogeneous Models

Now we will consider a simplified model related to the previous mathematical
framework, which will be used in Chapters 3 and 4. This simplification cor-
responds to the spatially homogeneous case, in which the space and velocity
variables are not significant or they are constant in time. In other words, in this
case the microscopic state is given by the main biological function u. So the state
of the system is identified by the distribution function:

fi = fi(t, u) : [t0, T ]×Du → R
+, for i ∈ {1, 2, . . . ,M}, (1.22)

Therefore, the suitable balance equation to describe this case is obtained by
writing the evolution equation of the distribution function as:

∂tfi(t, u) = Ji[f](t, u) = (C+
i − C−

i + Pi +Mi −Di − Li)[f](t, u)

=

M
∑

h,k=1

∫

D2
u

ηhk[f](u∗, u
∗)Bi

hk[f](u∗ → u; u∗, u
∗) fh(t, u∗)fk(t, u

∗)du∗du
∗

− fi(t, u)
M
∑

k=1

∫

Du

ηik[f](u, u
∗)fk(t, u

∗)du∗

+

M
∑

h,k=1

∫

D2
u

µhk[f ](u∗, u
∗)P i

hk[f](u∗ → u; u∗, u
∗) fh(t, u∗)fk(t, u

∗)du∗du
∗

+
M
∑

h,k=1

∫

D2
u

µhk[f ](u∗, u
∗)Mi

hk[f ](u∗ → u|u∗, u
∗) fh(t, u∗) fk(t, u

∗) du∗ du
∗

− fi(t, u)

M
∑

k=1

∫

Du

µik[f](u, u
∗)Dik[f](u, u

∗) fk(t, u
∗)du∗

− λi[f](u) [fi(t, u)− fi(t0, u0)]. (1.23)
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1.3 Derivation of a Mathematical Structure for

Open Systems

The above mathematical structure delivered by the equations (1.11)–(1.21) refers
to an isolated system, in other words, it is valid in the absence of external ac-
tions. As we have said before, the action of external drugs is here introduced by
modification of the parameters describing the internal state of the cells. Once
the choice of these parameters is made, the biological system evolves without
interaction with the environment. In this section, we introduce a more general
model, where the interaction with the environment is not limited to fix the cell
internal parameters but is sustained over time, modifying the dynamics of the
biological system. An external action may be applied on the biological system,
by the outer environment and/or by specific therapeutical actions. We will limit
to consider the spatially homogeneous case, which had already been addressed in
the equation (1.23).

When an external therapeutical action is applied on a biological system, this
action will have an impact on the development of the system, so modifying its
dynamics. For example, a therapeutic treatment could stimulate (activate) the
proliferation rate of normal cells or destroy the abnormal cells. In other words,
the aim of therapeutical treatment will be to lead the distribution functions of
the functional subsystems towards the higher or lower states of the activation.

Here we will assume that the modeling of the interplay between the system
and its environment follows hallmarks similar to those introduced for closed sys-
tems. A useful reference is offered by [2, 34, 35]. In particular, we suppose that
the external system is constituted by active agents (for example a chemical of
a biological substance) [36]. The system is subdivided into agents functional
subsystems, each one labeled by the subscript j = 1, ...,M and each identified
by a different action corresponding to the ability to interact with the activity
of each functional subsystem of the inner system. The state of each external
functional subsystem corresponding to a definite drug substance is represented,
in probability, by the distribution function

gj(t, α) : [t0, T ]×Dα → R
+

where α is the variable describing the activity of the external system that here
is supposed defined in the same domain of the activity variable: Dα ≡ Du.
To incorporate the drug-cell interaction, we model the biological of chemical
substance as that constitute the external system in a form similar to that used
for modeling closed systems. The approach is basically the same of that of the
preceding subsection, therefore, the corresponding mathematical structure is as
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follows:
∂tgj(t, α) = Yj[g](t, α) = (Ce

j + P e
j −De

j)[g](t, α) (1.24)

where the terms Ce
j , P e

j and De
j correspond respectively to the conservative,

proliferative and destructive events in the external system (and this has been
inferred using the variable e, to distinguish from those that have been used in a
closed system. We will assume:

Ce
j [g](t, α) =

M
∑

k=1

∫

D2
u

ηejk[g](α∗, α
∗)Be

jk[g](α∗ → α;α∗, α
∗) gj(t, α∗)gk(t, α

∗)dα∗dα
∗

− gj(t, α)

M
∑

k=1

∫

Du

ηejk[g](α, α
∗)gk(t, α

∗)dα∗

P e
j [g](t, α) =

M
∑

k=1

∫

D2
u

µe
jk[g](α∗, α

∗)Pe
jk[g](α∗ → α;α∗, α

∗) gj(t, α∗)gk(t, α
∗)dα∗dα

∗

De
j [g](t, α) = gj(t, α)

M
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∫

Du

µe
jk[g](α, α
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jk[g](α, α

∗) gk(t, α
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In previously equations we have introduced the following quantities, whose mean-
ing is identical to those introduced for closed systems:

• [g] denotes the set of all distribution functions of the agents functional
subsystems of the external system. It is: g = {gj}, j = 1, · · ·M .

• ηejk[g](α∗, α
∗) and µe

jk[g](α∗, α
∗) are parameters which model the encounter

rate between the populations in the outer system, related to the conservative
and the proliferative/destructive interactions, respectively;

• Be
jk[g](α∗ → α;α∗, α

∗) is the transition probability density due to encoun-
ters between particles of a given agents functional subsystem, the definition
of this function is similar to that referred in the previous subsection;

• Pe
jk[g](α∗ → α;α∗, α

∗) and De
jk[g](α, α

∗) model the birth-death rate related
to proliferative/destructive interactions, respectively;

In the open system model, it is assumed that the effect of external force or
therapy does not cause a mutation in the cells, nor is there a relaxation rate that
leads the system to a state of equilibrium.
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According to the previous two systems (closed and open systems), we can mod-
eling the interplay between the internal and the external system, and include the
interactions between them. Therefore, the general mathematical structure can
be written as follows:































∂tfi(t, u) = Hi[f, g](t, u) = Ji[f ](t, u) + Ci[f, g](t, u) + Pi[f, g](t, u)

−Di[f, g](t, u)− Li[f, g](t, u),

∂tgi(t, α) = Ki[g, f](t, α) = Yi[g](t, α) + Ce
i [g, f](t, α) + P e

i [g, f](t, α)

−De
i [g, f](t, α),

where Ji[f ](t, u) and Yi[g](t, α) are delivered by the equations (1.12) and (1.24)
respectively, the other terms characterize the drug-cell interaction between the
considered system and its environment.

1- Ci[f, g](t, u) and Ce
i [f, g](t, α) refer to the conservative interactions,

2- Pi[f, g](t, u) and P e
i [f, g](t, α), refer to the proliferative interactions,

3- Di[f, g](t, u), D
e
i [f, g](t, α) refer to the destructive interactions,

4- Li[f, g](t, u) refer to the relaxation rate, which occurs after excitation caused
by external force or therapy. In other words, the restoration of equilibrium
following disturbance.

In detail, the above terms can be delivered by the technical calculation as follows:

Ci[f, g](t, u) =

M
∑

h,k=1

∫

D2
u

ηehk[f, g](u∗, α
∗)Bi

hk[f, g](u∗ → u; u∗, α
∗) fh(t, u∗)gk(t, u

∗)du∗du
∗

− fi(t, u)
M
∑

k=1

∫

Du

ηeik[f, g](u, α
∗)gk(t, α

∗)dα∗

Pi[f, g](t, u) =
M
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h,k=1
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u
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∗)Qi
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∗)du∗dα

∗

Di[f, g](t, u) = fi(t, u)

M
∑

k=1

∫

Du

µe
ik[f, g](u, α

∗)Ri
ik[f, g](u, α

∗) gk(t, α
∗)dα∗
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Li[f, g](t, u) = λi [gi(t, α)− gi(t0, α0)] . (1.25)

In a similar way, the results on the external agents of the interaction with the
system can be modeled as:

Ce
j [g, f](t, α) =

M
∑

k=1

∫
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u

ηejk[g, f](α∗, u
∗)Be

jk[g, f](α∗ → α;α∗, u
∗) gj(t, α∗)fk(t, u

∗)du∗dα
∗

− gj(t, α)
M
∑
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∗)fk(t, u

∗)du∗

P e
j [g, f](t, α) =

M
∑
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∫
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u
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jk[g, f](α∗, u

∗)Qe
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∗)dα∗du

∗

De
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M
∑
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∫

Du

µe
jk[g, f](α, u

∗)Re
jk[g, f](α, u

∗) fk(t, u
∗)du∗

In this briefly subsection, we have outlined the mathematical structure able to
describe the interplay between the system and external therapeutical action. In
the future this model could be applied to specific medical situations.



Chapter 2

Immune System and Cancer Cell:
Basic Concepts and Clarifications

This chapter is devoted to present a concise idea of the immunology. Also, it
is about cells of the immune system and their interactions with cancer cells. In
addition, it provides some of the basic concepts of some of the terminology used
in the next chapters. The fundamental point in this chapter heading towards
the identification of immune system and the ways have taken by this system
to protect the body from all threats. In this chapter, we will stand on what
has been taken from the Interpretations in the paper presented by Steven A.
Hofmeyr [37] and the Book [38]. The article of Bellomo et al.([39], pp.188-190)
has offered a good and inclusive introduction to the immune system and the
biology of cancer. This chapter is organized into four sections which follow this
introduction. Specifically: In Section 2.2 we will look briefly at the immune
system, its features, its components and the mechanism of the work. Section
2.3 is devoted to viewing a simple background about cancer, hallmark of cancer
cells and the main strategies in cancer immunotherapy. Section 2.4 refers to the
interactions among cells which are needed to be used in the next chapters.

2.1 Introduction

Firstly we go to define the cell as the basic structural, functional, and biological
unit in living organisms, all living organisms are composed of one or more cells.
A cell is the smallest unit of life that can replicate independently producing
cells of cell division after the growth process. The cell consists of cytoplasm
enclosed within a membrane, which contains many biomolecules such as proteins
and nucleic acids.

The human body consists of billions of different functional cells, among these
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cells, there are a large number of cells involved in the immune response. These
cells are distributed throughout the body in the blood, lymph and epithelial. In
other words, the immune cell system is composed of all parts of the body that
help in the recognition and destruction of foreign materials. The immune system
is almost more complicated than every part of the body, where it can recognize
a very large number of enemies, and at the same time, it can produce several
secretions and cells to eliminate pathogens. The immune system is involved in
the autoimmune diseases and this happens when occurs mistakenly in the immune
system which leads to recognizing own body’s cells as foreign or dangerous. The
ability to recognize ”self” fails. The cause of immune dysfunction is unclear but
genetics, environment, and long-term chronic inflammation state can all cause
autoimmune diseases.

2.2 The Immune System

This section provides a brief introduction to the immune system and the tech-
niques that are used to measure its status. Firstly, we define the immunology
as the science that deals with the immune system and its responses to invading
pathogens. The immune system, in multicellular organisms, is a very complex
system, and it is made up of a network of cells, tissues, and organs that work
together to protect the body from pathogens and other foreign substances such as
bacteria, parasites, and fungi that can cause infections. A phenomenological de-
scription of the immune system is presented in the book of Cooper and Hausman
[40], from the view point of theoretical biologists.

The immune response can be considered as an organizer of the substances
between the cells, and consists in the coordinate reaction of these cells to infec-
tious microbes.

2.2.1 Features of the Immune System

The most important features of the immune system are the capability to distin-
guish between host entities (self) and foreign components (non-self), by reacting
against everything different to itself (Antigens). The immune system has the
amazing ability to respond to any reaction from the foreign molecule, different to
its own structure, even if this molecule is very small. However, it does not react
against its own components. In addition, the immune system usually recognizes
and get rid of the self-cells and tissue that has changed due to infection or dis-
ease (such as cancer cells that have become ineffective) by means of an apoptosis
process (programmed cell death).
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To recognize pathogens, the immune system reacts through two different types
of response, that differ in how they do this:

1- Innate immune system (Innate response): Is the immunity that inherits
the organism of his parents. It grows and develops naturally with the evo-
lution of human life. The innate response is the first line of defence, occurs
immediately and quickly activated after pathogen exposure or when circu-
lating innate cells recognize a problem. This type of host defence is always
present in healthy individuals, prepared to block the entry of microbes and
to rapidly eliminate those that succeed in entering host tissues. The in-
nate response provides an immediate response, but it is non-specific. This
response is carried out by epithelial barriers and by specialized cells and
natural antibiotics present in epithelium; if microbes do breach epithelium
and enter the tissues or circulation, they are attacked by phagocytes (spe-
cialized lymphocytes called natural killer cells), and several plasma proteins,
including the proteins of the complement system.

The complement system is so named because it is complementary to
the antibody response of the adaptive immune system, and it is defined as
a set of distinct plasma proteins that act together to attack extracellular
forms of pathogens and induce a series of inflammatory responses that help
to fight infection. A number of complement proteins are proteases that
are themselves activated by proteolytic cleavage. Such enzymes are called
zymogens and were first found in the gut. The innate immune system
provides defence against the invading pathogens until the adaptive immune
system develops.

2- Adaptive immune system (Acquired response): It starts to act after
repeated exposures to a given infection. Here the immune system adapts
its response during an infection to improve its recognition of the pathogen.
This improved response is then retained after the pathogen has been elim-
inated, in the form of an immunological memory, and allows the acquired
response to load faster and stronger attacks each time this pathogen is en-
countered. The adaptive immune responses are carried out by white blood
cells (called lymphocytes) and their products, such as antibodies responses
(humoral immunity) and cell-mediated immune responses (or cellular im-
munity). Lymphocytes are express receptors that can identify different
types of substances that are produced by the microbes. These substances
are called antigens. The antibodies responses and cell-mediated immune
responses are carried out by different classes of lymphocytes, called B-
lymphocytes and T-lymphocytes, respectively.
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Immune memory is a feature of the adaptive immune response. After B-
cells or T-cells are activated, they expand rapidly. As the problem resolves,
cells stop dividing and are retained in the body as memory cells. The next
time this same pathogen enters the body, a memory cell is already poised
to react and can clear away the pathogen before it establishes itself.

Both types of the immune system response are working together against the in-
fection, but in both cases, the defence starts from the recognition of the pathogen
agents.

Through the series of steps carried out by the immune response, the immune
system can destroy infected and malignant cells, and removes cellular debris,
although the innate immune system eliminates the infection, but many of the
disease-causing microbes have evolved to resist innate immunity. Defence against
these infectious agents is the task of adaptive immunity, the adaptive immune
responses are specialized to combat different types of infections and they are
triggered only if the microbes are able to penetrate the epithelial barriers and are
delivered to the lymph organs that can recognize them by lymphocytes.

Definition 2.2.1. Antigen: A substance (usual proteins)that is found on the
surface of the pathogen: bacteria, viruses, or fungi that cause infection and dis-
ease. The antigen that is able to provoke an immune response.

Definition 2.2.2. Antigen-presenting cells: are a heterogeneous group of
immune cells that mediate the cellular immune response by processing and pre-
senting antigens for recognition by certain lymphocytes such as T cells. Classical
antigen-presenting cells include dendritic cells, macrophages and B-cells.

Definition 2.2.3. Antibodies: are a special type of proteins which attacks anti-
gens.

2.2.2 Cells of the Immune System(Components)

The immune system involves different populations of cells. Among them: white
blood cells, phagocytes and lymphocytes, bone marrow, lymph nodes, tonsils,
thymus, and spleen are all part of the immune system. One of the most impor-
tant cells involved are the white blood cells or leukocytes. The white blood
cells are the key players in the immune system. They are responsible for much
of the work of the immune system as they are involved in protecting the body
against both infectious disease and foreign invaders. The white blood cells are
grouped into two basic types: Phagocytes and Lymphocytes, each of which
carries out somewhat different functions. All white blood cells are produced and
derived from multipotent cells in the bone marrow known as hematopoietic stem



The Immune System 24

cells.

• Phagocytes: These cells have the ability to travel throughout the body
to the pursuit of the invasion of pathogens, these cells are those chew up
invading organisms.

• Lymphocytes: These cells have a variety of different functions. They
attack viruses and other pathogens. They also make antibodies which help
to destroy bacteria. The lymphocytes can be divided into three classes T-
cells, B-cells and natural killer cells. Each B-cell and T-cell is specific for a
particular antigen, but their function is under the control of dendritic cells.

