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Abstract — The paper proposes a methodology to assess the potential impact of salinity gradient power 

technology in urban contexts. The idea to employ such energy source in urban contexts derives from the 

observation that, among the energy districts outputs, low-salinity treated wastewater can be used to produce 

electricity if a suitable source of high salinity feed (seawater of a salt-works) is also available. 

The methodology uses the HOMER software for assessing the district’s electric energy production, 

consumption and exchange with the main grid. Then, starting from the total gross surface and the number of 

inhabitants of the district, some possible realistic scenarios characterized by different wastewater flow rate 

are defined. Finally, for each scenario the size and the yearly energy production of the salinity gradient 

power system are calculated thanks to a simulator carried out by the same authors. 

An application example, considering three different scenarios, shows that urban density plays a crucial role 

in the process and that the most promising realistic scenarios are those including treated wastewater and 

brine and unlimited seawater and brine. 

The economic feasibility of the salinity gradient power technology is evaluated by a comparison with 

classical renewable technologies such as photovoltaic and wind systems. 

Keywords — Salinity gradient power; Urban energy hub; Sustainable cities; HOMER. 

 

1. Introduction 

The increased widespread use of electrical equipment, resulting in a growing electricity demand, and the 

highly constraining environmental objectives push for the integration of renewable energy sources (RES)s in 

power systems [1]-[3]. Although fossil sources still play a key role in energy supply, they are strongly 

polluting and on the road to get exhausted. The research about new energy sources to strengthen power 

supply is thus necessary. These sources not only contribute to improve life quality and meet consumer 
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demand for electricity, but they also need to meet environmental criteria. Cities in particular, accounting for 

70% of CO2 emissions worldwide, are called for identifying clean energy sources that can be well integrated 

into the urban environment [4]. On the other hand, the huge electrification will impose on electricity 

production a further sustainability challenge. In the last years, more than 6000 European cities have signed 

up to the Covenant of Mayors. The latter is a bottom-up initiative consisting in a voluntary commitment to 

achieve, on average and at city level, a 28% cut in CO2 emissions by 2020, i.e. 8% more than the EU’s 2020 

target. Most of the papers that can be found in the literature about providing renewable electricity in urban 

contexts report about off-site installations or rural applications. A recent paper [5] shows the feasibility of 

hybrid generation in cities and rural areas, comparing different alternatives for supplying a small electrical 

load for telecommunications, a Base Transceiver. The order of magnitude is of some kWs. The study 

compares different alternatives for producing electricity such as: PV-Diesel-Battery, PV-Wind-Diesel, 

Wind-Diesel-Battery, Wind-Diesel, PV-Diesel system. The architectures are studied considering four urban 

sites in India in the region of Punjab. In this paper, no mention is made about the possibility to implement 

these solutions in urbanized areas, considering acoustic, visual impact or even safety of the considered 

solutions. Other papers report about the conventional renewable-based solution adopted for cities lighting in 

China [6]. Street lamps in most Chinese urban environments are supplied by wind–solar hybrid electric 

generation systems. Some papers concentrate on building PV integrated solutions such as [7]. The paper 

proposes a techno-economic analysis of the installation of roof-top and vertical facades, including windows, 

PV generators for two large buildings in the Kingdom of Bahrain. The amount of electricity extracted for 

one of the two building is 3 million kWh in 1 year, enough to supply electricity for 171 houses in the region. 

The solution provides an annual CO2 reduction of 3000 Ton with the considered energy mix of Kingdom of 

Bahrain. However, the reported examples refer to areas where such solutions are easier to integrate, as 

compared to European areas where historicized urban environment provide a further challenge. [8] shows 

that off-site installations have a smaller payback period as compared to on-site installations of solar 

photovoltaic electricity generation, although both show  competitive LCOE. The study assessed the 

technical feasibility and economic viability of a 2.5 MW photovoltaic power plant for supplying a garment 

zone in Jaipur, India, considering on-site and off-site options. The work in [9] proposes an economic 

feasibility of using solar PV in urban contexts in China, in the city of Xi’an. The sizing of the storage is 

strongly related with the load profile features. The latter are quite different when considering commercial or 

residential buildings. The matching between the load and the solar radiation profile affect the Cost of 

Energy of the system. Another important issue affecting the Cost of Energy is certainly the S/V ratio. The 

study in [9] analyzes a commercial office block (10000 m2) and an independent villa. The study does not 
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account for multi-level buildings for which the electricity demand density is quite higher. An interesting 

study from K. Steemers connects urban form and energy consumption [10]. What appears is that the use of 

buildings and the urban density are two main issues for defining energy consumption. As a result, the 

electric load profile, that is so important to determine the cost of energy of renewable sources in cities, may 

change as an effect of energy efficiency of electric appliances which has improved dramatically in recent 

years and the demand response and aggregation of electrical loads carried out for market purposes or for 

technical reasons. Other papers focus on the role of Zero Energy Buildings [11]-[13], namely buildings 

where energy consumption is reduced and Energy Management Systems control loads and distributed 

energy resources. Out of the latter, the generation resources use renewable sources. 

What appears from this overview there are not so many solution for urbanized environments, especially 

where highly historicized contexts are present. Moreover, renewable energy production solutions in cities 

must be safe and low impact. In this paper, Salinity Gradient technologies are introduced as a state of art 

clean electrical energy source. Salinity Gradient Energy (SGE) or Salinity Gradient Power (SGP) is a novel 

source of energy available whenever two solutions with different salinity levels are mixed together, as 

occurs in nature when a river discharges into the sea. The harnessing of this energy requires a suitable 

device able to perform a ‘controlled mixing’ of the two streams at different salinity (e.g. river water and 

seawater). Such operation thus results in the recovery of the mixing energy available rather than in its 

complete dissipation. Sustainability of SGP is ensured by the hydrological cycle, which guarantees the 

reestablishment of the original streams and salinity levels. For this reason, SGP is a very clean form of 

renewable energy that does not produce any CO2 emission and presents very low environmental footprint. 

