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ABSTRACT. We define and study the moduli d(z, A, D) and i(x, A, D) related to monotonicity of a
given function = of the space Lg(Q) of real-valued “measurable” functions defined on a linearly ordered
set 2. We extend the definitions to subsets X of Lg(Q2), and we use the obtained quantities, d(X)
and (X)), to estimate the Hausdorfl measure of noncompactness v(X) of X. Compactness criteria, in
special cases, are obtained.

©2017

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

Measures of noncompactness and some other quantities which measure the lack of a given
property for functions or sets of functions have a relevant role in the theory of real-valued functions
and in nonlinear analysis (among a large literature, we cite [1,3,4,6,7,10,12,13] and references
therein). Moreover for applications it is very useful to have precise formulas or estimates for the
Hausdorff measure of noncompactness. In the frame of the theory of measures of noncompactness
some quantities related to monotonicity of functions have been considered by some authors in
[2,8,9], for real-valued functions defined and bounded on a compact interval of the reals. The main
aim of this paper is to consider similar quantities in a more general setting. Given (£, <) a linearly
ordered nonempty set, we deal with the space Lo(£2) of real-valued functions defined on 2, which
depends on an algebra F in the power set P(2) of 2 and on a submeasure 7: P(£2) — [0, +00].
For a particular 7 the space Lg(Q2) coincides with the space B(2) that is the closure of all simple
functions with respect to the topology of uniform convergence. We recall that in [5] (see also
[3,15]) for a subset X of Ly(€2) the quantities w(X) and ¢(X), which measure, respectively, the
lack of equi-measurability and the lack of equi-quasiboundedness of X, are used to estimate the
Hausdorff measure of noncompactness v(X) of X. In this paper, for a given function x in the
space Ly(f2), we introduce and study the modulus of A-decrease and the modulus of A-increase,
related to monotonicity of the function x. Then for subsets X C Ly(Q2), we define the quantities
d(X) and i(X) and we use them to estimate the lack of equi-measurability w(X). Precisely, we
prove § max{d(X),i(X)} < w(X) < (d+ i)(X), and that the estimates are sharp (Example 2
shows the result for the right estimate). As a consequence we estimate the Hausdorff measure
of noncompactness y(X) of X. In particular, for equi-quasibounded subsets X of Ly(Q2) we find
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*max{d(X),i(X)} < ~v(X) < (d +1i)(X). Focusing our attention on B(£2), we obtain, for subsets

X C B(9) the precise formula w(X) = § max{d(X),i(X)}, which for bounded subsets gives us
v(X) = %max{d(X).\i(X}}. When Q is a topological space, being the topology that induced
by the order, we apply our results to the space of functions bounded and continuous on 2. We
recall that other quantities related to monotonicity have been introduced in [9] for functions in
the space B(I) of all real-valued functions defined and bounded on a compact interval I of the
reals, and the quantities do(X) and ip(X) have been defined for bounded subsets X C B(I).
We notice that the space B(f2) coincides with B(§2) for F = P(Q), therefore in this paper we
obtain results that do not depend on the compactness of the set 2. Finally, we compare, in the
space C'(I) of all real-valued functions defined and continuous on I, our quantities with those
of [9]. We improve some results from [9]. In particular, for a bounded subset X C C(I), we
obtain ve(7)(X) = § max{do(X),io(X)}, where y¢ () is the Hausdorff measure of noncompactness

in C(I).

2. Preliminaries

We begin by defining the space Ly(2). We assume that (£2, <) is a nonempty linearly ordered
set and n: P(2) — [0, +o00] a submeasure on the power set P(£2) of 2. We set inf () := +o0c. Let
z € R, the space of all real-valued functions defined on Q2. Then ||z||p := inf{a > 0 : p({t €
Q: |z(t)| > a}) < a} defines a group seminorm on the space R, Let F C P(f2) be an algebra.
A function h € R® is called F-simple if there are my,...,m,, € R such that h(Q) = {mi,...,m,}
and h™1(m;) € F, for i = 1,...,n. The space Lo() := Lo(F,,n) of measurable functions is
the closure of the set of all F-simple functions in (R2, || - [lo). Set [|z|le = sur; |z(t)|, the space

tel

B(Q) := B(F,Q) is the closure of all F-simple functions in (RZ, || - ||s). As [|z]lo < [|2]e, for
all z € R?, we always have B(Q) C Ly(Q). Moreover we find B(Q) = Lo(Q) for n = 1se, where
Noc(G) = 0 if G = 0 and 1, (G) = +oc if G is a nonempty set in P(€2). Unless specified otherwise,
F C P(Q) will be any fixed algebra. Clearly B(F,Q) C B(P(2),). We recall that B(P(2), )
coincides with the space B(Q2) of all real-valued functions defined and bounded on 2 and equipped
with the supremum norm. Whenever we consider Q equipped with the topology induced by the
order, we denote by BC(2) the space of all real-valued functions defined, bounded and continuous
on . So we have BC(Q2) C B(2) = B(P(2).Q).