1 - B cells (bursa-derived cells): are the only cells that produce antibod-
ies against antigens that can bind to pathogens, block pathogen invasion,
activate the complement system, and enhance pathogen destruction.

2 - T cells (thymus cells): are a subtype of white blood cells; they originate
in bone marrow and mature in the thymus, and circulate around the body,
scanning for abnormal cells and infections. T-cells play a central and im-
portant role in cell-mediated immunity. They help to recognize and destroy
infected or cancerous cells. They attack body cells themselves when they
have been taken over by viruses or have become cancerous. T-cells can
be distinguished by the presence of a T-cell receptor on the cell surface.
T-cells multiply and divided into helper, regulatory, cytotoxic T-cells or
become memory T-cells.

• T-helper cells: are a type of T-cell that plays an important role in the
immune system, as they are required for almost all adaptive immune
response, and help to activate the immune system. They not only
help activate B-cells to secrete antibodies and macrophages to destroy
ingested microbes, but they also help activate cytotoxic T-cells to kill
infected target cells. More accurately, without helper T-cells, we can-
not defend ourselves even against many microbes that are normally
harmless.

• Regulatory T-cells: inhibit immune response and resolve inflammation.

• Cytotoxic T-cells: kill cells that produce foreign antigens, such as cells
infected by viruses and other intracellular microbes.

• Memory T-Cells: These cells are derived from normal T-cells specific
for antigens that can respond rapidly to subsequent encounter with
that antigen and differentiate into effector cell to eliminate the antigen.
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Remark 2.2.1. Näıve T-cells are those cells that have not yet encountered
foreign antigen and have not yet been activated.

3 - Natural killer cells are a type of lymphocyte, that function as both cyto-
toxic effectors and regulators of immune responses, they play a major role in
defending the host from both tumors and virally infected cells, and kill any
type of host cells that are harbouring infectious microbes in the cytoplasm.

4 - Dendritic cells: they are the type of antigen-presenting cell and they are
phagocytes in tissues that are in contact with the external environment
such as the skin and the inner lining of the nose, lungs and stomach. They
are professional antigen processing cells. They have a number of receptors
that enhance the uptake of antigens. However, the dendritic cells present
antigens to T-cells to help them to recognize foreign antigens. They activate
helper T-cells and killer T-cells as well as B-cells by presenting them with
antigens derived from the pathogen. They control responses by T-cells and
by all other types of lymphocytes. Dendritic cells also influence the type or
quality of the response.

2.2.3 Mechanisms of the Immune System

When an antigen enters the body, several types of cells work together to rec-
ognize it and respond. It may be partially neutralized by components of the
innate immune system. It may be attacked by phagocytes which recognize the
pathogens and differentiate them, and then they inform T-helper cells to open up
the immune system and operated to trigger the B-lymphocytes to produce anti-
bodies, as well as killer T-cells to get rid of foreign cells. All of them will work
together with the complement system. The lymphocytes of the adaptive immune
system are brought into play. If lymphocytes encounter an antigen trapped by
the antigen-presenting cells of the lymphoid organs, lymphocytes with receptors
specific to that antigen stop their migration and settle to mount an immune re-
sponse locally. After the pathogens have been eliminated, the regulatory T-cells
play a central role in the immune system by potently controlling the responses of
other immunocytes. Their activity appears to be essential not only for the main-
tenance of immunological tolerance but also in the control of all physiological
immune responses whether against normal self-proteins, microbes or cancerous
cells.

In addition, all the cells in the human body, carry signs or markers on the
cell membrane of certain chemical compounds called Major Histocompatibility
Complex (MHC). This is a set of cell surface proteins that are essential for the
acquired immune system to recognize foreign molecules or tumor cells. In fact,



The Cancer and the Hallmark of Cancer Cells 26

they have the propriety of bind oneself to the antigens which are typical of a
pathogen and to display them on the surface of the infected cell, thus allowing
its identification by the appropriate T-cells.

2.3 The Cancer and the Hallmark of Cancer

Cells

The human cells grow and divide to form new cells as the body needs them.
The evolution of cells is regulated by the genes contained inside its nucleus, that
controls the cell’s functions, especially how they grow and divide. Normal cells
have many controls on their growth. They only grow when stimulated by growth
factors. They can divide only a limited number of times. If they are damaged, a
molecular brake stops them from dividing until they are repaired. If they can’t be
repaired, they commit cell suicide (apoptosis). They are part of a tissue structure
and remain where they belong. If the aforementioned genes mutate, Cancer can
occur.

Cancer is a large class of very different cellular diseases, all of which charac-
terized by uncontrollable growth. Cancer cells generally have severe chromosomal
abnormalities, which worsen as the disease progresses. Cancer cells have defects
in the control mechanisms that govern how often they divide, and in the feed-
back systems that regulate these control mechanisms, and start to proliferate in
a non controlled way [41]. They have ability to thrive in a chronically inflamed
microenvironment. They have the capability of evading the immune system, by
invade local tissue and spread, or metastasize, to distant sites. They have ability
to suppress immune reactivity [42]. Local chronic inflammation has an impor-
tant role in inducing many types of cancer. Cancers historically and evolutionary
theory for understanding this disease, have been viewed in [10, 43] respectively.
Furthermore the dynamics of cancer progressions is documented in [44]

The immune system also plays a role in cancer. The immune system can
find and attack tumor cells, but when this function breaks down it can cause
cancers and tumors to develop. There are also cancers of the immune system
(Leukemias and lymphomas), that cause immune cells to grow uncontrolled. In
fact, the immune system has a major role in cancer suppression, it can eliminate
oncogenic pathogens (a gene that has the potential to cause cancer), and it can
also inhibit tumor growth and progression through the recognition and rejection
of malignant cells, through a process called immuno-surveillance. In other hand,
the tumor when become more clinically and biologically aggressive over time.
This has been termed ’tumor progression’, which can be invasion and metastasis,
as well as more efficient escape from host immune regulation [45].



The Cancer and the Hallmark of Cancer Cells 27

Definition 2.3.1. Cancer cells are the foundation of the disease that can occur
in a variety of organs. They grow and divide at a rapid and unregulated pace.
The disease, that is known as cancer, only occurs when immune cells (particularly
natural killer cells) fail to recognize and/or destroy cancer cells. Thus, the cancer
cells initiate tumors and drive tumor progression forward.

Definition 2.3.2. A tumor (neoplasm) is an abnormal mass of tissue which
may be solid or fluid-filled. Tumors can be benign (not cancerous), or malignant
(cancerous).

Remark 2.3.1. The tumor progression refers to the formation of a tumor, and
its development.

2.3.1 Distinctive Capabilities of Tumor Cells

As documented in the seminal paper by Hanahan and Weinberg [46] and [47],
there are six hallmarks essential for tumor growth: They include sustaining
proliferative signaling, evading growth suppressors, resisting cell death, enabling
replicative immortality, inducing angiogenesis, and activating invasion and metas-
tasis.

More precisely, following Hanahan and Weinberg [46], the essential traits in
cell physiology that possibly dictate malignant growth are the following:

• Self-sufficiency in growth signals, insensitivity to anti-growth sig-
nals and indefinite cell replication. Tumor cells do not need stimulation
from external signals (in the form of growth factors) to multiply, but are
able to stimulate their own growth, due to the dominant character of onco-
genes. Embryonic stem cells have an innate programme for self-replication
that does not require extrinsic instruction [48]. In a similar way, tumor cells
proliferate owing of their capacity to produce their own growth factors.

The growth of normal cells is kept under control by growth-inhibitors or
signals. These inhibitors act on the cell cycle clock, by interrupting cell
division. If a normal cell is damaged, they interrupt its cycle of life, until
the damage is repaired. Tumor cells are resistant to anti-proliferative signals
and can divide uncontrollably. Non-cancer cells die after a certain number of
divisions. Cancer cells have damaged chromosomes and are able of multiply
indefinitely.

• Evasion of Programmed Cell Death (Apoptosis). An important fea-
ture of organogenesis is the apoptosis, a mechanism by which cells are pro-
grammed to die in the event they become damaged (cell suicide). Follow-
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ing [46], cancer cells are characteristically able to overcome apoptosis to
progress. This lead to an uncontrolled cell proliferation, such as cancer.

Criticisms are leveled at the inference that the ability to evade programmed
cell death can be linked to the initiation and progression of cancer. During
carcinogenesis, indeed, explaining a net local accrual of cells requires either
an increased cell proliferation rate and/or inhibition of cell death. Enderling
and Hahnfeldt [49] using mathematical modeling and computer simulation
found that increasing the rate of apoptosis, while obviously reducing tumor
size in the short-time, actually enhances growth in the long-time. They
show that tumors can remain dormant for a long time while stimulation of
apoptosis can cause the tumor cell population to aggressively invade.

• Sustained angiogenesis (Tissue invasion and metastasis). Angio-
genesis is the process by which new blood vessels are formed. Cancer cells
stimulate the growth of blood vessels to supply nutrients to tumors. Cancer
cells can move away from their site of origin to invade adjacent tissue or
travel to distant sites.

2.3.2 The Main Strategies in Cancer Immunotherapy

After the discovery of the six hallmarks of tumor growth, that have already men-
tioned in the previous subsection, the idea of exploiting the host’s immune system
to treat cancer began with the idea that the immune system could eliminate ma-
lignant cells during the initial transformation in a process called immune surveil-
lance. Immunotherapy has become a clinically validated treatment for many
types of cancer. For decades, cancer has been known to suppress the body’s nat-
ural immune response. For this reason, most treatments use other methods, such
as surgery, radiation therapy and chemotherapy, to eliminate neoplastic cells.

It has been established that the various components of the immune system
play a pivotal role in protecting humans. After many disappointing efforts and
clinical failure, the area of immunotherapy with cancer has recently received a
significant boost, primarily encouraged by the approval of autologous cellular
immunotherapy. Immunotherapy against existing cancers includes different ap-
proaches, ranging from stimulating the responder mechanisms to counteracting in-
hibitory and suppressive mechanisms. The main strategies in cancer immunother-
apy are cancer vaccines, adoptive cellular immunotherapy, immune checkpoint
blockade, and oncolytic viruses. Cancer therapy has long depended on these
strategies that directly attack tumor cells to treat patients. Cancer immunother-
apy is the treatment that harnesses the patient’s immune system to fight cancer,
and is now emerging as an important addition to conventional therapies. Immune
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checkpoint blockade therapy, in particular, has undoubtedly been one of the most
impressive advancements made in cancer therapeutics in recent years [11].

2.4 Interacting Among Cells

In this section, we have intensified attention to the researches provided by [7, 50].
In general, all multicellular systems are constituted by a large number of

interacting cells that interact in an amazing form and non-linear ways. These
interactions play a crucial role in the development and function of multicellular
organisms. Understanding the roles of non-linear interactions is very complicated
and is included among the challenges in the study of complex systems. These
interactions allow cells to communicate with each other in response to changes in
their microenvironment. In the interactions, each entity has a certain action. This
action depends on the strategy that can develop through the interaction, which
is often related to surviving and adaptation ability. In general, when studying
this kind of complex systems, it is needed to simplify the interaction occurring
between two entities.

In the next chapters,three classifications will be used: conservative interac-
tions, proliferative interactions, and destructive interactions. The following three
figures illustrate these three types of actions.

1 - Conservative interactions: This type of interactions refers to modifying the
state of reactive cells from one state to another without change in the size
of the populations. See Figure 2.1.

2 - Proliferative interaction: In this event, antigens are presented to the näıve
T-lymphocyte by dendritic cells, after the activation of T-cells, they prolif-
erate rapidly. See Figure 2.2.

3 - Destructive interactions: Is a term that refers to the death of exotic material
and antigens that enter the body or cancer cells. This is the task of the
cytotoxic T-cells and natural killer cells. See Figure 2.3
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Figure 2.1: Conservative interaction between T cell and dendritic cell, dendritic
cell process antigens and present them to T-cells to activate them.

Figure 2.2: Proliferative interaction,
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Figure 2.3: Destructive interactions



Chapter 3

Spatially Homogeneous Discrete
Model

As already said, Hanahan and Weinberg [46, 47] suggested that the complexity
of cancer can be reduced to a small number of underlying principles: cancer cells
have defects in the control mechanisms that govern how often they divide and
are able to stimulate their own growth. They are able to overcome apoptosis
to progress. They have the capacity to evade the immune recognition. The
immune system plays an important role in these dynamics. As said in Chapter 2,
immune cells have a strategy to learn the presence of carriers of a pathology and
attempt to deplete them. It is a complex process where immune cells, starting
from the innate immunity, improve their action by learning the so-called acquired
immunity and identifies the hallmarks of cancer to escape the immune defence
[51].

Mathematical models may be useful for a better understanding of the mech-
anisms that govern the interaction between immune system and cancer cells, to
develop cancer immunotherapies. Applied mathematicians are involved in this
research activity as documented in review papers [52, 53] and [54]. In [7] an
important first study was made to put the ideas of Hanahan and Weinberg in
a general mathematical framework. The approach used is based on the Kinetic
Theory of Active Particles, which has been systematically developed in Chapter
1. To model the immune competition according to KTAP, the overall system is
divided into different populations (functional subsystems). The time evolution of
each functional subsystem is described by a distribution function and is governed
by interactions [35].

This chapter deals with the model proposed in [7], which was formulated by
A. Bellouquid, E. De Angelis and D. Knopoff (2013) [7], to describe the com-
petition between cancer cells and immune system, where the scalar variable is
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characterized by a discrete activity. A detailed analysis of this model is made,
and a number of simulations are presented, aiming at investigating how the state
of the various functional subsystems evolve in time, depending on the choice of
the free parameters. In several cases, the learning action of the immune system is
sufficient to contrast this process. However, for some values of the free parameters
present in the model, tumor cells may continue to grow. The goal of this analysis
is to determine the critical values of the free parameters that characterize the
transition to a malignant tumor (black swan).

This chapter will be divided into four sections which follow this introduction.
Specifically: Section 3.1, briefly outlines the paper of Bellouquid, De Angelis and
Knopof [7], which is the starting point of this study. Section 3.2 presents a
variety of simulations to investigate how the different parameters influence the
dynamical behavior of the system. In Section 3.3, the results of the previous
section will be discussed. In Section 3.4 a modification of Bellouquid et al. [7]
model is made, to better investigate the results of conservative interactions. An
Appendix reports the Matlab code used.

3.1 Modeling Immune-Cancer Competition

This section provides a concise description of the model proposed by Bellouquid et
al.(2013) [7]. The overall system is characterized by 8 functional subsystems. The
first four subsystems contain epithelial (subsystem 1) and cancer cells (subsystems
2,3,4), the other functional subsystems contain cells of the immune system.

As we have said, the cancer is a kind of cellular disorder which allows certain
cellular populations to manifest deviant characteristics. Normal epithelial cells
can generate daughter cells with the first hallmark of cancer. These newborn cells
can generate, despite the contrast of the immune system, daughter cells with the
subsequent hallmarks. When abnormal cells are recognized by immune cells, a
competition starts and may end up either with the suppression of cancer cells or
with their indefinite growth, with aggregation into tumor structures.

To put in a mathematical framework this process, Bellouquid et al. (2013) [7]
identify the following eight different cell populations (functional subsystems).

• i = 1 Normal epithelial cells. It is supposed that the organism is a source
of epithelial cells, so their quantity can be regarded as constant in time;

• i = 2 Cancer cells of the first hallmark that have the ability to thrive in a
chronically inflamed micro-environment;
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• i = 3 Cancer cells of the second hallmark, that have the ability to evade the
immune recognition;

• i = 4 Cancer cells of the third hallmark that have acquired the ability to
suppress the immune reaction;

• i = 5 Cells of the innate immune system which have the ability to acquire,
by a learning process, the capacity of contrasting the development of cancer
cells of the first hallmark (labeled by i = 2);

• i = 6 Cells of the adaptive immune system which have the ability to contrast
the development of cancer cells labeled by i = 2;

• i = 7 Cells of the adaptive immune system which have the ability of con-
trasting the development of cancer cells labeled by i = 2 and i = 3;

• i = 8 Cells of the adaptive immune system which have the ability of con-
trasting the development of cancer cells labeled by i = 2, i = 3 and i = 4.

