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NOTATION 

A absorption coefficient = quotient between the absorbed energy flux and 

the incident wave energy flux 

C  quotient between   and E  

Gc  group celerity 

Rc  propagation speed of the reflected wave energy  

c wave celerity 

d water depth  

E mean wave energy flux 

  mean wave energy per unit surface 

in
E  mean wave energy per unit surface (incident waves) 

f frequency 

g acceleration of gravity 

2/H  amplitude of the incident wave 

vH   quasi-antinode height 

nH   quasi-node height 

sH   significant wave height 

h= water depth 

K head loss coefficient  

k wave number 

k exponent in the equation of state 

L wave length 

l   length of the water duct 

l    height of the room containing the water column 

aM  air mass 
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ap  pressure in the air pocket 

atmp  atmospheric pressure 

p  pressure  

Q water discharge of the wave 

pQ  water discharge of the plant 

R resonance coefficient 

S the total horizontal stroke excursion 

xS
 solution of the problem of the wave-breakwater interaction, for which 

GR xcc 
 with x  being a given value  

s  width of the vertical duct 

s   width of the oscillating water column 

T wave period 

T   lag of the absolute maximum of cross-correlation   

t   time 

U* flow coefficient 

x horizontal coordinate-axis parallel to the breakwater 

y horizontal coordinate-axis orthogonal to the breakwater 

z vertical coordinate axis with origin at the mean water level 

 volume of fraction 

   amplification factor = quotient between the wave amplitude at the 

breakwater-converter and the wave amplitude at a conventional reflecting 

breakwater 

 random phase angle 

p  wave pressure on the outer opening of the plant 

   angle between the y-axis and the direction of wave advance 

   mean value of   
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  height of the air pocket  

0  still water value of   

φ velocity potential 

 free surface elevation 

ph  the fluctuating pressure head 

   water density 

a  air density 

  root-mean square  

abs  energy flux absorbed by the plant 

p   mean value of 
abs  

in  mean energy flux of the incident waves 

  cross-correlation of p  and 
pQ  

   angular frequency 
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ECMWF   European Centre for Medium-range Weather Forecasts  
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FEM  Finite Element Method  
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Preface 

Wave energy exploitation is not mature yet in comparison with other 

renewable energy sources. Therefore, many different concepts are currently 

being developed. The widest research efforts are focused on OWCs (see, 

Falcão, 2003) which are fixed plants and hence easier to build and maintain, 

in respect to devices belonging to the family of “point absorbers” (Falnes 

(2002)). 

An OWC consists of a box with a big vertical opening in the front wall. 

Waves enter through this opening with only some small diffraction effects 

from the front wall (see Sarmento & Falcão (1985)), and they propagate on 

the water surface in the box. On the roof of the box there is a tube connecting 

the atmosphere with the air pocket enclosed between the water surface and 

the roof. This tube contains one or more self-rectifying turbine (like the Wells, 

see Raghunathan, 1995). The air pocket inside the box, is compressed and 

expanded alternately. As a consequence, an air flow is produced which drives 

the turbine in the tube. 

U-OWC plants (Boccotti, 2002-2003; Arena & Filianoti, 2007, Filianoti & 

Camporeale, 2008; Filianoti & Piscopo, 2015) are breakwaters in reinforced 

concrete embodying an OWC with an additional vertical duct on the front 

wall. Two kinds of plants have been widely studied: REWEC1 and REWEC3. 

REWEC1 (Boccotti, 2002; Boccotti P. et al., 2007; Boccotti, 2003a, 2003b; 

Filianoti & Camporeale, 2008; Filianoti & Piscopo, 2015) is fully beneath the 

sea surface, with water-driven turbines in the vertical duct. REWEC3 

(Boccotti, 2003c; Filianoti & Camporeale, 2008) is in part beneath the sea level 

and in part above the sea level. The air pocket of the REWEC3 is connected 

with the atmosphere through a tube where a Wells turbine is installed. The 

size (width and length) of the vertical duct, the sizes (length and height) of the 
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room, and the diameter of the air tube must be designed so that the 

eingenperiod is close to the wave period, in order to operate the plant in 

“resonant” condition, achieving the maximum energy absorption. REWEC1 

is suited for coast defense, while REWEC3 was conceived for port protection. 

The performance of a U-OWC with a Wells turbine has been investigated 

through a small-scale field experiment by Filianoti & Camporeale (2007). 

The REWEC3 (or U-OWC rel. 3) is valuable for two main reasons: 

(i) it has a structure which is very close to the well-established structure of 

conventional caisson breakwaters; 

(ii) unlike conventional OWC devices, it exploits a natural resonance with 

sea waves, leading to very large absorption of wave energy for different 

heights (and therefore periods) of incoming waves (Boccotti, 2007b). 

This work has the following articulation. The first Section describes the 

main typologies of devices for converting wave energy, focusing the attention 

on REWECs. Section II contains the mathematical schemes at the base of this 

work. In particular, it shows the governing equations, according to Boccotti’s 

theory on the wave field in front of the U-OWC breakwater, a simplified 

analytical approach for the flow motion inside the plant, and the CDF model 

of the numerical experiment carried on in the present work. In particular, the 

latter consists of the numerical integration of Reynolds averaged Navier-

Stokes equation (RANS) using the commercial code Ansys Fluent 17.0, 

Academic Version. Sect. III introduces generation and propagation of a wave 

train in a flume, and explains different stages of waves (i.e. transient, 

progressive and standing, waves) and mathematical forms to represent them, 

in view of subsequent preliminary checks on the numerical flume carried out 

in Sect. V. The layout of the numerical experiment, the boundary and initial 

conditions, and the discretization of the domain are shown in Sect. IV. In 
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Sect. V, the validation of the numerical wave flume is presented. Then, Sect. 

VI shows the results of the experiment, the performance of the plant and the 

comparison with the experimental data illustrated in Boccotti et al., 2007. 

Lastly, a summary of the work and Conclusions are carried out. 
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1 Introduction  

1.1 Wave energy resources 

Wave energy stands out among the different renewable energy sources not 

only for its high potential but also for its high energy density, the highest of 

all the renewables (Lopez & Iglesias, 2014).  

The first estimate of the wave energy potential was made by Barstow et al., 

1998 (see Figure 1.1). They made an analysis of the wave energy resources at 

a few hundred discrete points, basing their analysis on 2 years of satellite 

altimeter data.  

 

Figure 1.1 – Global wave energy estimates from Barstow et al., 1998. 

Over the last fifteen years several attempts have been made to map the 

offshore wave energy resources. For seas and oceans surrounding Europe, the 

WERATLAS project (Pontes, 1998), was developed by a team of seven 

institutions from six European countries. It was the first attempt to assess the 
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offshore European wave energy resource using a common methodology and 

homogeneous data sets whose accuracy had been carefully evaluated. It 

includes a wide range of annual and seasonal wave climate and wave energy 

statistics for 85 offshore data points distributed along the Atlantic and 

Mediterranean European coasts. The WAM model is the wind wave model 

selected for developing WERATLAS, after a comparison of four buoy 

stations in the Atlantic and two buoys located in the Mediterranean, over a 

one-year period. WAM is a numerical model in which the two-dimensional 

wave spectrum was allowed to evolve freely (up to a cut-off frequency) with 

no constraints on the spectral shape (Komen et al.,1994). 

Globally, the WorldWaves (Barstow et al., 2003) is a package for providing 

wave climate data and statistics everywhere on the Planet, both in deep and 

shallow waters. The data is derived from the European Centre for Medium-

range Weather Forecasts’ (ECMWF) operational and hindcast models. Then, 

they are calibrated by Fugro OCEANOR against satellite data, and, where 

available, through buoy data, to ensure the best quality (from Fugro 

OCEANOR website). 

Several authors have reported more detailed wave energy resource 

assessments for particular regions or countries. As shown in Figure 1.2, 

Filianoti (2000) calculated the wave energy potential for the Mediterranean 

Sea and for several parts of the world utilizing only buoy data, such as the 

Italian buoy network (RON) and the American NDBC. As we see, the energy 

that can be harvested from ocean coasts is much greater than that of the 

Mediterranean coasts. In particular, along the Pacific coasts, the average 

annual energy is 400000 kWh/m, while for the Atlantic coasts is 150000 

kWh/m. 
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Figure 1.2 – Wave energy estimates (Filianoti, 2000): along oceanic (left panel) and Italian 
coasts (right panel). 

1.2 The Wave Energy Converter 

There is a large number of concepts for wave energy conversion; several 

wave energy conversion techniques have been patented all over the world. 

Despite this large variation in design, the Wave Energy Converters (WECs) 

are generally categorized by location, type and modes of operation (B. Drew, 

et al., 2009). 

According to location the WEC devices can be categorized in: 

1) Shoreline devices. They have the advantage of being close to the 

utility network, easy to maintain, and have a reduced chance of 

being damaged in extreme wave conditions. On the other hand, the 

shallow water leads to lower wave power. In addition, by the nature 

of their location, there are generally site specific requirements 

including shoreline geometry. 

2) Nearshore devices. They are installed in relatively shallow water and 

they are often posed on the seabed. Like shoreline devices, a 

disadvantage is that shallow water leads to waves with reduced 

power. 
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3) Offshore device. They are generally in deep water. The advantage 

of siting a WEC in deep water is that it can harvest greater amounts 

of energy because of the higher energy content in deep water waves. 

However, offshore devices are more difficult to construct and 

maintain, and they need to be designed to survive the more extreme 

conditions. 

The WEC devices can also be classified into three types or categories: point 

absorbers, attenuators, and terminators. Each design class uses a different 

method of converting wave energy to a useful form of mechanical energy. 

Point absorbers are characterized by device designs with very small surface 

areas in comparison to the incident wavelength. By means of a hydraulic 

system, the vertical motion is converted into a rotational movement that 

drives the hydraulic motor. Because of their small size, wave direction is not 

important for these devices. There are numerous examples of point absorbers, 

one of which is Ocean Power Technology's Powerbuoy (OPT — Ocean 

Power Technology website).  