Now, for a subset X of Ly(Q) and & > 0 arbitrarily fixed, we denote by M. the set of all
multifunctions Fr: X — P(Q) such that n(Fe(x)) < £ for all # € X. We will denote by II the
family of all finite partitions A = {A4;,...,A,} of Q in F, the trivial partitition will be denoted
by {Q1}. Given a subset A of  we denote by x4 the characteristic function of A in 2. Recall that
a map ¢ defined on the family of all nonempty subsets of a pseudometric space F taking values
in [0,+00] is a measure of noncompactness in F in the sense of [6] if ¢ satisfies the following
properties:

@(X)=0 ifand only if X C E is a totally bounded set; (1)
(X)) = ¢(X), for every X C E where X is the closure of X; (2)
@(X1 U Xg) = max{p(X), p(Xa)}, for every X, Xs C E. (3)

When F is a Banach space a measure of noncompactness satisfies additional properties, for which
we refer to [7].

Given X C F the Hausdorff measure of noncompactness vg(X) of X is the infimum of all £ > 0
such that X has a finite e-net in £. In the following we will denote ;, () simply by 7.
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For z € Lop(Q2), A={Ay,...,A,} €l and D C Q, we define
w(z, A, D) = mjalxsupﬂa:(s) —x(t)| s t,8s € A; ~ D},

and we call it the modulus of A-equi-measurability of x (let us observe that in the above definition
we can always consider ¢ < s5). For X C Ly(Q), A€ 1Il, e > 0 and F. € M. we set w(X, A, F) =
sup{w(z, A, F.(z)) :x € X}.
Then the quantity w(X) which appears in [5] can be defined as follows
w(X) :=inf{e > 0: there are A € IT and F. € M, such that w(X, A, F.) < c}.

The set X is said to be equi-measurable if w(X) = 0, and equi-quasibounded (bounded for subsets
X C B(2)) if o(X) = 0, where as in [5] we set

o(X) :=inf{e > 0: there is @ > 0 such that n({t € Q: |z(¢)| > a}) < e, forall z € X}.
We recall the following estimates for the Hausdorff measure of noncompactness (cfr. [5: Theo-
rem 2.1] and [5: p. 579])

max {O’(X), %M(X)} <H(X) SwX)+o(X), if X C Ly(Q) (4)
and
2(X) < w(X) +o(X), it X CB(Q) (5)

As a consequence if o(X) = 0, we have jw(X) < v(X) < w(X) if X C Lo(f2), and the precise
formula y(X) = sw(X) if X C B(%).

3. Results in the space Ly(£2)

Let x be a function in Ly(R), A ={A;,...,A,} € T and D C €1 be given, then we define
(04, 1) 1= mfa\fcsup{\;x(s) —z(t)| = [x(s) —x(t)] : t,s € Ay~ D, t < s},
and
iz, A, D)= 11_12'11xsup{|;13(s} —x(t)] — [z(t) —z(s)] : t,s € A; ~ D, t < s}.
We call the above quantities, respectively, the modulus of A-decrease and the modulus of A-increase
of 2. We observe that if A" € TI is a partition finer than A, then d(x, A", D) < d(z, A, D) and also
i, A, D) <i(x, A, D).
ProrosITION 1. Let & € Ly(R2), A ={A1,...,An} € Il and D C Q be arbitrarily fired. Then

d(z, A, D) =0 if and only if x is nondecreasing on each A; ~ D, and i(xz, A, D) =0 if and only if
x 1§ nonincreasing on each A; ~. D.

Proof. If x is nondecreasing on A; ~ D, for i = 1,...,n, then it follows by the definition
d(z, A, D) = 0. To prove the converse implication, suppose d(z, A, D) = 0 and assume on the
contrary that x is strictly decreasing on A;~. D for somei € {1,...,n}. Then there are t,s € A;~D
with ¢ < s and x(¢) > z(s). Then

2(s) = 2(t)| — [2(s) — 2(8)] = 2fa(t) — 2(s)] > O,
hence d(z, A, D) > 0, a contradiction. In the same way follows the assert for the modulus of
A-increase of x. O

As first step, using the moduli of .A-decrease and A-increase we obtain a formula for the modulus
of A-equi-measurability w(z, A4, D) of .
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LEMMA 1. Let z € Lo(QQ), A € I and D C Q be arbitrarily fizred. Then
1
w(z, A, D) = 5 max{d(z, A, D),i(z, A, D)}.