In this model the activity variable attains values in a discrete set as follows:

u ∈ Iu = {0 = u1, · · · , uj, · · · , um = 1} with uj < uj+1

The overall state of the system is described by the discrete generalized distribution
functions fij = fi(uj, t) = fij(t), i = 1, · · · , 8, j = 1, · · · , m. The index i labels
each subsystem, j labels the activity variable, and fij(t) represents the number
of active particles of the functional subsystem i which have the state uj at time
t. The number density of the i-th population is given by:

ni[f](t) =
m
∑

j=1

fij(t), i = 1, · · · , 8 (3.1)

3.1.1 Dynamics of Cellular Interactions

In the KTAP, the interactions involve three types of particles: test, field and
candidate. As said in Chapter 1, the interaction rule is as follows: candidate
particles can acquire, in probability, the state of the test particles, after an inter-
action with field particles, while test particles lose their state after interactions.
The time evolution of the distribution functions fij can be described with the
following system of balance equations:

dfij(t)

dt
= Cij[f](t) +Mij [f](t) + Pij[f](t)−Dij [f](t)− Lij [f](t) (3.2)
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for i = 1, · · · , 8 and j = 1, · · · , m, where Cij, Mij, Pij, Dij and Lij are suit-
able operators acting over the whole set of distribution functions and f = (fij).
Specifically,

• Cij[f](t) is the net flux, at time t ∈ [0, T ], into the state uj of the functional
subsystem i, due to conservative interactions that only modify the micro-
state;

• Pij [f](t) is the gain, at time t ∈ [0, T ], into the state uj of the functional sub-
system i, due to proliferative events that occur within the same functional
subsystem;

• Mij [f](t) is the gain, at time t ∈ [0, T ], into the state uj of the functional
subsystem i, due to mutation events, where a daughter cell occurs in a
subsystem different from that of the mother cell;

• Dij [f](t) (i = 2, 3, 4) is the loss, at time t ∈ [0, T ], in the state uj of the
functional subsystem i, due to destructive events;

• Lij [f](t) (i = 5, 6, 7, 8) model the natural relaxation (of the immune system)
to a given healthy state.

In general, a different modeling approach has to be considered for cells of the
various different functional subsystems. The mathematical structure is written
as follows:

dfij(t)

dt
= Jij [f](t) =

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηik[f ]B
pq
ik (j)[f]fipfkq − fij

8
∑

k=1

m
∑

q=1

ηikfkq

+
8

∑

h=1

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηhk[f]P
pq
hk(ij)fhpfkq

+
8

∑

h=1

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηhk[f]M
pq

hk(h=i+1)(ij)fhpfkq

− fij

8
∑

k=1

m
∑

q=1

ηik[f]D
jq
ikfkq − λi(fij − f 0

ij) (3.3)

Briefly, the addends in (3.3) are modeled as follows:
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Cij[f] =

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηik[f ]B
pq
ik (j)[f] fipfkq − fij

8
∑

k=1

m
∑

q=1

ηikfkq, (3.4)

Pij[f] =

8
∑

h=1

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηhk[f]P
pq
hk(ij)fhpfkq, (3.5)

Mij [f] =

8
∑

h=1

8
∑

k=1

m
∑

p=1

m
∑

q=1

ηhk[f]M
pq

hk(h=i+1)(ij)fhpfkq, (3.6)

Dij[f] = fij

8
∑

k=1

m
∑

q=1

ηik[f]D
jq
ikfkq, (i = 2, 3, 4), (3.7)

Lij [f] = λi(fij − f 0
ij), (i = 5, 6, 7, 8). (3.8)

The quantities related to the interaction terms above are defined as follows:

• ηhk = ηhk[f ](up, u
q) is the encounter rate between the hp candidate-cell,

with state up, of the h-th subsystem and the kq field-cell, with state uq, of
the k-th subsystem;

• Bpq
ik = Bpq

ik [f ](j) is the probability density that the ip candidate-cell, with
state up, of the i-th subsystem ends up into the state j of the test-cell of the
same subsystem after the interaction with the kq field-cell, with state uq, of
the k-th subsystem. Bpq

ik satisfies, for all i, k ∈ {1, 2, . . . , 8} and j = 1, ..., m,
the following condition:

8
∑

i=1

8
∑

k=1

m
∑

p=1

m
∑

q=1

Bpq
ik [f ](up → u|up, u

q) = 1, ∀ up, u
q ∈ Du. (3.9)

• Ppq
hk = Ppq

hk[f ](ij) models the proliferative events, where generation of a
daughter cell occurs in the same subsystem of the mother cell.

• Mpq
hk = Mpq

hk[f ](ij) models the mutations events, where generation of a
daughter cell occurs in a subsystem different from that of the mother cell.

• Dpq
ik = Dpq

ik [f ](ij) models the destruction events. Interactions can induce net
destructive events in the sense that the immune system has the ability to
kill a cancer cell.

• λi (i = 5, 6, 7, 8) refer to the natural tendency of the (acquired) immune
system to relax to a given (primitive) state.
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3.1.2 Modeling Encounter Rate

An important concept, that is useful in the definition of the encounter rate, is the
introduction of a distance dhk between the cells of the h-th and the k-th functional
subsystems. An hypothesis often used in the KTAP is that the encounter rate
depends on the distance between the interacting particles: ηhk[f ] = η0hk[f](dhk).
Different distances can be chosen depending on the system in consideration [15].
Bellouquid et al. (2013) [7] assumed that the distance dhk is a functional of the
distributions that characterize the two interacting populations, and defined the
encounter rate ηhk[f ] as follows:

ηhk[f ] = η
(0)
hk [f ] dhk[f], (3.10)

where

dhk[f] =







exp

(

−τ
‖fh − fk‖

‖fh‖+ ‖fk‖

)

, ‖fh‖, ‖fk‖ 6= 0, τ > 0,

0, ‖fh‖ = ‖fk‖ = 0,
(3.11)

and τ is a positive real constant.
The function η

(0)
hk is assumed proportional to h, for epithelial and cancer cells,

(ηh1[f ] = η0h dh1[f], for h = 2, 3, 4, and with η0 > 0), in sense that the encounters
between epithelial and cancer cells increases with the hallmark h, as progressive
hallmarks correspond to increasing activation to search nutrients for increasing
proliferation, while is assumed constant for the encounters between immune and
cancer cells (ηhk[f ] = η0σ dhk[f], with σ > 0), for each pair (h, k) = (5, 2), (6, 2),
(6, 3),(7, 2), (7, 3), (7, 4), (8, 2), (8, 3), (8, 4), in sense that immune cells have the
ability to identify cancer cells only if they have acquired this specific ability after
a learning process.

The dimensionless parameter η0 corresponds to the interaction between ep-
ithelial cells and cancer cells and can be included in the time-scale. Thus one
gets the following matrix expression for the encounter rate:

ηhk =

























d11 2d21 3d31 4d41 0 0 0 0
2d21 0 0 0 σd52 σd62 σd72 σd82
3d31 0 0 0 0 σd63 σd73 σd83
4d41 0 0 0 0 0 σd74 σd84
0 σd52 0 0 0 0 0 0
0 σd62 σd63 0 0 0 0 0
0 σd72 σd73 σd74 0 0 0 0
0 σd82 σd83 σd84 0 0 0 0

























(3.12)

In accordance with (4.12), we can formulate the following remarks:
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Remark 3.1.1. Encounter rates are symmetric: ηhk = ηkh, ∀h, k, p, q.

Now in accordance with the matrix above, we can be set the following as-
sumption:

Remark 3.1.2. The encounter rate is assumed to be equal to zero in the following
cases:

1 - for encounters involving only cancer cells, ηhk[f ] = 0, ∀h, k = 2, 3, 4.

2 - For encounters involving only immune cells.

3 - For encounters between the epithelial cell h = 1 and the immune cells
k = 5, 6, 7, 8.

4 - When the immune cells do not have ability to identify cancer cells, for
example for each couples (h, k) = (5, 3), (5, 4), (6, 4).

3.1.3 Modeling Transition Probability Density

Conservative interactions refer to progression phenomena that lead to an increas-
ing activity within the same subsystem. Thus, they do not modify the size of the
populations. The terms Bpq

ik (j) represent the probability density that a candidate-
cell with the state up, of the i-th subsystem ends up into the state uj of the test-cell
of the same subsystem after the interaction with the field-cell, with state uq, of
the k-th subsystem.

Remark 3.1.3. It is assumed that the transition probability density is zero when
the encounter rate is zero.

The function Bpq
ik (j) has different expressions for the subsystems i = 1, 2, 3, 4

corresponding to epithelial and cancer cells and the subsystems k = 5, 6, 7, 8
corresponding to immune system cells. Following Bellouquid et al. [7], we assume
the structure for the matrix whose elements express the transition probability
densities to be given by:

Bpq
ik =

























Bpq
11 1 1 1 0 0 0 0

Bpq
21 0 0 0 0 0 0 0

Bpq
31 0 0 0 0 0 0 0

Bpq
41 0 0 0 0 0 0 0
0 Bpq

52 0 0 0 0 0 0
0 Bpq

62 0 0 0 0 0 0
0 0 Bpq

73 0 0 0 0 0
0 0 0 Bpq

84 0 0 0 0

























(3.13)

where in particular the nonzero elements are given as follows:



Modeling Immune-Cancer Competition 39

• Interactions involving epithelial subsystem h = 1 and the cancer subsystems
k = 2, 3, 4. In this case, epithelial cells are assumed to feed progression of
cancer cells without changing their own state:

Bpq
1k(p) = 1. (3.14)

• Interactions involving the functional subsystems h = 1, 2, 3, 4 (epithelial
and cancer cells) and the epithelial subsystem k = 1. In this case, epithelial
cells are assumed to feed progression in the activity of epithelial h = 1 and
cancer cells h = 2, 3, 4 after interactions. For this, we will assume that
the probability of transition depends on the interacting populations and
decrease with the activity state of the candidate-cell. So we get:

Bpq
h1(j) =











α (1− up) , j = p+ 1, α ∈ (0, 1],

1− α (1− up) , j = p,

0 otherwise.

(3.15)

• Interactions involving the functional subsystems h = 5, 6, 7, 8 (immune
cells) with functional subsystems involving cancer cells k = 2, 3, 4. Immune
cells acquire progressively the ability to identify cancer cells of successive
hallmarks. As a consequence, immune cells may increase their state and
the probability of progression of cancer cells decreases with increasing p-th-
state: Thus, we have:

Bpq
52(j) = Bpq

62(j) = Bpq
73(j) = Bpq

84(j) =











α (1− up) , j = p+ 1, α ∈ (0, 1],

1− α (1− up) , j = p,

0, otherwise.

(3.16)

• Interactions between cancer cells (h = 2, 3, 4) with immune system cells
(k = 5, 6, 7, 8). It is assumed that these types of interactions do not induce
biological events to cancer cells. Therefore, the result of these interactions
gives zero.

In accordance to all mentioned in subsections 3.1.2 and 3.1.3, the conservative
interactions are modelled by substituting the equations (3.10)–(3.16) in the term
Cij [f] in the equation (3.4), one gets:

C1j [f] = d11[f]α(1− uj−1) (1− δ1j) f1(j−1)n1[f]

+ d11[f] [1− α(1− uj)] f1jn1[f]− d11[f]f1jn1[f] (3.17)
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C2j [f] = d21[f]α(1− uj−1) (1− δ1j) f2(j−1)n1[f]

+ d21[f] [1− α(1− uj)] f2jn1[f]− d21[f]f2jn1[f]

− σd52f2jn5[f]− σd62f2jn6[f]− σd72f2jn7[f]

− d82f2jn8[f], (3.18)

C3j [f] = d31[f]α(1− uj−1) (1− δ1j) f3(j−1)n1[f]

+ d31[f] [1− α(1− uj)] f3jn1[f]− d31[f]f3jn1[f]

− σd36f3jn6[f]− σd37f3jn7[f]− σd38f3jn8[f], (3.19)

C4j [f] = d41[f]α(1− uj−1) (1− δ1j) f4(j−1)n1[f]

+ d11[f] [1− α(1− uj)] f4jn1[f]− d41[f]f4jn1[f]

− σd41f4jn7[f]− σd48f4jn8[f], (3.20)

C5j [f] = σd52[f]α(1− uj−1) (1− δ1j) f5(j−1)n2[f]

+ σd52[f] [1− α(1− uj)] f5jn2[f]− σd52[f]f5jn2[f], (3.21)

C6j [f] = σd62[f]α(1− uj−1) (1− δ1j) f6(j−1)n2[f]

+ σd62[f] [1− α(1− uj)] f6jn2[f]− σd62[f]f6jn2[f]

− σd63[f]f6jn3[f], (3.22)

C7j [f] = σd73[f]α(1− uj−1) (1− δ1j) f7(j−1)n3[f]

+ σd73[f] [1− α(1− uj)] f7jn3[f]− σd72[f]f7jn2[f]

− σd73[f]f7jn3[f]− σd74[f]f7jn4[f], (3.23)

C8j [f] = σd84[f]α(1− uj−1) (1− δ1j) f8(j−1)n4[f]

+ σd84[f] [1− α(1− uj)] f8jn4[f]− σd83[f]f8jn3[f]

− σd84[f]f8jn4[f], (3.24)

Remark 3.1.4. We recall that δij denotes the Kronecker delta defined as follows:

δij =

{

1 if i = j

0 if i 6= j
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3.1.4 Modeling Proliferative Events

The proliferative events dynamics is modeled as follows: A candidate-cell (mother
cell) of subsystem h with a state p, by interacting with a field-cell from subsystem
k, with the state q, proliferate a daughter cell of the same subsystem, and with
the same activity. Following Bellouquid et al. (2013), these events are modeled
by the following matrix expression:

Phk =

























0 0 0 0 0 0 0 0
Ppq

21 0 0 0 0 0 0 0
Ppq

31 0 0 0 0 0 0 0
Ppq

41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 Ppq

62 0 0 0 0 0 0
0 Ppq

72 Ppq
73 0 0 0 0 0

0 Ppq
82 Ppq

83 Ppq
84 0 0 0 0

























(3.25)

In particular, one has:

• Proliferations in cancer subsystems h = 2, 3, 4. They are related to the
encounters with particles of the first functional subsystem k = 1. In this
case, the proliferation increases with the hallmarks of cancer cells, due to the
increasing proliferation program which is an acquired capability of tumor
cells. So, we assume:

Ppq
h1(hj) =

{

β1hup, with j = p, β1 > 0,

0, otherwise.
(3.26)

where β1 is a positive coefficient that models the proliferation rate in cancer
subsystems.

• Proliferations in immune cells subsystems h = 6, 7, 8. Immune cells pro-
liferate due to the interactions with the cancer cells k = 2, 3, 4, with the
following rule:

Ppq
hk(hj) =

{

β2, with j = p, β2 > 0,

0, otherwise.
(3.27)

for each pair (h, k) = (6, 2), (7, 2), (7, 3), (8, 2), (8, 3), (8, 4). Coefficient β2

model the proliferation rate for immune cells.

The dynamics of the proliferation is obtained substituting the equations (3.26)
and (3.27) in the term Pij [f] in the equation (3.5), together with the equations in
the Section 3.1.2. We found:
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P2j [f] = 4d21[f]β1ujf2jn1[f], (3.28)

P3j [f] = 9d31[f]β1ujf3jn1[f], (3.29)

P4j [f] = 16d41[f]β1ujf4jn1[f], (3.30)

P6j [f] = σd62[f]β2f6jn2[f], (3.31)

P7j [f] = σd72[f]β2f7jn2[f] + σd73[f]β2f7jn3[f], (3.32)

P8j[f] = σd82[f]β2f8jn2[f] + σd83[f]β2f8jn3[f] + σd84[f]β2f8jn4[f], (3.33)

While P1j[f] = P5j [f] = 0.

3.1.5 Modeling Mutation Events

Mutation events refer to changes in the genes where a daughter cell occurs in a
subsystem different from that of the mother cell. This event is modeled by the
term Mpq

hk(ij), where i = h+ 1 with output into the state j = 1. We will choose
for the rate Mpq

hk(ij) the following matrix expression:

Mpq
hk =

























Mpq
11 0 0 0 0 0 0 0

Mpq
21 0 0 0 0 0 0 0

Mpq
31 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 Mpq

52 0 0 0 0 0 0
0 0 Mpq

63 0 0 0 0 0
0 0 0 Mpq

74 0 0 0 0
0 0 0 0 0 0 0 0

























(3.34)

with the following assumptions [7]:

• Mutations in the cancer subsystems h = 1, 2, 3. These events are related to
encounters with cells of subsystem k = 1. The rate Mpq

h1(ij) is defined as
follows:

Mpq
h1(ij) =

{

ε1up, with i = h + 1, j = 1, ε1 > 0,

0, otherwise.
(3.35)

where coefficient ε1 models the mutation rate for cancer cells.
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• Mutations in immune subsystems h = 5, 6, 7. These are related to an in-
crease the capability of the immune cells to recognize a specific cancer hall-
mark k = 2, 3, 4. As in [7], we assume:

Mpq
52(6j) =

{

ε26up, with j = 1, ε26 > 0,

0, otherwise.
(3.36)

Mpq
63(7j) =

{

ε27up with j = 1, ε27 > 0

0 otherwise.
(3.37)

Mpq
74(8j) =

{

ε28up with j = 1, ε28 > 0

0 otherwise.
(3.38)

Coefficients ε26, ε27, ε28 characterize the mutation rate for immune cells.