Attenuator devices are relatively long in length as compared to ocean 

wavelengths, and are typically positioned parallel to the general direction of 

wave propagation. They consist of multiple buoyant segments that articulate 

as wave crests and troughs pass. An example of an attenuator WEC is the 

Pelamis, developed by Ocean Power Delivery Ltd, now known as Pelamis 

Wave Power, (B. Drew et al., 2009). 

Terminator wave energy converters are designed to absorb the entire, or a 

large portion of, energy content of incident waves. These devices have their 

principal axis parallel to the wave front (perpendicular to the predominant 

wave direction) and physically intercept waves. The most notable overtopping 

terminator WEC is the WaveDragon (Previsic, et al., 2004)  
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Another way to categorize the energy converters is based on how they 

capture the mechanical energy of ocean waves. Figure 1.3 shows a 

classification according to the modes of operation of the wave energy 

technologies. 

An Oscillating Water Column consists of a chamber with an opening to 

the sea below the water line. As waves approach the device, water is forced 

into the chamber, applying pressure on the air within the chamber. This air 

escapes to atmosphere through a turbine. There are several examples of 

OWCs as point absorbers, as well as being built into the shoreline, where it 

acts as a terminator. An example of a shoreline mounted device is the 

Wavegen Limpet, installed on the island of Islay, Western Scotland (B. Drew 

et al., 2009). 

 

Figure 1.3 – Various wave energy technologies. Classification according to the 
working principles (António F. O. Falcão, 2014). 
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Oscillating bodies are typically offshore devices (sometimes classified as 

third generation devices) such as the floating or (more rarely) fully submerged 

device. These devices produce energy by reacting against the sea floor (or a 

fixed structure like a breakwater) or against another oscillating body.  

An Overtopping device captures sea water of incident waves in a reservoir 

above the sea level, then releases the water back to sea through turbines. An 

example of such a device is the Wave Dragon. 

1.3 The Oscillating Water Column  

Oscillating water column (OWC) devices, of fixed structure or floating, are 

an important class of wave energy devices.  

The main advantage of the OWC is its simplicity. On a practical level, as 

reported by Heath (2012), these advantages are that: 

 the only moving part of the energy conversion mechanism is the 

rotor of a turbine; 

 there are no moving parts in the water, as the turbine is located 

above water level; 

 the use of an air turbine eliminates the need for gearboxes; 

 it can be used on a range of collector forms situated on the 

coastline, in the nearshore region or floating offshore; 

 it is easy to maintain. 

In almost all OWCs, the air alternately flows from the chamber to the 

atmosphere and back. These devices have self-rectifying turbines, like the 

Wells, i.e. their rotational direction remains unchanged regardless of the 

direction of the air flow. Figure 1.4 shows a shoreline OWC scheme; under 

the wave action, the surface of water column rises (or decreases) and 



 

29 
 

compresses (or decompresses) the air volume in the plenum chamber. The air 

is forced through a duct containing the self-rectifying turbine, which connects 

the plenum to the atmosphere. 

 

Figure 1.4 –A shoreline Oscillating Water Column scheme. 

 
Shoreline OWC at Toftestallen, near 
Bergen, Norway, about 1985- Tapchan 
(Tapered Channel Wave Power Device) 

LIMPET OWC plant installed in 2000 on the island 
of Islay, Scotland 

 

OWC plant on the island of Pico, Azores, Portugal, 
1999. 

Figure 1.5 – Three prototypes of shoreline Oscillating Water Columns. 
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OWCs are a major class of wave energy converters, probably the class with 

the largest number of prototypes so far deployed into the sea (Falcao and 

Henriques, 2016). Full sized shoreline OWC prototypes, shown in Figure 1.5,  

were built in Norway (in Toftestallen, near Bergen, 1985), Portugal (Pico, 

Azores, 1999) and the UK (the LIMPET plant on Islay island, Scotland, 2000).  

The largest nearshore OWC bottom-standing plant (named OSPREY) was 

destroyed by the sea (in 1995) shortly after having been towed and sunk into 

place near the Scottish coast. Full sized nearshore OWC prototypes are shown 

in Figure 1.6. They were built in Japan (Sakata harbor, 1990), Australia (Port 

Kembla, 2005), and in Spain (Mutriku harbour, Basque Country). 

 

OWC Plant integrated in a Sakata harbor breakwater, 
Japan, 1990 

 
Oceanlinx installed at Port Kembla, 
Australia, in 2005 

 

Multi-chamber OWC plant integrated into a breakwater, 
Mutriku harbour, Basque Country, Spain, 2008–10 

 

OSPREY- Ocean Swell Powered 
Renewable Energy destroyed in 1995 
near the Scottish coast. 

Figure 1.6 – Four prototypes of nearshore Oscillating Water Columns. 
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In some cases, the OWC is integrated into a breakwater and this 

embodiment has several advantages. For example, the constructional costs are 

shared, and access for construction, operation and maintenance of the wave 

energy plant becomes much easier. This integration was done successfully for 

the first time, in 1990, in the harbor of Sakata, Japan, where one of the 

caissons making up the breakwater has a special shape to accommodate the 

OWC and the mechanical and electrical equipment.  

 
Backward Bent Duct Buoy (1:4th of full scale, tested in Galway Bay, Ireland, 
2008. 

 

Model (1:10th-scale) of Spar-
buoy tested in 2012 at NAREC, 
UK 

 

Mighty Whale, deployed in 1998 in Gokasho 
Bay, Japan. 

Figure 1.7 – Three prototypes of offshore Oscillating Water Columns. 
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The offshore OWCs have been proposed and developed with a wide range 

of configurations. As we can see in Figure 1.7, a few prototypes were built in 

Ireland, UK and in Japan. In particular, the Spar Buoy, is possibly the simplest 

concept for a floating OWC. Its 1:10th-scale model was tested in 2012 at 

NAREC, in the United Kingdom. It is an axisymmetric device (and so 

insensitive to wave direction) consisting basically of a (relatively long) 

submerged vertical tail tube which is open at both ends and fixed to a floater 

that moves essentially in heave.  

In the BBDB (Backward Bent Duct Buoy) device, the OWC duct is bent 

backward from the incident wave direction. In this way, the length of the 

water column could be made sufficiently large to achieve the resonance 

condition. 

1.4 Resonant Wave Energy Converters  

In the conventional OWC waves enter the plant undergoing some 

diffraction effects produced by the lower end of the front wall. Moreover, the 

eigenperiod of the plan is smaller than the wave period conveying the largest 

part of the energy in seas and oceans. Resonant Wave Energy Converters are 

a family of plant belonging to OWCs. 

The first release of these devices is a submerged breakwater called 

REWEC1 (Resonant Wave Energy Converter, release n.1). As we can see in 

Figure 1.8, the REWEC1 has a vertical duct on the wave beaten side that 

extends transversally along the whole caisson and is connected to the sea 

through an upper opening and to an inner chamber through a lower opening. 

this chamber contains a water mass in its lower part and an air pocket in its 

upper part. The height of the air pocket is set through an air compressor, in 

order to obtain the resonance condition between the period of the pressure 
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fluctuations on the upper opening of the duct and the eigenperiod of the plant. 

Arena & Filianoti (2003), described a small-scale field experiment, carried out 

directly at sea in the OKEANOS laboratory, with the aim of checking whether 

the resonance condition can be obtained by regulating the mass of air inside 

the plant. 

 

Figure 1.8 – Vertical cross section of Boccotti’s submerged breakwater (REWEC1). 

The REWEC1 is able to absorb the wave energy and to protect coasts. As 

confirmed by Filianoti and Piscopo, (2015), the energy transmission behind 

the breakwater is limited, thanks to the resonance that maximize the energy 

absorption by the plant. 

The second release (REWEC2) is essentially a caisson breakwater that 

incorporates a REWEC1. This release was made in order to have the turbines 

above the sea level. The plenum, as we can see in Figure 1.9, is connected to 

two reservoirs where there is a compressor which serves to feed air into the 

plant (that is into the air-duct, the air pocket and the air reservoirs); the exhaust 

valve serves to release some air from the plant. The advantages are that being 

above sea level the turbine is easy to maintain and that the air mass can be 

varied both by operating the gate valves which intercept the reservoirs (see 

Figure 1.9) and through the compressor. This optional mode allows the 
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eigenperiod of the plant to be varied in a large range, making it possible to 

tune the plant with the largest part of the waves hitting the plant.  

 

  

Figure 1.9 – Scheme of a caisson breakwater that incorporates a REWEC1 (REWEC2). 

The last release of these devices is called REWEC3 (see Figure 1.10). It 

essentially consists of a vertical U-conduit, which extends along the wave-

beaten side of the caisson, and it is connected with the sea through an upper 

opening. Under the wave action, the pressure on the upper opening of the 

vertical duct fluctuates and, as a consequence, the water oscillates vertically in 

the plenum chamber.   

 

Figure 1.10 – Scheme of a caisson breakwater embodying an OWC with an additional vertical 
duct (REWEC3). 
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A small-scale model of this breakwater has been placed off the coast of 

Reggio Calabria in the eastern coast of the Messina Straits (Southern Italy). 

The results of the experiment were described by Boccotti et al. (2007) and by 

Filianoti and Camporeale (2007-2009a -2009b). The experiment permitted the 

analysis the energy conversion from the fluctuating water flow at the outer 

opening of the vertical duct to the fluctuating air motion across the turbine.  

Moreover, the performance of the Wells turbine was analysed under real, 

randomly varying sea conditions. 

REWEC3 is simpler to operate and maintain than REWEC1 and 

REWEC2, because the air in the chamber is, on average, at atmospheric 

pressure. For this reason, there is no risk of air leakages from the plenum 

chamber. Furthermore, the REWEC3 does not require substantial structural 

changes from the well-established structure and construction technique of 

cellular caisson breakwaters. 

1.5 Open challenges in the conversion of  wave 
energy 

The harvesting of the wave energy had, and still has, several challenges to 

face. They include the efficiency of system, material selection, wind and wave 

forces, corrosion and biofouling, energy storage, daily and seasonal wave 

characteristics variations (R.H. Charlier and J.R. Justus, 1993). 