Proof. Let A= {A;,..., A} and, for a given index i, let t,s € A; ~ D with t < s. Then, on the
one hand, we have |z(s) — z(t)| — [#(s) — z(t)] <€ 2|x(s) — z(t)| € 2w(z, A, D), and |z(s) — z(t)| —
[2(t) — x(s)] € 2|x(s) — x(t)] € 2w(x, A, D). Hence we get

d(z, A, D) < 2w(z, A, D), (6)
i(z, A, D) < 2w(x, A, D), (7)
and consequently %max{d(w,A, D),i(x, A, D)} < w(x, A, D). On the other hand, we have
2|z(s) — z(t)| = max{|z(s) — z(t)| — [z(s) — ()], |z(s) —a(t)| — [x(t) —z(s)]}
< max{d(x, A,D),i(z, A D)},

so that w(z, A, D) < 5 max{d(z, A, D),i(x, A, D)}, as desired. O

1
2
We generalize in a natural manner the quantities related to monotonicity of single functions to

quantities related to monotonicity of sets of functions. Given a subset X of Lo(Q2) and & > 0 we
define

d(X, A, F.) :=sup{d(z, A, F.(x)): z€ X}, where F. € M.,
(X, A Ge) i=supli(z, A, G(z)): € X}, where G. € M.,
and
(d+i)(X, A H.) = d(X, A, H.) +i(X, A H.), where H. € M..
Next we set
d(X) :=inf{z > 0: there exist A € Il and F; € M. such that d(X, A, F.) < ¢},
and analogously we define the quantities i(X) and (d + )(X).
The maps d, i and (d + ¢) satisty properties (2) and (3) of a measure of noncompactness.
Property (3) is immediate, we prove (2).

PROPOSITION 2. Let X C Lo(Q?). Then, d(X) =d(X), i(X) =i(X) and (d+i)(X) = (d+1)(X).

Proof. Let y € X. Given k € N, find 2, € X such that ||y — xxllo < 1/k. Then let Dy C Q
such that n(Dg) < 1/k and |y(t) — x,(f)| < 1/k for every £ € Q ~ Dj. Let a > d(X). Find
A={A,....A,} €Il and ¥, € M, such that d(z, 4, F,(z)) < « for each x € X. In particular,
we have for each k

Smax sup |2i(s) — 2 (t)| — [wr(s) — xp(t)] < o
=l 4 s A Fa(zk)
t<s

Now for any k set Foy1/x(y) = Fa(zx) U Dy, then n(Foq1/4)(y) < a+ 1/k. Moreover for t,s €
Ai N~ Foyp1/k(y), t < s, we have

ly(s) —y(®)] = [y(s) —y(B)] < 2Jy(s) — zr(s)] + 2|za(t) — y(O)| + wn(s) — 22 ()] — [wr(s) — 2 ()]

4

<o+ PR
Therefore we have d(y, A, Fay1/5(y)) < a+4/k. By the arbitrariness of o and k, we infer d(X) <
d(X). We conclude d(X) = d(X). In the same way we can prove i(X) = i(X) and (d +14)(X) =
(d +i)(X). O
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MONOTONICITY AND TOTAL BOUNDEDNESS

We remark that the maps d and i are not measures of noncompactness in Ly(€2). Indeed, if
X in Ly(Q) is a non-totally bounded set consisting of nondecreasing, respectively nonincreasing,
functions, then d(X) = 0, respectively (X) = 0, so the maps d and i do not satisfy property (1)
of a measure of noncompactness.

The following is a corollary of Proposition 1.

COROLLARY 1. Let X CLo(Q), A={A4,,...., 4, } €Il, >0 and F. € M.. Then d(X, A, F.)=0
if and only if any function @ € X is nondecreasing on each A; ~ F-(x), and i(X, A, F.) =0 if and
only if any function x € X is nonincreasing on each A; ~ F.(x).

Moreover, as a consequence of Lemma 1 we get the following result.

ProprosiTiON 3. Let X C Lo(Q), A={Ay,....,A,} €T, >0 and F. € M.. Then
1
5 max{d(X, A, F.),i(X, A F.)} <w(X, A, F.).

The following example shows that Corollary 1 does not generalize to the case d(X) = 0 or
i(X) =0.

Example 1. Assume € = [0, +o0o[. Let F be the o-algebra of Lebesgue measurable sets in £ and
n|= the Lebesgue measure. Let X C Ly(Q) be the set consisting of the two functions z;, which
we suppose strictly increasing and bounded, and xs = —x;, which will be a strictly decreasing
and bounded function. Then w(X) = 0. Hence by Proposition 3 we have d(X) = i(X) = 0.
Let A ={A1,Ay,...,A,} €1II, ¢ > 0 and F. € M. be arbitrarily fixed, then clearly we have
d(X, A, F.) >0and i(X, A F.) > 0. So d(X) = 0, respectively i(X) = 0, does not imply that all
functions x from the set X are nondecreasing, respectively nonincreasing, on the sets A; ~. F.(z)
fori=1,2,..., n.

