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Abstract
The effects of caloric restriction on tumor growth and progression are known for
over a century. Indeed, fasting has been practiced for millennia, but just recently
has emerged the protective role that it may exert toward cells. Fasting cycles are
able to reprogram the cellular metabolism, by inducing protection against oxida-
tive stress and prolonging cellular longevity. The reduction of calorie intake as
well as short- or long-term fasting has been shown to protect against chronic and
degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer.
In vitro and in vivo preclinical models showed that different restriction dietary
regimens may be effective against cancer onset and progression, by enhancing
therapy response and reducing its toxic side effects. Fasting-mediated beneficial
effects seem to be due to the reduction of inflammatory response and down-
regulation of nutrient-related signaling pathways able to modulate cell prolifera-
tion and apoptosis. In this chapter, we will discuss the most significant studies
present in literature regarding the molecular mechanisms by which dietary
restriction may contribute to prevent cancer onset, reduce its progression, and
positively affect the response to the treatments.
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Introduction

In recent years, increasing evidences showed that several types of intermittent,
chronic, or periodic dietary approaches, including short-term starvation (STS),
long-term starvation (LTS or fasting), caloric restriction (CR), may exert a protective
role against aging and other age-related pathologies as well as cancer in humans and
numerous animal models (Lee and Longo 2016; Brandhorst and Longo 2016; Longo
et al. 2015; Trepanowski et al. 2011). Interestingly, these dietary restriction (DR)
regimens showed significant anticancer effects mostly in preclinical models,
suggesting the possibility of using these methods to increase lifespan and improve
therapy response in cancer patients. However, prolonged fasting periods could
impair the patient health conditions already unfavorable due to physiological weight
loss (Cleary and Grossmann 2011; Lluch et al. 2014). For this reason, STS (or
intermittent fasting), consisting of the lack of food intake for a short time, appears to
be the most suitable approach for cancer patients, although there are conflicting
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opinions about it. STS aims to slow down growth of tumor, by restricting tempo-
rarily its exposure to different nutrients, including glucose, and generating protective
effects against cancer (Robertson and Mitchell 2013; Anton and Leeuwenburgh
2013). Conversely, LTS consists of a prolonged food deprivation, resulting in
adaptive cellular responses able to decrease inflammatory processes and oxidative
stress, enhance energy metabolism, and strengthen cell protection (Longo and
Mattson 2014). For example, a serum starvation able to bring down basal cellular
activity was applied to several in vitro models, in order to study molecular mecha-
nisms underlying apoptosis, cellular stress response, and autophagy (Pirkmajer and
Chibalin 2011). Finally, CR is defined as the reduction in calorie intake aimed to
inhibit tumorigenesis and prevent other diseases, including diabetes and cardiovas-
cular pathologies, by inducing an improved insulin sensitivity and reducing the
oxidative damage and metabolic rate (Lv et al. 2014; Lefevre et al. 2009).

This chapter aims to provide an overview of the most recent studies present in
literature concerning the molecular mechanisms by which dietary restriction may
contribute to prevent cancer onset, slow down its progression, and positively affect
the response to anticancer therapies, also suggesting a close correlation between diet
and reduction of treatment-induced side effects.

Molecular Pathways Involved in Dietary Restriction and Cancer-
Related Events

Molecular Changes Induced by Dietary Restriction

Nowadays, the link between cancer and metabolism is becoming increasingly
evident (Longo and Mattson 2014; Brandhorst et al. 2017). It is clear that beneficial
effects mediated by fasting, in particular by CR, do not involve a single gene, a
pathway or a unique molecular mechanism. The benefits are due to the negative
regulation of nutrient-signaling pathways, including insulin-like growth factor 1
(IGF-1) pathway and its effector extracellular signal-regulated kinase (ERK), mito-
gen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K), which
are known to modulate important proliferation pathways (Cangemi et al. 2016).
Furthermore, it is well known that genomic instability is a distinctive feature of
cancer, and CR tumor response seems to play a key role for the maintenance of
genomic integrity (Robertson and Mitchell 2013; Duan et al. 2017). Due to these
evidences, new metabolic approaches are being sought today for anticancer treat-
ment. CR, also used in combination with the conventional chemotherapies, has
allowed to obtain good results in animal models (Klement and Fink 2016).