First of all, WEC devices have to face great challenges once at sea and 

several prototypes have not survived (e.g. OSPREY). Additionally, in offshore 

locations, wave direction is highly variable, and so wave devices have to align 

themselves accordingly on compliant moorings, or be symmetrical, in order 

to capture the energy of the wave. The directions of waves near the shore can 

be largely determined in advance owing to the natural phenomena of 
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refraction and reflection. The challenge of efficiently capturing this irregular 

motion also has an impact on the design of the device (B. Drew et al., 2009).  

As we can see in Figure 1.11, there are also challenges in order to harvest 

wave energy. The major difficulties regard the anchoring and the mooring. 

Indeed, especially for the offshore devices, they have to resist to stronger 

current and higher sea states. Indeed, the highest waves are the most 

productive but pose also the major design and constructions problems (R.H. 

Charlier and J.R. Justus, 1993). 

Another problem regards power cables and grid connection, that are very 

expensive at sea, thinking that for offshore wind power farms the internal 

power connection is 5% of the total cost and grid connection is 10% (as 

reported by www.wavepiston.dk). 

 

Figure 1.11 – Wave power challenges (from www.wavepiston.dk). 

Also, the maintenance and the survivability in seawater are some 

challenges. The correct choice of design and material is essential, in order to 

mitigate the highly corrosive environment where the devices operate. 

Nevertheless, it is working to improve the design of the WEC devices to 

optimize the extraction of wave energy under most wave conditions. 
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2 Mathematical schemes for the wave-

U-OWC interaction 

2.1 The governing equations 

2.1.1 The waves before the U-OWC 

The problem of wave motion before the breakwater must be solved in 

order to determine the pressure fluctuation p, on the outer end of the vertical 

duct. This has been solved by Boccotti (2007a), supposing that every periodic 

waveform has a given frequency and the mean energy flux smaller than (or 

equal to) the mean energy flux of the incident waves. Then, looking at the 

waveform which satisfies the equations of wave-OWC interaction, and gives 

the largest value of  (mean energy flux / mean energy per unit surface), 

it has been shown that, in most cases the wave motion before the breakwater 

is the superimposition of the standing waves, yielded by the reflection of the 

incident waves, with a progressive wave generated by the water discharge 

through the plant. In some cases, the solution giving the largest value of  

proves to be a sum of two standing waves with phase angles in space and time. 

In these cases (the sum of two standing waves), the plant may absorb up to 

100% of the incident wave energy.  

According to Boccotti (2007a), there are two forms of wave fields: 

superimposition of standing with progressive waves and superimposition of 

two standing waves.  

/ E

/ E
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2.1.1.1. Superimposition of  two standing waves 

Referring to the scheme represented in Figure 2.1, the periodic wave 

function (having height H, wave number k and angular frequency ) can be 

exprest in the form 

   (2.1) 

where  and  are two factors which are to be determined. In particular,  is 

the quotient between the wave height at the breakwater converter and the 

wave height at a conventional reflecting breakwater. 

 

Figure 2.1 - Reference scheme for the calculation of the wave field in front of the U-OWC. 

From the distribution of velocity potential associated with the wave (2.1), 

we obtain the expression of the wave pressure  on the outer opening of 

the vertical duct: 

.    (2.2) 

The water discharge of the wave at the converter is 

;    
(2.3)
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  


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the average wave energy flux and the mean wave energy per unit surface are 

respectively: 

,       (2.4) 

,      (2.5) 

 and  being the mean values referred to the incident waves. 

The wave field gradually expands seaward with a propagation speed cR. The 

ratio  (≤1) between cR and cG (the group velocity of a progressive wave) is 

.      (2.6) 

Boccotti (2007a) chose the value of  among the  solutions which, at all 

instants of time, fulfill the conditions that: 

(i) the water discharge  entering (or exiting from) the plant must 

be equal to the water discharge  of the wave at the converter;  

(ii) the energy flux absorbed by the plant  must be equal to the 

wave energy flux  at the breakwater converter. 

As a consequence of the conditions (i), the phase angle between  and 

 must be equal to the phase angle between  and , resulting in:  

       (2.7) 

where  is the known time lag of  with respect to  and T is the 

wave period. 
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The ratio  is called “resonant coefficient”. It can vary from -1 to 

1: R negative means that the wave period is greater than the eigenperiod, R 

positive means that the wave period is smaller than the eigenperiod. If R=0 

the plant absorbs the maximum ratio of the incident wave energy. 

The condition (ii) implies  

.       (2.8) 

The selected  is the one giving the largest value of the quotient between 

mean energy flux  and mean energy per unit surface  (i.e. the largest 

value of the propagation speed of the wave energy reflected by the 

breakwater-converter). Calling C this quotient, its expression is 

,      (2.9) 

where cG is the group velocity. 

Boccotti, (2007) suggests the following sequence of calculations: 

(i) fix a value of  greater than zero; 

(ii) obtain  with Eq. (2.2); 

(iii) solve, numerically, the equation of flow inside the plant and as 

results obtain the water discharge of the plant , the energy 

flux absorbed by the plant  and its mean value ; 

(iv) evaluate the time lag  of  with respect to ; 

(v) calculate  by means of Eq. (2.7) 

(vi) find  such that  [Eq. (2.4)] be equal to ; 

(vii) calculate C with Eq. (2.9); 
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(viii) repeat the sequence from (i) to (vii) till you find the values of , 

 and  giving the largest value of C. 

The calculation of ,  and  is preparatory to evaluate: 

 the performance of the U-OWC absorber, in particular the absorption 

coefficient A  

;      (2.10) 

 the wave field in front of the absorber [Eqs (2.1), (2.6)] and other 

derived]. 

2.1.1.2. Superimposition of  standing wave with progressive 
waves 

Before the breakwater-converter we have 

),,(),(),( 21 tytyty         (2.11) 

where ),(1 ty  is the standing wave which is produced before a reflecting wall: 

),cos()cos(),(1 tkyHty          (2.12) 

and ),(2 ty  is the wave generated by the discharge entering (or exiting from) 

the plant: 

),ˆcos(ˆ),(2   tkyHty      (2.13) 

where, without loss of generality, we assume  

.0ˆ          (2.14) 

Eq.(2.13) represents a progressive wave moving towards the open sea. 

Here ̂  and ̂ are to be determined. 
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From the distribution of velocity potential associated with wave (2.11) we 

get the following expression of the mean energy flux per unit length and of 

the mean energy per unit surface: 

,)ˆcosˆˆ(4 2
in       (2.15) 

,)ˆcosˆ4ˆ42( 2
inEE        (2.16) 

where in  and inE are, respectively, the mean energy flux per unit length, and 

the mean energy per unit surface of the incident waves, that is to say 

,
8

1 2

Gin cgH          (2.17) 

.
8

1 2gHin E        (2.18) 

Moreover, we get the following expression for the water discharge (per 

unit length) of the wave at :0y  

  ).ˆcos(ˆ 


 tH
k

tQ       (2.19) 

It is convenient to shift the origin of time so that it coincides with a wave 

crest at 0y . Thus, if we call H  the wave amplitude at 0y , we may write 

  ),cos(,0 tHt          (2.20) 

  ),cos(,0 11   tHt       (2.21) 

  ),cos(ˆ,0 22   tHt      (2.22) 

  ),cos(ˆ
2


 tH

k
tQ      (2.23) 

where 
21,  and  ,ˆ  are to be determined. 
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If we fix a tentative value of  , we know ),0( t ,eq. (2.20), and 

consequently we know the pressure fluctuation on the opening of the vertical 

duct: 

).cos(
)cosh(

)](cosh[
)( tH

kd

zdk
gtp o 


     (2.24) 

Once we have calculated the flow inside the plant, we know )(tQp
 and 

)(tp . Hence, we can obtain the mean value p  which will serve later, and 

the phase angle between  )(tQp
 and )(tp . This phase angle must be equal 

to the phase angle between )(tQ  and )(tp . The fact that the known phase 

angle between )(tQp
 and )(tp  must be equal to the unknown phase angle 

between )(tQ  and )(tp  enables us to obtain the unknown angle 
2 . We 

have 

,
2

4
2




T

T 

         (2.25) 

where T  is the known time lag of )(tQp
 with respect to )(tp . 

Since the plant absorbs energy, T must fall in ),4/,4/( TT  and hence 

(2.25) implies the inequality 

.
22

3
2







        (2.26) 

From (2.11)and  (2.20-23) the equation  

)cos(ˆ)cos()cos( 21   ttt     (2.27) 

follows, which implies 

,cosˆcos 21         (2.28) 
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,sinˆsin 21          (2.29) 

which, in their turns, imply 

.1ˆcos2ˆ 2

2

2         (2.30) 

Given that 
2  is known, eq.(2.30) enables us to obtain ̂ . Hence, we also 

obtain 
1  by means of eqq. (2.28), (2.29). Finally, when 

1  and 
2  are known 

we can obtain ̂  with the equation  

12
ˆ   .         (2.31) 

Boccotti (2007), suggests the following sequence of calculations: 

(i) fix a value of   between 0 and 1; 

(ii) obtain )(tp  with (2.24); 

(iii) solve, numerically, the equations of flow inside the plant, and as 

results obtain ;),(),( ppp ttQ   

(iv) evaluate the time lag T  of  )(tQp
 with respect to )(tp ; 

(v) calculate 
2  with (2.25); 

(vi) calculate ̂  with (2.30) 

(vii) calculate 
1  with (2.28), (2.29); 

(viii) calculate ̂  with (2.31); 

(ix) calculate   with (2.15). 

If   proves to be equal to 
p  the problem is resolved. Indeed, in the 

solution for 
2  we have fulfilled the condition that the phase angle between 

)(tQp
 and )(tp  be equal to the phase angle between )(tQ  and )(tp , from 
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which it follows that the phase angle between )(tQ  and )(tQp
 is equal to 

zero. 