THEOREM 1. Let X C Lo(Q). Then
£ max{d(X), i(X)} < w(X) < (d+i)(X). (8)

Proof. Let o > w(X). Find A € II and F, € M, such that w(z, A, F,,(z)) < « for each z € X.
Then, by Lemma 1, for each z € X, we have

%max{d(m, A, Fo),i(z, A, Fo)t < a,
which implies
%max{d(X),i(X)} < w(X).

To prove the right inequality let a > (d +i)(X). Choose A = {A4,,...,A,} €1I, F, € M, such
that (d + i)(z, A, F,) < a foreach z € X. Now if i € {1,...,n} and t,s € A; ~ Fy with ¢t < s
we have, for all z € X, |z(s) — z(t)| — [z(s) — z(t)] < a and |z(s) — z(f)| — [(t) — z(s)] < a, and
consequently |x(s) — z(t)| < a/2. Having in mind that n(F,(r) < a, we obtain w(X) < o, and so
the proof is complete. O

Both the estimates of Theorem 1 are sharp. For the left inequality it is a consequence of our
subsequent Theorem 2 where we prove that in B(£2) the precise formula holds, the optimality of
the right inequality will be shown in Example 2.

From Theorem 1 and (4) we find the following estimates for the Hausdorff measure of noncom-
pactness.
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COROLLARY 2. Let X C Lg(Q2), then
1400, 700} < 7(X) < ([@+)(X) +0(X)

In particular, if X is equi-quasibounded we have

max {J(X),

%max{d-(X), (X))} <v(X) < (d+1)(X).

Remark 1. We observe that given « € Ly(€2), A € Il and D C €, using (6) and (7), we can write
i(d +i)(z, A, D) < w(z, A, D). Consequently, having in mind (8), for X C L(£2) we obtain

1+ i)(X) <w(X) < [@+i)(X), 9)

In such a way we estimate w(X) by means of the quantity (d+i)(XX), but the left inequality of (9)
will not be sharp anymore.
Then (9) and (4) for equi-quasibounded subsets X C Ly () give us

S(d+)(X) < 7(X) < (d+9)(X). (10)

From the inequalities (10) we also have that (d +4) is a measure of noncompactness in the family
of all equi-quasibounded subsets of Ly(£2).

The following example shows that in (8) the equality on the right may hold, so that the estimate
w(X) < (d+¢)(X) is sharp. The example is adapted from [14], where the value of the lack of
equi-measurability of the set K.(£2) of all Lebesgue-measurable real-valued functions defined on §2
such that 0 < f < ¢ almost everywhere on (2 is calculated, repairing a gap of [3: Example 2.3].

Ezxample 2. Assume ) = [0,1]. Let F be the o-algebra of all Lebesgue measurable subsets of
[0,1] and 7+ the Lebesgue measure. Then Ly(€2) is the space of all Lebesgue measurable real-
valued functions. Given A = {A;,...,4,} € II, let {A; g, A;1} be a partition of A; in F, for each

i =1....,n, such that p(A;o) = u(A;1) = $u(A;). Then we define the simple function hg by

setting
]_ n
h.A = 5 ;Xﬁlij .

We claim that
if
if

=
A IA

1
E<§

S W=

&

MBS

osc(ha, A, g) = {

—

where osc(h 4, A, €)= Dlr%:fQ H_falxsupﬂhA{s)—hA t)] 1 t, s € A;~D.}. Observe that osc(h4, A, 0) <
=C i=

n(De)<e

m?lf( diam(h4(A;)) = % and moreover taking Dy = U, A; o, we find
=
1 n
osc(hg, A, 5) < ma,]xdiam(hA(A.; ~ Dyp)) = 0.
=
Since the function € — osc(h.4, A, ) is decreasing on [0, +-o0c[, we obtain
1 1
osc(ha, A, g) < 3 if 0<ex< 5 (11)

and
osc(hg, Ae) =0 if >
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To prove our claim we show that in (11) the equality holds. Assume by contradiction that there
are 0 < £ < % and Dz C € such that

n 1
osclha, A g) < m@lxsup{wu(s) —ha(t)|:t,s € A;~D:} < 3

without loss of generality we can replace D: with its measurable envelope, so we can assume
1L

D: € F. As n(D:) < 3 we can write 2 n(4iNDe) < %, then there is at least one element, that
we fix, A; of A such that =

WA De) < n(Ay) (12
Observe that we cannot have n(4; o ~ Ds) > 0 and n(A; 1 ~ Ds) > 0, because it would imply
sup{|z(s)—x(t)| : t,s € Ay~ Ds)} = 5. Sowe have n(A; o~ D:) = 0or n(A; 1 ~ D) = 0. Assuming

n(Ao ~ Dg) = 0, since (Ao ~ Dg) = n(As0) — (A0 N Dg), we have n(A;o) = n(Ao N Ds).
Then we find

—

1
n(Ai N Dg) > n(AioN De) = 577(—41)1

which contradicts (12), and this proves our claim.
Now we set X = {ha: A € II}. From what we have proved we infer w(X) = 4. Therefore

looking at the right inequality of (8) we can write

1 .