Furthermore, it is suitable for continuous power production as it is not affected by the typical discontinuities 

of other renewable energy sources (e.g. solar, wind, tidal, etc.), at the contrary, being a possible “chemical 

energy flywheel” for RE-powered systems requiring energy buffering strategies [15].  

The present work explores the possibility to include SGP into a urban energy hub, namely an energy district. 

An energy hub is a system where different kinds of energy carriers are converted, stored and distributed in 

order to satisfy energy demand [14]. An optimized consumption of the different sources guarantees 

efficiency of the hub as a whole, by analytically expressing the relationship between input and output energy 

carrier flows [15]. RESs are used popularly in energy hubs like solar, wind, biomass, biogas, sea water, 

waste water, etc. Using suitable technologies for conversion and management can reduce at its maximum 

the use of storage, by replacing one energy source with another when renewable energy is missing or when 

it is not sufficient. The energy hub model and its optimized management can make sure that the potential of 

renewable energy will be exploited to its maximum. Besides, in the energy hub, the combination between 
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heat and power systems is the most beneficial technology in order to generate heat and electricity and to 

reduce operating costs, enhance system optimization, improve energy use efficiency, while satisfying 

environmental targets. In this work, we analyze the benefit that the SGP technology can bring to the energy 

hub model with a specific focus on urbanized contexts. Recently, many studies investigated the integration 

of renewable energy systems in urban areas [16]-[21]. It was showed that an effective option to increase 

local renewable energy production is to convert surplus electricity into other kinds of energy like thermal 

energy [22]-[24] and the work is implemented with different modelling approaches and simulation tools 

[25]. However, these research works only analyze the integration of solar [26], [27], wind [28]-[30] and 

biomass [31] sources. To the authors’ knowledge, the integration of SGP production within an urban energy 

hub has not been analyzed yet and is therefore an interesting option to be fully explored. 

For this reason, in this paper an analysis methodology to assess the potential impact of salinity gradient 

power technology in urban contexts and an application to a case study are presented.  

In this research, the HOMER PRO software supports the analysis of the potential impacts of SGP on the 

electric energy consumption of an urban district. Different scenarios with various population densities have 

been investigated for a small urban center. The difference in population density indeed leads to different 

amounts of wastewater production. Assuming that wastewater is treated using an advanced Membrane 

BioReactor, MBR [32], the treated effluent will constitute a suitable low-salinity stream for feeding the SGP 

system. The results demonstrate that in certain conditions the adoption of such technology could relieve the 

system from dependency from the grid, although other scenarios with increased population densities need to 

be investigated for a full understanding of the idea. 

The remainder of the paper is organized as it follows: 

• Section 2 contains a brief presentation of salinity gradient power technologies and of the previous 

work on the authors on this subject; 

• Section 3 describes the methodology used for sizing a SGP generator for an urban district and for 

evaluating its impact on the energy balance of the whole urban center; 

• Section 4 reports a feasibility study based on the methodology presented in Section 3; 

• Section 5 contains a discussion on the results of the study and on the economic feasibility of SGP 

systems; 

• Section 6 contains the conclusion of the paper. 

 

2. Salinity gradient power technology 
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In 1954, R. E. Pattle drew up a study called "Production of Electric Power by mixing Fresh and Salt Water 

in the Hydroelectric Pile" [33]. The study presented for the first time the potential of an untapped source of 

energy manifesting itself when a river flew into the sea. This form of energy was created from the osmotic 

pressure difference between the water of the river and the sea water. In 1973, Sidney Loeb, a professor at 

Israel Ben-Gurion University, presented a method for generating energy by means of the so called Pressure 

Retarded Osmosis concept (PRO). In 1977, the same author presented a second process, which generated 

electricity through a Reverse Electro-Dialysis (RED) process. Both methodologies do not cause any 

emission of carbon dioxide (CO2) or any costs for fuel as reported by Jones and Finley studies in the article 

"Recent Development in Salinity Gradient Power" [34]. Their studies demonstrated that the higher the 

difference of concentration between the two effluents, the greater the potential energy obtained from the 

SGP technology. 

2.1.Pressure Retarded Osmosis (PRO) technology 

In a PRO system, two different salinity solutions are separated by a semi-permeable membrane. The 

membrane lets the solvent (i.e. water) to permeate while it rejects the solute (i.e. dissolved salts). The 

difference of chemical potential (more often seen as difference in osmotic pressure) between the two 

solutions causes the transport of water from the dilute solution to the concentrate one. If pressure is applied 

to the concentrated solution, the transport of water is partially retarded and thus the transport of the latter 

from the low-pressure dilute to the high pressure concentrate solution implies a pressurization of the 

transported volume of water, which can eventually be used to generate power in an external turbine. The 

indisputable advantage of this process is that the sources are virtually unlimited. Another advantage is the 

production of a “waste” stream simply constituted by brackish water, easily disposable or reusable by 

further industrial applications. However, the Technology Readiness Level (TRL) is still strongly influenced 

by the lack of suitable membranes able to operate at optimal conditions in a wide range of operations. 

2.2.Reverse Electro-Dialysis (RED) technology 

In a RED system, a number of anionic and cationic membranes are stacked in alternating manner between 

an anode and a cathode as shown in Figure 1. 
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Fig. 1. Functional diagram of the RED technology. 

 

The compartments created by the membranes are filled in an alternating manner with a concentrate and a 

dilute solution, respectively. The salinity gradient generates a potential raise at each solution/membrane 

interface (namely, the cell pair potential or the electromotive force of the pile, being around 80 mV per 

membrane pair when combining sea water and river water). The difference of chemical potential also causes 

the transport of ions through the membranes from the concentrate towards the dilute solution, which are 

forced to migrate in a controlled way (cations will move through the cation exchange membrane and anions 

through the anion exchange membrane, respectively), thus generating an ionic current through the 

membranes stack. At the end of the stack, two electronic compartments allow to convert the ionic current 

into an electronic one. As a result, an electron can travel and then be transferred from the anode to the 

cathode through an external electrical circuit. Thus, the electrical current and the potential difference 

generated at the electrodes can finally be used to generate electrical power when an external load or an 

energy consumer is connected to the circuit.  