2.1.2 The water/air motion inside the plant 

The study of the flow motion inside the absorber has been carried out by 

Boccotti (2007a, 2003a.). With reference to the scheme of Figure 2.2, the 

equation of the water flow inside a cell may be expressed in the form  

2

2 2

( '' ) d ' d
' '' ,

d d
w

l l u
h h h

g gt t

 
         (2.32) 

where the head losses 
wh  (both continuous and minor) and the velocity u in 

the vertical duct are respectively 
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u u
h l K
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 
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 R
       (2.33) 
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s
u

s t


 ,         (2.34) 

where R  is the hydraulic radius, 
w  is the friction coefficient and 

wK  is the 

minor loss coefficient, assuming a unique value independent from the flow 

direction. 
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Figure 2.2- Reference scheme of a U-OWC. 

The energies per unit weight are 
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
           (2.36) 

where 
ap  is the pressure in the air pocket, 

atmp  is the atmospheric pressure, 

p  is the wave pressure on the upper opening of the vertical duct. Eq (2.36) 

is rigorous with the linear theory of wave motion. 

The air density in the plenum is  

''

a

a

M

bs



 ,          (2.37) 

and it varies with time because of variations of air mass aM  and because of 

variations of height  . The pressure in the air pocket is related to the air 

density by the equation of state  
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a atm

k k

a atm

p p

 
 .         (2.38) 

The velocity 
au  in the air tube is related to pressure 

ap  of the air pocket: 
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where 
aK  is the head loss coefficient in the air tube. 

The rate of change of the air mass in the air pocket is related to 
au  and 

a : 

 
2d 1

d 2 4

a

a atm a

M D
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t


    .       (2.40) 

Equations (2.32) and  (2.40) are integrated numerically from the knowledge of 

( )p t  and of conditions at time t=0: 

0 0

d
0, , ''

d
a atmM bs

t


      .     (2.41) 

The flow chart is shown in Figure 2.3 

 

 

Figure 2.3- Flow chart for the U-OWC (Boccotti 2007). 
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The mathematical model has been validated and calibrated against the 

experimental results obtained in the field on a small-scale model (Boccotti et 

al., 2007). 

2.1.3 The Power Take Off  (PTO) system 

The Power Take Off (PTO) system converts the pneumatic power into 

electricity or some other usable form. The PTO is typically an air turbine and 

normally is a self-rectifying turbine.  

Wave energy power plants experienced a renewed interest after the 

introduction of the Wells turbine. In fact, the Wells turbine is commonly 

adopted in OWC wave energy converters, where, due to the wave motion, the 

pressure at the inlet of the vertical duct generates pressure fluctuations in the 

plenum, thus producing an oscillating air flow able to drive a turbine. The 

transformation of the oscillatory motion of the air column in the 

unidirectional rotational motion of the turbine can be effectively performed 

by the self-rectifying Wells turbine. It is an axial-flow turbine, composed of a 

rotor with untwisted airfoil blades of a symmetrical cross section, usually 

belonging to the NACA00XX series (see Figure 2.4).  
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Figure 2.4- The Wells turbine. 

The main feature of the Wells turbine is its capability of producing time-

averaged positive power from a cyclically reversing flow. Figure 2.5 illustrates 

the forces acting on the blades mounted on the turbine hub. Given an axial 

velocity V and  tangential rotor velocity U, the relative flow velocity W1 

forms an angle a with respect to the blade chord, generating lift, L, and drag, 

D, forces perpendicular and parallel to W1, respectively. These forces can be 

split into the tangential Fu, and axial Fn, forces, whose magnitude varies during 

the cycle. However, the Fu direction is predominantly independent of the flow 

direction (Raghunathan S, 1995). 
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Figure 2.5- Forces acting on the blade. 

The power conversion system in an oscillating water column wave device 

chain is illustrated in Figure 2.6. 

 

Figure 2.6- A typical wave energy conversion system (S. Raghunathan., 1995). 

The performance of the Wells turbine can be expressed in terms of non-

dimensional parameters,  

,       (2.42) 
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where Tt is the torque referred to the internal (blade) power Pt 

t tT P  ,        (2.43) 

a is the air density,  is the angular speed, Rtip is the blade tip radius, and 

*
0p is the non-dimensional stagnation pressure drop, defined as: 

,       (2.44) 

where p0 is the stagnation pressure drop across the turbine. The 

characteristic curves are given against the flow coefficient  

,        (2.45) 

where V is the average axial velocity in the turbine annulus, evaluated from 

the volumetric flow rate Q and the annulus area At through 

.        (2.46) 

The efficiency η, is defined as: 

𝜂 =
𝑇𝜔

𝑄Δ𝑝0
.        (2.47) 

In Figures 2.7, 2.8 and 2.9 the comparison carried out between the 

experimental data (Curran and Gato, 1997) and CDF simulation by Torresi et 

al. (2004 and 2008) at the same working condition is shown.  In particular, 

Figure 2.7, shows the torque coefficient characteristics, defined by eq. (2.42). 

The results of Torresi et al. (2004 and 2008) simulations are in reasonable 

good agreement with the experimental data, in particular the torque 

coefficient is very close to the experimental data until the flow coefficient 

U*=0.2, before reaching the stall conditions around U*=0.225.  
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 Figure 2.7- Torque coefficient characteristics (Torresi et al., 2008). 

Figures 2.8 and 2.9 show the non-dimensional total pressure drop, defined 

by eq. (2.44), and the efficiency characteristics, eq. (2.47), respectively.  

As we can see in Figure 2.8, the non-dimensional total pressure drop has a 

linear variation with the flow rate coefficient U*. There, we can see the 

absolute correspondence between experimental data and CFD simulation.  

 

Figure 2.8- Non-dimensional total pressure drop characteristics (Torresi et al., 2008). 
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The efficiency (see Figure 2.9), remains quite constant for a range of U* 

values included between 0.10 and 0.20 and at the U* value equal to 0.15, the 

efficiency is at its maximum.  

 

 Figure 2.9- Efficiency characteristics (Torresi et al., 2008).  

2.2 The Simplified one-dimensional approach 

2.2.1 Mechanical system equivalent to the U-OWC 

An analytical solution for the U-OWCs has been proposed by Filianoti & 

Camporeale (2008), using a linearized form of Eq. (2.32) obtained considering 

small displacements of  from the value of static equilibrium 0, and an 

incompressible flow in the air tube. The linearized form obtained consists of 

a system of 2nd order ordinary differential equations, analogous to the 

equations that describe the mechanical spring-mass-damper system shown in 

Figure 2.10. 
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Figure 2.10 - The mechanical system equivalent to U-OWCs (Filianoti & Camporeale, 2008). 

Terms that are necessary to linearize are the fluid dynamic head losses of 

the water in the duct and the polytropic which governs the air transformation 

in the plenum (which works like a gas spring). 

Expanding terms 
wh , u, 'h  and ''h  in Eq. (2.32) by means of Eqs (2.33), 

(2.34) (2.35) and (4.36) respectively, we obtain  

2

2

d d d
( )

d dd

w a atmB p py y y
A y p t

g t t gt 


     ,    (2.48) 

where 
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s
B l K

s

  
    

  R
,      (2.49) 

and 

𝑦 = 𝜉 − 𝜉0          

(2.50) 

is the displacement of the water surface in the air chamber.  

Assuming small oscillations of the water-air interface in the room, round the 

rest position, it is possible to express Eq (2.48) in the form 

2

2

d d
' ' '

dd

y y p
A F Q y

t gt 


    ,      (2.51) 
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where  is the water density, g is the acceleration of gravity, terms 'A  and 'Q  

follow straight forwardly from the Taylor series expansion of 2nd order term 

coefficient in Eq. (2.33) and polytropic law (2.38), respectively: 

0

1 '
' ' '

''

s
A l l

g s


 
   

 
,      (2.52) 
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 

.      (2.53) 

The expression of coefficient F', is obtained by equating the mean 

dissipated power in the actual turbulent flow (non-linear model) to the mean 

dissipated power in a laminar flow having the same peak period Tp of the 

energy spectrum of the velocity process. 

Neglecting the kinetic term in the air-water interface in the chamber, we 

obtain: 

2
1 '

' ( )
2 4 ''

w

w ad

s
F l K K

g s

  
   

 R
.     (2.54) 

Filianoti & Camporeale (2008) show that the U-OWC dynamic behaviour 

is characterized by a core of waves constituted by the 3rd part of the highest 

waves in the sea state. Consequently, they calculated the mean adequacy 

coefficient Kad 1/3 (= turbulent flow mean energy losses / laminar flow mean 

energy losses) relevant to the highest third of the waves of velocity 

fluctuations in the vertical duct, assuming that the random water flowing in 

the vertical duct is represented by a Gaussian process with an infinitely narrow 

energy spectrum: 
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The product ( ; )vp u w   is the probability of a velocity amplitude within 

the fixed small interval (u, u+ du), in a sea state with a given standard deviation 

v=w; and U1/3 is the threshold being exceeded by 1/3 wave heights of velocity 

fluctuations. Solving the integrals in Eq. (2.51), we arrive at 

1 3

16
( )

3
ad vK 


 .       (2.56) 

An iteration process is necessary to calculate v (in all worked calculations 

a few iterations have been necessary to achieve convergence). 

2.2.2 Energy conversion step by step: partial efficiency 

The electrical power generation through a U-OWC plant involves the 

conversion of energy in several intermediate forms. The first is the conversion 

of wave energy into hydraulic energy from the water current inside the duct. 

Then, we have the pneumatic energy of the air mass in the plenum chamber. 

This is converted into mechanical energy by means of the turbine and finally 

into electrical energy by the generator.  

Let us call Pe, the electrical power, and Pw the wave power, the overall 

efficiency of the system is given by 

𝜂 =
𝑃𝐸

𝑃𝑊
.        (2.57) 

Considering the PU 

𝜂 =
𝑃𝐸

𝑃𝑊
.

𝑃𝑈

𝑃𝑈
= 𝜂𝑊.

𝑃𝐸

𝑃𝑈
,      (2.58) 

PU being the useful hydrodynamic power and W the hydraulic efficiency, 

given by the ratio between PU and PW. 

Multiplied and divided by PA the (2.58) can be rewritten as 
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𝜂 = 𝜂𝑊.
𝑃𝐸

𝑃𝑈
.

