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Minor details of the ground, such as thin weak layers, shear bands and slickensided surfaces, can substantially affect
the behaviour of soil–footing and other geotechnical systems, despite their seeming insignificance. In this paper, the
influence of the presence of a thin horizontal weak layer on the ultimate bearing capacity of a strip footing on
dense sand is investigated by single-gravity tests on small-scale physical models of the soil–footing system. The test
results show that the weak layer strongly influences both the failure mechanism and the ultimate bearing capacity if
its depth is lower than about four times the footing width. It is found that the presence of a thin weak layer can
cause decreases of the ultimate bearing capacity of up to 80%. Numerical simulations, by finite-element analysis, of
the behaviour of the reduced-scale models are able to capture the failure mechanism and the ultimate bearing
capacity correctly, only if the mean equivalent constant value of the secant angle of shearing resistance used in
calculations is selected, taking into account the curvature of the shear strength envelope of the sand within the very
low normal stress range existing in the tested models.
Notation
B footing width
CU uniformity coefficient
c01p cohesion intercept of sand
Dr relative density
d particle diameter
d10 particle diameter corresponding to 10% of finer by weight
d50 mean particle size
d60 particle diameter corresponding to 60% of finer by weight
dmax maximum particle size of sand
dmin minimum particle size of sand
E0 Young’s modulus
e void ratio
e0 initial void ratio
emax maximum void ratio
emin minimum void ratio
Gs1 specific gravity of sand
K0 coefficient of earth pressure at rest
L footing length
lm lateral extent of failure mechanism
Ng bearing capacity factor
n0 initial porosity
n porosity
Q vertical load applied to the footing
q mean vertical pressure acting on the footing base
qlim ultimate (or limit) bearing pressure (at peak) or ultimate

bearing capacity
qlim,0 ultimate bearing pressure (at peak) of footing on

homogeneous sand bed
t0 thickness of weak layer
zi depth from the ground surface of weak layer
zm depth from the ground surface of the deepest point of

the failure mechanism
g unit weight of sand
gd1 dry weight of sand
gd2 dry unit weight of weak layer
gs1 specific unit weight of sand
d 0 angle of shearing resistance of the footing–sand interface
d 0
1 angle of friction of the glass–sand interface
h ratio qlim/qlim,0

q emersion angle of the failure surface: qL and qR on the
left or right side of the footing, respectively

n 0 Poisson’s ratio
r settlement of the footing
rlim settlement of the footing in correspondence of qlim
s0 normal effective stress
se 
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s 0
v vertical effective stress

t shear stress
f0
1 angle of shearing resistance of sand

f0
1cv angle of shearing resistance of sand at constant volume

f0
1p peak angle of shearing resistance of sand

f0 �
1p mean equivalent constant value of secant angle of

shearing resistance of sand
f0
2p angle of shearing resistance of the weak layer

y 0
1p peak dilation angle of sand

y 0 �
1p dilation angle corresponding to f0 �

1p

Introduction
Minor structural features can exist in natural soil and rock masses
as well as in earthworks. They include thin syngenetic seams and
laminae such as those occurring in varved soils, thin shear bands
and sliding surfaces brought about by past instability processes,
interfaces between different materials, structural discontinuities,
contact surfaces (sometimes slickensided) between successive lifts
in earth embankments. These ‘details’ may differ considerably from
the adjoining materials in terms of index properties, shear strength,
stiffness and hydraulic conductivity. Due to their thinness, they may
pass undetected even when an ordinarily suitable ground
investigation programme has been carried out. Terzaghi (1929)
termed these features ‘minor geologic details’ and pointed out their
enormous potential effects on the safety of dams; many subsequent
studies (e.g. Rowe (1972, 1991), Leonards (1982), Scott (1987),
Skempton and Vaughan (1993)) considerably added to the subject.
The influence of minor geologic details of the ground on which the
footing is founded does not appear, to the authors’ knowledge, to
have been systematically investigated yet. The simplest of such
details is exemplified by a thin horizontal soil layer weaker than the
soil in which it is interposed. In the present paper, the results of an
investigation into the influence of such a weak layer on the ultimate
bearing capacity of strip footings on dense sand, by means of tests
on reduced-scale physical models, are reported and discussed.

The problem is schematised in Figure 1. Plane strain conditions
are considered. The strip footing is rigid and rests on the ground
surface. The embedment depth is initially nil. The foundation soil
consists of two materials: dry sand (variety A or B) and a thin
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
layer, with thickness t0, composed of a material weaker than the
sand, located at depth zi. The initial dry unit weight of the sand is
gd1. The peak angles of the shearing resistance of the sand and of
the weak material are respectively f0

1p and f0
2p. Actually, the

foundation soil consists of three layers (except when the weak
layer is lacking) – namely, an upper and a lower sand layer plus
the interposed weak layer. The load Q is vertical and centred. The
sand is initially homogeneous in terms of its index properties;
however, its shear strength parameters and stiffness in the
physical model may not be constant within the relevant
geotechnical volume of the foundation soil because of the
curvature of the failure envelope in the range of very low stresses.

The main aim of the tests on reduced-scale models is to get a first
insight into the effects of the weaker layer on the failure
mechanisms and on the ultimate bearing capacity.

Experimental set-up and testing procedure
The experimental set-up is shown schematically in Figure 2. It
consists of a parallelepipedal stiff box having the following outer
dimensions: length: 1123mm; width: 240 mm; height: 520mm.
The inside available space is 1000 mm long, 100mm wide and
380mm high. The front and rear walls of the box are made of
poly(methyl methacrylate) (PMMA) plates, 25 mm thick, while the
side walls are 20mm thick. The bottom is also made of PMMA.
The box rests on an 18 mm thick steel plate from which four
vertical tee-steel sections stem at the corners; they are connected,
in turn, to other horizontal steel sections in order completely to
frame and stiffen the PMMA box. The lateral displacements of the
front and rear walls can be considered negligible so that the plane
strain (or two-dimensional (2D)) conditions apply. To reduce
friction, the inside surfaces of the box are covered with a 2 mm
thick glass sheet (see detail in Figure 2). The glass surface is
coated with transparent silicone oil. The base of the box is tightly
clamped onto the ram platen of a motorised hydraulic press. Other
details of the apparatus are reported by Muscolino (2001).