CR-Induced Changes in Tumor Microenvironment

The most recent data in literature showed a correlation between aging and neoplastic
diseases. It has been observed that aging promotes neoplastic cell growth and
proliferation through surrounding microenvironment alterations. This process,
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named “adaptive oncogenesis,” is determined by tissue decline caused by age and
oncogenic cell alterations (Cadoni et al. 2017). Changes in age-associated tissue
microenvironment seem to play an important role in cancer and cancer-related
diseases. Although the mechanisms responsible for delays in aging and carcinogen-
esis have not been fully identified, CR is today the only known nongenetic approach
able to extend organism life. Nutrient-sensing pathways play a pivotal role in cellular
response to CR probably because these regulatory processes are responsible for
maintaining a microenvironment that promotes aging and carcinogenicity (Cadoni et
al. 2017).

The deacetylase SIRT1 is a protein implicated in regulation effects downstream
of CR, in both human and murine models (Cohen et al. 2004). The SIRT1 levels
are low in senescent cells probably due to the formation of the C/EBPβ complex
and HDAC1, which bind and inhibit SIRT1 promoter. Several studies showed
that long-term CR is able to block the formation of the C/EBPβ and HDAC1
inhibitory complex, restoring the functionality of SIRT1 promoter in murine liver
cells (Jin et al. 2011).

The SIRT1-activated pathway is also involved in the regulation of forkhead box
subgroup O (FOXO) protein, which is deacetylated by SIRT1 in response to
oxidative stress. The FOXO1 levels seem to be increased in rat liver cells during
long-term CR. This suggests that both SIRT1 and FOXO1 have a modulating role in
long-term CR and are responsible for creating a microenvironment that delays aging
and prevent cancer (Yamaza et al. 2010).

DR and Inflammatory Response

Several studies showed that DR also plays a role in modulating inflammatory
response. Liver cells of diethylnitrosamine (DEN)-induced HCC mice models sub-
mitted to DR showed a reduction in levels of NF-kB, a mediator of inflammation
associated with cell proliferation and cancer (Duan et al. 2017). A decrease in levels
of cytokines and inflammatory chemokines was observed in murine liver, kidney,
and spleen tissues (Chiba and Ezaki 2010). Also, mice under 4 weeks DR condition
display a reduction of proinflammatory gene expression and an increase in anti-
inflammatory gene expression (Robertson and Mitchell 2013; Fig. 1).

DR and Chemotherapy Protection

Proliferation pathways regulated by Ras and AKT are almost always constitutively
activated in cancer cells. Cells dramatically reduce the cell division number and
become more resistant to stress in response to poor nutrition conditions, such as
fasting or DR. This occurs because DR inactivates nutrient-sensing signaling path-
ways (Brandhorst et al. 2017). The link between cell proliferation, which depends on
the nutrient-sensing pathways, and stress resistance is the basis of the protective
effect that DR exerts on normal cells compared to tumor cells. This resistance is
called differential stress resistance (DSR). In fact, tumor cells are unable to protect
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themselves from stress, because oncogenes negatively regulate resistance genes
(Brandhorst et al. 2017; Raffaghello et al. 2008). Moreover, several mutations
accumulated in cancer cells make them less able to adapt to extreme environmental
conditions created by fasting (Longo and Fontana 2010). Several studies showed
that DR-induced DSR may be used to protect healthy cells from the toxic effects of
chemotherapy (Brandhorst et al. 2017).

The fasting-induced protection has been shown also in in vivo experiments.
CR protects mice from high dose etopoxide toxicity 4, nausea and vomiting induced
by doxorubicin, and irinotecan-induced weight loss (Raffaghello et al. 2008; Tinkum
et al. 2015). It has also been found that IGF-1 gene deletion protects against
chemotherapeutic toxicity of doxorubicin and cyclophosphamide (Brandhorst et al.
2017). Probably, the protective effect induced by DR and starvation is due to a
change in microenvironment of the intestinal cryptic stem cells. Indeed, fasting
before chemotherapy preserves the correct architecture and functioning of intestinal
cells by maintaining the expression of genes such as Lgr5, Bm1, and HopX (Tinkum
et al. 2015).