The RED process can be operated continuously by means of a constant supply of two streams with different 

salinity. Until now, research has focused on the combination of water at low salt concentration and seawater. 

However, this approach has serious limitations due to the low salinity solution, which significantly increases 

the electrical resistance of the stack. Within the EU-funded REAPower project (www.reapower.eu), 

researchers found the way to overcome this limitation by using brine and saline water for the production of 
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electrical energy. Laboratory investigations [35]-[37] and modeling activities [38],[39] have identified a 

number of crucially important parameters, which helps in design, and optimize RED units. In particular, 

RED units operating with artificial solutions at laboratory scale have been demonstrated to reach power 

generation density higher than 4 W per each square meter of membrane cell pair area [40], when operating 

with seawater-like concentrations. When passing to desalination brines and to ultra-concentrated brines 

(such as those availabile in saltwroks) power density could reach values above 10 W per square meter of 

cell pair area [41],[42], thus boosting the potential for economical competitiveness of this technology. An 

important milestone of such recent developments has been the installation of a RED pilot plant in Marsala 

saltworks (Trapani, Italy) operating with concentrated brines and saline solutions [43],[44]. The prototype is 

the first plant operating in such conditions and has reached the largest power production ever registered so 

far worldwide. The REAPower project proved that with the configuration employing seawater and brine the 

energy density can reach values above 1 MJ/m3 giving rise to a power production of almost 1 kW for the 

plant operating in a real environment. 

 
Fig. 3.  Schematics of the mass and energy input/output in a RED unit, as analyzed in the present work 

(scenario 1.A). 

This technology has a great potential: the electricity is produced simply from water supplies with different 

concentrations of salt and is clean, quiet, and does not include moving parts. The only waste product is 

brackish water. In this paper, the case studies will be implemented based on the application of this 

promising energy production technology. 
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3. Methodology 

In this section, a methodology is proposed to assess the impact of SGP technology in urban contexts in 

terms of coverage of the energy consumption in a period of one year. The methodology adopts two different 

simulation tools (Figure 3): 

• the Hybrid Optimization Model for Electric Renewables (HOMER) PRO v. 3.7.3.0 software, a 

product of the National Renewable Energy Laboratory (NREL); 

• a simulation tool of the RED process (in the following RED simulator) implemented at the 

University of Palermo within the REAPOWER project. 

By HOMER, the energy hub can be easily modelled and different scenarios can be assessed based on 

technical and economic aspects. On the other side, the RED simulator implements a lumped parameter RED 

model, previously developed by the same authors Errore. L'origine riferimento non è stata trovata., [46], 

able to evaluate the RED energy production for a given scenario.  

 
Fig. 3. Combination of the simulation tools. 

 

The methodology, whose flow chart is represented in Figure 4, is made by the following steps: 

• the boundaries of the urban district are individuated; 

• the energy consumption of the district, the energy production from distributed generation and the 

energy exchange with the main power system supplying the microgrid serving the urban district, are 
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evaluated (calculated with simulations or measured) considering one year and sent to HOMER as 

input data; 

• possible realistic scenarios characterized by different wastewater flow rate and effluents 

concentration are defined starting from the total gross surface and the number of inhabitants of the 

district. The effluents’ data are sent to the RED that sizes the SGP system and calculates the yearly 

energy produced by the RED process. The yearly production of the SGP system is sent to HOMER; 

• HOMER evaluates the percentages of coverage of the energy district’s consumptions from the grid, 

from the PV systems and from the SGP system. 

The proposed methodology is very easy to implement since it adopts simple energy calculations starting 

from the mathematical models of the various loads and generation technologies. 
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Fig. 4. Flow chart of the proposed methodology. 

 

3.1.RED simulator 

The RED simulator is based on a deterministic model of the SGP system, in which all the main phenomena 

involved in the process are described. The model is implemented on Excel spreadsheets and adopts 

purposely-developed macros (Figure 6). 

According to the adopted lumped parameter approach, properties and variables involved in the calculation 

are evaluated at the average (inlet-outlet) concentration of the two streams (dilute and concentrate). The 

flow chart reported in Figure 5 duly illustrate the calculation algorithm adopted. The solving routine starts 
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calculating average concentrations of the two solutions from inlet concentrations and assuming the outlet 

concentrations (Ck
out,dil & Ck

out,conc). After fixing the inlet dilute and concentrate flow rates, membrane 

properties (permselectivity, resistances and salt permeability) and RED stack size, the model estimates the 

main fluxes and electrical variables involved in the process. Finally, outlet solutions concentrations 

(Ccalc
out,dil & Ccalc

out,conc) are evaluated from mass balance equations. If the calculated outlet concentrations 

are different from the two assumed in the first step, a new iteration is performed startin from the new values 

of outlet concentrations and the procedure is repeated until convergence is obtained (Ccalc
out,dil= Ck

out,dil & 

Ccalc
out,conc= Ck

out,conc). 

A brief description of the model equations is reported below, while a more detailed description along with 

the model validation with experimental results are reported in [45],[46],[38]. 

 
Fig. 5. Flow chart of the RED simulator. 
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Fixing the flow rate (Fconc or Fdil) and a velocity (vdil or vconc) of the stream with limited availability in the 

unit, the number of cell pair is calculated according to the following equations:  

 

 𝐹!"#! = 𝑁𝑣!"#!𝛿!𝑏𝜀 (1) 

 

Where N is the cell pair number, b is the width of the stack (b= 1 m) and ε the porosity of the channel due to 

the spacer presence (0.825).  