The model footing is rigid; its width B is 40 or 60 mm, while its
length L is 100 mm in both cases. At the top, the footing is
connected to a vertical piston guided by an axial ball bushing so
that the footing can move only vertically; the piston is connected,
in turn, to a proving ring (or to a load cell) that reacts against the
cross-head of the press. The footing is loaded by driving the box
upwards by means of the press ram at a constant displacement
rate of 0·6 mm/min.

The settlements of the footing are measured by a dial gauge. To
reveal visually the displacements at different depths and the
failure mechanism, initially horizontal rows of coloured sand
particles are carefully placed in the sand layers and in contact
with the glass sheet. To set a visual reference for displacements
and distortions of the sand and the weak layer, a square grid of
vertical and horizontal lines was carved on the external surface of
the front PMMA wall. A digital camera was used to take pictures
of the front wall in order to exploit the particle image velocimetry
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Figure 1. Scheme for the formulation of the problem
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(PIV) technique for catching the evolution of soil displacements
and the formation of the failure mechanism.

Materials

Sands
The soil layer consists of silica sand. Two sands, A and B, have been
used. The sand grains are from subrounded to angular. The sands are
14
ed by [] on [25/01/18]. Published with permission by the ICE under the CC-BY l
essentially composed of silica (more than 95%) and traces of
feldspars and calcite. The sand has been deposited by dry pluviation
at a constant height of fall to achieve uniformity of the index
properties within the sand. The target density was obtained by
calibrating the height of fall and the size of the spreader hole. The
height of fall of 1 m was kept constant during the deposition. Initial
index properties of the sands are summarised in Table 1.
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The relative density, Dr, was determined according to ASTM
standards D 4253-00 and D 4254-00 (ASTM, 2004a, 2004b).
Since the ratio B/d50 is greater than 50 – specifically, 63·2 for B =
60 mm and 88·9 for B = 40 mm for footing on sands A and B,
respectively – the particle size effect can be considered negligible
according to recommendations made by many researchers (e.g.
Bolton and Lau (1989), Taylor (1995), Toyosawa et al. (2013)).

The crushing of sand particles is negligible considering its
mineralogical composition and the low stress level existing in the
tested physical models (Valore and Ziccarelli, 2009).

The shear strength parameters of sands were determined by nine
triaxial and 27 direct shear tests for sand A and by 12 direct shear
tests for sand B. The triaxial compression tests were performed on
dry sand (four consolidated drained (CD) tests) and on back pressure-
saturated sand (one CD test and four isotropically consolidated
undrained tests); the direct shear tests were carried out on dry sand.
Results of tests concerning sand A are shown in Figure 3.

The peak strength failure envelope of both sands is definitely
curvilinear. The shear strength parameters of sand A vary in function
of the normal stress level as shown in Figure 3. The angle f0

1p

obtained from triaxial tests on saturated specimens is slightly lower
than that from dry ones. The results of direct shear tests on dry sand
confirm the curvature of the failure envelope. For very low effective
stresses, s 0

v (<10 kPa), f0
1p is higher than 50°, and for s 0

v of the order
of 1–2 kPa, it may exceed 60°. The angle of shear strength at
constant volume (or at critical porosity), f0

1cv, obtained by means of
triaxial tests and direct shear tests, is 34°. The shear strength
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
parameters of sand B vary as follows: c01p ¼ 0 and f0
1p > 50° for

s 0
v < 20 kPa; c01p ¼ 0 and f 0

1p ¼ 50° for 20 < s 0
v < 50 kPa; c01p ¼

0 and f0
1p ¼ 45° for s 0 > 50 kPa; f0

1cv ¼ 32°.

These results are in good agreement with data reported in the
literature (Celauro et al., 2014; Chakraborty and Salgado, 2010;
Lancelot et al., 2006; Loukidis and Salgado, 2011; Negussey and
Vaid, 1990; Ponce and Bell, 1971; Rowe, 1962; Sture et al.,
1998; Yamaguchi et al., 1977).

The curvature of the failure envelope in the very low effective
stress range is the most important single cause of the scale effects
that afflict 1g tests on reduced-scale models; it cannot be
neglected in the interpretation of the results of single-gravity
physical tests (Hettler and Gudheus, 1988; Kumar and Khatri,
2008; Lau and Bolton, 2011a).

The angle of shearing strength for plane strain conditions is
higher than the one obtained by triaxial tests due to the influence
of the intermediate effective principal stress (Roscoe, 1970;
Rowe, 1969; Sayão and Vaid, 1996). When Dr is greater than
90% (relevant to the present research), the plane strain value of
f0
1p may exceed the triaxial one by as much as 7° for values of the

angle of shearing resistance at constant volume f0
1cv ranging from

30° to 40° (Abelev and Lade, 2004; Green and Bishop, 1969;
Hoque and Tatsuoka, 1998; Lade and Duncan, 1973; Oda, 1981).