The dynamics of mutation is obtained substituting the equations (3.35), (3.36),
(3.37) and (3.38) in the term Mij [f] in the equation (3.6), together with the equa-
tions written in Section 3.1.2. It follows:

M1j [f] = d11[f]ε1δ1jn1[f]
m
∑

p=1

upf1p, (3.39)

M2j [f] = 2d21[f]ε1δ1jn1[f]

m
∑

p=1

upf2p, (3.40)

M3j [f] = 3d31[f]ε1δ1jn1[f]

m
∑

p=1

upf3p, (3.41)

M5j [f] = σd52[f]ε26δ1jn2[f]

m
∑

p=1

upf5p, (3.42)

M6j [f] = σd63[f]ε27δ1jn3[f]
m
∑

p=1

upf6p, (3.43)

M7j [f] = σd74[f]ε28δ1jn4[f]
m
∑

p=1

upf7p, (3.44)

while M4j [f] = M8j [f] = 0.
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3.1.6 Modeling Destructive Events

Destructive events refer to the loss dynamics. The dynamics of the destructive
interactions follow the subsequent rules. Only cancer cells can be destructed
because immune cells have the ability to suppress them after they are identified.
It is assumed that this ability increases with increased activity of immune cells.
For the rate Dpq

hk, we assume the following matrix:

Dpq
hk =

























0 0 0 0 0 0 0 0
0 0 0 0 0 Dpq

26 Dpq
27 Dpq

28

0 0 0 0 0 0 Dpq
37 Dpq

38

0 0 0 0 0 0 0 Dpq
48

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























(3.45)

where

Dpq
26 = Dpq

27 = Dpq
28 = Dpq

37 = Dpq
38 = Dpq

48 = γuq and γ > 0. (3.46)

and γ refers to suppression rate.

The destruction dynamics is obtained substituting the equations in the Section
3.1.2 and the equation (3.46) in the term Dij[f] in equation (3.7). It follows:

D2j[f] = σγf2j

m
∑

q=1

uq (d26[f]f6q + d27[f]f7q + d28[f]f8q) , (3.47)

D3j [f] = σγf3j

m
∑

q=1

uq (d37[f]f7q + d38[f]f8q) , (3.48)

D4j[f] = σγf4j

m
∑

q=1

uqd48[f]f8q, (3.49)

while D1j [f] = D5j [f] = D6j [f] = D7j [f] = D8j [f] = 0.



Simulations and Emerging Behaviors 45

3.1.7 Modeling the Relaxation Terms

The immune cells in the absence of tumor cells tend to return to their initial state.
We will assume in Equation (3.8) λi = 0 for i = 2, 3, 4, and λi = λ = constant

for i = 5, 6, 7, 8. Thus we have:

Lij [f] = λ(fij − f 0
ij), i = 5, 6, 7, 8. (3.50)

where f 0
ij refers to the initial value of the distribution fij .

3.2 Simulations and Emerging Behaviors

A general mathematical framework describing the overall state of the system
has been proposed in system (3.3), characterized by 8 ×m ordinary differential
equations in the unknown distribution function fij : R

+ → R
+, where i = 1, · · · 8

and j = 1, · · ·m. The dynamical equations can be obtained substituting the
previous assumptions on the right-hand side of system (3.3), thus reducing the
complexity of the large number of components. The model is characterized by the
11 unknown parameters: α, σ, τ, β1, β2, γ, λ, ε1, ε26, ε27, ε28; these parameters are
physically well-defined and are related with the interactions and the encounters
among the cells, each one referring to a specific event, in order to clarify the
phenomenon under consideration. In this section, we will make use of simulations
for visualizing the behavior of the models, with a detailed quantitative analysis
of the role of parameters and of the initial conditions.

Firstly, we will look at the initial value problem related to Equation (3.3)
which can be written as follows:















dfij(t)

dt
= Jij[f],

fij(0) = f 0
ij ,

(3.51)

where f 0
ij are the 8×m initial conditions, and

Jij [f](t) = Cij[f](t) +Mij[f](t) + Pij [f](t)−Dij[f](t)− Lij [f](t).

for i = 1, · · · , 8 and j = 1, · · · , m
To begin the Simulations, firstly, we will make the following assumptions:

• The discrete microscopic state uj is defined in the interval [0, 1]. We select
m = 3, then u = 0 corresponds to the lowest level of activity, while the
greatest level corresponds to u = 1, and as the midpoint we have chosen
u = 0.5.
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• The dimensionless parameter τ is assumed to be constant and equal to unity
for all interacting pairs.

• In this analysis, we will choose null initial condition except for f 0
1 = (f 0

1j) =
(1, 0, 0) and f 0

5 = (f 0
5j) = (0.2, 0, 0), which refers to absence of cancer cells.

• In the figures, n(4) shows evolution of the number density of cancer cells
of the last hallmark n4 = n41 + n42 + n43 and n(8) shows evolution of the
number density of immune cells n8 = n81 + n82 + n83.

3.2.1 Primary Numerical Analysis

In our analysis, we apply computational methods to obtain simulations through
MATLAB program.

The simulations are developed, starting from the following values of parame-
ters: σ = 0.5, τ = 1, γ = 1, α = 10−2, λ = 0.02, β1 = 10−3, β2 = 10−1, ε1 = 10−3,
ε26 = ε27 = 10−1, and different values of ε28 = 10−1, 10−2, 10−3, 10−4, that are
those which had considered in paper [7]. The results are shown in the Figure 3.1.
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Figure 3.1: Plot n(4) and n(8). The two figures are obtained with different values
of parameter ε28 and with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the

time t = 10000.

As one sees in the Figure 3.1, the plots show aperiodic oscillations with breadth
for n(4) in the range [0, 5] and n(8) in the range [0, 1], i.e the number density
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of cancer cells of the last hallmark have a definitely oscillating behavior, as the
immune cell is not able to deplete them.

3.2.2 Modify the Parameters to Improve the Overall State

of the System

• Firstly, in the figure 3.2 we can seen that the number density of cancer
(abnormal cells) of the last hallmark rapidly proliferate for ε28 = 0, as the
immune system is not able to deplete the cancer cells.
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Figure 3.2: Plot of n4 = n41+n42+n43 and of n8 = n81+n82+n83 obtained with
ε28 = 0, and with initial condition f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0)

• We first modify the parameters β1 and β2 that characterize the proliferation
rate of cancer and immune system cells of the various hallmarks. The best
result is shown in Figure 3.3, it corresponds to τ = 1, γ = 1, ε1 = 10−3,
ε26 = ε27 = 10−1, ε28 = 10−2, α = 10−2, β1 = 10−4, β2 = 10−1 and λ = 0.02.
Compared with n(4) and n(8) in Figure 3.1, the plot in Figure 3.3 shows
almost periodic oscillations with n4 in the range [0, 0.8] and n8 in the range
[0, 0.1], with a contraction in the number of oscillations.
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Figure 3.3: Modify β1 and β2. Plot n(4) and n(8), obtained with β1 = 10−4 and
β2 = 10−1, with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time

t = 10000

• Now, we continue the analysis by making some changes in the parameter
α = 10−2, that characterizes the transition probability density in cancer
and immune system cells. The best result is obtained with α = 10−3 (and
again ε1 = 10−3, ε26 = ε27 = 10−1, ε28 = 10−2, λ = 0.02, σ = 0.5, β1 = 10−4

and β2 = 10−1). The obtained plots are shown in Figure 3.4. One sees
beginning diminishing oscillations of n4 and n8.

• Then we modify the parameter σ characterizing the encounter rate between
immune and cancer cells. We found that the best values of σ are in the
interval [0.5, 1] where there are no much differences among themselves.

In Figure 3.5, we show the plots obtained when σ = 0.9, α = 10−3, ε1 =
10−3, ε26 = ε27 = 10−2, ε28 = 10−2, λ = 0.02, β1 = 10−4 and β2 = 10−1.

• Finally, we modify the parameter λ, characterizing the relaxation terms in
the immune system cells. The best value for the parameter λ is obtained
when λ = 0.01 and again α = 10−3, β1 = 10−4, β2 = 10−1, σ = 0.9,
ε1 = 10−3 ε28 = 10−2, ε26 = ε27 = 10−1.

The plot of n4 and n8 are shown in Figure 3.6. One sees that immune
system cells are always present, that are able to kill cancer cells. Thus,
they suppress them as soon as they appear.
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Figure 3.4: Modify α. Plot n(4) and n(8), obtained with α = 10−3, with initial
conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 10000.
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Figure 3.5: Modify σ. Plot n(4) and n(8), obtained with σ = 0.9, and with initial
conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 10000.
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Figure 3.6: Modify λ. Plot n(4) and n(8), obtained with λ = 0.01, and with initial
conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 10000.

After the satisfactory results that are shown in Figure 3.6, we have compared
them with the result obtained by choosing different initial conditions. We have
compared the previous results (initial conditions f 0

1 = (f 0
1j) = (1, 0, 0) and f 0

5 =
(f 0

5j) = (0.2, 0, 0)) with the conditions f 0
1 = (f 0

1j) = (1, 0, 0) and f 0
5 = (f 0

5j) =
(0.1, 0.05, 0.05), and with the initial conditions f 0

1 = (f 0
1j) = (0.4, 0.3, 0.3) and

f 0
5 = (f 0

5j) = (0.4, 0.3, 0.3). The plots are shown in Figure 3.7. As one sees the
values of the parameters we have found, lead to a complete suppression of the
cancer cells, also when the initial conditions are modified.

On the other hand, it is encouraging to see the competition between the
evolution of n2 and n3 with the development in n6 and n7, which will be shown
in Figures 3.8 and 3.9.



Simulations and Emerging Behaviors 51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

t

n
(4
)

 

 

f 0
1 = (1, 0, 0), f 0

5 = (0.2, 0, 0)

f 0
1 = (0.4, 0.3, 0.3), f 0

5 = (0.4, 0.3, 0.3)

f 0
1 = (1, 0, 0), f 0

5 = (0.1, 0.05, 0.05)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

t

n
(8
)

 

 

f 0
1 = (1, 0, 0), f 0

5 = (0.2, 0, 0)

f 0
1 = (0.4, 0.3, 0.3), f 0

5 = (0.4, 0.3, 0.3)

f 0
1 = (1, 0, 0), f 0

5 = (0.1, 0.05, 0.05)

Figure 3.7: Modify the initial conditions. Plot n(4) and n(8) obtained varying the
initial conditions.
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Figure 3.8: Plot of n(2) and n(6), with initial conditions f 0
1 = (1, 0, 0), f 0

5 =
(0.2, 0, 0), at the time t = 10000.
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Figure 3.9: Plot n(3) and n(7), with initial conditions f 0
1 = (1, 0, 0), f 0

5 =
(0.2, 0, 0), at the time t = 10000.

3.2.3 Secondary Numerical Analysis

The results we have obtained in Section 3.2.2 showed that the immune cell pop-
ulation is able to suppress cancer cells by selecting the parameters τ = 1, γ = 1,
α = 10−3, β1 = 10−4, β2 = 10−1, σ = 0.9, λ = 0.01, ε1 = 10−3, ε28 = 10−2,
ε26 = ε27 = 10−1. Now we go back to make some changes (one parameter at a
time) on these final values for the free parameters with the aim to observe the
effect of these changes on the behavior of the system.

1. β2 = 10−1. This is the appropriate value we have chosen for the parame-
ter that characterizes the rate of production of immune system cells. We
want to see what happens when we choose values of this parameter lesser
or greater than that previously obtained. The results are illustrated in
Figure 3.10.

From the simulation, we note that values of β2 lesser than 10−1 do not give
improved results.

2. β1 = 10−4 is the value we have obtained for the proliferation rate of cancer
cells. Modifying this value, one sees that β1 should not exceed 10−4, while
values of lesser than 10−4 would give good results. The plots in Figure 3.11
support our conclusions.

3. λ = 10−2 is the last parameter we have modified in the previous section
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Figure 3.10: Modify β2 = 10−1. Plot n(4) and n(8), obtained with β2 = 10−1,
β2 = 10−2, β2 = 10−4 and β2 = 0.5, with initial conditions f 0

1 = (1, 0, 0), f 0
5 =

(0.2, 0, 0), at the time t = 50000.
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Figure 3.11: Modify β1 = 10−4. Plot n(4) and n(8), obtained with β1 = 10−3 and
β1 = 10−5, and with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time

t = 10000.
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and played an active role in the stability of the behavior of the system as
shown in Figure 3.6. In the simulations, we chose for it values lesser and
greater than 0.01. The results are illustrated in Figure 3.12.
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Figure 3.12: Modify λ = 10−2. Plot n(4) and n(8), obtained with different values
of λ, and with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t =

50000.

As one can see, the immune cell population remains in its active state, unlike
cancer cells that tend to decay to 0. One observes that the behavior of the
system began to change for λ = 0.016.In fact, values for λ greater than 0.016
lead to the growth of cancer cells which start to oscillate dramatically.

4. α = 10−3 is the value that we considered among the values of satisfactory
results. We will see the effect of selecting larger and smaller values than
10−3 on the behavior of the system. Figure 3.13 illustrates a comparison
between α = 10−3, with α = 10−2 and α = 10−4. As noted, the results
are good when α = 10−4 (values smaller than 10−3), but when we select
α = 10−2 (values greater than 10−3) one gets persistent oscillations of tumor
and immune cells.

5. σ = 0.9. In the previous section, we have selected for σ one of the values
in the interval [0.5, 1]. Now we shall see the effect of smaller values on the
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Figure 3.13: Modify α = 10−3. Plot n(4) and n(8), obtained with α =
10−2, 10−3, 10−4, and with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at

the time t = 50000.

system behavior, choosing σ = 0.2 and σ = 0.3, and comparing this with
σ = 0.5 and σ = 0.9. The results are in Figure 3.14. One sees persistent
oscillations of tumor and immune cells when σ = 0.3 and σ = 0.2 (values
less than 0.5). We deduce therefore that a critical value of σ is 0.5.

6. ε26 = ε27 = 10−1 and ε28 = 10−2 are the selected values for the parameters
that characterize the rate of mutations in the immune system. We make
some changes in these parameters to determine the effect of the change on
the behavior of the system, see Figure 3.15.

One observes that immune system is able to suppress completely the cancer
cells in all cases considered. This means that the rate of mutation in the
immune system is not very significant in the suppression of cancer cells.
This is an unexpected result.

7. ε1 = 10−3: Now we test the effect of a change in ε1 (that characterizes
the rate of mutation in the cancer cell population) on the behavior of the
system by selecting values smaller and greater than 10−3. The results are
illustrated in Figure 3.16.

One notes that the immune system is not able to suppress cancer cells for
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Figure 3.14: Modify σ = 0.9. Plot n(4) and n(8), obtained with σ =
0.2, 0.3, 0.5, 0.9, and with an initial condition f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at

the time t = 10000.

ε1 = 10−4 and ε1 = 10−5, i.e. when the rate of mutations in the cancer
cells is very small. This unexpected result deserves some considerations.
Why the immune system is not able to suppress definitely the cancer cells
when they have a very little rate of mutation? A possible explanation is
the following: The immune system is not sufficiently activated to recognize
the cancer cells. So, they have time to re-grow as shown in the plots in
Figure 3.16. This could be due to the fact that in this situation the immune
system relaxes too quickly to recognize malignant cancer cells.