The electro motive force (emf) produced across the couple of Ionic Exchange Membranes (IEMs) is 

determined according to the Nernst’s equation, using the average concentration of dilute and concentrate 

solutions within the two channels: 

 

 𝐸!"## = 𝑁 ∗ 𝛼!"# + 𝛼!"#
!"
!
ln !!"#!,!"!!"#!,!"

!!"#,!"!!"#,!"
 (2) 

 

Where αCEM and αAEM are the average permselectivity of cationic and anionic exchange membrane, 

respectively, γconc,av, γdil, mconc,av and mdil,av are the average activity coefficients and average molarities of the 

two solutions feed in the system, R is the ideal gas constant, T is temperature and F is Faraday’s constant. 

However, when current circulates through the stack, the electrical potential of the RED stack at the external 

electrodes is given by: 

 

𝐸!"#$% = 𝐸!"## − 𝑅!"#$%  𝐼 (3) 

 

Rstack is the stack resistance, defined as the sum of the resistances constituting the cell pairs pile and the 

resistance of electrodic compartments (Rblank): 

 

𝑅!"#$% = 𝑁𝑅!"## + 𝑅!"#$% (4) 

with 

𝑅!"## = 𝑅!"# + 𝑅!"#! + 𝑅!"#+𝑅!"# (5) 

 

Where Rcell (single cell pair resistance) is obtained by summing membranes (RCEM and RAEM) and channels 

(Rdil and Rconc) resistances. 

The electrical current circulating in the system for a given external load is equal to: 



 13 

 

 𝐼 = !!"#$%
!!"#

 (6) 

 

where Rext is the electrical resistance of the external load connected to the pile.  

It is worth mentioning that the achievable power density can be maximized when this external resistance is 

equal to the internal one (i.e. Rstack) as often happens in power generators with internal resistance 

dissipations.  

Finally, the power output from the unit can be calculated as: 

 

𝑃 = 𝐸!"#$% ∗ 𝐼 (7) 

 

In addition to the above presented equations for electrical variables, the model predicts the salt flux across 

each membrane by accounting for the two different transport mechanisms: (i) the columbic flux related to 

the counter-ions migrating due to the electrical current and (ii) the diffusive salt flux due to the diffusion of 

neutral salt through the membranes (non-ideal phenomenon, which depletes the salinity gradient without 

generating electricity). Mathematically, this can be described as:  

 

 
𝐽!"#$ =

!
!"
+ 2 !!"#$ (!!"#$,!"!!!"#,!")

!!
 (8) 

 

Where I/A is the current density with respect to the cell pair area and is divided by the Faraday constant in 

order to give a molar flux, δm is the IEM thickness (equal to 1.25E-4 m) and Dsalt is the salt diffusive 

permeability, formally analogous to a salt diffusion coefficient, which could be directly derived from 

membrane permselectivity 

Finally, outlet concentrations are calculated solving mass balances for dilute and concentrate channels: 

 
𝐶!"# ,!"#− 𝐶!"# ,!" =

!!"#$ !
!!"#

 (9) 

 
𝐶!"#! ,!"#− 𝐶!"#! ,!" = − !!"#$ !

!!"#!
 (10) 

The model does not need the solution of complex optimization problems for evaluating the size of the 

system and its potential electricity production. The only data needed for the RED simulator are the effluents’ 

characteristics and the wastewater flow rate, on the basis of the district’s density. For this reason, the 
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proposed methodology can be adopted easily for practical application, such as feasibility studies or 

preliminary design of SGP systems. 

 
Fig. 6. Screenshot of the main sheet of the RED simulator. 

 

4. Results 

4.1.  Feasibility study for the design of a SGP system: energy consumption and production 

The feasibility study for the installation of a SGP system is carried out for an urban center characterized by 

the presence of two areas where it is possible to identify two different districts (Figure 7): 

- a Low density (LD) District: residential area including large part of terraced houses or newly built 

isolated houses, composed of 22 buildings hosting as many households; 

- a High density (HD) District: residential area composed of 55 buildings hosting 140 families. 

In order to perform the energetic analysis for a realistic situation, the urban center has been chosen with the 

characteristics of the town of Mussomeli (geographic coordinates: 37°34’32”N, 13°45’11”E) in the South of 

Italy, from which the energy consumptions are available from a previous study [48]. 
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Fig. 7. The position of LD district and HD district in Mussomeli. 

 

The yearly electricity consumptions of the two districts are obtained assuming that every house contains the 

same appliances whose yearly electric consumptions are reported in Table 1. For simplicity, an uniform 

monthly representation of these consumptions is assumed. The only variability is related to the adoption of 

electric air-conditioning systems during summer, as shown in Figure 8. The figure clearly shows the electric 

consumptions of the appliances and of the cooling system for every months for both the LD and the HD 

districts. In both cases, electric consumptions are assumed lower from November to April and higher from 

May to October. 

Table 1. Electric appliances consumptions 

 

Diffusion LD district HD district 

% 

Load’s 
consumption 
(kWh/year) Houses 

District’s 
consumption 
(kWh/year) Houses 

District’s 
consumption 
(kWh/year) 

Fridge without freezer 30 321 7 2247 42 13482 
Fridge with freezer 70 572 15 8580 99 56628 
Freezer 30 464 7 3248 42 19488 
Washing machine 97.3 358 21 7518 137 49046 
Dishwasher 14.6 361 3 1083 21 7581 
Lighting system 100 434 22 9548 141 61194 
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TV 136.6 219 30 6570 193 42267 
Hi-Fi 46.8 95 10 950 66 6270 
Computer 31.9 91 7 637 45 4095 
Electric iron 90 150 20 3000 127 19050 
Electric oven 50 100 11 550 71 7100 
Microwave oven 20 110 4 440 28 3080 
Others 100 80 22 1760 125 11280 
Total 

   
46131 

 
300561 

 

A rooftop photovoltaic (PV) generation system is supposed installed in every building of the two districts, 

with PV panels mounted on the south-oriented surface of the roof. The area available for their installations 

is reduced with respect to the total roof surface, considering the presence of shadows due to difference in 

height of buildings, by means of the software Sketchup (Google). The overall installed PV power is finally 

calculated assuming to use PV modules with rated power 327 W and size 1559x1045 mm. Figures 9 and 10 

show the 3D rendering of the districts with PV panels.  