5 =w(X) < (d+i)(X)
On the other hand for h4 arbitrarily taken in X, if 4 = {A41,...,4,}, we set Dy = UL A, q,
according to our previous notation. Then d(h .4, {Q}, Do) = i(ha, {2}, Do) = 0, having in mind
that n(Dy) = % it follows (d +4)(X) < % This implies w(X) = (d + #)(X), as desired.

4. Results in the space B(f)

In the space B({1), being B(2) = Ly(Q) for n = 1., the expressions of all the quantities
we have considered in the paper up to now can be rewritten in a simpler manner (due to the
fact that no exceptional sets will appear in any of the definitions). For a function z € B(2)
and A = {A;,...,A4,} € II, the modulus of A-equi-measurability of z is given by w(z, A) =

m:&lxsup{\m(s) —x(t)| : t,s € A;}, and for a subset X C B(Q) we have w(X,.A) = sup{w(z,A) :
z € X} and

w(X) =inf{e > 0: there exists A € II such that w(X,A) <&}
Analogously, we have d(z, A) = Il_lTéf( sup{|z(s) — x(t)| — [z(s) —z(t)] : t,s € A;,t < s}, d(X, A) =

=

sup{d(z, A) : x € X}, and

d(X) =inf{e > 0: there exists A € II such that d(X,.4) < }.
In the same way we can write i(z, A), ¢(X,.A) and ¢(X). Notice that in this setting (d 4 ¢)(X) =
d(X) +i(X).

We observe that given a function = € B(€2) and A = {A;,..., A,} €I, then z is nondecreasing,
respectively noninereasing, on A;, fori = 1,...,n, if and only d(z,.A) = 0, respectively i(x, . 4) = 0.
In particular the latter holds for A = {1}, therefore we have that the function x is nondecreasing,
respectively nonincreasing, on €Q, if and only d(z, A) = 0, respectively i(x, A) = 0, for every
partition A4 € II.

The following is the main result of this section.
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THEOREM 2. Let X be a subset of B(QY). Then
1
w(X) = Emax{d(X),i(X)}. (13)

Proof. By Theorem 1 we have jmax{d(X),i(X)} < w(X). To prove the reverse inequality,
reasoning as in Theorem 1, let @ > d(X) and > i(¥) and choose A € II such that d(z,A) < a

and i(z, A) < for efch # € X. Then by Lemma 1, for every x € X we get
1 1
w(x, A) = 5 max{d(z, A), i(z,A)} < 3 max{ca, }, f
from which the desired inequality follows. O

Having in mind (5) we obtain the following corollary.

COROLLARY 3. Let X C B(QQ), then
max {o(X), 7d(X), 3i(X)} €2(X) < 0(X) + { max{d(X), i(X)}.
In particular, if X is bounded we have
1(X) = § maxfd(X), i(X)} (14)

Equality (14) gives us a precise formula for the Hausdorft measure of noncompactness of bounded
subsets X of B(Q), and shows that max{d(X),i(X)} is a measure of noncompactness in the sense
of [7] in the family of all bounded subsets of B(£2).

We recall, assuming ) equipped with the topology induced by the order, that the Bartle criterion
of compactness (see [11]) states that a bounded subset X of BC(Q) is totally bounded if and only if
w(X) = 0. We observe that Theorem 2 together with formula (14) contains a Bartle type criterion
of compactness in the space B(€), which can be formulated as follows: A bounded subset X of
B(£2) is totally bounded if and only if d(X) = ¢(X) = 0. As a consequence, if {2 is a compact space,
we obtain an Ascoli-Arzela type theorem: A bounded subset X of C(}) is compact if and only if
d(X)=4X)= 0.

We conclude this section by considering (€2, <) a linear continuum. We prove that if the value
of the modulus of A-decrease, respectively the value of the modulus of A-increase, of a function
x € C'(£2) is null then the function x is nondecreasing, respectively nonincreasing, on €, a stronger
result compared with the one we have obtained in Proposition 1 in spaces Lo(£?). We recall that
the linearly order set (€2, <) is a linear continuum if the following two conditions are satisfied:

(i) for every t,s € Q with ¢ < s there exists u € Q such that t <u < s;

(ii) every nonempty subset of  that is bounded from above has the least upper bound in 2.

A linear continuum (2 is connected with respect to the topology induced by the order and so are
intervals in Q, moreover every closed interval in € is compact and the intermediate value Theorem

holds.

THEOREM 3. Assume Q to be a linear continuum and let x € C(Q). If there is A € II such that
d(z, A) =0, respectively i(xz, A) = 0, then x is nondecreasing, respectively nonincreasing, on 2.