8. γ = 1 is the parameter that characterizes the destruction rate of cancer cells
proposed in paper [7], and that we have left unmodified in our search for
the best parameter in Section 3.2.1. Naturally, the destruction rate plays a
fundamental role in the immune system’s ability to suppress cancer cells, as
the increasing in the destruction rate, give an increasing activity of immune
cells enough to repel any hostile attack. From simulations, we see that the
value 0.1 did not furnish the immune system’s ability to resist cancer cells.
See Figure 3.17.
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Figure 3.15: Modify ε26, ε27, ε28. Plot n(4) shows evolution of the number density
of cancer cells of the last hallmark n4 = n41 +n42 +n43 and n(8) shows evolution
of the number density of immune cells n8 = n81 + n82 + n83, obtained with ε26 =
ε27 = ε28 = 10−1, 10−2, 10−3, 10−4, and with initial conditions f 0

1 = (1, 0, 0),
f 0
5 = (0.2, 0, 0), at the time t = 10000.

3.3 Discussion of The Results and Concluding

Remarks

In this section we have followed the paper of Bellouquid, De Angelis and Knopoff
[7], where a model describing immune-cancer competition was proposed.

A variety of calculations and simulations have been made to put in evidence
how the state of the functional subsystems develops in the time, thus, determining
critical values of the free parameters that allow the suppression of cancer cells.
The model is characterized by 11 parameters, and we have seen that each one of
them plays a role in the modeling process, and have a significant effect on the
behavior of the system.

Some results deserve more attention. First, the parameters ε26, ε27 and ε28,
that characterize the rate of production of mutated cells in the immune system,
do not have a significant role in the depletion of cancer cells. Indeed, simulations
made with four different orders of magnitude of these parameters (from 10−1 to
10−4) do not produce significant modifications of the behaviour of the system and
furnish equivalent results. Second, the parameter ε1, that characterizes the rate
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Figure 3.16: Modify ε1. Plot n(4) and n(8), obtained with different values of ε1,
and with an initial condition f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 50000.

of mutation in the cancer cell population, contrary to what we expected, presents
a critical lower bound at εc1 = 10−3.

Instead, our simulations show that in the competition between cancer and
immune system other parameters played an important role, as coefficients β1 and
β2, that characterize the rate of production of cells in the same population. One
of the most important parameters seems to be λ, that is the parameter that
characterizes the relaxation time of the immune system. We have found an the
upper limit for it λc = 0.016.

3.4 Proposal to Develop the Model

In this section, we will go to explore the possibility of developing the above model
by modifying the parameter α, that model the probability density in conservative
interaction in the progression phenomena. So, we will assume different values for
this parameter α1 and α2, where α1 characterizes the probability of transition in
the cancer cell populations, and α2 characterizes the probability of transition in
the immune system cell populations. Therefore, the equations, (3.17) and (3.16)
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Figure 3.17: Modify γ . Plot n(4) and n(8), obtained with different values of γ,
and with initial conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 10000.

are modified as follows:

Bpq
21(j) = Bpq

31(j) = Bpq
41(j) =











α1 (1− up) , j = p+ 1, α1 ∈ (0, 1],

1− α1 (1− up) , j = p,

0 otherwise.

(3.52)

Bpq
52(j) = Bpq

62(j) = Bpq
73(j) = Bpq

84(j) =











α2 (1− up) , j = p+ 1, α2 ∈ (0, 1],

1− α2 (1− up) , j = p,

0, otherwise.

(3.53)

Now, we need to introduce some different values for these two parameters for
investigating their influence on the behavior of the system. Figure 3.18 shows
different behavior of n4 and n8 with different values of α1 and α2.

As expected, Figure 3.18 show results analogous to those of the Figure 3.4:
the results are good in the case when α1 = α2 = 10−4, which values smaller than
10−3, but when we selected values of α1 = α2 greater than 10−3 the result gave
persistent oscillations of tumor and immune cells.

Now, we must investigate the role played by changing the parameter α1 with
fix α2 = 10−3 and show how it modifies the behavior of the system. This will be
illustrated in Figure 3.19.
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Figure 3.18: Plot n(4) shows evolution of the number density of cancer cells of
the last hallmark and n(8) shows evolution of the number density of immune
cells, obtained with α1 = 10−3, 10−2, 10−4, α2 = 10−3, 10−2, 10−4and with initial
conditions f 0

1 = (1, 0, 0), f 0
5 = (0.2, 0, 0), at the time t = 10000.

As noted, the immune system cells are not able to deplete cancer cells com-
pletely at α1 = 10−2 and at α1 = 10−1, this means that the coefficient α1 that
characterizes the probability density in the cancer cell populations, should not
take greater values than 10−3, because these high values increase the possibility
of cancer cells to escape immune recognition, as we have seen in the Figure 3.19,.

On the other hand, we will show what happens if we change the parameter α2,
with fix α1 = 10−3, in order to show how this parameter influences the behavior
of the system. This will be illustrated in Figure 3.20.

One sees that the persistent oscillations of tumor look clearly that, when we
selected values greater than 10−3, the cancer cells become most aggressive.

Naturally, the model studied in this chapter does not describe phenomena
as the angiogenesis, the tissue invasion and metastasis. However, the results
of our simulation show that the importance of the activity of immune system
in the competition with cancer cells cannot be underestimated. This result is
in agreement with recent medical researches that show the importance of the
immune system in the therapy of malignant tumor.
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Figure 3.19: Plot n(4) shows evolution of the number density of cancer cells of the
last hallmark and n(8) shows evolution of the number density of immune cells,
obtained with α1 = 10−3, 10−1, 10−2, 10−4and with initial conditions f 0

1 = (1, 0, 0),
f 0
5 = (0.2, 0, 0), at the time t = 10000.
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Figure 3.20: Plot n(4) shows evolution of the number density of cancer cells of the
last hallmark and n(8) shows evolution of the number density of immune cells ,
obtained with α2 = 10−3, 10−1, 10−2, 10−4and with initial conditions f 0

1 = (1, 0, 0),
f 0
5 = (0.2, 0, 0), at the time t = 10000.
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3.5 Appendix 3.A:

The Code Used by Matlab to Obtain Sim-

ulations of the Spatially Homogeneous Dis-

crete Model

In Matlab, we can use numerical integration techniques to solve the system of
ordinary differential equations 3.51. In order to solve these, we use the inbuilt
MATLAB command ode45, that is suitable for a wide variety of this initial value
problem. We have got all last simulations that viewed in chapter 3 by using the
following Matlab code, this code would make a number of m.files or script files
(all well be function files, other than the first file, which contains all parameters
and the initial conditions used in this model).

Consequently, the MATLAB code that used to simulate this model appears
below.

• At the first, we create one file contains all necessary parameters and initial
conditions.

alpha=10^-3;

epsilon1=10^-3;

epsilon26=10^-1;

epsilon27=10^-1;

epsilon28=10^-2;

tau=1;

eta0=1;

sigma=0.9;

lambda=0.01;

beta1=10^-4;

beta2=10^-1;

gamma=1;

up=[0 0.5 1.0];

Npart=3;

%%SET INITIAL CONDITION%%

clear Fin;

Fin=0*ones(8,Npart);

Fin(1,1)=1.0;

Fin(1,2)=0.0;

Fin(1,3)=0.0;

Fin(5,1)=0.2;
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Fin(5,2)=0.0;

Fin(5,3)=0.0;

initz=Fin(:);

%%%%%%%%%%%%%%%%

timeSTEPs=200;

finalTIME=10000;

tspan=linspace(0,finalTIME,timeSTEPs);

[T,F,n]=rigid(Npart,alpha,up,epsilon1,epsilon26,epsilon27,epsilon28,

tau,eta0,sigm,lambda,beta1,beta2,gamma,initz,tspan);

for jt=1:timeSTEPs

ndensity(:,jt)=n(:,jt)/sum(n(:,jt));

end

figure;

plot(tspan,n(4,:));

set(gca,’Fontsize’,18);

xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,18);

ylabel(’$n(4)$’,’interpreter’,’latex’,’fontsize’,18);

%%%%%%%%%%%%%%%%%%

figure;

plot(tspan,n(8,:));

set(gca,’Fontsize’,18);

xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,18);

ylabel(’$n(8)$’,’interpreter’,’latex’,’fontsize’,18);

• Now create another file called ’rigid’, that is the main m.file which contain
the inbuilt MATLAB command ode45. In this file also calculates the en-
counter rate between the particles ’eta(h,k)’, and compute Jfunction by re-
call the functions Bfile,C,P,M,D,L, which will be defined in the next m.files.

function [T,F,n]=rigid(Npart,alpha,up,epsilon1,epsilon26,

epsilon27,epsilon28,tau,eta0,sigma,lambda,beta1,beta2,gamma,initz,

tspan)

[B,mu,ni]=Bfile(Npart,alpha,up,epsilon1,epsilon26,epsilon27,

epsilon28,beta1,beta2,gamma);

[T,f1] = ode45(@(t, z) Jfunction(Npart,t,z,initz,B,mu,ni,alpha,

tau,eta0,sigma,lambda,up),tspan,initz);

size(f1)

for jx=1:length(tspan)

f(:,:,jx)=reshape(f1(jx,:),8,Npart);

for i=1:8
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n(i,jx)=sum(f(i,:,jx));

end

for ii=1:8

for jj=1:Npart

F{ii,jj}(jx)=f(ii,jj,jx);

end

end

end

function Jfunction=Jfunction(Npart,t,f,fin,B,mu,ni,alpha,tau,

eta0,sigma,lambda,up)

t

F=reshape(f,8,Npart);

Fin=reshape(fin,8,Npart);

J(8,Npart)=0;

C(8,Npart)=0;

P(8,Npart)=0;

D(8,Npart)=0;

L(8,Npart)=0;

eta(8,8)=0;

d(8,8)=0;

%

for h=1:8

for k=1:8

q1=sum(abs((F(h,:)-F(k,:))));

q2=sum(abs(F(h,:)))+sum(abs(F(k,:)));

if ((sum(abs(F(h,:)))>0)&&(sum(abs(F(k,:)))>0))

%if ((sum(abs(F(h,:)))+sum(abs(F(k,:))))>0)

d(h,k)=exp(-tau*(q1/q2));

else

d(h,k)=0;

end

end

end

eta(1,1)=eta0*d(1,1);eta(2,1)=2*eta0*d(2,1);

eta(3,1)=3*eta0*d(3,1);eta(4,1)=4*eta0*d(4,1);

eta(1,2)=2*eta0*d(2,1);eta(1,3)=3*eta0*d(3,1);

eta(1,4)=4*eta0*d(4,1);eta(5,2)=sigma*eta0*d(5,2);

eta(2,5)=sigma*eta0*d(5,2);eta(6,2)=sigma*eta0*d(6,2);

eta(6,3)=sigma*eta0*d(6,3);eta(2,6)=sigma*eta0*d(6,2);

eta(3,6)=sigma*eta0*d(6,3);eta(7,2)=sigma*eta0*d(7,2);
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eta(7,3)=sigma*eta0*d(7,3);eta(7,4)=sigma*eta0*d(7,4);

eta(2,7)=sigma*eta0*d(7,2);eta(3,7)=sigma*eta0*d(7,3);

eta(4,7)=sigma*eta0*d(7,4);eta(8,2)=sigma*eta0*d(8,2);

eta(8,3)=sigma*eta0*d(8,3);eta(8,4)=sigma*eta0*d(8,4);

eta(2,8)=sigma*eta0*d(8,2);eta(3,8)=sigma*eta0*d(8,3);

eta(4,8)=sigma*eta0*d(8,4);

%%%%%%%%%%%%%%%

C=computeC(eta,alpha,up,F);

P=computeP(eta,mu,F);

D=computeD(eta,ni,F);

%%%%

for i=1:8

for j=1:Npart

if (i>4)

L(i,j)=lambda*(F(i,j)-Fin(i,j));

end

J(i,j)=C(i,j)+P(i,j)-D(i,j)-L(i,j);

end

end

Jfunction=J(:);

• Bfile: this function compute the translation probability density ’B’, contain
also proliferation, mutation events ’mu’, and the destructive events ’ni’.

function [B,mu,ni]=Bfile(Npart,alpha,up,epsilon1,epsilon26,

epsilon27,epsilon28,beta1,beta2,gamma)

for jj1=1:Npart

for jj2=1:Npart

B{jj1,jj2}(8,8,Npart) =0;

end

end

for h=1:4

for p=1:Npart

for q=1:Npart

for j=1:Npart

B{p,q}(h,1,j)=0;

if (j==p+1)

B{p,q}(h,1,j)=alpha *(1-up(p));

end

if (j==p)
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B{p,q}(h,1,j)=1-alpha *(1-up(p));

end

end

end

end

end

for h=1:1

for k=2:4

B{p,q}(h,k,p)=1;

II=[5 2;6 2; 7 3; 8 4];

for hII=1:4

for j=1:Npart

if (j==p+1)

B{p,q}(II(hII,1),II(hII,2),j)=alpha *(1-up(p));

end

if (j==p)

B{p,q}(II(hII,1),II(hII,2),j)=1-alpha *(1-up(p));

end

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for jj1=1:Npart

for jj2=1:Npart

mu{jj1,jj2}(8,8,8,Npart)=0;

end

end

for p=1:Npart

for q=1:Npart

for h=1:3

mu{p,q}(h,1,h+1,1)=epsilon1*up(p);

end

mu{p,q}(5,2,6,1)=epsilon26*up(p);

mu{p,q}(6,3,7,1)=epsilon27*up(p);

mu{p,q}(7,4,8,1)=epsilon28*up(p);

for h=2:4

mu{p,q}(h,1,h,p)=beta1*h*up(p);

end

mu{p,q}(6,2,6,p)=beta2;
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mu{p,q}(7,2,7,p)=beta2;

mu{p,q}(7,3,7,p)=beta2;

mu{p,q}(8,2,8,p)=beta2;

mu{p,q}(8,3,8,p)=beta2;

mu{p,q}(8,4,8,p)=beta2;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for jj1=1:Npart

for jj2=1:Npart

ni{jj1,jj2}(8,8)=0;

end

end

for p=1:Npart

for q=1:Npart

ni{p,q}(2,6)=gamma*up(q);

ni{p,q}(2,7)=gamma*up(q);

ni{p,q}(2,8)=gamma*up(q);

ni{p,q}(3,7)=gamma*up(q);

ni{p,q}(3,8)=gamma*up(q);

ni{p,q}(4,8)=gamma*up(q);

end

end

• To compute the conservative interaction and the proliferative, mutation
destructive interactions, the (rigid m.file) recall the m.files computeC, com-
puteD, computeP respectively:

function C=computeC(eta,alpha,up,F)

Npart=size(F,2);

C(8,Npart)=0;

%

for h=1:4

C(h,1)=C(h,1)+eta(h,1)*sum(F(1,:))*(-alpha*F(h,1));

for j=2:Npart

C(h,j)=C(h,j)+eta(h,1)*sum(F(1,:))*(alpha*(1-up(j-1))*F(h,j-1)

-alpha1*(1-up(j))*F(h,j));

end

end
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%

for j=2:Npart

C(5,j)=C(5,j) +eta(5,2)*sum(F(2,:))*(alpha*(1-up(j-1))*F(5,j-1)

-alpha2*(1-up(j))*F(5,j));

C(6,j)=C(6,j) +eta(6,2)*sum(F(2,:))*(alpha*(1-up(j-1))*F(6,j-1)

-alpha2*(1-up(j))*F(6,j));

C(7,j)=C(7,j) +eta(7,3)*sum(F(3,:))*(alpha*(1-up(j-1))*F(7,j-1)

-alpha2*(1-up(j))*F(7,j));

C(8,j)=C(8,j) +eta(8,4)*sum(F(4,:))*(alpha*(1-up(j-1))*F(8,j-1)

-alpha2*(1-up(j))*F(8,j));

end

%

for j=1

C(5,j)=C(5,j)-alpha*eta(5,2)*sum(F(2,:))*F(5,1);

C(6,j)=C(6,j)-alpha*eta(6,2)*sum(F(2,:))*F(6,1);

C(7,j)=C(7,j)-alpha*eta(7,3)*sum(F(3,:))*F(7,1);

C(8,j)=C(8,j)-alpha*eta(8,4)*sum(F(4,:))*F(8,1);

end

function P=computeP(eta,mu,F)

Npart=size(F,2);

P(8,Npart)=0;

for i=1:8

for j=1:Npart

for h=1:8

for k=1:8

for q=1:Npart

for p=1:Npart

P(i,j)=P(i,j)+eta(h,k)*mu{p,q}(h,k,i,j)*F(h,p)*F(k,q);

end

end

end

end

end

end

function D=computeD(eta,ni,F)

Npart=size(F,2);

D(8,Npart)=0;
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for i=[2:4]

for j=1:Npart

for k=1:8

for q=1:Npart

D(i,j)=D(i,j)+F(i,j)*eta(i,k)*ni{j,q}(i,k)*F(k,q);

end

end

end

end



Appendix 3.B 70

3.6 Appendix 3.B: Table of the parameters

All parameters used in this model are summarized and shown in the Table 3.1:

Table 3.1:
Parameter Biological meaning The value of the parameter
η0, τ , σ Parameters modeling the

encounter rate
η0 = 1, τ = 1, σ ∈ [0.5, 1]

α Parameter characterizing
the probability density in
cancer and immune cells

α = 10−3

β1 Parameter characterizing
the proliferative rate in
cancer cells

β1 = 10−4

β2 Parameter characterizing
the proliferative rate in
immune system

β2 = 10−1

ε1 Parameter characterizing
the mutation rate in cancer
cells

ε1 = 10−3

ε26, ε27, ε28 Parameters modeling the
mutation rate in immune
system

ε26 = 10−1, ε27 = 10−1, ε28 = 10−2

γ Parameter characterizing
the destructive rate in
cancer cells

γ = 1

λ Parameter characterizing
the relaxation rate in
immune system

λ = 0.01



Chapter 4

Spatially Homogeneous
Continuous Model

In this chapter, we will deal with the study of the early stage of the immune
cancer competition, following the line of thought traced in the previous chapter,
but assuming that the activity variable u takes all values belonging to the in-
terval (0,∞), as made in [55]. Furthermore, this chapter will be devoted to the
derivation of a macroscopic model, in which evolution equations are obtained for
some macroscopic quantities obtained by local averages of the microscopic state
described by the kinetic Theory Approach.