In other studies, it was observed that DR makes cancer cells susceptible to
cisplatin-based chemotherapy effects through activation of the ATM/ChK2/p53
signaling pathway, which causes temporary loss of coordination between cell pro-
liferation and growth stimulated by nutrients (Shi et al. 2012).

Correlations Between DR and IGF-1, Insulin, and Cancer

One of the nutrition-related pathways involved in carcinogenesis is the IGF-1
signaling, which affects both sensitivity to oxidative stress and DR. Insulin and
IGF-1 play a pivotal role in controlling metabolism and growth in response to

INFLAMMATION
IL-1β, TNF-α, MCP-1,

COX2, PPARγ
NF-Kβ

Fig. 1 Association between inflammation and cancer. Unbalance diet, age, cellular senescence,
and accumulation of proinflammatory factors and ROS cause cell inflammation
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nutritional signals and nutritional state of cells (Shi et al. 2012). IGF-1 pathway
regulates cell proliferation and differentiation, showing a tumorigenic effect through
apoptosis inhibition (Ramsey et al. 2002; Prisco et al. 1999). Epidemiological
studies highlighted the role that IGF-1 pathway plays in cancer pathology. Indeed,
high serum IGF-1 concentration is associated with an increased risk of prostate,
breast, and colon cancers (Renehan et al. 2004).

A study performed on murine xenograft models showed that deregulation of IGF-
1 and PI3K/AKT pathways results in DR resistance. IGF-1 recruits PI3K on cell
membrane via binding to tyrosine kinase receptor, resulting in AKTactivation. AKT,
in turn, phosphorylates and activates downstream effectors that induce cell prolifer-
ation (Kalaany and Sabatini 2009).

FOXO1 protein is an effector downstream of IGF-1/AKT pathway, negatively
regulated by AKT. This protein is able to modulate the expression of genes involved
in oxidative metabolism, stress resistance, and longevity (Cangemi et al. 2016). It
has been observed that DR-sensitive cells show a decrease in AKT cytoplasmic
levels. This results in FOXO1 nuclear relocation and induction of the proapoptotic
and antiproliferative gene transcription. In addition, in vivo studies on xenograft
models demonstrated that DR-induced apoptosis increases in tumor cells that over-
express FOXO1. These results are consistent with the antitumorigenic effect of
FOXO1 in DR conditions (Kalaany and Sabatini 2009).

A significant role is played by downstream effectors of the PI3K pathway, such as
mTOR, AMPK, and SIRT1, which are probably related to cellular sensitivity to DR.
Moreover, it has been observed that mutations constitutively activating PI3K protein
are important for tumor sensitivity to DR. In fact, an increased sensitivity to DR is
observed when PI3K levels decrease. This suggests that molecular analysis of PI3K
mutational state could represent an interesting tool to identify DR resistance markers
(Lee et al. 2012b; Fig. 2).

Several epidemiological studies showed that there is a strong correlation between
increased adiposity and tumor risk (Lee et al. 2012b; Fanale et al. 2017; Wang et al.
2012; Toren et al. 2013; La Paglia et al. 2017). Adiposity is associated with an
increase in insulin serum levels. Insulin, an anabolic hormone produced by pancre-
atic β-cells, exhibits mitogenic effects on many cell types, especially on pre-
neoplastic cells. Furthermore, insulin increases IGF-1 activity, reducing synthesis
and secretion of IGF-binding protein 1 (IGFBP-1) (Esposito et al. 2003). Hyper-
insulinemia increases concentration of circulating sex hormones, in particular stim-
ulating the production of androgens involved in the growth of different tumors.
Several studies showed that DR counteracts metabolic anomalies associated with
excessive adiposity, by reducing insulin levels, sex hormones, IGF-1, inflammatory
cytokines, prostaglandins, and other various markers of oxidative stress and DNA
damage (Esposito et al. 2003, Heilbronn et al. 2006; Fig. 3). According to the data of
epidemiological studies carried out on dietary style of Western countries, DR
associated with low protein intake has been shown to decrease serum IGF-1 levels
in humans (Fontana et al. 2008; Giovannucci et al. 2003).