 

 
Fig. 8. Total electricity consumption per month.. 
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Fig. 9. 3D rendering of LD district with PV panels. 

 

 
Fig. 10. 3D rendering of the HD district with PV panels. 

 

As shown in Figure 11, in this condition PV generation does not support fully the electricity consumptions 

of the districts, thus further measures are needed to cover the loads’ needs. 
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Fig. 11. Monthly power supply for the two districts considering PV generation, using HOMER. 

 

HOMER also considers the possibility to sell electricity to the grid, since the system here considered does 

not implement any storage unit, the non-perfect superposition of consumption and PV generation produces 

the situation depicted in Table 2. Figure 12 shows the mask of a screenshot of HOMER where the district’s 

electric loads, the PV plants and the grid are schematically represented as connected to the same bus. 

 

 
Fig. 12. Schematic representation of the considered architecture using HOMER (LD district). 

 

Grid	 LD	District	Load	
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In Table 2, the PV production is 147613 kWh/year in the LD district and 346918 kWh/year in the HD 

district. The energy purchased from the grid is 74222 kWh/year in the LD district and 327704 kWh/year in 

the HD district, respectively. In the LD district, the percentage of coverage of energy consumption with PV 

generation without considering the excess energy sold to the grid, is equal to 37.75%. In the HD district, the 

coverage is instead 34.96%. When considering the overall load coverage the percentages refer to 119229 

kWh/year in the LD district and to 503886 kWh/year in the HD district.  

In the following, some scenarios are considered with the aim of covering a percentage of the energy 

purchased from the grid (Grid Purchases) using the RED technology. The scenarios will also account for 

the coverage of the overall load. 

Table 2. Output of HOMER simulation. 
LD District HD District 

Production kWh/year % Production kWh/year % 
PV system 147613 66.54 PV system production 346918 51.42 

Grid purchases 74222 33.46 Grid purchases 327704 48.58 
Total 221834 100.00 Total 674622 100.00 

Consumption kWh/year % Consumption kWh/year % 
Loads 119229 53.75 Loads 503886 74.69 

Grid sales 102606 46.25 Grid sales 170736 25.31 
Total 221834 100.00 Total 674622 100.00 

 

4.2. Scenarios 

Two different scenarios are defined: 

1) urban center close to a salt-works; 

2) urban center close to the sea. 

For the first scenario the following sub-cases are considered: 

1.A) limited wastewater flow rate; 

1.B) unlimited seawater flow rate. 

For the second the following sub-case has been considered: 

2) limited wastewater flow rate. 

As already specified, the SGP production is based on the use of two effluents: a diluted or low concentration 

(LC) effluent and a high concentration (HC) effluent. Therefore, the following possible combinations of 

effluents are considered: 

- treated wastewater (LC) and brine (HC); 
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- seawater (LC) and brine (HC); 

- wastewater (LC) and seawater (HC). 

Table 3 summarizes the situations considered. 

Table 3. Definition of the considered scenarios. 

Scenario LC HC 

1.A Treated wastewater (limited 
flow rate) 

Brine 

1.B Seawater Brine 

2 Treated wastewater (limited 
flow rate) 

Seawater 

 

In the cases 1.A and 2 wastewater is considered as LC solution in the RED stack. The corresponding cell 

pair number is determined selecting a reasonable solutions velocity (0.2-1.0 cm/s) in the RED channels. The 

brine flow rate is fixed at a value ranging from 300 m3/d to 350 m3/d, typically available quantity in aside 

located close to a small-medium size salt-works. 

4.3. Wastewater production estimation 

Residential wastewater comes from residential buildings and services deriving from the urban metabolism 

and domestic activities. The sizing of the wastewater treatment plant must be done based on the number of 

equivalent inhabitants (AE). According to the Italian legislation [47], one AE can be defined differently 

according to the parameters that are considered:  

- biochemical demand of oxygen in 5 days (BOD5) equal to 60 g/day; 

- chemical demand of oxygen (COD) of 130 g/day or corresponding to a discharge volume of  0.2 

m3/day for inhabitant, considering the highest value. 

The reference legislative decree 152/06 [47] establishes that one AE occupies 35 m2, or fraction, of gross 

surface in residential buildings, for which a volume of wastewater equal to 0.2 m3 can be considered. In the 

considered case, up to 0.2 m3/AE are considered for the HD district and 0.25 m3/AE for the LD district 

considering slightly higher production for gardening and other activities. The gross surface of the houses 

varies in the two considered cases (LD and HD). What is done here is that the overall built surface is 

considered and then it is divided by the number of families so as to find the overall surface that can be 

ascribed to each home as shown in Table 4.  
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Table 4. Calculation of wastewater production from the number of AE. 
 LD District built surface  [𝒎𝟐] HD District built surface  [𝒎𝟐] 

Total surface 2081 (22 buildings) 11983 (55 buildings) 

Families 22 141 

Single surface of one 

flat/house 

94.59 84.98 

 

 

It turned out that each family has 3 AE both for the LD and the HD district. 

In order to get the number of liters of wastewater produced, it will be necessary to multiply the number of 

houses by the number of AE and by the number of liters produced as fixed by the norm. It will turn out that 

the houses in the LD district produce 16.5 m3/day and the HD district produces 84.6 m3/day. This water is 

pumped into the MBR system [27] that substitutes the activated sludge technology for depuration. This 

depuration technology is more efficient and the depurated water shows a high degree of chemical, physical 

and bacteriological purity. By these special membranes, it is decided to proceed to the depuration of the 

wastewater produced by the users in the two districts in order to attain depurated water for the electricity 

production through RED technology. 