Materials making up the weak layer
Four materials have been used: three varieties of white dry talc
powder [Mg3Si4O10(OH)2], namely, Baker, Luzenac 2 and CM3,
Table 1. Initial index properties of the silica sands A and B
Sand
 Gs1

fs1:

kN/m3
 n0
 e0
 emin
 emax
 Dr: %

fd1:

kN/m3
e 
dmax:
mm
d60:
mm
d50:
mm
d10:
mm
dmin:
mm
CU = d60/
d10
A
 2·65
 26
 0·383
 0·622
 0·606
 0·798
 92
 16
 2·36
 0·97
 0·95
 0·72
 0·30
 1·35

B
 2·65
 26
 0·393
 0·647
 0·634
 0·897
 95
 15·8
 0·85
 0·47
 0·45
 0·33
 0·18
 1·42
Minimum and maximum void ratios (emin and emax) were determined according to ASTM standards D 4253-00 and D 4254-00 (ASTM, 2004a, 2004b)
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Figure 3. Results of triaxial tests on sand A: (a) all tests; (b) tests at low stresses (dashed circle is relative to saturated sand)
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and bentonite (sodium (Na) montmorillonite) placed dry and then
humidified by spraying distilled water. The peak angles of shear
strength of these materials were determined by direct shear tests
and are summarised in Table 2. The cohesion intercept and the
dilation angle of the mentioned materials are negligible. The angle
of shearing resistance of the bentonite (sodium montmorillonite)
was determined by direct shear tests on specimens made of a
bentonite layer that is 4 mm thick interposed between two sand
layers; this ‘sandwich’ intended to reproduce the sand–bentonite
system of the physical model at the relevant stresses. The water
content of the bentonite was 75–85%. The obtained value of the
angle of shear strength, f0

2p, of the bentonite is in good agreement
with the published data (e.g. Mesri and Olson (1970), Mesri and
Olson (1971), Domitrovic and Kovacevic Zelic (2013)). It is
worth mentioning in passing that calcium (Ca) montmorillonite
can show higher values of f0

2p (Hattab et al., 2015).

The weak layer thickness is typically between 3 and 4 mm; see
Table 3.
16
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Footing
The width B of the footing is 40 or 60 mm, while its length L is
100 mm. The footing is made of aluminium and can be
considered rigid; its settlements are uniform. The front and rear
sides of the footing were coated with polytetrafluoroethylene to
minimise friction at the interface with the front and rear glass
sheets of the testing box. Sandpaper was glued onto the footing
base. The peak angle of shearing resistance, d 0, of the interface
between silica sand and sandpaper was 42° as determined by
direct shear tests, so the sand–footing contact can be considered
perfectly rough according to Hansen and Christensen (1969) and
Kumar and Kouzer (2007), since d 0  =​f0

1p > 0�7 for f0
1p ¼ 50°.

Glass–sand friction
The glass sheets have been lubricated with silicone oil.
However, the interface is not perfectly smooth. The angle of
friction d 0

1 of the sand–glass interface depends on the viscosity of
the lubricating oil, the stress level, strain rate and smoothness of
the glass surface (Goto et al., 1993; Tatsuoka et al., 1984).
Tatsuoka and Haibara (1985) reported values of d 0

1 to be between
5° and 7° relative to the interface between Toyoura sand (which is
a fine, essentially silica, sand) and non-lubricated acetone-cleaned
glass.

Although in the experiments at hand the glass–sand friction is not
nil, it is believed that the actual deformation state can be
considered approximately 2D.
Table 3. Sand A: results of 1g tests performed on physical models of strip footings resting on sand bed containing a thin horizontal weak
layer
Weak layer
 Test
 zi/B
 t0: mm
 lm/B
 zm: mm
 zm/B
icense 
pL: °
 pR: °
 qlim: kPa
 qlim/qlim,0
 qlim: mm
 qlim/B
Dry Baker talc
 B05
 1·47
 2
 2·50
 88·2
 1·47
 40
 36
 307·9
 0·82
 8·7
 0·14

B07
 0·50
 2·5
 4·75
 105
 1·75
 32
 —
 371·3
 0·99
 9·1
 0·15

B08
 0·95
 3
 2·50
 57
 0·95
 —
 33
 333·0
 0·89
 8·8
 0·15

B09
 1·20
 2·5
 3·00
 72
 1·20
 34
 41
 318·8
 0·85
 9·0
 0·15

B10
 2·92
 3
 3·50
 90
 1·50
 45
 —
 308·4
 0·82
 9·2
 0·15

B11
 1·95
 2·5
 5·25
 117
 1·95
 42
 35
 306·8
 0·82
 8·7
 0·15

B19
 2·50
 3
 2·25
 60
 1·00
 41
 —
 303·5
 0·81
 8·4
 0·14

B20
 2·67
 3
 6·75
 160·2
 2·67
 36
 —
 291·5
 0·78
 8·7
 0·15
Dry Luzenac 2 talc
 B12
 1·87
 7
 4·20
 112·2
 1·87
 41
 38
 207·2
 0·55
 7·1
 0·12

B13
 1·95
 3
 4·50
 117
 1·95
 —
 40
 235·7
 0·63
 7·8
 0·13

B14
 1·20
 3
 3·00
 72
 1·20
 40
 37
 267·4
 0·71
 9·2
 0·15

B15
 2·92
 4
 4·00
 96
 1·60
 —
 44
 296·9
 0·79
 10·1
 0·17

B21
 1·10
 4
 2·80
 66
 1·10
 42
 37
 230·2
 0·61
 8·1
 0·13

B22
 0·50
 3
 3·60
 96
 1·60
 36
 44
 294·7
 0·79
 9·3
 0·15

B33
 0·95
 3
 2·90
 117
 1·95
 —
 —
 267·4
 0·71
 8·5
 0·14

B42
 3·90
 3
 3·40
 82·8
 1·38
 —
 —
 293·7
 0·78
 10·0
 0·17

B49
 2·43
 3
 6·80
 145·8
 2·43
 —
 —
 228·0
 0·61
 8·9
 0·15
Humidified bentonite
 B16
 1·20
 3
 3·00
 72
 1·20
 33
 37
 117·6
 0·31
 4·2
 0·07