𝑃𝐴

𝑃𝐴
= 𝜂𝑊 ∙ 𝜂𝐴.

𝑃𝐸

𝑃𝐴
,     (2.59) 

PA being the reduced flow power and A the volumetric efficiency, given by 

the ratio between PU and PA. In particular PA represents the pneumatic power 

excluding the power losses by the flow of air through the blades of the turbine. 

Let us multiply and divide by the mechanical shaft power, PM the second 

member of the (2.59) we obtain 

𝜂 = 𝜂𝑊 ∙ 𝜂𝐴.
𝑃𝐸

𝑃𝐴
.

𝑃𝑀

𝑃𝑀
= 𝜂𝑊 ∙ 𝜂𝐴 ∙ 𝜂𝑀.

𝑃𝐸

𝑃𝑀
= 𝜂𝑊 ∙ 𝜂𝐴 ∙ 𝜂𝑀 . 𝜂𝐸 , (2.60) 

with M the mechanical efficiency, given by the ratio between PA and PM and 

E   the electrical efficiency, given by the ratio between PM and PE. 

Hence the overall efficiency of the (2.57), can be rewritten as: 

𝜂 = 𝜂𝑊 ∙ 𝜂𝐴 ∙ 𝜂𝑀 . 𝜂𝐸 .      (2.61) 

2.3 The two-dimensional approach 

2.3.1 The Navier Stokes equations 

Fluid mechanics is essentially the study of fluids either in motion or at rest. 

CFD is particularly dedicated to the former, fluids that are in motion, and how 

the fluid flow behavior influences processes that may include heat transfer 

and possibly chemical reactions in combusting flows. The physical 

characteristics of the fluid motion can usually be described through 

fundamental mathematical equations, usually in partial differential form.  

The multi-phase flow CFD simulation, in which both air and water flows 

have been assumed unsteady, was solved by the Navier-Stokes equations. 

These can be written using Cartesian tensor notation. This is an extremely 

useful tool for performing vector algebra. Consider the coordinate system 
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illustrated in Figure 2.11. Instead of using the typical axis labels x, y, and z, we 

use x1, x2, and x3, or xi, with i= 1,2,3. 

 

Figure 2.11 – Reference coordinate system. 

The general form of the mass conservation equation, for incompressible 

as well as compressible flows, is 

( ) 0.i

i

v
t x




 
 

 
       (2.62) 

The continuity equation (2.62) states that the mass is constant in a given 

system. Meaning that the amount of mass into the system is equal to the mass 

out of the system. 

The equation of conservation of momentum in an inertial reference frame 

can be written in the form 

 ' '( ) ( ) ,
ji

i i j i j

j i j j i j

vvp
v v v v v

t x x x x x x
  

      
        

          

  (2.63) 

where vi and p are the time-averaged tensor velocity and pressure, respectively, 

and  is the kinematic viscosity. The quantity 

𝜏𝑖,𝑗 = −𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅,        (2.64) 
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is known as the Reynolds stress tensor which is symmetric and thus has six 

components.  

From Newton’s second law, the total force is given as the rate of change 

of momentum. In a given system, the conservation of momentum means that 

the momentum into the system equals the momentum out of the system. In 

practice, this illustrates Newton’s third law between fluid particles where an 

equal and opposite force will act on each particle in order to conserve the 

momentum. 

The equations system (2.62 and 2.63) is not yet closed. In order to close, it 

must find enough equations to solve the unknowns. To solve the RANS 

equations there are several turbulence models. The most used models in CFD 

simulations are: 

1) Boussinesq approximation; 

2) Spalart-Allmaras model; 

3) k- model; 

4) k-  model.  

The Boussinesq approximation is a common method which employs the 

Boussinesq's hypothesis. It is at the heart of eddy viscosity models used in 

many different fields to model turbulent flows. This hypothesis corresponds 

to an alignment between Reynolds stresses and the mean velocity gradients as 

follow: 

−𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅ = 2𝜈𝑇𝑆𝑖𝑗 −
2

3
𝑘𝛿𝑖𝑗,      (2.65) 

where T is the kinetic eddy viscosity and the turbulent kinetic energy, k, is 

defined as  
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𝑘 = −
1

2
𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅       (2.66) 

and Sij is the mean strain-rate tensor 

𝑆𝑖𝑗 = −
1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
).      (2.67) 

In the Spalart-Allmaras Model, the turbulent kinetic energy is ignored and 

the Reynolds stress is calculated as  

−𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅ = 2𝜈𝑇𝑆𝑖𝑗,       (2.68) 

The k- and k- are two equation models, which means, they include two 

extra transport equations to represent the turbulent properties of the flow. 

This allows a two-equation model to consider effects like the convection and 

the diffusion of turbulent energy. The first transported variable is turbulent 

kinetic energy, k. The second transported variable can be the turbulent 

dissipation, , or the specific dissipation,  These variables determine the 

scale of the turbulence, whereas the first variable, k, determines the energy in 

the turbulence. In this work, we used the k- turbulence model. 

2.3.2 The discretization method 

Discretization of the Navier–Stokes equations is a reformulation of the 

equations in such a way that they can be applied to computational fluid 

dynamics. The typical discretization methods used are: 

4) Finite difference method. 

5) Finite element method; 

6) Finite volume method; 

In the Finite Difference Method (FDM), the derivatives in the Partial 

Differential Equation (PDE) are approximated by linear combinations of 
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function values at the grid points.  The error in the solution of this method is 

defined as the difference between the approximation and the exact analytical 

solution. 

To use a finite difference method to approximate the solution to a problem, 

one must first discretise the domain of the problem. This is usually done by 

dividing the domain into a uniform grid (see Figure 2.12).  

 

Figure 2.12- Uniform grid in which the domain can usually be discretized. 

Note that this means that finite-difference methods produce sets of discrete 

numerical approximations to the derivative, often in a "time-stepping" 

manner. 

Given the scheme of Figure 2.12 the central difference approximation to 1st 

order derivatives, on (xi, yi ) node can be written by: 
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the backward difference approximation to 1st order derivatives is 
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and the forward difference approximation to 1st order derivatives is 
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  )()()( 1 .      (2.71) 

In contrast to Finite Difference techniques, the Finite Element Method 

(FEM) divides the solution domain into simply shaped regions, or “elements”. 

This subdivision of a whole domain into simpler parts has several 

advantages such as an accurate representation of complex geometry, inclusion 

of dissimilar material properties, the easy representation of the total solution 

and the capability to capture local effects. 

An approximate solution for the PDE can be developed for each of these 

elements. The total solution is then generated by linking together, or 

“assembling,” the individual solutions taking care to ensure continuity at the 

element boundaries. Thus, the PDE is satisfied in a piecewise fashion.  

The implementation of the finite-element approach usually follows a 

standard step-by-step procedure. The first step involves dividing the solution 

domain into finite elements. Figure 2.13 provides examples of elements 

employed in one, two, and three dimensions. The points of intersection of the 

lines that make up the sides of the elements are referred to as nodes, and the 

sides themselves are called nodal lines or planes. 
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Figure 2.13- Examples of elements employed in (a) one, (b) two, and (c) three dimensional 
domains. (Steven C. Chapra & Raymond P. Canale, 1998). 

The next step is to develop equations to approximate the solution for each 

element. This involves two phases. First, we must choose an appropriate 

polynomial function with unknown coefficients that will be used to 

approximate the solution. Secondly, we evaluate the coefficients so that the 

function approximates the solution optimally. 

The polynomial approximation process eliminates all the spatial derivatives 

from the PDE, thus approximating the PDE locally with either a set of 

algebraic equations for steady state problems or, alternatively, with a set of 

Ordinary Differential Equations (ODE) for transient problems.  

Algebraic equations are solved using numerical linear algebra methods, 

while ordinary differential equations are solved by numerical integration using 

standard techniques such as Euler's method or the Runge-Kutta method. 

The Finite Volume Method (FVM) is similar to the finite difference method 

or finite element method. It is used to represent and evaluate PDE in the form 

of algebraic equations, and the values are calculated at discrete places on a 

meshed geometry. "Finite volume" refers to the small volume that surrounds 

each node point on a mesh. In the finite volume method, volume integrals in 
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a partial differential equation that contain a divergence term are converted to 

surface integrals, using the divergence theorem.  

Referring to Figure 2.14,the first step in the finite volume method is to divide 

the domain into discrete control volumes. Let us place a number of nodal 

points in the space between W and E. The boundaries (or faces) of control 

volumes are positioned mid-way between adjacent nodes. Thus, each node is 

surrounded by a control volume or cell. It is common practice to set up 

control volumes near the edge of the domain in such a way that the physical 

boundaries coincide with the control volume boundaries. 

 

Figure 2.14 - The usual convention of CFD methods: a) the one-dimensional control volume 

width is ∆x = δxwe, b) the two-dimensional control volume width is ∆x * ∆y (Versteeg and 

W Malalasekera, 1995). 

The key step of the finite volume method is the integration of the 

governing equation (or equations) over a control volume to yield a discretized 

equation at its nodal point P. Finally, after the discretization of the PDE in a 

system of linear algebraic equations, any matrix solution technique may be 

enlisted to resolve of the system. 

2.3.3 Numerical CFD model 

The numerical approach is based on a two-dimensional CFD simulation. 

There are two approaches for the numerical calculation of multiphase flows: 

the Euler-Lagrange approach and the Euler-Euler approach. 
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In the Euler–Lagrange models, grid-averaged equations for the continuous-

phase flow field are solved, where the grid size is larger than the discrete phase 

size, while the discrete phase is explicitly tracked and experiencing forces in a 

Lagrangian fashion (Johan T.et al., 2015). The particle trajectories are 

computed individually at specified intervals during the fluid phase calculation. 

In the Euler–Euler model, the different phases are regarded as continuum. 

Mathematically each phase is calculated by solving the balance equations.  

To carry out the numerical experiment we used the Euler-Euler approach, 

implemented in the commercial code Ansys Fluent. In particular, we used the 

volume of fluid (VOF) model, in which two or more fluids (or phases) are not 

interpenetrating between each other. In the present case, VOF is used to 

model the air-water interface. 