 

4.4.Use of the simulator for detecting the energy production from SGP in different scenarios 

The developed RED simulator  allows to simulate the behavior of a real stack with its size and specific 

operating conditions,  thus providing a useful tool for assessing the feasibility of the SGP project in urban 

environment. The single stacks considered in the simulations have the following features considering the 

different urban densities and thus the amount of available wastewater: 

• number of cell pairs N = 300 ÷ 1000; 
• membrane size S = 1 m2; 
• membrane thickness δm = 0.125 mm. 

However, when larger membrane area is required, multiple stack assembly can be considered, by connecting 

in parallel a number of stacks with 1000 cell pairs. 

In the following the results of the calculations for the two scenarios are reported.  

 

Scenario 1 
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In Scenario 1, the salt concentration for the wastewater flow rate depurated using the MBR technology [32] 

can be assumed as CLC, IN = 0.01 mol/l, while the brine shows a concentration of CHC,IN = 4 mol/l. In both 

cases 1.A and 1.B, since the district is close to a salt-works, the quantity of brine can be assumed as 

unlimited, while the same can not be said for wastewater. Velocities of effluents in all cases are chosen 

small to limit the need of electricity for the pumping system. Scenario 1.A is thus more realistic than 

scenario 1.B. 

In Scenario 1.A, the flow rate of wastewater has been calculated in 84.6 m3/day for the HD district and  16.5 

m3/day for the LD district. The choice of the number of cell pairs in all the cases presented below is done 

considering the experiments carried out in the REApower project and the experience of the authors. Table 5 

summarizes the data for scenarios 1.A for both LD and HD districts. The use of the RES simulator produces 

the results summarized in Table 6. 

The energy production potential of the system (brine-limited wastewater) is equal to 33421.58 kWh/year 

and 8058.44 kWh/year, respectively for the two cases. These values are calculated considering a functioning 

time of about 8000 hours per year (taking into account stops for maintenance and faults). The values, when 

referred to the energy purchased in the two districts, lead to the conclusion that a coverage of 10.20% and 

10.86% of the energy purchased from the grid can be obtained by the RED system in the HD and LD 

districts, respectively. These values are obtained extracting the percentage from the Grid Purchases in Table 

3. Instead, considering the overall load of the district reported in Table 2, the energy produced by the RED 

system covers the 6.63% and 6.76% of the overall energy need of the HD and LD districts, respectively, as 

shown in Figure 13. The diagrams in Figure 11 show that the SGP technology reduces the quantity of 

electric energy taken from the distribution grid, increasing the quota of renewable energy consumption of 

both the LD and HD district. 

 

Table 5. Input data for Scenario 1.A. 
 LD district HD district 

N° cell pairs, N 500 1500 

Concentration, C   

HC 4.00 mol/l 4.00 mol/l 

LC 0.01 mol/l 0.01 mol/l 

Velocity, v   

HC 1.00 cm/s 1.00 cm/s 

LC 0.16 cm/s 0.27 cm/s 
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Flow rate, Q   

HC 103.36 m3/day 310.07 m3/day 

LC 16.54 m3/day 83.72 m3/day 

 

Table 6. Report on produced power – Scenario 1A. 

Features LD HD 

Gross power density, Pd  1.98 W/m2 cell pair 2.77 W/m2 cell pair 
Corrected power density, Pd,corr  2.01 W/m2 cell pair 2.79 W/m2 cell pair 
Gross power output, P  988.50 W 4152.32 W 
  2.75·10-4 kWh/s 1.15·10-3 kWh/s 
  1.43 kWh/m3 diluted 1.19 kWh/m3 diluted 
  0.23 kWh/m3 concentrated 0.32 kWh/m3 concentrated 
Corrected power output, Pcorr  1007.30 W 4177.70 W 
  2.80·10-4 kWh/s 1.16·10-3 kWh/s 
  1.46 kWh/m3 diluted 1.20 kWh/m3 diluted 
  0.23 kWh/m3 concentrated 0.32 kWh/m3 concentrated 
Net gross power density 1.97 W/m2 cell pair 2.77 W/m2 cell pair 

 

 

 Fig. 13. Coverage of the total load of the district in Scenario 1.A. 

 

In Scenario 1.B (representing the case of an urban center close to the sea and to a salt-works), the flow rate 

for the brine is limited by the RED system sizing. From the result of the REAPower project, the following 

quantity can be considered realistic: 300÷350 m3/day. The Input data for both districts are summarized in 

Table 7 while the results of the calculations are reported in Table 8.   
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Table 7. Input data for Scenario 1.B 
 LD/HD districts 

N° cell pairs, N 1500 

Concentration, C  

HC 4.00 mol/l 

LC 0.60 mol/l 

Velocity, v  

HC 1.00 cm/s 

LC 1.00 cm/s 

Flow rate, Q  

HC 310.07 m3/day 

LC 310.07 m3/day 

 

Table 8. Report on produced power – Scenario 1.B. 

Features LD\HD 

Gross power density, Pd  2.33 W/m2 cell pair 

Corrected power density, Pd,corr  2.34 W/m2 cell pair 

Gross power output, P  3489.58 W 

  9.69·10-4 kWh/s 

  0.27 kWh/m3 diluted 

  0.27 kWh/m3 concentrated 

Corrected power output, Pcorr  3511.43 W 

  9.75·10-4 kWh/s 

  0.27 kWh/m3 diluted 

  0.27 kWh/m3 concentrated 

Net gross power density 2.32 W/m2 cell pair 

 

It can be observed that the production of the system brine-seawater is 28091.47 kWh/year. Also in this case 

the value is calculated considering a functioning time of about 8000 hours per year. When this result is 

referred to the energy purchased in the two districts, it leads to the conclusion that a coverage of respectively 

8.57% and 37.85% of the energy purchased from the grid will be covered by the RED system in the HD and 

LD districts, respectively. Similarly, if referred to the overall load of the district, the energy produced by the 
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RED system will cover the 5.57% and 23.6% of the overall energy demand of the HD and LD district, 

respectively, as shown in Figure 14. 