B17
 1·92
 4
 3·50
 115·2
 1·92
 42
 —
 204·0
 0·54
 7·1
 0·12

B18
 1·00
 4
 2·25
 60
 1·00
 —
 43
 112·6
 0·30
 3·8
 0·06

B23
 0·50
 3
 1·00
 30
 0·50
 —
 —
 80·4
 0·21
 1·7
 0·03

B37
 2·97
 3
 6·60
 178·2
 2·97
 —
 —
 245·5
 0·66
 7·0
 0·12
Homogeneous sand bed
 B06
 —
 —
 3·25
 84
 1·4
 —
 41
 375·1
 1
 8·29
 0·14
Results of test B06 on homogeneous sand bed reported for comparison
B = 60 mm, footing width; zi, depth of the top surface of the weak layer; t0, thickness of the weak layer; qlim, ultimate bearing capacity; qlim,0, ultimate bearing capacity
for the homogeneous sand bed; rlim, settlement of footing at limit pressure; lm, maximum lateral extent of failure mechanism; zm, maximum depth of failure
mechanism; qlim,0 = 375·1 kPa; qL and qR, emersion angles of the failure surface on the left or right side of the footing, respectively; other symbols defined in Notation
Table 2. Angle of peak shear strength f0
2p of the weak layer
Material
 e 0
2p: °
Dry Baker talc powder
 31

Dry Luzenac 2 talc powder
 18

Dry CM3 talc powder
 27

Humidified bentonite
 11
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Results of 1g tests on physical models
Fifty-four tests were performed in all (Muscolino, 2001), of which
45 were on sand A and 9 on sand B. Results of 18 of the tests
performed on sand A are summarised in Table 3. Some tests were
repeated at the same zi/B and are not listed in Table 3. Results of
tests performed on sand B are summarised in Table 4. In Tables 3
and 4, the following data are given: the ultimate bearing capacity
qlim and the footing settlement rlim corresponding to qlim, the
depth and the material making up the weak layer, the main
geometric characteristics of the failure mechanism.

The homogeneous dry sand bed test and the tests on dry sand
containing a weak layer made of dry talc powder were, of course,
drained. The tests involving a weak layer made of humidified
bentonite can also be considered drained on account of the rather
low displacement rate imposed on the footing, of the small
thickness of the bentonite layer and of the dryness and high
draining capacity of the sand bounding it.

Failure mechanisms
Typical failure mechanisms are shown in Figures 4–7 for B =
60 mm footing on sand A and in Figure 8 for B = 40 mm footing
on sand B. The displacement fields and failure mechanisms
relative to tests carried out on footing resting on sand A obtained
by PIV analysis (Liu and Iskander, 2010; McMahon and Bolton,
2011; White et al., 2003) are reported in Figures 9–11. General
shear failure (Vesić, 1973) occurred in all the experiments. The
development of the failure surface started from the edges of the
footing and then propagated downwards and laterally outwards,
accompanied by the heaving of the ground surface on both sides
of the footing. The complete formation of the failure mechanism
during the loading process was clearly observed visually only
after the peak load and was revealed by a shear band of dilated
sand and by distortions undergone by the coloured sand rows (see
Figures 4 and 5). This was observed through the front and rear
walls of the testing box. The thickness of the observed shear band
ranges from 6·1 to 9·1 mm corresponding to (6·3–9·4)d50 for
footings on sand A and from 3·2 to 5·4 mm corresponding to
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
(7·1–12)d50 for footings on sand B. In both cases, it is well within
the range of (6–25)d50 reported in geotechnical literature (Alshibli
and Hasan, 2008; Finno et al., 1997; Mühlhaus and Vardoulakis,
1987; Tatsuoka, 2001; Tatsuoka et al., 1991).

In the case of the homogeneous sand bed, the failure surfaces
resemble that of Prandtl (1920), but their lateral extent is smaller
(see Figures 4 and 8(a)); moreover, the angle of emersion at the
ground surface q is close to 45° − y 0

1p ​= ​2 instead of 45° − f0
1p ​=​2,

as found by Arens (1975).

The angles qL or qR, reported in Tables 3 and 4, differ from
45° − f0

1p ​=​2 due to the dilation of the sand and range from 32 to
45° for footings on sand A and from 33 to 38° for footings on
sand B; they approximately correspond to 45° y 0

1p ​=​2.

If the depth of the weak layer does not exceed a critical value
(about 4B), it strongly influences both the failure mechanism and
the ultimate bearing capacity, qlim. The failure mechanism can cut
across the weak layer when it is made of talc and is located at a
Table 4. Sand B: results of 1g tests performed on physical models of strip footings resting on sand bed containing a thin horizontal weak
layer
Weak layer
 Test
 zi/B
 t0: mm
 lm/B
 zm: mm
 zm/B
e 
pL: °
 pR: °
 qlim: kPa
 qlim/qlim,0
 qlim: mm
 qlim/B
Dry CM3 talc powder
 B62
 1·5
 5
 4·30
 60
 1·50
 34
 34
 114
 0·54
 4·97
 0·08

B63
 2·0
 5
 6·45
 80
 2·00
 36
 34
 118
 0·56
 4·86
 0·08

B65
 1·0
 5
 2·73
 40
 1·00
 33
 33
 125
 0·59
 6·33
 0·11

B64
 3·0
 5
 4·47
 94
 2·35
 34
 —
 142
 0·67
 5·36
 0·13

B66
 4·0
 5
 6·68
 134
 3·35
 —
 37
 190
 0·90
 6·44
 0·11

B67
 0·5
 5
 6·40
 143
 3·58
 —
 38
 146
 0·69
 6·23
 0·10
Homogeneous sand bed
 B59
 —
 —
 4·85
 107
 2·67
 —
 33
 211
 —
 4·35
 0·07