Proof. Let A = {A4;1,...,A4,} and assume d(z,.4) = 0, then z is nondecreasing on each A;.
We have to show that = is nondecreasing on (2. Assume the contrary, and let ¢; < 2 such
that x(te) < x(t1). Set y1 = (x(t1) + x(f2))/2. Since x is continuous and 2 is connected, by
the intermediate value Theorem, we find s; € Jt1,¢a] such that y1 = x(s1). Now we consider
y2 = (y1 +x(t1))/2 and find so € ]t1, s1[ such that yo = x(s2). Then we repeat the same argument
(n — 1)-times by setting y;+1 = (y; + «(£1))/2 and finding s;11 € {1, s;[ such that y;41 = x(s;41)-
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Setting t; = s, and t3 = s, we obtain n + 1 points s; such that, s, < s,-1 < -+ < 81 < 8¢
and z(sg) < z(s1) < -+ < z(sp_1) < x(sy,). Considering that at least two of the points s;, say
Sp, 8q With s, < s,, must belong to one of the sets Ay, Aa. ..., A, say A;, we have s, s, € 4; with
sp < 84 and x(s,) > x(s,). This contradicts the hypothesis and completes the proof. O

COROLLARY 4. Assume Q to be a linear continuum. Let x € C(Q) and A € 1. Then d(z, A) =0,
respectively i(x, A) = 0. if and only if the function x is nondecreasing, respectively nonincreasing,
on €.

COROLLARY 5. Assume Q to be a linear continuum. Let X be a subset of C()) and A € TI. Then
d(X,A) =0, respectively i(X, A) = 0, if and only if all functions from the set X are nondecreasing,
respectively nonincreasing, on €.

5. Comparison of d and ¢ with quantities d; and i,

Let I be a real compact interval. In [9] for z € B(I) the modulus of decrease and the modulus
of increase of the function x have been introduced by setting, for a given £ > 0,
d(z,e) = sup{|z(s) — x(t)| — [z(s) —x(t)] : t,s € [,t < s,s —t < &}
and
i(x,e) = sup{|x(s) — x(t)| — [z(t) —x(s)] : ¢,s € [a,b],t < 5,8 —t <&},
and results of monotonicity for functions in B(I) have been proved. Furthermore, for a bounded
subset X of B(I) the quantities dy(X) = 1ir% sup{d(z,e) : x € X} and ig(X) = 1111(1] sup{i(z,¢e) :
e— £—
x € X} have been considered. Recall that, for a bounded subset X of C(I), wo(X) = HH(lJ w(X,e),
e—
where w(X,e) =sup{w(z,e) : v € X} and w(z, &) =sup{|z(s) —z(t)| : {,s € I,|s — t| < e}, being
w(x, &) the modulus of continuity of x. In [9: Theorem 3.8] the following estimates for wy(X) have
been proved for bounded subsets X C C'(I)

(do(X) + io (X)),

b | =

i(d@(X) +ig(X)) < wo(X) <

hence, due to the formula ve (1) (X) = $wo(X) (see [7]) the map do+i is a measure of noncompact-
ness in C(I) equivalent to the Hausdorff measure of noncompactness. Here we have the following
result.

THEOREM 4. Let X be a bounded subset of C'(I). Then
1 .
wo(X) = 3 max{do(X),i0(X)}. (15)

Proof. The inequality £ max{dy(X),io(X)} < wy(X) has been already pointed out in [9: p. 180
(3.1) and (3.2)]. We prove the reverse inequality. Let v > dp(X) and > igfX). Find ¢ > 0
such that d(X,e) = sup{d(z,¢) : € X} < a and i(X,e) = sup{i(z,¢) : © € X} < . Henbe
forall . € X, t,s € I, with t < s and s — ¢ < ¢ we have |z(s) — x(f)| — [¢(s) — z(t)] < @ and
la(s) —a(t)| —[x(t) —x(s)] < , whigh imply 2|x(s) —x(t)| < max{a, }. Wehave found 2w(X, ) <
max{a, }, it Bllows 2wy(X) < max{e, } whigh, for the arbitrariness of o, , completes the
proof. O

As a consequence for bounded subsets X of C(I) we obtain the equality yo()(X) =
Tmax{dy(X),i0(X)}. The next examples show that dy + i fails to be a measure of noncom-
pactness in B([0,1]) (compact case) and as well in C([1, +00)[) (non-compact case).
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Ezxzample 3. Let z € B([0,1]) be the function defined by setting

Tif 0<t<g
st =41 if 1<t<},
0 if 2<t<l

Then w(x,e) = 1 for any arbitrary £ > 0, so that wo({z}) = 1, do({z}) = 2 and iy({x}) = 1. Hence
do({x}) +io({x}) # 0 for a singleton set in B([0,1]).