According to KTAP presented in Chapter 1, the overall system is divided
into eight (M = 8) different populations (functional subsystems) each of them
consisting of cells (active particles), which collectively express the same function
(the activity). The evolution of each functional subsystem is described by a
distribution function and the time evolution of the subsystem is governed by
interactions [35].

The chapter is organized as follows: in Section 4.1 the functional subsystems
for the modeling of the competition between the immune system and cancer cells
are identified and the dynamical model is built up, choosing suitable relations
to describe the interactions between active particles. Section 4.2 deals with the
derivation from the model at the cellular scale of a model at the macroscopic scale,
that considers as variables the size, the activation and the quadratic activation
of the different cells populations.

4.1 Dynamics of Immune-Cancer Competition

As mentioned in in Chapter 3, the first step of the modeling approach is the
identification of the functional subsystems. Here, the functional subsystems are
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the same as those mentioned in Section 3.1. Accordingly, the eight functional
subsystems are as follows:

• i = 1 Normal epithelial cells.

• i = 2, i = 3, i = 4 Cancer cells of the various hallmarks, as specified in
Section 3.1;

• i = 5 Cells of the innate immune system

• i = 6 , i = 7, i = 8 Cells of the adaptive immune system which have
the ability of contrasting the development of cancer cells of the various
hallmarks, as specified in Section 3.1.

As already mentioned, the overall state of each functional subsystem is de-
scribed by the one-cell generalized distribution function:

fi = fi(t, u) : [t0, T ]×Du → R
+, for i ∈ {1, 2, . . . , 8}. (4.1)

The domain Du of the microscopic state, in view of the following applications,
is assumed to coincide with interval [u(0),+∞), where u(0) > 0 is the lowest value
of the biological function of each active particle. We will assume also fi(t, u) = 0,
for u < u(0).

The time evolution of the distribution function fi is obtained by a suitable
balance of particles in the elementary interval [u, u+ du] of the microscopic state
as follows:

∂fi

∂t
(t, u) = Ji[f ](t, u) i ∈ {1, 2, . . . , 8} (4.2)

with f = (f1, f2, . . . , f8) the vector of the distribution functions, and where

Ji[f ](t, u) = Ci[f ](t, u) +Mi[f ](t, u) + Pi[f ](t, u)−Di[f ](t, u)− Li[f ](t, u). (4.3)

The operators Ci, Mi, Pi, Di and Li, acting over the whole set of distribution
functions, have been introduced in Chapter 1.

In the KTAP mentioned in Chapter 1, it is assumed that there are only
interactions which modify the microscopic state of the particles. Interactions
involve three type of particles: candidate, test, and field. The interaction rule is
as follows: candidate particles can acquire, in probability, the state of the test
particles, after an interaction with field particles, while test particles lose their
state after interactions.

In general, a different modeling approach has to be considered for cells of the
various different functional subsystems. Briefly, we remember that the tumor cells
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are distinguished according to their progressive hallmarks, while the immune cells
are characterized by the capability to recognize specific hallmarks. The addends
in Ji[f ](t, u) are modeled as follows:

Ci[f ](t, u) =

8
∑

k=1

∫

Du×Du

ηik[f ]Bik[f ] fi(t, u∗) fk(t, u
∗) du∗ du

∗

− fi(t, u)

8
∑

k=1

∫

Du

ηik[f ] fk(t, u
∗) du∗, (4.4)

Pi[f](t, u) =

8
∑

k=1

∫

Du×Du

ηik[f ]Pik[f ] fi(t, u∗) fk(t, u
∗) du∗ du

∗ (4.5)

Mi[f](t, u) =

8
∑

h,k=1

∫

Du×Du

ηhk[f ]Mhk(h 6=i)[f ] fh(t, u∗) fk(t, u
∗) du∗ du

∗ (4.6)

Di[f](t, u) = fi(t, u)

8
∑

k=1

∫

Du

ηik[f ]Dik[f ] fk(t, u
∗) du∗ (4.7)

Li[f](t, u) = λi[f][fi(t, u)− fi(t0, u0)] (4.8)

In these equations ηik = ηik[f ](u∗, u
∗) is the encounter rate between the can-

didate active particle, with state u∗, of the i-th functional subsystem and the
field active particle, with state u∗, of the k-th functional subsystem; the other
quantities model respectively the conservative interactions and the proliferation,
mutation, destruction and relaxation events, as introduced in Chapter 1.

Remark 4.1.1. In this model, we supposed that the encounter rate ηik is the same
for all events (conservative/proliferative/mutation/destructive interactions).

4.1.1 Encounter Rate

In analogy with what we have said in Chapter 1, we will assume for the encounter
rate the following expression:

ηhk[f ] = ηhk dhk[f], ηhk = ηkh (4.9)

with ηhk suitable constants and where dhk[f] denotes the distance between the
h-th and the k-th functional subsystems [15].

Only encounters which may lead to progression, mutations, proliferation or
destructive events will be considered. In particular, the encounter rate between
immune and epithelial cells is assumed to be equal to zero. Further, we make the
following assumptions, specific to our model with continuous activity:
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• The encounter between epithelial and tumor cells (h = 1, 2, 3, 4) with ep-
ithelial cells (k = 1) (which are the ones that can produce significant events)
is assumed proportional to a constant ηh1, which depends on the interact-
ing cells: as progressive hallmarks corresponds to increasing activations to
search nutrients for increasing proliferation, we will assume:

ηh1[f ] = ηh1 dh1[f], (4.10)

with 0 < η11 ≤ η21 ≤ η31 ≤ η41.

• For the encounters between immune and cancer cells, only those correspond-
ing to couples (h, k) = (5, 2), (6, 2), (7, 2), (7.3), (7, 4), (8, 2), (8.3), (8, 4) are
considered. Therefore, we assume

ηhk[f ] = ηhk dhk[f], (4.11)

with 0 < η5k ≤ η6k ≤ η7k ≤ η8k. The modeling of the distance dhk can be
achieved in different ways assuming that increasing values of the distance
corresponding to decreasing values of the encounter rate ηhk.

We summarize the previous assumptions in the following matrix expression
for the encounter rate:

ηhk =

























η11d11 η21d21 η31d31 η41d41 0 0 0 0
η21d21 0 0 0 η52d52 η62d62 η72d72 η82d82
η31d31 0 0 0 0 η63d63 η73d73 η83d83
η41d41 0 0 0 0 0 η74d74 η84d84

0 η52d52 0 0 0 0 0 0
0 η62d62 η63d63 0 0 0 0 0
0 η72d72 η73d73 η74d74 0 0 0 0
0 η82d82 η83d83 η84d84 0 0 0 0

























(4.12)

4.1.2 Transition Probability Density

Conservative interactions refer to progression phenomena that lead to an in-
creasing activity within the same subsystem. Ci[f](t, u) is the net flux, at time
t ∈ [0, T ], into the state u ∈ [u(0),+∞) of the i-th population, due to conservative
interactions that only modify the micro-state.

As already mentioned, Bik represents the probability density that a candidate
particle, with the state u∗, of the i-th functional subsystem ends up into the state
u of the test particle of the same functional subsystem after the interaction with
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the field particle, with the state u∗, of the k-th functional subsystem. Bik satisfies,
for all i, k ∈ {1, 2, . . . , n}, the following condition:

∫

Du

Bik[f ](u∗ → u|u∗, u
∗) du = 1, ∀ u∗, u

∗ ∈ Du. (4.13)

We model conservative events choosing for the probability density Bik[f ](u∗, u
∗, u)

the following matrix expression:

Bik =

























B11 B12 B13 B14 0 0 0 0
B21 0 0 0 0 0 0 0
B31 0 0 0 0 0 0 0
B41 0 0 0 0 0 0 0
0 B52 0 0 0 0 0 0
0 B62 0 0 0 0 0 0
0 0 B73 0 0 0 0 0
0 0 0 B84 0 0 0 0

























(4.14)

Different choices are possible for the transition probability density. In our
case, we will assume that transition probability density does not depend on the
activity u∗ of the cell (field) that interacts with the candidate particle:

Bik = Bik(u∗, u). (4.15)

The function Bik(u∗, u) has different expressions for the subsystems i = 1, 2, 3, 4
corresponding to epithelial and cancer cells, and the subsystems k = 5, 6, 7, 8 cor-
responding to immune system cells. Specifically we assume:

• Interaction that involve epithelial and cancer cells (k = 1, 2, 3, 4) and ep-
ithelial cells (i = 1). As in the discrete model, epithelial cells are assumed
to feed progression of cancer cells without changing their activity. Thus,
we assume:

B1k(u∗, u) = δ(u∗ − u) for k = 1, 2, 3, 4 (4.16)

Remark 4.1.2. The function δ(u∗−u) denotes the Dirac distribution, hav-
ing the fundamental property that

∫

Du

f(u)δ(u∗ − u)du = f(u∗)

• Interactions that involve functional subsystem k = 1 and i = 2, 3, 4. The
progression in the activity of cancer cells (i = 2, 3, 4) is due to the interaction
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with epithelial cells (k = 1). In this case, we will assume that the probability
of transition depends on the interacting populations and decrease with the
activity state of the cancer cells. So we will assume

Bi1 = αi[1−(u∗+ai)] δ(u−(u∗+ai))+[1−αi(1−(u∗+ai)] δ(u−u∗) (4.17)

• Interactions that involve the innate immune system (functional subsystem
i = 5) and the cancer cells. We assume that the innate immune system
has the ability to recognize the cancer cell of the first hallmark (functional
subsystem k = 2), without changing their activity. Thus, we assume:

B52(u∗, u) = δ(u∗ − u) (4.18)

• Interactions that involve cells of the adaptive immune system. These cells
acquire progressively the ability to identify the tumor cells. Thus for the
pairs (i, k) = (6, 2), (7.3), (8, 4) we will assume

Bik = αi[1−(u∗+ai)] δ(u−(u∗+ai))+[1−αi(1−(u∗+ai))] δ(u−u∗) (4.19)

A more sophisticated expression consist of choosing coefficients αi and ai
dependent on the interacting subsystems, but we will make here the simpler
hypothesis (4.17)–(4.19).

The conservative events are expressed by the quantity (4.4). Substituting
equations (4.16)–(4.19) in it, we get C1[f ](t, u) = 0, C5[f ](t, u) = 0, and for
i = 2, 3, 4:

Ci[f ](t, u) = ηi1di1 n1αi(1− u) [fi(t, u− ai)− (1− (u+ ai))fi(t, u)] , (4.20)

and for i = 6, 7, 8:

Ci[f ](t, u) = ηi(i−4)di(i−4) ni−4αi(1− u) [fi(t, u− ai)− (1− (u+ ai))fi(t, u)] .
(4.21)

4.1.3 Modeling Proliferative Events

Pi[f](t, u) is the gain, at time t ∈ [0, T ], into the state u ∈ [u(0),+∞) of the
functional subsystem i, due to proliferative events. We model these events, in
which a generation of a daughter cell occurs in the same functional subsystem
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of the mother cell, choosing for the rate Phk[f ](u∗, u
∗, u) the following matrix

expression:

Phk =

























0 0 0 0 0 0 0 0
P21 0 0 0 0 0 0 0
P31 0 0 0 0 0 0 0
P41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 P62 0 0 0 0 0 0
0 P72 P73 0 0 0 0 0
0 P82 P83 P84 0 0 0 0

























(4.22)

The proliferative events dynamics in the h-th functional subsystems are as-
sumed to follow the following rules: A candidate particle (mother cell) of func-
tional subsystem h with the state u∗ by interacting with a cell (field) from sub-
system k, with the state u∗, proliferate a daughter cell of the same functional
subsystem, with the same activity u = u∗. More precisely:

• The proliferative events in the cancer subsystems h = 2, 3, 4, owing to their
interaction with epithelial cells, increase with the hallmarks of cancer cells
due to the increasing proliferation program, which is an acquired capability
of tumor cells. So we assume:

Ph1 = βhu∗δ(u∗ − u), (4.23)

with 0 < β2 ≤ β3 ≤ β4.

• The proliferative events in the immune subsystems h = 6, 7, 8 are due to
the interactions with the cancer cells. Following [27], we assume, for each
pair (h, k) = (6, 2), (7,2), (7,3), (8,2), (8,3), (8,4):

Phk = βhδ(u∗ − u), (4.24)

with 0 < β6 ≤ β7 ≤ β8.

The proliferative events are expressed by the quantity (4.5). Substituting
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(4.23) and (4.24) in it, we get

P2[f](t, u) = η21d21β2n1u f2(t, u) (4.25)

P3[f](t, u) = η31d31β3n1u f3(t, u) (4.26)

P4[f](t, u) = η41d41β4n1u f4(t, u) (4.27)

P6[f](t, u) = η62d62β6n2 f6(t, u) (4.28)

P7[f](t, u) = η72d72β7n2 f7(t, u) + η73d73β7n3 f7(t, u) (4.29)

P8[f](t, u) = η82d82β8n2 f8(t, u) + η83d83β8n3 f8(t, u)

+ η84d84β8n4f8(t, u) (4.30)

4.1.4 Modeling Mutations

Mi[f](t, u) is the gain, at time t ∈ [t0, T ], into the state u ∈ [u(0),+∞) of the func-
tional subsystem i, due to mutation events, where a generation of a daughter cell
occurs in a subsystem different from that of the mother cell. We model mutation
events choosing for the rate Mik[f ](u∗, u

∗, u) the following matrix expression:

Mik =

























M11 0 0 0 0 0 0 0
M21 0 0 0 0 0 0 0
M31 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 M52 0 0 0 0 0 0
0 0 M63 0 0 0 0 0
0 0 0 M74 0 0 0 0
0 0 0 0 0 0 0 0

























(4.31)

The mutation events dynamics in the i-th functional subsystems are assumed
to follow the following rules: A candidate particle (mother cell) of functional
subsystem h with state u∗, by interacting with a cell (field) from subsystem k,
with state u∗, proliferate a daughter cell belonging to the following functional
subsystem i = h+ 1 with the lowest activity values u = u(0).

Following [27], we will make the assumptions:

• The mutation events in the cancer subsystems i = 2, 3, 4 are related to the
encounters of particles of the functional subsystems h = 1, 2, 3 respectively
with the cells of the first functional subsystem, indeed, are the epithelial
cells k = 1 that furnish to the mother cell the nutrient to create a mutated
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daughter. So we assume, for i = 2, 3, 4:

Mi[f](t, u) =

∫

Du×Du

η(i−1)1d(i−1)1[f ]M(i−1)1 fi−1(t, u∗) f1(t, u
∗) du∗ du

∗

(4.32)
where

M(i−1)1 = ε(i−1)1u∗δ(u− u(0)), (4.33)

with 0 < ε11 ≤ ε21 ≤ ε31.