DR in combination with deprivation of essential amino acids triggers protective
events for cells, by inducing a decrease in mTORC1 cellular levels and a concom-
itant increase in amino acid deprivation sensor (GCN2) (Brandhorst et al. 2017).
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Although there is still no data regarding the effect of fasting in preventing cancer
in humans, the most likely hypothesis is that the effect of DR on IGF-1 levels could
generate a protective environment for healthy cells and an adverse environment for
tumor cell growth (Longo and Mattson 2014). Another protein restriction marker is
FGF21, the fibroblast growth factor, regulated by PPARα whose plasma levels
increase during DR associated with protein restriction. In summary, DR has effects
on FGF21, IGF-1, and mTOR activity, which are probably linked to carcinogenesis
(Klement and Fink 2016).

DR and Oxidative Stress Response

Many studies indicated that the increase of antioxidant factors in tumor cells is
mediated by threonine tyrosine kinase Rim15 and transcription factors Msn2/4 and
Gis1, which regulate several genes, including mitochondrial SOD2, implicated in

INSULIN

IGF1-RIR

IGF-1

PI3K

AktmTORC1

PROLIFERATION

APOPTOSIS
CELL DEATH
ROS DETOX
CELL CYCLE ARREST

GCN2

CELLULAR STRESS

Fig. 2 Molecular pathways modulated by dietary restriction. Dietary restriction decreases the
circulating levels of insulin and IGF-1, resulting in inhibition of PI3K/AKT pathway, and leading to
increased apoptosis and decreased proliferation
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oxidative stress resistance (Madia et al. 2009; Hlavata et al. 2003). Additionally, Tor/
Sch9 and Ras/AC/PKA pathways regulate the expression of several DNA repair
genes, including REV1 gene (Madia et al. 2009).

According to this evidence, Mn-superoxide dismutase (MnSOD) heterozygous
knockout mice showed an increased DNA oxidative damage and tumor incidence.
This suggests a complex interaction between oxidative stress and cancer (Van
Remmen et al. 2003).

Another mechanism induced by DR is the autophagy response to oxidative
stress. Autophagy is a process by which cells under DR conditions convey nutrients
to essential metabolic processes. DR-induced autophagy is activated by poly (ADP-
ribose) polymerase 1 (PARP-1), a nuclear enzyme induced by DNA damage. ROS
(reactive oxygen species) production under DR conditions causes DNA damage,
which determines PARP-1 activation and fasting-induced autophagy (Cangemi et al.
2016). ROS induce different types of DNA damage, including single-strand breaks
(SSBs), double-strand breaks (DSBs), and ionized DNA nucleotides. The repair of
latter damage requires the intervention of the base excision repair (BER) system, in
particular the OGG1 (8-oxoguanine DNA glycosylase) enzyme 1. Both in vitro and
in vivo experiments showed that BER activity is influenced by the availability of
nutrients. Indeed, autophagy has no effects on OGG1 expression in the absence of
fasting (Siggens et al. 2012).

EXCESSIVE CALORIE
INTAKE 

HYPERINSULINEMIA
&

HYPERTROPHIC
ADIPOCYTE

INFLAMMATION INSULIN
RESISTANCE

LIVER

IGFBP-1

IGF-1

AROMATASE ACTIVITY

Bioavailable sex-hormones

EPHITELIAL CELLS

Proliferation

Apoptosis

Genomic instability

Fig. 3 Correlation between calorie intake and adiposity. Excessive calorie intake causes
hyperinsulinemia, hypertrophy of adipose tissue, and increased inflammation
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DEN-induced mice HCC cells exhibit high levels of Caspasi 3, PARP, and
Citocromo C, which are proteins involved in mitochondria-mediated autophagy,
suggesting that DR suppresses proliferation and promotes apoptosis (Lu et al.
2008; Duan et al. 2017).

According to previous studies (Xie et al. 2007; Standard et al. 2014), gene
expression analysis of DEN-induced mice HCC cells revealed that DR restores
functioning of many MAPK genes. MAPK pathway regulated by RAS promotes
tumor growth and is one of the most important molecular targets for treatment of
several types of cancers (Duan et al. 2017).