The maximum velocity of the air flow is reached at the slit located at the U-

OWC roof. The Mach number being very low (nearly equal to 0.02), the air is 

assumed incompressible (For well-prepared initial data, the solutions of the 

full compressible Navier–Stokes–Maxwell system converge to that of the 

incompressible Navier–Stokes–Maxwell system as the Mach number tends to 

zero [Fucai Li and Yan-min MuLow, 2014]). 

The volume fraction  of the ith fluid occupying cells of the computation 

mesh is computed by 

( ) 0.iv
t





 


       (2.72) 

where the 0 < < 1. If a cell is completely full of the considered fluid,  = 1, 

if it is empty,  = 0. 

In each control volume, the sum of the volume fractions of all phases is 

equal to one (F.B. Ferreira et al., 2015). It is shown that the volume fraction 



 

66 
 

is more flexible and efficient than other methods for treating complicated free 

boundary configurations (C.W Hirt & B.D Nichols, 1981).  

The volume fraction in cells that lie near the interface between two phases is 

calculated by a piecewise linear interpolation.  

In order to accelerate the convergence of the solver by computing 

corrections on a series of coarse grid levels, we used a multigrid scheme. A 

multigrid cycle can be defined as a recursive procedure that is applied at each 

grid level, as it moves through the grid hierarchy. In particular, we have used 

the Algebraic Multigrid (AMG) method to obtain a converged solution. 

In CFD techniques, the primitive variable method used to predict the flows 

could be divided into two groups: density-based methods and pressure-based 

methods, with the former used for compressible flows, and the latter for 

incompressible flows (J. F. Zhang et al., 2014). Here, we used a pressure-based 

solver for the discretization of the momentum and continuity equations.  

In order to obtain the spatial discretization of the convection terms in the 

governing equations, we used the Green-Gauss Cell-Based method to 

gradient evaluation and the PRESTO! (PREssure STaggering Option) scheme 

for pressure equation. The other convection-diffusion equations (e.g. 

momentum or energy equation) were discretised by means of the Second 

Order Upwind scheme. 
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3 Wave generation and propagation of  

a wave train in a 2D flume  

3.1 Transient waves generation 

A general theory for mechanical wave generation was presented by 

Havelock (1929), and this is generally considered the foundation of 

wavemaker theory.  

The most common way for a physical experimental flume to generate waves 

is through the movement of a paddle, which is located at one end of the flume. 

Paddles used in flumes can be a flap, a piston or a wedge type, of which the 

piston-type is the most popular permitting simple generation of shallow water 

waves according to the velocity pattern near the paddle (H.B. Gu et al., 2011). 

As reported by Hughes (1993), the general, first order solution for sea 

surface elevation, resulting from a piston-type wavemaker starting from rest 

was described in 1949 by Kennard as 

𝜂(𝑥, 𝑡) =
2

𝜋
∫ ∫ ∫ 𝑈0(𝑧, 𝜏)

cosh 𝑘(𝑑+𝑧)

cosh 𝑘𝑑

0

−𝑑
cos 𝑘𝑥 cos 𝜎(𝑡 − 𝜏)𝑑𝑧𝑑𝜏𝑑𝑘

𝑡

0

∞

0
. (3.1) 

The free surface displacement, produced in a wave flume by a piston-type 

wavemaker starting from rest and moving sinusoidally for a given period of 

time t, can be expressed in the form (Hughes, 1993): 

𝜂(𝑥, 𝑡) =
2

𝜋
∫

tanh 𝑘𝑑

𝑘
cos 𝑘𝑥 [∫ 𝑈0(𝜏) cos 𝜎(𝑡 − 𝜏)𝑑𝜏

𝑡

0
]

∞

0
𝑑𝑘,  (3.2) 

where d is the flume depth, U0 is the horizontal velocity of the wave board, 

and 2 = gktanh(kd), where k=2/,  being the length of the flume. 

Assuming that the board starts from rest at its extreme backward position, its 

displacement and velocity are given by 
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𝑥(𝑡) = −
𝑆

2
cos(𝜔𝑡),       (3.3) 

𝑈𝑜(𝑡) =
𝑆

2
𝜔 sin(𝜔𝑡),       (3.4) 

where S is the total horizontal stroke excursion and  is the angular frequency 

of the wave board. Substituting eq. (3.4) into eq. (3.2), and integrating with 

respect to time, we obtain 

2 2
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     (3.5) 

As reported by Dean & Dalrymple (1984) a simplified theory for plane 

wavemakers in shallow water was proposed by Galvin (1964), who imposed 

that the water displacement by the wavemaker is equal to the crest volume of 

the propagating wave form.  Considering a piston wavemaker with a stroke S, 

which is constant over a depth h, the volume of water displaced over a whole 

stroke is Sh (see Figure 3.1), whereas the volume of water in a wave crest is: 

/2

0

( / 2)sin(kx)dx,

L

H         (3.6) 

equating the two volumes, we obtain 
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where the 2/ factor represents the ratio between the shaded area and the 

area of the enclosing rectangle (see Figure 3.1). This equation can also be 

expressed as 
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where H/S is the height-to-stroke ratio. This relationship is valid in the 

shallow water region, kh</10.  

 

Figure 3.1 –Simplified shallow water piston-type wavemaker theory of Galvin [Dean & 
Dalrymple, 1984]. 

In Figure 3.2 the wave height to stroke ratio H/S, as a function of the 

relative depth of the flume is shown. The dotted lines represent the simplified 

wavemaker theory (eq.(3.8), in the case of the piston type). 

 

Figure 3.2 -Wave height to stroke ratios versus relative depths from plane wavemaker theory. 
Piston and flap type wavemaker motions [from Dean & Dalrymple, 1984]. 
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3.2 First order waves 

Referring to a two-dimensional reference frame yz, in which y-axis is the 

direction of wave propagation and z-axis is an upward orientated vertical axis, 

the system of differential equations of an irrotational two-dimensional flow 

with a free surface is: 
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The first equation says that the pressure is zero on the free surface 

(atmospheric pressure being taken as reference pressure); it proceeds 

straightforwardly from the Bernoulli equation. The second one is the general 

equation of the free surface. The third and fourth ones are, respectively, the 

continuity equation and the boundary condition at the horizontal bottom. 

The free surface displacement  and the velocity potential can be written 

respectively as 
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with f t( ) , an arbitrary function of time. So the velocity potential  (3.14)

 (3.14) is not univocally specified. But the functions which are of 

interest, that is to say v( , , )y z t  and p y z t( , , ) , prove to be independent of 

f t( )  and thus they are univocally specified. In particular, the components of 

vector v prove to be 
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In Figure 3.3 we can see the velocity components for four phase position. 

The pressure field associated with the progressive wave field (1.14) is 

determined from the Bernoulli equation (3.9). The result is 
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(where the terms of order smaller than or equal to H 2
 have been neglected), 

and hence the fluctuating pressure head proves to be 
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Figure 3.3 -  Water particle velocity in a progressive wave (Dean and Dalrymple, 1984).  

The first term on the right-hand of the pressure equation is the hydrostatic 

term, which would exist without the presence of the waves. The second term 

is due to waves and called the dynamic pressure. In Figure 3.4 the effect of 

the dynamic pressure in modifying the hydrostatic pressure is shown. 

 

Figure 3.4 -  Hydrostatic and dynamic pressure components at various phase positions in a 
progressive wave (Dean and Dalrymple, 1984).  

Clearly the formulae of p and ph  hold for z  , and the formula of ph  

requires in addition z to be smaller than or equal to zero. Indeed eq.(3.18) 

presupposes that the static pressure is  gz . To this purpose, note that, in 

the whole text, ph  denotes the fluctuating pressure head only at points which 

are always beneath the water surface, where eq.(3.18) is, of course, valid.  
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3.3 Group celerity and wave power 

Generally, wave motion implies energy travelling in the space-time domain. 

Treating surface water waves, the most used energy measure is the mean wave 

energy density per unit horizontal area. It is the sum of the kinetic and 

potential energy density integrated over the depth of the fluid layer and 

averaged over the wave phase. 

The average (mean) energy density per unit area of gravity waves on the 

water surface is proportional to the wave height squared, according to linear 

wave theory: 

21

8
E gH         (3.19) 

where E is the mean wave energy density per unit horizontal area (J/m2). The 

potential energy density is equal to the kinetic energy, both contributing half 

of the total wave energy density E, as can be expected from the equipartition 

theorem. As the waves propagate, their energy is transported. The energy 

transport velocity is the group velocity. As a result, the wave energy flux, 

through a vertical plane of unit width, perpendicular to the wave propagation 

direction, is equal to 
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To explain the meaning of the group velocity CG, we consider a long wave 

flume (see Figure 3.5) supposing that the wavemaker starts, from rest at time 

t=0. The time needed for the waves to get to a fixed point at a distance oy  

from the wavemaker is ot .  
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Considering a control volume extending from 0y   (wavemaker) to 

oy y , during the time interval 0 ot t  , the flow in the control volume is 

not periodic.  Indeed, if we took some photographs at a regular time interval 

T (equal to the wave period) we would catch an evolving situation. Initially, 

we would see some waves close to the wavemaker with the rest of the tank 

still being calm. 

 

Figure 3.5 - Plan view and longitudinal section of a long wave flume. (Boccotti, 2000) 

Then, we would see the wave zone widen gradually. Integrating the energy 

equation respect to t on the interval (0, )ot , we obtain 
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where A  is the lateral surface of the control volume and consists of four parts: 

the cross section  at the wavemaker; the cross section  at oy ; and the two 

sides  and  of the tank.  

In detail, explicating the contributions of all cross sections, we arrive to 
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and, simplifying and rearranging the term, we obtain 
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The quotient y to o being the propagation speed of a wave motion on a 

calm basin, we can write the group celerity as: 
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Figure 3.6a shows three instant pictures of the wave tank taken an interval 

T from each other. The waves are sketched as vertical segments: the height of 

the segment is equal to the wave height and the interval between two 

consecutive segments is equal to the wavelength. Each single wave advances 

a wavelength L in a wave period T, so that its propagation speed is L T  (see 

the detail of the head of the group in Figure 3.6b). It is not so for the wave 

group which advances a wavelength in two wave periods, so that its 

propagation speed is c 2 .  