Exzample 4. Let z € C([1,+00]) be the function defined in the following way

2n
0 if t=143,..., 3 ).+,
k=1
2n+1
() = ¢ 1 i = L Tkg g ey 2, Syenis
n n+l e
to be linear if te [Z Y %] forn=1,2,....
k=1 k=1

Then w(z,e) = 1 for any arbitrary € > 0, so that wo({z}) = 1, it can be calculated dy({z}) = 2
and ig({x}) = 2. Therefore, again do({x}) + io({z}) # 0 for a singleton set in C([1, +o0[).

Finally we compare, for bounded subsets X of C(I), the quantities d(X) and i(X), introduced
in the general setting of spaces Lo(§2), with the quantities do(X) and ig(X). We recall that for
bounded subsets X € C([I) from [5: Proposition 5.1] we have

w(X) < wo(X) < 2w(X). (16)
We need the following lemma.
LEMMA 2. Let o be a function in C(I) a A a nonempty subset of T. Set
a =sup{|z(s) —z(t)] — [x(s) —x(t)] 1 t,s € A, t < s},
and
= sup{|z(s) — z(t)| — [z(s) —z(t)] : t,s € 4, t < 5}
Then o« = . 8
Proof. Clearly a < . Toptove < a,Buppose on the contrary o < . Thefl there exist £,s € A
such that ¢ < s and
2(5) — o(8)] — [a(s) = a(t)] = 6 > a.

Observe that at least one of the two points belongs to A ~ A. We now examine all possible cases.
The first s € Aandt € A~ A, the second { € A and s € A ~ A, and the last case s,t € A~ A.

Assume s € A and t € A~ A and choose a sequence {t,} in A such that ¢, — t and t,, < s.
Given & > 0 choose n such that |z(t,,) — z(t)| < e&. Then

a < b <|z(s) —a(t)| — [2(s) —x(t)]
< Ja(s) — a(tn)| — [2(s) — x(tn)] + |2(tn) — 2(B)] — [2(tn) — 2(8)] < a + 2.

Assume ¢ € A and s € A~ A and choose a sequence {sn} in A such that s, — s and s, < t. Given
e > 0 choose n such that |z(s,) —x(s)| < e. Then

a <8 < |a(s) — a(t)] - [a(s) — 2(0)
< [2(s) — 2(sn)] — [2(s) — @(5n)] + |e(5n) — 2(t)] — [2(sn) — 2(1)] < v + 2.
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Assume t, s € A~ A and choose two sequences {t,} and {s,} in A such that t, — ¢, s, — s and
tp < 8p. Given £ > 0 choose n such that max{|z(t,) — z(¢)|, |z(s,) — z(s)|} < &. Then

o <6 < [a(s) — 2()] — [a(s) — 2(2)]
< |z(s) — x(sn)| — [2(s) — 2(sn)] + |2(sn) — x(tn)| — [2(sn) — 2(tn)]
+ |z(tn) — 2(t)| — [2(tn) — 2(t)] < a + 4.
As & was arbitrary, we have a contradiction in each of the cases. O
The same conclusion of Lemma 2 holds if a = sup{|z(s) —x(t)| — [z(t) —2(s)] : t,s € A, t < s},

and = sup{|xz(s) —x(t)| —[z(t)—x(s)] : t,s € A, t < s}. Hence by Lemma 2 we have the following
result.

LemMA 3. Let x € O(I) and A = {Ay,...,A,} € I Then d(z, A) = d(z, A) and i(z, A) =
i(w, A), where A= {A;,..., A, }.
PROPOSITION 4. Let X be a bounded subset of C(I), then the following inequalities hold:
(i) d(X) < do(X) < d(X) + max{d(X),i(X)},
(i) i(X) < do(X) < i(X) + max{d(X),i(X)}.
Proof. (i) Assume I = [a,b]. Let « > dp(X). Then there exists £ > 0 such that for every z € X

we have |z(s) —a(t)| — [x(s) —x(t)] < afor t,s € [a,b] with ¢ < s and s—t < e. Choose n € N such
that (b—a)/n <e, and let A= {I;...., I,} € II be a partition of [a, ] consisting of n pairwise

disjoint intervals I; each of length (b — a)/n. Then we have d(x,.A) < a. Therefore we obtain
d(X, A) < a and d(X) < o, which by the arbitrariness of « implies d(X) < do(X).
II d(X) > i(X) the right inequality follows from (13), (15) and (16).
Assume d(X) < i(X). To prove do(X) < d(X)+i(X) assume by contradiction d(X)+i(X) < do(X)
and choose a, and #Fsuch that d(X) < , {(X )< d and
d(X)+i(X) < +06 Ba<dy(X).