The Implication of Dietary Restriction in Cancer

The different molecular signature that distinguishes a normal cell from a tumor cell
is the main reason that could explain the different susceptibility to growth stimuli.
In fact, tumor cells undergo a series of genetic and epigenetic modifications that
make their growth independent of the presence of growth factors (Hanahan and
Weinberg 2011; Fig. 4). The accumulation of these genetic alterations constitutively
activates key components of intracellular pathways. Among these, the most common
deregulated signal pathways are Ras/Raf/MAPK and PTEN/PI3K/AKT, responsible
for an uncontrolled cell proliferation (Massihnia et al. 2016). The deprivation of
nutrients both in vitro and in vivo results in a decrease of growth factor levels in

Fig. 4 Growth stimuli of
normal and malignant cells.
The different molecular
profile between normal and
malignant cells is responsible
for the differences in behavior
toward growth stimuli
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normal cells, forcing thus the cell to enter a proliferative quiescent status (Flemstrom
et al. 2010; Pirkmajer and Chibalin 2011). Unlike normal cells, tumor cells over-
come this block by reprogramming their metabolic state and thus maintaining high
proliferative abilities (Hanahan and Weinberg 2011). The discovery that different
types of dietary restrictions can protect normal cells from the most common side
effects of chemotherapy has recently raised interest in its possible clinical applica-
tion. Moreover, STS seems to protect not only healthy cells but also increase the
sensitivity of various types of cancer to the therapy (Lee and Longo 2011). Indeed,
fasting in combination with chemotherapy determines increased cytotoxic effects in
malignant cells from different types of cancers (Russo and Rizzo 2008). The validity
of STS has been evaluated in immunosuppressed nude mice xenograft models in
which human neuroblastoma cells were subcutaneously injected. Surprisingly, after
34 days of fasting combined with cyclophosphamide treatment the tumor mass was
reduced (Lee et al. 2012a). The usefulness of STS has also been demonstrated for its
attenuating properties on chemotherapy side effects. Indeed, its cardioprotective
properties have been recently demonstrated during doxorubicin-based treatments
(Dirks-Naylor et al. 2014). In addition, a recent work on murine models revealed that
following a prolonged fasting of 48–60 h prior to the administration of a high dose of
etoposide, the side effects, generally resulting from the treatment, were attenuated
(Raffaghello et al. 2008). The synergy between refeeding and DNA damage caused
by pharmacological treatment may favor the growth of new foci in various organs
including liver, colon, and rectum (Laconi et al. 1995; Premoselli et al. 1998).
Interestingly, in a tumor mass, malignant cells are strictly connected with the so-
called “cancer-associated adipocytes” (CAAs) and interact with them (Calle and
Kaaks 2004). In particular, CAAs show the reduction of peculiar markers including
HSL, APN, and resistin, and increased proinflammatory cytokine expression such as
IL-6 and IL-1β and TNF-α (Berstein et al. 2007; Ribeiro et al. 2012; Dirat et al.
2011). This altered expression, associated with the production of adipokines, results
in a tumor microenvironment variation that favors uncontrolled growth. Therefore,
fasting, having a massive effect on the size of adipocytes, can consequently decrease
the secretion of tumor-favorable factors (Hermsdorff et al. 2009). Recently, CR
efficacy has also been demonstrated in relation to radiotherapy, leading to an
increase in the sensitivity to radiation-induced cytotoxicity (Champ et al. 2013).
As alternative to standard chemo�/radiotherapy, another type of metabolic therapy
has been proposed (ketogenic diet) whose beneficial effects have been demonstrated
in the multiform glioblastoma and brain cancer for its antiangiogenic, anti-inflam-
matory, and antiapoptotic abilities (Seyfried et al. 2015). Below we will discuss
deeper the association of chemotherapy and dietary restriction in some of the most
spread cancers worldwide looking at the benefits deriving from their combination
(Fig. 5).