 

Figure 3.6 - (a) Three pictures taken a wave period from each other, while the wave motion 
advances on an initially still basin (the waves are sketched as vertical segments). (b) Details of 
the head of the group. [from Boccotti, 2000.] 
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The propagation speed of the group is smaller than the propagation speed 

of each single wave, simply because each single wave goes to die at the head 

of the group. In particular, in the first picture of Figure 3.6b, wave A is going 

to die; then in the third picture, two periods later, wave B is going to die; then 

it will be the turn of C, D and so on. 

Therefore, known the group celerity, the mean energy flux of progressive 

waves can be written as: 

21

8
GgH c  .       (3.25) 

3.4 Standing waves in front of  a reflective vertical 
wall 

Whenever a wave train attacks a vertical wall, we see a phenomenon of 

wave reflection.  

If the direction of the incident waves makes an angle   2  with the y-

axis (wall-orthogonal), then the direction of the reflected waves makes an 

angle    with the y-axis (see Figure 3.7).  

 

Figure 3.7 - Reflection: reference scheme. [Boccotti,2000.] 
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The flow field before the wall is given by the sum of incident and reflected 

waves: 
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where it can be readily verified that both eqq. (3.26) and   (3.27) 

satisfy Stokes' linear equations, that is to say the system consisting of the 

equations (3.9-12) with f t( )  0 . Indeed, if a pair of functions 1 , 1  satisfy 

an homogeneous linear system, and a second pair of functions 2  and 2  

satisfy the same system, then the sum  1 2 ,  1 2  also satisfies this 

system of equations. 

If the breakwater is along the line y  0  and is infinitely long, the boundary 

condition is 
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that is  
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and it must hold the x, z and t. Here, it is convenient to examine firstly the 

specific point x z 0 0, , where (3.29) is reduced to 
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)cos( 11    tkHtkH .     (3.30) 

Given that two cosine functions are equal to each other all over their 

domains, if and only if they have the same frequency, same amplitude and a 

phase angle of some integer multiple of 2 , it follows that (3.30) holds, for 

each t, if and only if 
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These observations are sufficient to conclude that the only way to satisfy 

the boundary condition (3.28) is that the height and frequency of the reflected 

waves must be equal to the height and frequency of the incident waves, and 

that the phase angle   must be equal to n 2  with n any integer (in what 

follows we shall take it as zero). If the breakwater was not at y  0 , but at 

some parallel line, the conclusions would not change for what concerns height 

and frequency of the reflected waves, and the phase angle   would be 

generally different from zero. 

 Since   0 , 
~
H H , ~   and 

~
k k , the two functions (3.26-

27) can be rewritten in the form 
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In the basic case of   0 , in which the wave attacks the breakwater 

orthogonally, the flow becomes two-dimensional y-z, and the formulae of  

and  reduce themselves to 

)cos()cos(),( yktHty   ,       (3.33) 
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and hence the velocity components are 
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Stationary waves do not transfer energy from one place to another. Instead, 

they “store” their energy in one place. Stationary waves are formed when two 

progressive waves with the same frequency and similar amplitudes, travelling 

in opposite directions, interfere with each other. 

As with the velocities under a progressive wave, these velocities increase 

with elevation above the bottom. The extreme values of horizontal and 

vertical velocity in space occur under the nodes and antinodes of the water 

surface profile. As we can see in Figure 3.8 the horizontal and vertical velocity 

are zero under antinodes and nodes respectively.  
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Figure 3.8 - Distribution of water particle velocities in a standing wave. [Dean & Dalrymple, 
1984.] 

The wave height at the antinodes is 2H (we mean the height of the wave 

in the time domain), that is twice the wave height that would be there without 

the wall. Also, the velocity maximum is twice the maximum in absence of the 

wall. 

The pressure distribution on the wall, whatever the angle  of the waves, 

according to Stokes' first order, is given by 
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which proceeds from equation (3.32) 
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The wave pressure, that is the difference of (3.38) and the static pressure, 

is shown in Figure 3.9a. 
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Figure 3.9b shows Saintflou's model (1928). According to this model, we 

have to evaluate the two extremes of pressure distribution, that are 

(i) the elevation where the pressure becomes zero, which is the 

highest elevation reached by the water surface; 

(ii)  the pressure at the lowest point of the wall. 

 

Figure 3.9 -  The pressure exerted on an upright breakwater by a wave crest: (a) Stokes' linear 
theory; (b) Saintflou's model. [Boccotti, 2000.] 
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4 Set up of  the wave flume 

4.1 Layout of  the experiment  

The numerical approach is based on a two-dimensional CFD simulation 

using the Euler-Euler approach, implemented in the commercial code Ansys 

Fluent 17.0, Academic Version. We used the volume of fluid (VOF) model to 

represent the air-water interface. 

A preliminary check has been carried out by considering a vertical reflecting 

wall instead of the absorbing wall. The computational domain (see Figure 4.1) 

is a wave-flume having a piston-type wavemaker placed on the left extremity 

and a vertical breakwater on the right extremity of the contour. The water 

depth and the dimensions of the wave-flume are indicated in Figure 4.1. 

 

Figure 4.1- The computational domain of the wave flume. The wavemaker is on the left side. 
On the right, a reflecting vertical wall for carrying out preliminary tests (measures are in 
meters) is considered. 

The distance between the wavemaker and the wall is 375 m; the flume water 

depth is 2.1 m.  The length of the flume has been chosen in order to have 

many wave lengths before the wall where the stationary condition of the wave 

motion is established after the wave’s reflection by the wall.  
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The numerical experiment has been carried out by substituting the vertical 

wall with the U-OWC (see Figure 4.2). The plant shown, has the same size as 

the plant tested at sea by Boccotti et al (2007). Due to the two-dimensional 

scheme, the circular air tube is substituted by a slit 4.2 cm wide.  

As we can see, the U-OWC is the same as the small-scale breakwater built 

in the natural laboratory of Reggio Calabria (Boccotti et al., 2007). It is the 

1:10 scale model (with some modifications) of a hypothesis of a breakwater 

for the North-East Pacific coast or a 1:6 scale model of a breakwater suited 

for the Mediterranean Sea. 

 

Figure 4.2 - Sketch of the computational domain with a U-OWC breakwater instead of the 
vertical wall considered in Figure 4.1[measures are in meters]. 

As we can see in Figure 4.3, in all the computational domains we have used 

the laminar model, except inside the plant where a turbulence model has been 

implemented.  

 

Figure 4.3 - Sketch of the computational domain with a U-OWC breakwater. In blue is the 
domain in which we use a laminar model, in red is the domain with a turbulent model. 
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4.2 Wave generation by a piston type wavemaker 

There are many types of wave generating devices; they may be classified in 

two general categories, active and passive. The active generator consists of 

mechanical devices of various sorts displacing the water in direct contact with 

the generator. By controlling the movement of the device, the wave form is 

created. On the other hand, the passive wavemakers have no moving parts in 

contact with the water. They use air pressure to generate oscillations of the 

water (S.K. Chakrabarti, 1994). 

In Figure 4.4, various types of active and passive generators proposed by 

Ploeg and Funke (1980) are shown. 

The wave-flume has a piston-type wavemaker placed on the left extremity 

of the computational domain. Starting from rest, the wave generation process 

has been simulated assigning the velocity [eq. (3.4)] to the left wall of the wave 

flume, by means of a User Defined Function (UDF). 

 In Figure 4.5 the code to specify the motion of the rigid body (wavemaker) 

in the dynamic zone is shown. 

The Fluent dynamic mesh feature has been used for both the wall motion 

and the deformation of the neighboring cells. The dynamic mesh model can 

be used to model single or multiphase flows where the shape of the domain 

is changing with time due to motion on the domain boundaries. The motion 

can be a prescribed motion, specifying the linear and angular velocities or can 

be chosen through the User Define Function. To use the dynamic mesh 

model, it needs to provide a starting volume mesh and the description of the 

motion of any moving zones in the model.  
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Figure 4.4 – Variety of wave generator schematics (Ploeg & Funke, 1980). All wavemakers 
are active type except for the types R and S. 
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Figure 4.5– The User Define Function (UDF), to specify the motion of the wavemaker in 
Fluent. 

We generated a set of wave trains with periods ranging in the time interval 

3.5<T<9. The wave height for all generated waves was fixed at H = 0.2m and 

the water depth d, is equal to 2.1 m. The time step for the numerical 

integration was set at 1/1000 of wave period. 
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At the end of each time step, the water surface inside the wave flume has 

been recorded, allowing us to analyze the wave motion in depth. 

4.3 The mesh discretization 

The initial phase of any numerical simulation begins with the discretization 

of the calculation domain in a suitable mesh. 

The major data structures of meshes typically used are shown in Figure 4.6. 

In particular, we can see a structured mesh (Fig.4.6 a), an un-structured mesh 

(Fig.4.6 b), and hybrid grid (Fig.4.6 c). 

 

Figure 4.6 – Example of mesh classification: a) structured mesh, b) unstructured mesh, c) 
hybrid grid. 

Structured grids are identified by regular connectivity. The possible 

element choices are quadrilateral in 2D and hexahedra in 3D.  

An unstructured grid is identified by irregular connectivity. The most 

prevalent techniques for generating unstructured meshes are the advancing-

front method, and Delaunay-based approaches. While the advancing-front 

method is somewhat heuristic in nature, Delaunay-based methods are firmly 

rooted in computational geometry principles (D. J. Mavriplis, 1997). 

In the advancing-front technique an unstructured mesh is generated by 

adding individual elements one at a time to an existing front of generated 

elements. Generation of a two-dimensional grid begins with a discretization 

of the geometry boundaries as a set of edges. These edges form the initial 
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front that is to be advanced out into the field. A particular edge of this front 

is selected, and a new triangle is formed with this edge as its base, by joining 

the two ends of the current edge either to a newly created point, or to an 

existing point on the front. The current edge is then removed from the front, 

since it is now obscured by the new triangle. Similarly, the remaining two 

edges of the new triangle are either assigned to the front or removed from the 

front, depending on their visibility, as shown in Figure 4.7. 