B60
 —
 —
 6·10
 135
 3·38
 —
 34
 212
 —
 5·08
 0·08

B61
 —
 —
 4·10
 110
 2·75
 —
 36
 196
 —
 4·21
 0·07
Results of tests B59, B60 and B61 on homogeneous sand bed reported for comparison
B = 40 mm, width of footing; zi, depth of the top surface of the weak layer; t0 = 5 mm, thickness of the weak layer; qlim, ultimate bearing capacity; qlim,0, ultimate
bearing capacity for the homogeneous sand case; rlim, settlement of footing in correspondence of ultimate bearing capacity; lm, maximum lateral extent of failure
mechanism; zm, maximum depth of failure mechanism; qlim,0 = 212 kPa; qL and qR, emersion angles of the failure surface on the left or right side of the footing,
respectively; other symbols defined in Notation
B06

Failure mechanism

0 100 mm

1000 mm

38
0 

m
m

Q

Figure 4. Homogeneous sand A bed. Failure mechanism observed
in test B06. Thin lines are monogranular rows of blue-coloured
sand particles adjacent to the box wall; they were initially
horizontally aligned
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small depth underneath the footing; see Figures 5(a) and 6(a). The
failure mechanism usually develops in part along the weak layer
(see Figures 5(b), 6(b), 6(c) and 7).

The ratio rlim/B is almost constant for the weak layer made of talc
powder and ranges from 0·14 to 0·15 for the Baker talc, from
0·12 to 0·17 for the Luzenac 2 talc and from 0·08 to 0·13 for the
CM3 talc. For the weak layer made of humidified bentonite, the
rlim/B ranges between 0·03 and 0·12.

The relationship between the normalised lateral extent of the
failure mechanisms (lm/B) and the depth of the weak layer (zi/B)
is shown in Figure 12 for footings on sand A. The weak layer
18
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clearly influences lm that becomes about twice as much as that for
the homogeneous sand case for zi/B ranging from 2·5 to 2·9. The
ratio lm/B abruptly reduces when zi/B is about 3. For zi/B > 3, the
values of lm/B are about the same as that observed for
the homogeneous sand bed, irrespective of the material used for
the weak layer. For values of zi/B of about 0·5–0·6, lm/B strongly
depends on the shearing resistance of the weak layer; when the
weak layer is made of humidified bentonite, lm is very small,
while when it is made of talc powder (both Baker and Luzenac 2),
lm/B is higher than the that of the homogeneous sand bed. The
data in Table 3 show that the relation between lm/B and the
maximum depth (zm/B) of the failure mechanism is approximately
linear. The lateral extent of failure mechanism lm is shorter than
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that for the homogeneous sand bed (lm = 3·25B) if the depth of
the weak layer zi is smaller than the footing width B, while it is
larger when zi exceeds B.

Bearing pressure–settlement curves
Typical vertical pressure (q)–settlement (r) curves are shown in
Figures 13 and 14 for footing on sands A and B, respectively.
They refer to a sand bed containing a thin weak layer made of
humidified bentonite (test B16) or of dry Luzenac 2 talc powder
(test B21). In both cases, the weak layer is located at a depth zi
slightly larger than the footing width B. The experimental results
of tests B06 and B60 relative to the homogeneous sand beds A
and B are also plotted in the figures. The three curves are all
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
characterised by a distinct peak corresponding to the ultimate
bearing capacity, qlim. Beyond the peak, q undergoes a
conspicuous, but not abrupt, decrease. For tests on sand A, the
settlement in the correspondence of the peak rlim varies from
8·3 mm (when the weak layer is missing; test B06) to 8·1 mm
(test B21) and to 4·2 mm (test B16), while for tests on sand B,
rlim ranges from 5·1 mm (in the absence of the weak layer; test
B60) to 6·2 mm (test B67) and to 5 mm (test B62). For tests on
sand A, the presence of the weak layer causes qlim to reduce by
39% (from 375·1 to 230·2 kPa) and by 61% (from 375·1 to
117·6 kPa) for tests B21 and B16, respectively; for tests on sand
B, qlim reduces by 41% (from 212 to 146 kPa) and by 46% (from
212 to 114 kPa) for tests B67 and B62, respectively. The regular
post-peak behaviour is determined by the gradual reduction of the
dilation angle of the sand and by the increase of the depth below
the ground surface of the footing base and, of course, by the
imposed constancy of the settlement rate.

Before approaching the peak, the ‘stiffness’ of the soil–footing
system, as measured by Dq/Dr, in the presence of the weak layer
is smaller than the one corresponding to the homogeneous case
(Figures 13 and 14), for footings resting on both sands A and B.

Influence of the weak layer on the ultimate bearing
capacity qlim

The ultimate bearing capacity, qlim, has been normalised with
respect to the ultimate bearing capacity relative to the sand bed
without the weak layer, qlim,0. The ultimate bearing pressure (at
peak) of footings on a homogeneous sand bed, qlim,0, is 375·1 kPa
(for B = 60 mm) and 212 kPa (for B = 40 mm) for footings on
sands A and B, respectively. The ratio h = qlim/qlim,0 is plotted
against zi/B in Figure 15.