Choose A = {A;,...,A,} € II such that d(X, A) < and HX, A) < d. Hence, for all € X, we
have d(z, A) < and #z, A) < 4, that is

mgifcsup{\a“(s) — ()| — [z(s) —z(t)],t,s € Aj,t < s} < Jé]
and

n_fz}ifsupﬂm(s) —z(t)] — [x(¢) — z(s)],t,8 € A;,t < s} < 0.

i=

On the other hand being dy(X) > a, for each n € N there exist x,, € X and t,,,s, € [a,b] with

8y —tn| € 2 and ¢, < s, such that

Iwn(sn) - ‘rn(tn)‘ - [$n(9n) —Zn (tn)} > .

Choose a subsequence of {s,}, still denoted by {s,}, which converges to a point z € [a,b], then
{t,.} will converge to the same z. If there is ¢ € {1,...,n} such that ¢, € 4; and s,, € A; for all
n € N, then

a < |20 (Sn) — 2n(tn)] — [En(sn) — 2n(tn)] < d(z,, A) <d(X,A) <dX) < <af
which is a contradiction. Otherwise, we can assume that ¢, € A; and s, € A; for all n € N, for
some ¢,j € {1,...,n}, so that z € 4; N A;. Using Lemma 3 we obtain

o < |2p(sn) — Zn(tn)| — [@n(sn) — zn(tn)]
< #n(80) — Za(2)| + |[Tn(2) — Zn(tn)| — [Tn(sn) — Tn(tn)]
= |Zn(8n) — Tn(2)] — [Tn(sn) — Tn(2)] + |2n(2) — Taltn)| — [2n(2) —2n(tn)] £ +6, B
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a contradiction which completes the proof.

(ii) The second part of the theorem can be proved in the same way. O

REFERENCES

] AKHMEROV, R. R.——KAMENSKII, M. I..-POTAPOV, A. 5. RODKINA, A. E.—SADOVSKII, B. N.: Mea-
sures of Noncompactness and Condensing Operators, Birkhduser Verlag, Basel, Boston and Berlin, 1992.

[2] APPELL, J.—BANA@, J.—MERENTES, N.: Some guantities related to monotonicity and bounded variation

of functions, J. Math. Anal. Appl. 367 (2010), 476-485.

[3] APPELL, J.—DE PASCALE, E.: Some parameters associated with the Hausdorff measure of noncompactness

in spaces of measurable functions, Boll. Un. Mat. Ital. (6) 3-B (1984), 497-515.

] APPELL, J—ZABREIKO, P. P.: Nonlinear Superposition Operators. Cambridge Tracts in Math. 95, Cam-
bridge University Press, 1990.

] AVALLONE, A.—TROMBETTA, G.: Measures of noncompactness in the space Ly and a generalization of
the Arzela-Ascoli theorem, Boll. Un. Mat. Ital. (7) 5-B (1991), 573-587.

| AYERBE TOLEDANO, J. M.—DOMINGUEZ BENAVIDES, T.—LOPEZ ACEDO, G.: Measures of Non-
compactness in Metric Fived Point Theory, Birkhduser Verlag, Basel, 1997.

[7] BANAS, J.—GOEBEL, K.: Mecasures of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math.

60, Dekker, New York, 1980.

(8] BANAE“;, J—OLSZOWY, L.: Measures of noncompactness related to monotonicity, Comment. Math. 41
(2001), 13-23.
[9] BANAS, J—SADARANGANI, K.: On some measures of noncompactness in the space of continuous functions,
Nonlinear Anal. 68 (2008), 377-383.
[10] CAPONETTI, D.- LEWICKI, G.—TROMBETTA, G.: Control functions and total boundedness in the space
Lo, Novi Sad J. Math. 32 (2002), 109-123.
[11] DUNFORD, N.--SCHWARTZ, J. T.: Linear Operators. Part I: General Theory, Wiley Classics Library, New
York, 1988.
[12] TAVERNISE, M.-—TROMBETTA, A.: On convex total bounded sets in the space of measurable functions, J.
Funct. Spaces Appl. (2012), Art. ID 174856, 9 pp.
[13] TAVERNISE, M.—TROMBETTA, A—TROMBETTA, G.: Total boundedness in vector-valued F-seminormed
function spaces, Le Matematiche 66 (2011), 171-179.
(14] TAVERNISE, M. TROMBETTA, A.—TROMBETTA, G.: A remark on the lack of equi-measurability for
certain sets of Lebesgue-measurable functions, Math. Slovaca 67 (2017), 1595-1601.
[15] TROMBETTA, G—WEBER, H.: The Hausdorff measures of noncompactness for balls in F-normed linear
spaces and for subsets of Lg, Boll. Un. Mat. Ital. (6) 5-C (1986), 213-232.
Received 16. 6. 2016 * Dipartimento di Matematica e Informatica
Accepted 26. 10. 2016 Universita di Palermo

1-90123 Palermo
ITALY

E-mail: diana.caponetti@unipa.it

** Dipartimento di Matematica
Universita della Calabria
Arcavacata di Rende
Cosenza
ITALY

E-mail: alessandro.trombetta@unical.it
trombetta@unical.it

08