As shown in Figure 12, in the case of the LV district, thanks to SGP technology, the electricity from the grid 

is reduced to less than the 40% of the total need of the district. 

 
Fig. 14. Coverage of the total load of the district in Scenario 1.B. 

 

Scenario 2 

Scenario 2 represents the case of an urban center close to the sea but not to a salt-works. The effluents in 

this case are treated wastewater and seawater. This scenario considers a realistic case of limited wastewater 

production. The seawater concentration is assumed equal to CHC,IN = 0.6 mol/l while the concentration of the 

wastewater as already considered is CLC,IN = 0.01 mol/l. The input data for the simulations are reported in 

Table 9. 

Table 9. Input data for Scenario 2. 
 LD district HD district 

N° cell pairs, N 300 1000 

Concentration, C   

HC 0.60 mol/l 0.60 mol/l 

LC 0.01 mol/l 0.01 mol/l 

Velocity, v   

HC 1.00 cm/s 1.00 cm/s 

LC 0.26 cm/s 0.41 cm/s 

Flow rate, Q   

HC 62.01 m3/day 206.71 m3/day 

LC 16.12 m3/day 84.75 m3/day 
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As it can be easily understood, data are similar to those in Table 4 for case 1.A with the difference that the 

high concentration effluent shows a value CHC, IN = 0.6 mol/l. The results of the RED simulator are reported 

in Table 10. 

 

Table 10. Report on produced power – Scenario 2. 

Features LD HD 

Gross power density, Pd  0.48 W/m2 cell pair 0.73 W/m2 cell pair 
Corrected power density, Pd,corr  0.49 W/m2 cell pair 0.73 W/m2 cell pair 
Gross power output, P  144.62 W 729.94 W 
  4.02·10-5 kWh/s 2.03·10-4 kWh/s 
  0.22 kWh/m3 diluted 0.21 kWh/m3 diluted 
  0.06 kWh/m3 concentrated 0.08 kWh/m3 concentrated 
Corrected power output, Pcorr  147.91 W 734.6 W 
  4.11·10-5 kWh/s 2.04·10-4 kWh/s 
  0.22 kWh/m3 diluted 0.21 kWh/m3 diluted 
  0.06 kWh/m3 concentrated 0.09 kWh/m3 concentrated 
Net gross power density 0.48 W/m2 cell pair 0.73 W/m2 cell pair 

 
 

The quantity of seawater is considered unlimited, while wastewater has the same flow rate as case 1.A. The 

energy production of the system seawater-wastewater is 1183.31 kWh/year and 5876.79 kWh/year for LD 

and HD district, respectively. The electricity produced by the RED technology will cover 1.59% and 1.79 % 

of the electricity for LD district and HD district, respectively. Considering the overall electricity consumed 

by the districts, the RED technology will respectively cover 0.99% and 1.17% of the overall electricity need 

of the LD and HD districts, as shown in Figure 15. 

The diagrams in Figure 3 show that, in scenario 2, the SGP technology is not able to provide a significant 

reduction of the energy exchange between the district and the main distribution grid. 
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Fig. 15. Coverage of the total load of the district in Scenario 2. 

5. Discussion 

5.1. Influence of the urban features on the SGP system 

It is interesting to analyze the relation between urban and energy features in order to understand what is the 

impact of the considered energy supply solution as the urban features change in the three examined cases 

1.A, 1.B and 2. The analysis is done by defining the parameter Tdix, accounting for the urban density and 

defined as the ratio between the volume of the district’s buildings and the surface area where they reside. 

Tdix assumes the following values for the two considered districts [48]: 

 

TdixLD =0.73 m3/m2
  

TdixHD = 2.06 m3/m2
 

 

As function of Tdix, Figures 14 to 16 show: 

• the coverage by RED system of the electricity purchased from the grid (Figure 16); 
• the RED system volume (Figure 17); 
• the RED system power density (Figure 18). 

Figure 16 shows that the coverage of the electricity purchased from the grid by the RED system has not an 

unique trend (increasing or decreasing) as the urban density varies, for the three scenarios considered in this 

study. The RED design indeed requires the choice of a number of cell pairs compatible with the flow rate of 

wastewater and a realistic salt concentration in the outgoing effluents. For each scenario and urban density, 

the overall maximum production potential was considered among the different explored configurations. 

Therefore, it is meaningful the result attained in the 1.A scenario for which up to 10.86% and 10.20% or the 

electricity purchased from the grid could be covered in the LD and HD districts, respectively. On the other 
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hand, scenario 2 shows a reduced production due to the reduced salinity concentration of seawater as 

compared to brine. This results in a very low coverage rate of the district’s consumptions that, for both the 

LD and HD district, does not reach 2% of the total energy requested by the load. In scenario 2, therefore, the 

SGP system has a negligible effect on the energy balance of the two districts, as shown also in Figure 15. 

Figure 17 shows the volume of the stack for all the considered cases, calculated as indicated in Table 11 

assuming that, due to the spacers, a stack of 1000 cell pairs can occupy a volume of 1.5 m3. As it can be 

observed, volumes are perfectly adequate for building installations, since they vary between 0.45 and 2.25 

m3. The larger stack volume is the one where effluents have unlimited flow rate (scenario 1.B). Considering 

an installation with parallel connected stacks, the overall volume occupation and corresponding outputted 

power can be increased and reaches 16.5 m3. Technical rooms containing RED units do not need any 

particular conditioning, do not cause any risky situation for people and they neither produce noise. The 

specific power density is represented in Figure 18. Power density is expressed in kW/m3 and is a parameter 

that gives an indication of the effectiveness of the system. Figure 16 shows that the highest values of the 

power density parameter are for scenario 1.A, while scenario 2 appears the less efficient scenario. 