Each set of experimental results referring to weak layers made of
the same material can be interpolated by a curve showing an
upwards concavity and a well-defined minimum value of h. The
curve relative to the weak layers made of Baker talc powder,
characterised by an angle of shear strength f0

2p ¼ 31°, shows a
minimum at zi/B = 2·2, at which the reduction in the ultimate
bearing capacity, compared to the homogeneous sand case,
amounts to 21·5%. The ultimate (or limit) bearing pressure (at
peak) or ultimate bearing capacity, qlim, tends to qlim,0 (i.e. h = 1)
for zi/B higher than 4. The curve relative to the weak layers
made of Luzenac 2 talc powder ðf0

2p ¼ 18°Þ attains its minimum
at zi/B = 1·9, with a remarkable decrease in h of 40·5% (from
qlim,0 = 375·1 kPa to qlim = 223·2 kPa). The ultimate (or limit)
bearing pressure (at peak) or ultimate bearing capacity, qlim, tends
to qlim,0 for zi/B larger than 4·3. The most dramatic reduction in
qlim occurs when the weak layer is made of humidified bentonite
ðf0

2p ¼ 11°Þ; in this case, the minimum value of the interpolating
curve was not precisely identified, but occurs at a value of zi/B
lower than 0·5. The interpolating curve is poorly defined within
the interval of zi/B from 0 to 0·5, in which qlim rapidly drops
down. The maximum reduction in qlim amounts to 80%; qlim
tends to qlim,0 for zi/B values larger than 4·5.
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Figure 7. Sand A. Effect of the depth zi of the weak layer on the
failure mechanisms observed in tests (a) B23, (b) B16 and (c) B37.
Weak layer made of wet humidified bentonite; shown by double
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19
e 



Geotechnical Research
Volume 4 Issue GR1

The bearing capacity of footings on sand
with a weak layer
Valore, Ziccarelli and Muscolino

Download
Results of tests carried out on sand B (weak layer made of CM3
talc powder with f0

2p ¼ 27°) show a minimum at zi/B = 1·7, and
the reduction in qlim, compared to qlim,0, amounts to 45%; qlim
tends to qlim,0 for zi/B larger than 4.

The above results clearly demonstrate the great importance of the
presence of a weak layer on the ultimate bearing capacity, which
can decrease by as much as 80%. However, there is a threshold
depth beyond which the influence of the weak layer becomes
negligible, as expected. This depth is related to the shear strength
of the material making up the weak layer. The effect of the weak
layer on qlim depends essentially on zi/B and tan f0

1p ​=​ tan f0
2p.

The effects of the thin weak layer depend on the difference
between the shear resistance and deformability parameters of the
sand and those of the weak layer, as well as on the thickness
and depth of the latter. These factors affect the failure mechanism,
the ultimate bearing capacity and the settlements of the footing;
they cannot be considered as separable variables. In any case,
the reduction of the ultimate bearing capacity and the
modification of the failure mechanism induced by the presence of
20
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the weak layer derive fundamentally from the limited capability of
the weak layer to transfer shear stresses to the underlying sand;
clearly, the lower the shear strength of the weak layer, the
stronger its influence.

For footings on homogeneous sand, the ultimate bearing capacity
factor Ng = 2qlim/(Bg) is equal to 781·5 and 670·9 for footings on
sands A and B, respectively. These values are in very good
agreement with the values reported in the literature for dense
sands (Cerato and Lutenegger, 2007 (Figure 16(b)); de Beer,
1963, 1965; Diaz-Segura, 2013; Meyerhof, 1951; Vesić, 1973
(Figure 16(a))). The sands used by Cerato and Lutenegger (2007)
are as follows: the Winter sand, angular and well graded, d50 =
0·7 mm, d10 = 0·2 mm, CU = 4·5, gd = 18·8 kN/m3, Dr = 87% and
f0
cv ¼ 40°; the brown mortar sand, less angular and well-graded

than Winter sand, d50 = 0·6 mm, d10 = 0·3 mm, CU = 2·1, gd =
15·9 kN/m3, Dr = 70% and f0

cv ¼ 38°.

Back-analysis
The numerical simulations were performed with reference to the
reduced-scale physical model. The dilation angle of the sands, y 0

1p,
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was evaluated according to Bolton (1986) as y 0
1p ¼ 1�25 ðf0

1p −
f0
1cvÞ, f0

1cv (34° for sand A and 32° for sand B) being the angle of
shearing resistance at constant volume (i.e. at critical porosity). In
finite-element (FE) back-analyses, the angle of the shearing
resistance of the weak layer was assumed to be known, constant
and equal to the one determined by direct shear tests; the dilation
angle was considered nil. The back-analysis aimed at the
determination of the secant mean equivalent constant angle of
shearing resistance of the sand.

The main aim of the analyses is to back-calculate by successive
trials an operative equivalent mean secant value of both the angle
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
of shearing resistance, f0
1p, and the dilation angle, y 0

1p, of the sand
in correspondence of the ultimate bearing capacity, qlim. The unit
weight of the materials and the angle of shearing resistance of the
weak layer were assumed to be known. The cohesion intercept is
always considered negligible. Plane strain state and drained
conditions are assumed. To avoid mesh-related dissymmetries,
only half of the model was analysed. The reference scheme for
FE analysis along with the boundary conditions is shown in
Figure 17. The vertical load Q corresponds to an average bearing
pressure q on the soil–footing interface. Actually, a uniform
1 mm