• The mutation events in the immune subsystems i = 6, 7, 8 are related to
the increasing capability of the immune cells to recognize a specific cancer
hallmark. Therefore, mutations in the immune system cells are due to the
encounters of particles of the functional subsystems h = 5, 6, 7 with the
cells of the subsystems k = 2, 3, 4 respectively. We assume, for i = 6, 7, 8:

Mi[f](t, u) =

∫

Du×Du

η(i−1)(i−4)d(i−1)(i−4)M(i−1)(i−4)fi−1(t, u∗)fi−4(t, u
∗)du∗du

∗

(4.34)
where

M(i−1)(i−4) = ε(i−1)(i−4)u∗δ(u− u(0)), (4.35)

with 0 < ε52 ≤ ε63 ≤ ε74.

Substituting (4.33) in (4.32), we get for i = 2, 3, 4:

M2 = η11d11 ε11 n1A1 δ(u− u(0)), (4.36)

M3 = η21d21 ε21 n1A2 δ(u− u(0)), (4.37)

M4 = η31d31 ε31 n1A3 δ(u− u(0)). (4.38)

Substituting (4.35) in (4.34), we get, for i = 6, 7, 8

M6 = η52d52 ε52 n2A5 δ(u− u(0)), (4.39)

M7 = η63d63 ε63 n3A6 δ(u− u(0)), (4.40)

M8 = η74d74 ε74 n4A7 δ(u− u(0)). (4.41)

In equations (4.36)–(4.41) we have introduced the activity Ai defined in Chapter
1, that in this spatially homogeneous model is given by (4.49).

4.1.5 Modeling Destructive Events

Di[f](t, u) is the loss, at time t ∈ [t0, T ], in the state u ∈ [u(0),+∞) of the func-
tional subsystem i, due to destructive events. The dynamics of the destructive



Dynamics of Immune-Cancer Competition 80

interactions follow the following rules. A candidate cell from functional subsystem
i with state u∗, interacting with a field cell of the k-th functional subsystem with
activity u∗, can undergo a destructive action. Only cancer cell can be destructed,
owing to the interactions with the immune cells that are able to identify them.
We assume that the ability of the immune cells is proportional to their activity
u∗.

For the rate Dik[f ](u, u
∗) we obtain the following matrix:

Dik =

























0 0 0 0 0 0 0 0
0 0 0 0 0 γ6u

∗ γ7u
∗ γ8u

∗

0 0 0 0 0 0 γ7u
∗ γ8u

∗

0 0 0 0 0 0 0 γ8u
∗

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























(4.42)

Where, for each pair (h, k) = (2, 6), (2, 7), (2, 8), (3, 7), (3, 8), (4, 8), the destructive
rate Dik[f ](u, u

∗) = γku
∗, with 0 < γ6 ≤ γ7 ≤ γ8. Consequently, by using the

general expression (4.7), we obtain:

D2[f](t, u) = f2(t, u) (η26d26γ6A6 + η27d27γ7A7 + η28d28γ8A8) (4.43)

D3[f](t, u) = f3(t, u) (η37d37γ7A7 + η38d38γ8A8) (4.44)

D4[f](t, u) = f4(t, u) η48d48γ8A8 (4.45)

4.1.6 Modeling Relaxation and Apoptosis Events

The immune cells in the absence of tumor cells tend to return to their healthy
initial state. We assume λi = 0 for i = 2, 3, 4, and for i = 6, 7, 8:

Li[f](t, u) = λi[fi(t, u)− fi(t0, u0)] (4.46)

with 0 < λ6 ≤ λ7 ≤ λ8.
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4.1.7 Evolution Equations at the Cellular Scale

Substituting in (4.2) the expressions of Ci, Pi, Mi, Di and Li found in previous
section, we obtain the following system:



















































































































































































∂f1
∂t
(t, u) = 0

∂f2
∂t
(t, u) = η21d21α2n1(1− u) [f2(t, u− a2)− (1− (u+ a2))f2(t, u)]

+η21d21β2n1uf2(t, u) + η11d11ε11n1A1δ(u− u(0))
−f2(t, u)(γ6η26d26A6 + γ7η27d27A7 + γ8η28d28A8)

∂f3
∂t
(t, u) = η31d31α3n1(1− u) [f3(t, u− a3)− (1− (u+ a3))f3(t, u)]

+η31d31β3n1uf3(t, u) + η21d21ε21n1A2δ(u− u(0))
−f3(t, u)(γ7η37d37A7 + γ8η38d38A8)

∂f4
∂t
(t, u) = η41d41α4n1(1− u) [f4(t, u− a4)− (1− (u+ a4))f4(t, u)]

+η41d41β4n1uf4(t, u) + η31d31ε31n1A3δ(u− u(0))− γ8η48d48A8f4(t, u)

∂f5
∂t
(t, u) = 0

∂f6
∂t
(t, u) = η62d62α6n2(1− u) [f6(t, u− a6)− (1− (u+ a6))f6(t, u)]

+η62d62n2β6f6(t, u) + η52d52ε52n2A5δ(u− u(0))− λ6[f6(t, u)− f6(t0, u0)]

∂f7
∂t
(t, u) = η73d73α7n3(1− u) [f7(t, u− a7)− (1− (u+ a7))f7(t, u)] + (η72d72n2

+η73d73n3)β7f7(t, u) + η63d63ε63n3A6δ(u− u(0))− λ7[f7(t, u)− f7(t0, u0)]

∂f8
∂t
(t, u) = η84d84α8n4(1− u) [f8(t, u− a8)− (1− (u+ a8))f8(t, u)]

+(η82d82n2 + η83d83n3 + η84d84n4)β8f8(t, u) + ε74η74d74n4A7δ(u− u(0))
−λ8[f8(t, u)− f8(t0, u0)]

(4.47)

Remark 4.1.3. The quantities n1, · · · , n8 and A1, · · · , A8, refereed to the size of
the i-th population and the activation, respectively, which we will address in the
next subsection.

Remark 4.1.4. System (4.47) is a highly nonlinear system of integro-differential
equations in the unknown functions f1, · · · , f8. Indeed, in it, the quantities dhk, ni

and Ai may depend nonlinearly on the unknown functions: dhk = dhk[f ], ni = ni[f ]
and Ai = Ai[f ].
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4.2 Macroscopic Model

The mathematical model analyzed in the preceding subsections allows us to de-
scribe several interesting phenomena related to the several aspects of the immune-
cancer competition. The dynamical evolutions of the unknown functions fi can
be obtained looking at solutions of a complicated system of integro-differential
equations in the unknown functions fi. A different approach is to work within a
macroscopic framework, that gives us also important information on the evolution
of the disease (cancer-immune system competition).

Our aim, in what follows, is to determine macroscopic equations by using
a multiscale analysis. Thus, we shall derive from the underlying microscopic
description macroscopic equations for the size, activation and quadratic activation
of each cellular population.

As mentioned in chapter 1, if the distribution functions fi are known, then
macroscopic variables can be computed, under suitable integrability properties,
as moments weighted by the above distribution function [1, 2]. For our purpose,
we consider the following macroscopic variables:

• The size of the i-th population at time t, given by

ni[f ](t) =

∫

Du

fi(t, u) du for i ∈ {1, 2, . . . , 8}. (4.48)

• The activation at time t of the i-th population, defined as:

Ai[f ](t) =

∫

Du

ufi(t, u) du for i ∈ {1, 2, . . . , 8}, (4.49)

• The quadratic activation:

Ei[f ](t) =

∫

Du

u2fi(t, u) du for i ∈ {1, 2, . . . , 8}, (4.50)

• The cubic activation:

Qi[f ](t) =

∫

Du

u3fi(t, u) du for i ∈ {1, 2, . . . , 8}. (4.51)

Higher order moments can be also considered, but here we will deal only with
first, second and third order moments, for the sake of simplicity.
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4.2.1 Macroscopic Equations

By differentiating each of the both sides of the equations (4.48), (4.49), (4.50),
with respect to t, and using the equations in the system (4.47), we can get the
following equations for the averaged quantities ni, Ai and Ei, (i = 2, 3, 4, 6, 7, 8).

For i = 2 we get:

dn2

dt
=

∫

Du

[η21d21α2n1(1− u) [f2(t, u− a2)− (1− (u+ a2))f2(t, u)]

+ η21d21β2n1uf2(t, u) + η11d11ε11n1A1δ(u− u(0))]du

−

∫

Du

f2(t, u)(η26d26γ6A6 + η27d27γ7A7 + η28d28γ8A8)du (4.52)

dA2

dt
=

∫

Du

[η21d21α2n1(1− u) [f2(t, u− a2)− (1− (u+ a2))f2(t, u)]

+ η21d21β2n1uf2(t, u) + η11d11ε11n1A1δ(u− u(0))]udu

−

∫

Du

f2(t, u)(η26d26γ6A6 + η27d27γ7A7 + η28d8γ28A8)udu (4.53)

dE2

dt
=

∫

Du

[η21d21α2n1(1− u) [f2(t, u− a2)− (1− (u+ a2))f2(t, u)]

+ η21d21β2n1uf2(t, u) + η11d11ε11n1A1δ(u− u(0))]u2du

−

∫

Du

f2(t, u)(η26d26γ26A6 + η27d27γ7A7 + η28d28γ8A8)u
2du (4.54)

For i = 3 we get:

dn3

dt
=

∫

Du

[η31d31α3n1(1− u) [f3(t, u− a3)− (1− (u+ a3))f3(t, u)]

+ η31d31β3n1uf3(t, u) + η21d21ε21n1A2δ(u− u(0))]du

−

∫

Du

f3(t, u)(η37d37γ7A7 + η38d38γ8A8)du (4.55)

dA3

dt
=

∫

Du

[η31d31α3n1(1− u) [f3(t, u− a3)− (1− (u+ a3))f3(t, u)]

+ η31d31β3n1uf3(t, u) + η21d21ε21n1A2δ(u− u(0))]udu

−

∫

Du

f3(t, u)(η37d37γ7A7 + η38d38γ8A8)udu (4.56)
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dE3

dt
=

∫

Du

[η31d31α3n1(1− u) [f3(t, u− a3)− (1− (u+ a3))f3(t, u)]

+ η31d31β3n1uf3(t, u) + η21d21ε21n1A2δ(u− u(0))]u2du

−

∫

Du

f3(t, u)(η37d37γ7A7 + η38d38γ8A8)u
2du (4.57)

For i = 4 we get:

dn4

dt
=

∫

Du

[η41d41α4n1(1− u) [f4(t, u− a4)− (1− (u+ a4))f4(t, u)]

+ η41d41β4n1uf4(t, u) + η31d31ε31n1A3δ(u− u(0))]du

−

∫

Du

f4(t, u)(η48d48γ8A8)du (4.58)

dA4

dt
=

∫

Du

[η41d41α4n1(1− u) [f4(t, u− a4)− (1− (u+ a4))f4(t, u)]

+ η41d41β4n1uf4(t, u) + η31d31ε31n1A3δ(u− u(0))]udu

−

∫

Du

f4(t, u)(η48d48γ8A8)udu (4.59)

dE4

dt
=

∫

Du

[η41d41α4n1(1− u) [f4(t, u− a4)− (1− (u+ a4))f4(t, u)]

+ η41d41β4n1uf4(t, u) + η31d31ε31n1A3δ(u− u(0))]u2du

−

∫

Du

f4(t, u)(η48d48γ8A8)u
2du (4.60)

For i = 6 we get:

dn6

dt
=

∫

Du

[η62d62α6n2(1− u) [f6(t, u− a6)− (1− (u+ a6))f6(t, u)]

+ η62d62β6n2f6(t, u) + η52d52ε52n2A5δ(u− u(0))]du

−

∫

Du

λ6[f6(t, u)− f6(t0, u0)]du (4.61)

dA6

dt
=

∫

Du

[η62d62α6n2(1− u) [f6(t, u− a6)− (1− (u+ a6))f6(t, u)]

+ η62d62β6n2f6(t, u) + η52d52ε52n2A5δ(u− u(0))]udu

−

∫

Du

λ6[f6(t, u)− f6(t0, u0)]udu (4.62)
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dE6

dt
=

∫

Du

[η62d62α6n2(1− u) [f6(t, u− a6)− (1− (u+ a6))f6(t, u)]

+ η62d62β6n2f6(t, u) + η52d52ε52n2A5δ(u− u(0))]u2du

−

∫

Du

λ6[f6(t, u)− f6(t0, u0)]u
2du (4.63)

For i = 7 we get:

dn7

dt
=

∫

Du

[η73d73α7n3(1− u) [f7(t, u− a7)− (1− (u+ a7))f7(t, u)]

+ (η72d72n2 + η73d73n3)β7n2f7(t, u) + η63d63ε63n3A6δ(u− u(0))]du

−

∫

Du

λ7[f7(t, u)− f7(t0, u0)]du (4.64)

dA7

dt
=

∫

Du

[η73d73α7n3(1− u) [f7(t, u− a7)− (1− (u+ a7))f7(t, u)]

+ (η72d72n2 + η73d73n3)β7f7(t, u) + η63d63ε63n3A6δ(u− u(0))]udu

−

∫

Du

λ7[f7(t, u)− f7(t0, u0)]udu (4.65)

dE7

dt
=

∫

Du

[η73d73α7n3(1− u) [f7(t, u− a7)− (1− (u+ a7))f7(t, u)]

+ (η72d72n2 + η73d73n3)β7f7(t, u) + η63d63ε63n3A6δ(u− u(0))]u2du

−

∫

Du

λ7[f7(t, u)− f7(t0, u0)]u
2du (4.66)

For i = 8 we get:

dn8

dt
=

∫

Du

[η84d84α8n4(1− u) [f8(t, u− a8)− (1− (u+ a8))f8(t, u)]

+ (η82d82n2 + η83d83n3 + η84d84n4)β8f8(t, u) + η74d74ε74n4A7δ(u− u(0))]du

−

∫

Du

λ8[f8(t, u)− f8(t0, u0)]du (4.67)

dA8

dt
=

∫

Du

[η84d84α8n4(1− u) [f8(t, u− a8)− (1− (u+ a8))f8(t, u)]

+ (η82d82n2 + η83d83n3 + η84d84n4)β8f8(t, u) + η74d74ε74n4A7δ(u− u(0))]udu

−

∫

Du

λ8[f8(t, u)− f8(t0, u0)]udu (4.68)
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dE8

dt
=

∫

Du

[η84d84α8n4(1− u) [f8(t, u− a8)− (1− (u+ a8))f8(t, u)]

+ (η82d82n2 + η83d83n3 + η84d84n4)β8f8(t, u) + η74d74ε74n4A7δ(u− u(0))]u2du

−

∫

Du

λ8[f8(t, u)− f8(t0, u0)]u
2du (4.69)

In equations (4.52)–(4.69) the encounter rate depends on the distance dhk[f]
between the h-th and the k-th functional subsystems.

Different choices are possible. Following Bellouquid et al.(2013) [7], we assume
that the distance dhk is a functional of the distributions that characterize the two
interacting functional subsystems:

dhk[f] =







exp

(

−τ
‖fh − fk‖

‖fh‖+ ‖fk‖

)

‖fh‖, ‖fk‖ 6= 0,

0 ‖fh‖ = ‖fk‖ = 0,
(4.70)

where τ > 0 and the norm L1 is used. In this way the increasing values of the
distance dhk between the h-th and the k-th functional subsystems correspond to
decreasing values of the encounter rate ηhk [15]. Another more simple choice for
the encounter rate will be made in Section 4.2.2.