Breast Cancer

Breast cancer is one of the main causes of cancer deaths in the female population
(Fanale et al. 2013). Various clinical studies have shown the efficacy of fasting in the
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favorable outcome of the chemotherapy treatment to which some patients affected
by breast cancer have undergone. In particular, it seems that a short period of fasting
pre- and posttreatment will have a better outcome in terms of patient’s tolerability by
reducing the side effects. Indeed, the case report of three different patients treated
with different therapies and subjected to different times of fasting is below described.
A first woman of 51 years with a breast cancer at stage 2A did not show any side
effect once subjected to fasting 140 h before and 40 h after treatment with docetaxel
and cyclophosphamide. The validity of the association was confirmed in a second
53-year-old patient, also suffering of a tumor in stage 2A and HER2þ. In particular,
chemotherapy cycles associated with fasting 64 h before and 24 h after were not
accompanied by high toxicity effects or in any case with negligible and/or reversible
transient effects. The third case saw a 78-year-old patient with a HER2þ tumor, after
mastectomy and subjected to variable fasting periods in the course of carboplatin-
based, docetaxel and trastuzumab-based chemotherapy cycles. Significant levels of
pharmacological toxicity have not been reported (Safdie et al. 2009; Table 1).

Ovarian Cancer

Among gynecological tumors, ovarian cancer is one of the most common and the
fifth cause of death in the female population (Reid et al. 2017). Al-Wahab et al.
(2014) published a study showing the effects of energy balance in mouse models

Fig. 5 Association between dietary restriction and chemotherapy. The figure shows the
relevant benefits arising from the association between different types of dietary restriction and
drug administration
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subjected to high energy diet or CR conditions. Mice group under high-energy diet
showed the most extensive tumor formation accompanied by the highest tumor score
at multiple sites. Moreover, they showed increased levels of insulin, leptin, IGF-1,
VEGF, and proinflammatory factors (IL-6). Instead, the mice group under CR
showed a lower tumor burden as well as a great reduction in insulin, IGF-1, leptin,
MCP-1, VEGF, and IL-6 levels (Al-Wahab et al. 2014). Also, clinical trials demon-
strated the effectiveness of the association chemotherapy/DR. The case of a 44-year-
old woman suffering from ovarian cancer has been emblematic, because she has
benefited from the antineoplastic treatment in combination with STS carried out 62 h
before and extended 24 h after drug treatment (Safdie et al. 2009; Table 1).

Lung Cancer

Lung cancer is one of the major causes of cancer-related morbidity and death in men
and women population worldwide. Depending on EGFR mutational status, therapy
may vary in favor of tyrosine-kinase inhibitors (TKIs). Among them, erlotinib is one
of the most commonly used TKIs in I and II line of treatment (Passiglia et al. 2017).
Currently, the recommended dose is 150 mg under complete fasting conditions or 2 h
after the meal consumption. Two modalities of administration are resulted able to
determine a different drug absorption and consequent increase in therapeutic effi-
cacy. In particular, drug seems to have greater effect when the administration takes
place 2 h after the meal (Katsuya et al. 2015). An interesting clinical case is that of a
61-year-old NSCLC patient who has seen mitigating the side effects of drug therapy
after STS 48 h before and 24 h after therapy (Safdie et al. 2009; Table 1).

Prostate Cancer

Prostate cancer is considered as the second cause of cancer-related death in male
population (Vanacore et al. 2017). Interesting is the case of a 74-year-old man

Table 1 Case reports of different tumors. The table summarizes the cases described in the text
and related fasting schedules adopted in pre- and posttreatment

Breast cancer Case I (51yo) 140 h before
40 h after treatment

Case II (53yo) 64 h before
24 h after
Treatment

Case III (78yo) Not shown

Ovarian cancer Case I (44yo) 62 h before
24 h after treatment

Lung cancer Case I (61yo) 48 h before
24 h after treatment

Prostate cancer Case I (74yo) 60 h before
24 h after treatment
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diagnosed with stage 2 prostate adenocarcinoma. The patient has undergone several
cycles of chemotherapy during which he faced many side effects such as fatigue,
weakness, short-term memory impairment, and peripheral neuropathy. Moreover,
PSA levels raised with an unstoppable trend. After many failed attempts, patients
were enrolled in a rigorous fasting schedule consisting of restrictions 60 h prior to
and 24 h post drug administration. After treatment, PSA levels dropped dramatically
and a marked reduction of side effects was reported (Safdie et al. 2009; Table 1).