1 mm

1 mm
Test B06
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Test B06
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Figure 9. Test B06: footing on homogeneous sand A. Evolution of
the displacements field, obtained by PIV analysis, in function of the
applied pressure q and corresponding settlement r of the footing.
The ratios q/qlim and r/rlim are indicated. qlim = 375·1 kPa; rlim =
8·29 mm: settlement at ultimate bearing pressure qlim; q: current
applied vertical pressure. White dashed line: failure mechanism
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Figure 10. Test B21: footing on sand A containing a horizontal
weak layer made of Luzenac 2 dry talc powder. Evolution of the
displacements field, obtained by PIV analysis, in function of the
applied pressure q and of the corresponding settlement r of
the footing. The ratios q/qlim and r/rlim are indicated. qlim =
230·2 kPa; rlim = 8·1 mm: settlement at ultimate bearing pressure
qlim; q: current applied vertical pressure. White dashed line: failure
mechanism
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vertical settlement of the footing base is imposed instead, so as to
reproduce the real experimental procedure and accounting for the
high stiffness of the footing and for the roughness of its base (Lee
et al., 2013). The finite-element code Plaxis 2D (Plaxis, 2008)
was used. For soils, the simple elastic–perfectly plastic
Mohr–Coulomb constitutive model with non-associated flow rule
has been adopted, similar to many researchers (Bolton and Lau,
1993; Hjiaj et al., 2005; Kumar and Khatri, 2011; Loukidis and
22
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Salgado, 2009; Potts, 2003; Yin et al., 2001). Geometric
variations of the system were disregarded. The latter hypothesis
and the assumption of perfect plasticity imply that pre-peak
hardening, post-peak strain softening and spatial dependence of
2 mm Test B23
Humidified bentonite
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Figure 11. Test B23: footing on sand A containing a horizontal
weak layer made of humidified bentonite. Evolution of the
displacements field, obtained by PIV analysis, in function of the
applied pressure q and of the corresponding settlement r of the
footing. The ratios q/qlim and r/rlim are indicated. qlim = 80·4 kPa;
rlim = 1·7 mm: settlement at ultimate bearing pressure qlim; q: current
applied vertical pressure. White dashed line: failure mechanism
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the angle of shear resistance, f0
1p, on stress level have not been

taken into account.

Possible small effects linked to the progressive failure
phenomenon (Bishop, 1967) were not considered, according to
the observations made by many researchers on the basis of 1g,
large- and small-scale and centrifuge tests (Hettler and Gudheus,
1988; Lau and Bolton, 2011a; Muhs, 1965; Yamaguchi et al.,
1976, 1977). Muhs (1965) detected progressive failure in large-
scale tests (square footing, base area of the footing = 1 m2) and
observed that it depended on the deformation level before failure
and on the settlements of the footing; he considered that it is
 [] on [25/01/18]. Published with permission by the ICE under the CC-BY licens
significant only for large settlements. Yamaguchi et al. (1976)
found a marked localisation of the shear strains, by using the
X-ray technique, but this observation refers only to the post-peak
phase. Hettler and Gudheus (1988) found that the shear band
influences the load–displacement curve mainly after the peak, and
hence, an analysis of progressive failure is not necessary for the
determination of the peak load. Lau and Bolton (2011a) recently
observed that no strong evidence of progressive failure has been
found in their tests.

The bearing pressure–settlement curves are back-calculated only
up to the peak. Actually, the angle of shearing strength depends
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on the effective stress level and, consequently, it varies within
the relevant soil volume, from ‘low’ values in the soil beneath
the footing (where the effective normal stresses are relatively
‘high’) to ‘high’ values within the passive zone where the stresses
in tested physical models are extremely low (Lau and Bolton,
2011a, 2011b).

Homogeneous sand bed
The homogeneous sand bed–footing system was first back-
analysed. Experimental and calculated results (tests B06 and B60 for
footing on sands A and B, respectively) agree fairly well as far as the
ultimate bearing pressure, qlim,0, and the bearing pressure–settlement
curve (up to qlim,0) are concerned; see Figures 18 and 19. The
following parameters of the sand were used: Young’s modulus E0 =
104 kPa, Poisson’s ratio n 0 = 0·15, angle of shear strength f0

1p ¼
52�3° angle of dilation y 0

1p ¼ 22�9° and K0 = 0·4.
24
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The back-calculation satisfactorily captures the failure mechanism
and the load–settlement curve. The back-calculated values of f0

1p

and y 0
1p are in good agreement with shear strength parameters

obtained from triaxial and direct shear tests (sand A) and from
direct shear tests for sand B, at low effective stress levels. The
small instability of numerical results in the pre-peak range (see
Figure 19) is due to the large difference between the peak shear
strength angle, f0

1p, and the peak dilation angle, y 0
1p, and to the

non-associativity of the constitutive model adopted (Frydman and
Burd, 1997; Potts and Zdravkovic, 1999, 2001; Yin et al., 2001).

Sand bed with a weak layer
The numerical analysis, despite the adopted simplifying
assumptions, allows one to find out the failure mechanisms which
match the experimentally observed ones very well as shown – for
example, in Figure 20. This latter is to be compared with the
results of test B22 (footing on sand A; weak layer made of
Luzenac 2 talc powder; Figure 6). The values of Young’s
modulus, of Poisson’s ratio and of the dry unit weight, gd2, of the
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Figure 17. Reference scheme for FE analysis. Q: vertical load
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weak layer have been assumed to be equal to that of the sand bed
(E0 = 104 kPa, n 0 = 0·15, gd2 = 16·1 kN/m3). Other parameters of
the weak layer were as follows: Baker talc powder: f0

2p ¼ 31°,
K0 = 0·4; Luzenac 2 talc powder: f0

2p ¼ 18°, K0: 1 − sin f0
2p;

humidified bentonite: f0
2p ¼ 11°, K0: 1 − sin f0

2p; CM3 talc
powder: f0

2p ¼ 27°, K0 = 0·4. The calculations were performed
assuming for sand A the values of f0

1p ¼ 52�3° and y 0
1p ¼ 22�9°

retrieved from the analysis of test B06 on homogeneous sand A
and f0

1p ¼ 50° and y 0
1p ¼ 22�5° obtained from the back-analysis
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of test B60 on homogeneous sand B. In the case of test B22, in
which the weak layer is located at zi = 0·5B, the failure
mechanism crosses the weak layer, develops through a radial
shear zone inside the sand underlying the weak layer and then
runs upwards along a plane, inclined by 31·3°, which crosses the
weak layer again before emerging on the ground surface.