Then, for i = 2 we get:

dn2

dt
= η21d21a2α2n1n2 + η21d21β2n1A2 + η11d11ε11n1A1

− n2(η26d26γ6A6 + η27d27γ7A7 + η28d28γ8A8) (4.71)

dA2

dt
= η21d21a2α2n1A2 + η21d21β2n1E2 + η11d11ε11n1A1u

(0)

− A2(η26d26γ6A6 + η27d27γ7A7 + η28d28γ8A8) (4.72)

dE2

dt
= η21d21a2α2n1E2 + η21d21β2n1Q2 + η11d11ε11n1A1[u

(0)]2

− E2(η26d26γ6A6 + η27d27γ7A7 + η28d28γ8A8) (4.73)

For i = 3 we get:

dn3

dt
= η31d31a3α3n1n3 + η31d31β3n1A3 + η21d21ε21n1A2

− n3(η37d37γ7A7 + η38d38γ8A8) (4.74)

dA3

dt
= η31d31a3α3n1A3 + η31d31β3n1E3 + η21d21ε21n1A2u

(0)

− A3(η37d37γ7A7 + η38d38γ8A8) (4.75)
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dE3

dt
= η31d31a3α3n1E3 + η31d31β3n1Q3 + η21d21ε21n1A2[u

(0)]2

− E3(η37d37γ7A7 + η38d38γ8A8) (4.76)

For i = 4 we get:

dn4

dt
= η41d41a4α4n1n4 + η41d41β4n1A4 + η31d31ε31n1A3

− η48d48n4γ8A8 (4.77)

dA4

dt
= η41d41a4α4n1A4 + η41d41β4n1E4 + η31d31ε31n1A3u

(0)

− η48d48A4γ8A8 (4.78)

dE4

dt
= η41d41a4α4n1E4 + η41d41β4n1Q4 + η31d31ε31n1A3(u

(0))2

− η48d48E4γ8A8 (4.79)

For i = 6 we get:

dn6

dt
= η62d62a6α6n2n6 + η62d62β6n2n6 + η52d52ε52n2A5 − λ6n6 (4.80)

dA6

dt
= η62d62a6α6n2A6 + η62d62β6n2A6 + η52d52ε52n2A5u

(0)

− λ6A6 (4.81)

dE6

dt
= η62d62a6α6n2E6 + η62d62β6n2E6 + η52d52ε52n2A5(u

(0))2

− λ6E6 (4.82)

For i = 7 we get:

dn7

dt
= η73d73a7α7n3n7 + (η72d72n2 + η73d73n3)β7n7 + η63d63ε63n3A6

− λ7n7 (4.83)

dA7

dt
= η73d73a7α7n3A7 + (η72d72n2 + η73d73n3)β7A7 + η63d63ε63n3A6u

(0)

− λ7A7 (4.84)
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dE7

dt
= η73d73a7α7n3E7 + (η72d72n2 + η73d73n3)β7E7 + η63d63ε63n3A6(u

(0))2

− λ7E7 (4.85)

For i = 8 we get:

dn8

dt
= η84d84a8α8n4n8 + (η82d82n2 + η83d83n3 + η84d84n4)β8n8 + η74d74ε74n4A7

− λ8n8 (4.86)

dA8

dt
= η84d84a8α8n4A8 + (η82d82n2 + η83d83n3 + η84d84n4)β8A8

+ η74d74ε74n4A7u
(0) − λ8A8 (4.87)

dE8

dt
= η84d84a8α8n4E8 + (η82d82n2 + η83d83n3 + η84d84n4)β8E8

+ η74d74ε74n4A7(u
(0))2 − λ8E8 (4.88)

Remark 4.2.1. Note that, we have assumed null initial conditions in the equa-
tions (4.80)–(4.88), that is: fi(t0, u0) = 0 for i = 6, 7, 8.

4.2.2 Closure of the evolution equations

The macroscopic equations obtained are a nonlinear system of ordinary differen-
tial equations. Particularly, they are useful for giving some information about
the healthy state of given individuals.

To close them, one can use the traditional methods of continuum mechanics,
choosing appropriate constitutive expressions for the encounter rate ηhk and for
the cubic activities Q2, Q3 and Q4 and the other unknown quantities.

We will make, therefore, the following assumptions:

• Encounter rate. We will assume that ηhk depends only on h and k and
not on the functional expression of fh and fk. Specifically we will choose
the encounter between tumor (h = 2, 3, 4) and epithelial cells (h = 1)
proportional to h (ηh1 = h), and the encounter rate between immune and
cancer cells is chosen constant (ηhk = σ, for each pair (h, k) = (5, 2), (6, 2),
(6, 3), (7, 2), (7.3), (7, 4), (8, 2), (8.3), (8, 4)).

• Transition Probability Density. We assume in the expressions (4.17) and
(4.19) of the transition probability density αi = α and ai = a = u(0).
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• Proliferation rate. We assume that the proliferation rate of the cancer cells
(subsystems h = 2, 3, 4), owing to their interactions with epithelial cells
k = 1 is βh = hβ, and the proliferation rate of the cells of the immune
system (subsystems h = 5, 6, 7, 8), owing to their interactions with cancer
cells k = 2, 3, 4 is βh = β ′.

• Mutation rate. We assume that the mutation rate of the cancer cells (sub-
systems i = 2, 3, 4) related with the encounters of cells of the functional
subsystems h = 1, 2, 3 respectively with epithelial cells of first functional
(subsystem k = 1) is ε(i−1)1 = ε.
We assume also that the mutation rate in immune subsystems i = 6, 7, 8
related with the encounters of particles of the functional subsystems h =
5, 6, 7 respectively with cancer cells (functional subsystems k = 2, 3, 4) is
ε(i−1)k = ε′.

• Destruction rate. We assume that the destruction rate of cancer cells (due
to the encounter with immune cells of the corresponding hallmark is γi = γ

for i = 2, 3, 4.

• Relaxation and apoptosis rate. We assume that the coefficient characterizing
the relaxation of immune systems is given by λi = λ for i = 6, 7, 8.

• Number density and activity of epithelial cells. We assume that epithelial
cells do not modify their primitive state, therefore n1 and A1 are assumed
constant quantities.

• Number density and activity of innate immune system cells. We assume that
the innate immune system does not modify its primitive state, therefore n5

and A5 are assumed constant quantities.

• Cubic activation of cancer cells. We assume that the cubic activations of
the cancer cells Q2, Q3 and Q4 are constant in time.

This model is sufficiently appealing for a qualitative understanding of some
biological features influencing the immune-cancer competition.

Under the above assumption, the evolution equations for the number densities,
activation densities and quadratic activation densities of each cellular population
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are:

dn2

dt
= 2aαn1n2 + 4βn1A2 + εn1A1 − n2σγ(A6 + A7 + A8) (4.89)

dn3

dt
= 3aαn1n3 + 9βn1A3 + 2εn1A2 − n3σγ(A7 + A8) (4.90)

dn4

dt
= 4aαn1n4 + 16βn1A4 + 3εn1A3 − σγn4A8 (4.91)

dn6

dt
= σaαn2n6 + σβ

′

n2n6 + σε
′

n2A5 − λn6 (4.92)

dn7

dt
= σaαn3n7 + σβ

′

n7(n2 + n3) + σε
′

n3A6 − λn7 (4.93)

dn8

dt
= σaαn4n8 + σβ

′

n8(n2 + n3 + n4) + σε
′

n4A7 − λn8 (4.94)

dA2

dt
= 2aαn1A2 + 4βn1E2 + εn1A1u

(0) − A2σγ(A6 + A7 + A8) (4.95)

dA3

dt
= 3aαn1A3 + 9βn1E3 + 2εn1A2u

(0) − A3σγ(A7 + A8)) (4.96)

dA4

dt
= 4aαn1A4 + 16βn1E4 + 3εn1A3u

(0) − σγA4A8 (4.97)

dA6

dt
= σaαn2A6 + σβ

′

n2A6 + σε
′

n2A5u
(0) − λA6 (4.98)

dA7

dt
= σaαn3A7 + σβ

′

A7(n2 + n3) + σε
′

n3A6u
(0) − λA7 (4.99)

dA8

dt
= σaαn4A8 + σβ

′

A8(n2 + n3 + n4) + σε
′

n4A7u
(0) − λA8 (4.100)

dE2

dt
= 2aαn1E2 + 4βn1Q2 + εn1A1[u

(0)]2 − E2σγ(A6 + A7 + A8)(4.101)

dE3

dt
= 3aαn1E3 + 9βn1Q3 + 2εn1A2[u

(0)]2 −E3σγ(A7 + A8) (4.102)

dE4

dt
= 4aαn1E4 + 16βn1Q4 + 3εn1A3[u

(0)]2 − σγE4A8 (4.103)

dE6

dt
= σaαn2E6 + σβ

′

n2E6 + σε
′

n2A5[u
(0)]2 − λE6 (4.104)

dE7

dt
= σaαn3E7 + σβ

′

E7(n2 + n3) + σε
′

n3A6[u
(0)]2 − λE7 (4.105)

dE8

dt
= σaαn4E8 + σβ

′

E8(n2 + n3 + n4) + σε
′

n4A7[u
(0)]2 − λE8 (4.106)

Remark 4.2.2. Note that the state vector of this model is:

Γ = (n2, n3, n4, n6, n7, n8, A2, A3, A4, A6, A7, A8, E2, E3, E4, E6, E7, E8). (4.107)
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and is a vector with 18 components.
More simple systems of macroscopic equations can be obtained choosing as state
vector, the vector with 12 components

Γ1 = (n2, n3, n4, n6, n7, n8, A2, A3, A4, A6, A7, A8), (4.108)

considering only the first 12 equations (4.89)–(4.100) of previous system and giv-
ing for the energies E2, E3, E4 suitable constitutive equations,
or also the vector with 6 components

Γ2 = (n2, n3, n4, n6, n7, n8), (4.109)

considering only the first 6 equations (4.89)–(4.94) of previous system and giving
for the activities A2, A3, A4 suitable constitutive equations.



Chapter 5

Conclusions and Further Lines of
Research

5.1 Conclusions

This chapter presents the conclusions of the research described in the thesis. The
aim and objectives of the research, outlined in the Introduction of this thesis, are
reviewed and their achievement described. Proposals for future work indicated
by the research are suggested.

Throughout this thesis, we have presented some tools as powerful techniques
to analyze the immune competition with Darwinian dynamics. The main point in
this analysis is the modeling of complex biological systems using a mathematical
approach which is related to mathematical kinetic theory. The application refers
to the mathematical description of the immune-cancer competition. This is a
very active and recent frontier in current medical research, as it has opened
new promising perspectives complementary and more far reaching than those in
classical radiotherapy and chemotherapy.

• Chapter 1 is devoted to define the framework of the mathematical kinetic
theory of active particles, which has been used to describe the general evo-
lution equations of the biological system. According to KTAP, the system
is divided into interacting functional subsystems, each subsystem with a
specific biological function.

In the general framework of KTAP, the microscopic state includes geometri-
cal mechanical and biological functions, while for the spatial homogeneous
models considered in this thesis, the microscopic state includes only the
biological scalar function u.
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A system in mathematical biology is called closed in the absence of any
effect from outside the system on the internal system, and is called open
when the effect occurs. In this thesis only closed systems are analyzed.

• In Chapter 2, an overview of the immune system and hallmarks of cancer
is given. Cancer is a group of diseases involving abnormal cell growth
with the potential to invade or spread to other parts of the body. The
growth of normal cells is kept under control by growth-inhibitors or signals.
Cancer cells generally have defects in the control mechanisms that govern
how often they are able to be divided and are able to stimulate their own
growth, due to the dominant character of oncogenes. The immune system
responds to foreign pathogens and cancer cells by activating specific and
nonspecific immune responses. The goal of immunotherapy is to enhance
these responses to control the growth of cancer cells.

• In Chapter 3 the model by Bellouquid et al.(2013), that describes the com-
petition between the immune system and cancer cells, is studied in details.
In this model, the activity is characterized by discrete scalar values. A
number of simulations were performed showing that the immune system is
able to suppress cancer cells when we select specific values for the unknown
parameters of the model.

We have tested the effect of changing the values of the parameters previously
obtained. The results are the following:

1. Concerning the parameter β2, that characterizes the proliferation rate
of the immune cell populations, as found in the number 1 of the Section
3.2.3 and according with the Figure 3.10, this parameter cannot take
values less than 10−1 because it will not give improved results.

2. Concerning the parameter β1, that characterizes the proliferation rate
of cancer cells, as found in the number 2 of the Section 3.2.3 and ac-
cording with the Figure 3.11, this parameter cannot take values greater
than 10−4 because it will not give improved results.

3. Concerning the parameter λ, that characterizes the relaxation rate,
as found in the number 3 of the Section 3.2.3 and according with the
Figure 3.12, this parameter cannot take the value 0.016 or any values
greater than it.

4. Concerning the parameter α, that characterizes the probability density
in conservative interactions in the progression phenomena, as found in
the number 4 of the Section 3.2.3 and according with the Figure 3.13,
this parameter cannot take values greater than 10−3.
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5. Concerning the parameter σ, that characterizes the encounters be-
tween immune cells and cancer cells, as found in the number 5 of the
Section 3.2.3 and according with the Figure 3.14, this parameter can-
not take values lesser than 0.5 and the values must be in the interval
[0.5, 0.9].

6. Concerning the parameters ε26, ε27 and ε28 that characterize the mu-
tation rate in immune system, as found in the number 6 of the Section
3.2.3 and according with the Figure 3.15, we have seen that changes in
one of these parameters from 10−1 to 10−4 do not produce significant
modifications of the behaviour of the system and lead to equivalent
results.

7. Concerning the parameter ε1 that characterizes the mutation rate in
cancer cells, as found in the number 7 of the Section 3.2.3 and according
with the Figure 3.16, we have seen that, when this rate takes very
small values, the immune system is incapable to suppress cancer cells.
Our interpretation of this result is that the immune system is not
sufficiently activated to recognize the cancer cells. So, they have time
to re-grow as shown in the plots in Figure 3.16. This could be due to
the fact that in this situation the immune system relaxes too quickly
to recognize malignant cancer cells.

8. Concerning the parameter γ that characterizes the destruction rate
of cancer cells, as found in the number 8 of the Section 3.2.3 and
according with the Figure 3.17, this parameter plays a fundamental
role in the cancer-immune system competition, as an increase in this
parameter corresponds to an increase of the immune systems ability
to suppress cancer cells. From simulations, we showed that for γ = 0.1
the immune system is not able to resist cancer cells.

In Section 3.4, we have presented a proposal to modify the parameter α that
models the probability density in conservative interactions in the progres-
sion phenomena, by differentiating it for cancer cells (coefficient α1) and
immune system cells (coefficient α2). The analysis shows that the behavior
of cancer cells, when they interact with epithelial cells, differs from that
when they interact with immune cells.

• In Chapter 4, we have generalized the model proposed by Bellouquid et
al.(2013), choosing for the activity variable continuous values u ∈ (0,∞).
This allows us to derive a macroscopic model by suitable asymptotic meth-
ods from the microscopic description given by the kinetic theory approach.

The most important points we have considered in the our thesis are:
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1. Cells in a multicellular system are characterized by biological functions and
the ability to organize their dynamics and interactions with other cells.

2. The mathematical kinetic theory for multicellular systems is defined by a
system of integro-differential equations describing the evolution in time and
space of the distribution functions over the microscopic state of cells of each
population.

3. In the modeling of biological systems it is important to consider a multi-
scale approach. In fact, we have shown how macroscopic equations can be
derived from the microscopic descriptions.

These features are introduced in our model through the specification of
the internal state of each cell and of the interaction between different cells
according to their respective internal states.

5.2 Further Lines of Research

Our thesis has been a detailed exploration of a model of immune-cancer compe-
tition with Darwinian dynamics, by using the kinetic theory of active particles
and following, in its general lines, the model formulated by Bellouquid et al..

The results of this thesis are interesting and non-trivial, but exclude the pos-
sibility to study how cells move away from their site of origin and travel to distant
sites, and how the system would responds to medical therapies. In fact, the prob-
lem of immune-cancer competition is much wider and complex than the situations
we have been able to deal with. From this point of view, the main drawbacks
of our thesis are: (1) to consider only the activity in the microscopic state of
each cell, (2) to consider only the behavior of closed systems, without considering
interactions with the outside.

Future works that could be done as an extension of this thesis are :

• Generalization of the model, considering more complete biological hypoth-
esis, as for example to better describe the growth of tumor cells, that in
this model has been considered exponential, without differentiating different
types of cancer.

• Incorporate in the model the possibility of metastasis, assuming for the
microscopic state of each active particle w = (x,v, u). In this case, the
system must be considered as inhomogeneous and the transport of cancer
cells to different organs must be taken into account, as well as the different
kinds of evolution according to the organ where they have arrived and
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settled. This will depend not only on the internal state of the cancer cells
but also on their interaction with the surrounding cells of the particular
organ.

• Consider biological open systems, with the aim to incorporate into the
model the possibility of introducing medical therapies. This will allow us to
incorporate the combination of chemotherapy techniques and immunother-
apy technique. For instance, external chemical factors may modify the
internal state of the cells of the immune system enhancing their effects on
cancer cells. This is in contrast with usual chemotherapy, which directly
acts on the cancer cells. Furthermore, the open system approach will allow,
in principle, progress and perspectives in chemotherapy and immunother-
apy of cancer. In this way, the interaction with the outer environment(i.e.
the therapeutical action) is not limited to fix the cell internal parameters
(as in the closed system approach), but is able to continue in the time, so
modifying the dynamics of the biological system.
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