Conclusion

Recently, accumulating evidence showed that starvation condition seems to play a
pivotal role in preventing cancer development and progression as well as improving
the response to different therapeutic treatments. The above presented studies and
considerations seem to confirm the protective role exerted by fasting against cancer.
However, a potential limitation is represented by time required for each cancer
patient to obtain an optimal fasting condition, since a severe nutrient deprivation
for several months may be needed, as showed by in vivo preclinical analyses.
Furthermore, not all patients are fit to undergo such dietary regimens, because
many of them are subject to weight loss due to the chemotherapy toxicity and
tumor itself. For this reason, since CR and ketogenic diet (KD) have been shown
to be approaches particularly effective unlike intermittent fasting whose role is still
controversial, further clinical studies are yet necessary in order to assess the safety
and efficacy of these methods.

Policies and Protocols

Protocol for Maintaining Cancer Cells Under Short-Term Starvation
Conditions

In this chapter, we have discussed the most significant studies present in literature
concerning the molecular mechanisms by which dietary restriction may contribute to
prevent cancer development, slow down its progression, and positively influence
therapy response. Since most of the current experimental evidences concerning the
correlation between dietary restriction and cancer arise from studies mainly
performed on in vitro preclinical models, here we discuss a rapid and convenient
method for maintaining the healthy and malignant breast cells under short-term
starvation conditions restricting the supply of glucose. Glucose metabolism repre-
sents a primary source of energy able to support cell proliferation and regulate cell
death-related signaling pathways. The impaired balance between excessively high
glucose consumption and its poor supply determines glucose deprivation in the
tumor microenvironment, activating a positive feedback mechanism that involves
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ROS production by NADPH oxidase and mitochondria, inhibition of tyrosine
phosphatases by oxidation, and amplification of tyrosine kinase signaling in cells
dependent on glucose for their survival.

Both cell lines are grown at 37 �C, 5% CO2, and 80% confluence, in a culture
medium DMEM (Dulbecco’s Modified Eagle Medium) containing high glucose
concentration (4.5 g/l D-glucose, 110 mM pyruvate) and enriched with fetal bovine
serum (10% FBS), nonessential amino acids (NEAA-1%), and streptomycin-peni-
cillin (1% Strepto/Pen). For short-term starvation experiments aimed at establishing
a glucose deprivation, cells are washed twice with PBS (phosphate-buffered saline)
and then incubated in glucose-free DMEM without pyruvate and supplemented with
10% FBS, 1% NEAA, 1% Strepto/Pen.

Dictionary of Terms

• Caloric restriction – Reduction of calorie intake that implicates feeding once
daily or thrice weekly. It can be distinguished in two forms: intermittent caloric
restriction and chronic caloric restriction.

• Dietary restriction – Condition of short- or long-term fasting which can involve
the lack of food consumption for short or prolonged periods. It includes the
caloric restriction, short- and long-term starvation, and ketogenic diet.

• Hyperinsulinemia – The increase in circulating insulin levels that lead to a
greater IGF-1 activity, by reducing synthesis and secretion of IGF binding protein
1, and elevated concentration of circulating sex hormones.

• Inflammatory response – Set of actions exerted by the immune system to fight
an inflammation through release of several factors that mediate this response,
including chemokines and cytokines.

• Therapy response – Assessment of the extent of sensitivity or resistance of a
tumor to a specific anticancer treatment.

Summary Points

• This chapter focuses on molecular mechanisms by which dietary restriction may
contribute to prevent cancer onset and improve therapy response.

• Dietary restriction involves food deprivation for short or prolonged periods.
• Dietary restriction includes short-term starvation, long-term starvation, caloric

restriction, and ketogenic diet.
• Numerous experimental evidences showed that fasting may exert a protective role

against aging and other age-related pathologies as well as cancer.
• Preclinical models suggested the potential use of fasting to induce anticancer

effects and improve patient life’s quality.
• However, prolonged fasting periods could impair the patient health conditions

already unfavorable due to physiological weight loss induced by tumor itself.
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• Fasting-mediated benefits seem to be mediated by the reduction of inflammatory
response and down-regulation of nutrient-related signaling pathways able to
modulate cell proliferation and apoptosis.

• Good results were obtained in animal models by associating caloric restriction
with conventional chemotherapies.

• Deregulation of IGF-1 and PI3K/AKT pathways causes dietary restriction
resistance.

• This chapter describes some case reports for different types of cancer.
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