 

 
Fig. 16. Coverage of electricity purchased from grids. 
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Fig.17. RED Stack volume.  
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Fig. 18. RED power density. 

 

Table 11. RED Stack volume evaluation. 
Scenario LD HD 

1.A From Table 5 there are 500 cell pairs 
1000:1.5 m3 = 500:V                      
V=0.75 m3 

From Table 5 there are 1500 cell pairs 
1000:1.5 m3 = 1500:V                      
V=2.25 m3 

1.B From Table 7 there are 1500 cell pairs                                                               
1000:1.5 m3 = 1500:V                                                                                            
V=2.25 m3 

2 From Table 9 there are 300 cell pairs 
1000:1.5 m3 = 300:V                      
V=0.45 m3 

From Table 9 there are 1000 cell pairs 
1000:1.5 m3 = 1000:V                      
V=1.5 m3 

 

5.2. Economic considerations 

The feasibility study leads to the results summarized in Table 12. 

Table 12. Installed power and energy production of the SGP system. 
Scenario LD HD 

1.A Installed power: 0.9 kW 
Energy production: 8058.44 kWh/year 

Installed power: 4.15 kW 
Yearly energy production: 33421.58 kWh/year 

1.B Installed power: 3.5 kW 
Energy production: 28091.47 kWh/year 

2 Installed power: 0.15 kW 
Energy production: 1183.31 kWh/year  

Installed power: 0.74 kW 
Energy production: 5876.79 kWh/year 

 

Since the RED technology is still at an experimental stage, it is not possible to provide a significant 

economic feasibility study of the proposed scenarios based on market prices. Nevertheless, it is realistic to 

suppose that in the next years, when SGP systems will be ready for commercialization, their initial cost will 

be still very high and their diffusion will need specific economic support mechanisms such as Feed-in 

tariffs, Green Tags or Tax credit, similarly to what happened in the past with PV, thermal solar and wind 

systems. 

Concerning the economic feasibility of the proposed schemes, some recent information reported in the 

literature has indicated how it would be possible to reach a Levelised Cost of Electricity (LCOE) around 105 

€/MWh [49]. Of course, such figure can only be seen as an indication for perspectives analysis of this novel 

technology, which has shown a good potential to become competitive with other RESs. 
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For evaluating the competitiveness of such systems with other kinds of distributed generators, it is 

interesting to compare the results obtained in the study with other feasible scenarios considering the 

installation of ground-mounted PV systems or micro-wind turbines. 

This can be done starting from the yearly energy production values in Table 12 and evaluating the nominal 

power of a PV system and a wind turbine able to produce the same amount of energy in one year. Using the 

solar irradiation data of Mussomeli, the size of the PV system is calculated for all the scenarios and 

population density and is reported in Table 13. The same table reports also the installation costs of the PV 

systems considering an average specific cost for the Italian market in the range 1100-1800 €/kW. The SGP 

system is competitive with the PV technology if is able to guarantee the same installation costs in Table 13 

and the same technical life.  

 

Table 13. Nominal power and installation cost of ground-mounted PV systems in the various scenarios. 
Scenario LD HD 

1.A Nominal power: 5.44 kW 
Installation cost of the PV system: 6.6 k€ 
 

Nominal power: 22.58 kW 
Installation cost of the PV system: 25 k€  

1.B Nominal power: 18.98 kW 
Installation cost of the PV system: 21 k€ 
 

2 Nominal power: 18.98 kW 
Installation cost of the PV system: 1.2 k€ 
 

Nominal power: 3.97 kW 
Installation cost of the PV system: 4.8 k€ 
 

 

Similarly, considering a value of electricity production from wind equal to 1900 kWh/year per installed kW 

(realistic value for Mussomeli) and an average specific cost for the Italian market equal to 3000-4000 €/kW 

for vertical axis wind turbine, the nominal power values and installation costs reported in Table 14 are 

calculated. By comparing the results in Table 13 and 14, it is worth to notice that SGP technology will be 

more easily competitive with wind micro-turbine than with PV systems, considering the current prices of 

these two renewable based technologies. An advantage with respect to wind turbine is the total absence of 

noise that make SGP technologies more suitable for realizations in urban contexts.  

 

Table 14. Nominal power and installation cost of vertical axis micro-wind turbines in the various scenarios. 
Scenario LD HD 

1.A Nominal power: 4.47 kW 
Installation cost of the PV system: 15.6 k€ 
 

Nominal power: 18.56 kW 
Installation cost of the PV system: 55 k€  

1.B Nominal power: 15.60 kW 
Installation cost of the PV system: 47 k€ 
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2 Nominal power: 0.66 kW 
Installation cost of the PV system: 2.6 k€ 
 

Nominal power: 3.26 kW 
Installation cost of the PV system: 12.4 
k€ 
 

 

6. Conclusions and further studies 

In this paper, a methodology is presented and a feasibility study for the application of a SGP generator is 

carried out for two urban districts. The technology of the SGP is based on RED process that has recently 

drawn a lot of attention due to the potential applicability in contexts where safety of people and limited 

visual impact are of primary importance. The literature on the subject of renewable energy production in 

cities does not provide sufficient clues to consider the subject sufficiently discussed. The two considered 

urban districts in the feasibility study show different population density and they are considered in different 

geographic locations and close to the sea or to a salt-works. The results show that the most promising 

realistic scenarios are those including treated wastewater and brine (1.A) and unlimited seawater and brine 

(1.B).  

Further studies will be addressed towards the analysis of higher density buildings close to the sea. The 

possibility to exploit indeed higher quantities of wastewater derives from the urban density. In further 

studies, also the idea of using SGP technology and in particular RED/ED processes to store electricity under 

the chemical form will be analyzed.  
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