Results of computations performed assuming f0
1p ¼ 52�3° and

y 0
1p ¼ 22�9° for sand A and f0

1p ¼ 50° and y 0
1p ¼ 22�5° for sand
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B are plotted as open triangles in Figure 21, along with the
experimental results. It is evident from these figures that the back-
calculated values of qlim and, hence, of qlim/qlim,0 are definitely
lower than the experimental ones. The reason for this discrepancy
is hidden in the hypothesis that only one value of f0

1p and y 0
1p of

the sand applies for all the experiments regardless of the depth of
the weak layer and of its mechanical properties. The operatives
f0*
1p and y 0*

1p necessary to match the experimental values of qlim
and of qlim/qlim,0 of each test have been found by trial and error
and are summarised in Tables 5 (sand A) and 6 (sand B); the
corresponding values of the calculated qlim are plotted as solid
triangles in Figure 21 and, of course, agree with experimental
data. The results summarised in Tables 5 and 6 clearly show that
the secant mean equivalent operative values of f0*

1p depend on
both the depth and the mechanical properties of the weak layer. It
can be observed that f0*

1p and y 0*
1p (y 0*

1p being linked to f0*
1p by

Bolton’s relation: y 0*
1p ¼ 1�25 ðf0*

1p − f0
cvÞ) are higher when the

length of the failure surface running along the weak layer is larger
and the depth of the weak layer is smaller. These results clearly
highlight the considerable relevance of the curvature of the failure
envelope of the sand at very low effective normal stresses.

In other words, the numerical modelling, even though performed
using a very simple constitutive model for soils, allows for
the understanding of the fundamental aspects of the influence
of a weak layer on the behaviour of shallow strip footings. It is
26
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able to capture the shape of the failure mechanism and the
reduction of the ultimate bearing capacity observed in 1g tests
on reduced-scale models, provided that due allowance is made
for the dependence of the equivalent mean shear strength
parameters on the effective normal stress level and on the depth
of the weak layer.

Conclusions
The influence of a horizontal thin weak soil layer inside a sand
bed on the mechanical behaviour of a strip footing loaded to
failure was investigated by means of single-gravity (1g) tests on
small-scale physical models. From the test results, the following
conclusions can be drawn.

The weak layer strongly influences both the failure mechanism and
the ultimate bearing capacity, qlim, if its depth does not exceed a
critical value of about 4B (B being the footing width). The failure
mechanism cuts through the weak layer when it is located at small
depths, zi, beneath the footing except when its shear strength is
very low; when the weak layer is located at larger depths, zi
(however smaller than 4B), it forces the failure mechanism to run
partly along the horizontal weak layer before rising through the
upper sand layer and emerging on the ground surface.

The ultimate bearing capacity, qlim, is always lower than qlim,0

(pertaining to the homogeneous sand bed). At a given depth of the
weak layer, the decrease in qlim is higher the lower the angle of
shearing strength of the weak layer. The experiments show that the
reduction in qlim can reach 80% when the weak layer is made of
humidified bentonite. Numerical simulations of the behaviour of the
reduced-scale physical model tests by FE analysis (even though
using the very simple constitutive Mohr–Coulomb model)
satisfactorily captures the failure mechanism and the ultimate
bearing capacity, provided that the strong dependency of the angle
of the shearing resistance of the sand at the extremely low stress
level existing in the physical model is properly taken into account.
Moreover, back-calculations point out that the mean equivalent
mobilised angle of shearing resistance of the sand significantly
depends also on the properties and depth of the weak layer.
Table 5. Results of back-calculations for footing resting on sand bed A
zi: mm
 zi/B
Material of weak layer
Baker talc powder
 Luzenac 2 talc powder
icense 
Humidified bentonite
f0*
1p : °
 y 0*

1p : °
 f0*
1p : °
 y 0*

1p : °
 f0*
1p : °
 y 0*

1p : °
30
 0·50
 55·0
 26·3
 56·9
 28·6
 56·0
 27·5

60
 1·00
 60·8
 33·6
 62·6
 35·8
 63·0
 36·2

75
 1·25
 —
 —
 60·5
 33·1
 61·5
 34·4

90
 1·50
 57·5
 29·4
 59·5
 31·9
 61·1
 33·9

120
 2·00
 57·0
 28·8
 56·4
 28·0
 61·0
 33·7

150
 2·50
 56·4
 28·1
 55·5
 26·9
 —
 —
180
 3·00
 56·8
 23·5
 53·5
 24·4
 58·7
 30·9

240
 4·00
 52·3
 22·9
 —
 —
 55·3
 26·6

255
 4·25
 —
 —
 52·3
 22·9
 —
 —
Mean secant equivalent values of the operative peak angle of shearing resistance f0*
1p and dilation angle y 0*

1p of sand; B = 60 mm
Table 6. Results of back-analysis for footing resting on sand bed B
zi: mm
 zi/B

CM3 talc powder
f0*
1p : °
 y 0*

1p : °
20
 0·5
 50·1
 22·6

40
 1·0
 56·5
 30·6

60
 1·5
 55·0
 28·8

80
 2·0
 50·0
 22·5

120
 3·0
 50·0
 22·5

160
 4·0
 50·0
 22·5
Mean secant equivalent values of the operative peak angle of shearing
resistance f0*

1p and dilation angle y 0*
1p of sand; B = 40 mm
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Another evident implication of this study’s findings is that the
geotechnical engineer should never overlook or disregard minor
geologic details during site investigations.

It is well known that results of single-gravity experiments on
small-scale physical models are not straightforwardly transposable
to real problems due primarily to scale effects (Bolton and Lau,
1989; Cerato and Lutenegger, 2007; de Beer, 1963, 1965).

In order to investigate the scale effects concerning the problem at
hand, centrifuge-enhanced gravity experiments have been carried
out; their results are reported in a companion paper (Ziccarelli et
al., 2017).
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