 

Figure 4.7 – Generation of a new triangle using new point (a), or existing front point (b), in 
the advancing-front method. Dashed line edges denote current front (D. J. Mavriplis, 1997). 

Given a set of points in the plane, many possible triangulations of these 

points exist. A Delaunay triangulation in R2 is defined by the condition that 

all the nodes in the mesh are not interior to the circles defined by the three 

nodes of each triangle, as shown in Figure 4.8 a (C. Aricò et al., 2013). Figure 

4.8 b shows a triangulation in which the Delaunay property is not satisfied. 

In other words, a Delaunay triangulation of a vertex set is a triangulation 

with the property that no vertex in the vertex set falls in the interior of the 

circumcircle (circle that passes through all three vertices) of any triangle in the 

triangulation. A hybrid grid contains a mixture of structured portions and 

unstructured portions. It integrates the structured meshes and the 

unstructured meshes in an efficient manner. Structured grids generally lead to 

fast and accurate flow solvers and are therefore preferred where the cost of 
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generating the grid is not excessive. For situations where the complexity of 

the domain is such that grid generation is very expensive and where the user 

can live with modest accuracy, unstructured grids are generally used. 

 

 

Figure 4.8 – The Delaunay condition: (a) triangles Tm and Te satisfy Delaunay condition; (b) 
triangles Tm and Te do not satisfy Delaunay condition (C. Aricò et al., 2013) 

In this work, the mesh was created by the ANSYS Meshing application 

which implements two meshing algorithms: patch conforming and patch 

independent. The first is the most common and it is a meshing technique in 

which adjacent elements share common boundaries (edges and vertices), 

defined by the same nodes. The second is a meshing technique in which the 

adjacent elements are not necessarily respected unless there is a boundary 

condition. In this technique, the vertices are not necessarily conformed. 

Figure 4.9 shows the algorithm comparison; in particular, panel a shows the 

details captured by the patch conforming algorithm and panel b shows the 

details ignored by the second algorithm. 
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Figure 4.9 – The comparison between the patch confirming (a) and patch independent 
algorithm (b).  

Non-conforming meshes are typically used to allow for the partial adaptive 

refinement of a finite element mesh, such as at locations of stress 

concentration or steep gradients, without imposing a high computational cost 

in areas where such a refinement is not needed (G. Haikal and K.D. 

Hjelmstad, 2010). Figure 4.10 shows the comparison between the conformal 

and non-conformal meshes. 

 

Figure 4.10 – The comparison between the non-conformal (a) and conformal meshes(b).  

In this work, we use the patch conforming algorithm and all triangles mesh 

method. The size of mesh is variable according to geometrical needs. In 

particular, we adopted a ticker mesh near the REWEC edges than elsewhere 

in the domain. The slit on the roof of the air chamber required the smallest 

triangles, being only 0.042 m wide. Therefore, along the flume (both in the 

water and in the air) the maximum size of the triangular elements reaches 7 

cm. While, within the slit the minimum size is 7 mm. 
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A different reasoning concerns the water-air interface, as we can see in 

Figure 4.11, which shows the conformal mesh adopted for the computational 

domain of Figure 4.1. 

 

Figure 4.11 - The conformal mesh adopted for the computational domain of Figure 4.1. 

As we can see, near the air-water interface the mesh adopted is rectangular. 

This choice is made to achieve a better resolution of the instantaneous free 

surface displacement. As shown in Figure 4.12, a conformal mesh in the 

proximity and inside the U-OWC was created (i.e. built from various 

geometrical bodies that form a single part). The size of the triangular elements 

and the thickening in the proximity of the water-air interface is the same as 

that used for the reflecting wall. 
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Figure 4.12-The conformal mesh adopted in the proximity and inside the U-OWC. 

In order to match the behavior of a physical wave tank, we have to set the 

boundary conditions of the numerical wave tank. Smooth no-slip wall 

boundary conditions have been assigned to all solid walls, whilst the upper 

domain boundary is defined as a pressure outlet with zero-gauge pressure.  
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5 Validation of  generated waves in the 

space-time domain 

5.1 Transient waves  

In order to validate the numerical experiment, we carried out some 

preliminary tests on the numerical wave flume. Figure 5.1 shows four pictures 

of the free surface elevation(y,t), taken at some wave period from each 

other. The considered time instants are 5T, 15T, 40T and 60T, ranging from 

panel (a) to (d). The dashed vertical line marks the distance y0 (=9L) from the 

wavemaker. As we can see, at t = 5T, the wave train has not yet reached the 

abscissa y0. After 15T, the head of the group has passed y0, and the wave 

motion is periodic until the waves reflected by the vertical wall (see panel c) 

reach y0 (see panel d). 

 

Figure 5.1- Four pictures of free surface elevation in a long wave flume with a wavemaker at 
the left extremity and a vertical wall on the right (H=0.20m, T=3.5s). 
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To test the wave generation and propagation in the flume, the (y,t) 

generated numerically, has been compared with the analytical solution. Figure 

5.2 shows this comparison at t=5T. The dashed line is that of Figure 5.1 (a), 

the continuous line is obtained through eq (3.5). The good agreement is not 

limited to the , in fact, as we can see in Figure 5.3, it also holds for the 

fluctuating pressure head, ph. In particular, Figure 5.3a shows the comparison 

in the time domain between a sinusoidal wave and the numerical solution 

obtained at three wavelengths (y=3L) from the wavemaker. As evident, we 

have the typical profile of a progressive wave, in that the recording portion is 

taken inside the interval [10T, 40T] (see Figure 5.1). 

 

 

Figure 5.2 - Comparison between the analytical solution for transient waves in a flume 
(Huges,1993) and numerical solution carried out by the preliminary experiment (H=0.20m, 
T=3.5s). 

Figure 5.3b shows the ph in front of the vertical wall after the incident 

waves have been reflected by the wall itself. For comparison, the analytical 

solution of standing waves in front of a reflecting wall is shown (the 

continuous line). As we can see, there is a good agreement between theory 

and numerical simulations. 
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Figure 5.3 - Dimensionless fluctuating pressure head in the time domain at 1 m below the 
free surface: (a) at the distance y =3L away from the wavemaker; (b) on the breakwater wall. 
The continuous lines represent analytical solutions; the dashed lines have been obtained with 
numerical simulations. 

5.2 The progressive wave field 

Figure 5.4 shows several snapshots of the surface waves in the flume taken 

every T/20, during the 14th period of the simulation (i.e. t=ti =14T+iT/20, i:1, 

2, ….19). As we can see, the successive wave profiles form an envelope typical 

of a progressive wave field. 

 

Figure 5.4 - Several snapshots of the surface waves (H=0.20 m, T=3.5 s) from 14T to 15T. 

The wave height is practically constant in the tail of the wave train (near 

the wavemaker) and it reduces gradually to zero at the head of the wave train. 

The waves are generated at the moving wall, then they move towards the head 

of the wave train with a speed equal to the wave celerity c. The envelope 

advances with a speed CG, less than c (cG=c/2, in deep water). CG is named 

celerity group (see Sect. 3.3 ) 
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To check the cinematism of the waves field we make a comparison with 

the analitical solution of a progressive wave in the Airy limit of small 

amplitude waves [eq. (3.17)]. The wave pressure distribution along a vertical 

section is shown in Figure 5.5. Four time instants have been considered:  

t=0=crest; t=T/4=zero down-crossing; t=T/2=trough; t=3T/4=zero up-

crossing. 

The results show that there is a suitable correspondence between analytical 

and numerical simulation and this confirms that the wave field expanding 

along the wave flume has the characteristics of a progressive wave. As 

confirmation, we can look at the velocity wave field shown in Figure 5.6. The 

meaning of both points and curves is the same as Figure 5.5. In addition, the 

considered abscissa is the same in the two figures. The theoretical horizontal 

velocity is calculated by means eq.   (3.15), the vertical one, with the 

eq. (3.16). 

 

Figure 5.5- Wave pressure distribution along a vertical section at 3L distance from the 
wavemaker. Points have been obtained through CFD. Lines, through first order Stokes’ 
theory. 
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Figure 5.6- Horizontal and vertical velocity distribution along vertical sections at 3L distance 
from the wavemaker. Points have been obtained through CFD. Lines, through first order 
Stokes’ theory.  

5.3 The standing wave field 

The progressive wave train propagating in the wave flume impacts on a 

vertical wall and is reflected backwards. The reflected wave train 

superimposed with the incident waves generates a standing wave field 

propagating from the breakwater towards the wavemaker. 

Figure 5.7 shows the overlapping of several snapshots of the instantaneous 

surface elevation in the flume. Each frame is taken every 1/20T during a time 

interval of a wave period. 

 

Figure 5.7 – Superimposition of 20 snapshots of the water surface, taken regularly during a 
time period equal to T (H=0.20m, T=3.5s). 

Figure 5.8 shows a standing wave field. In particular, we can see the 

characteristic “nodes” at y= (2n+1) L/4 (n=0,1,2,..), where the free surface 

displacement is zero whatever the time instant is.  
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As we described in paragraph 3.4, standing waves, unlike progressive ones, 

do not transfer energy from one place to another. The envelope of waves of 

Figure 5.8 is the same as shown in Figure 3.8 obtained through the analytical 

solution. 

 

Figure 5.8 – The envelope of waves shown in Figure 5.7. 

Figure 5.9 shows four snapshots of free surface elevation , in front of the 

wall. Panel (a) shows free surface elevation at t =t0 and panels (b), (c) and (d), 

represent  at subsequent instants t0+iT/4 (i=0,1,2,3). At t0 and t0+T/2, the 

vertical displacement is at its maximum (except in nodes). At t0+T/4 and 

t0+3T/4,  is nearly equal to zero in all the flume. 

The stationarity of the wave field is confirmed also by distributions of 

horizontal velocity vy, along some fixed vertical sections (see Figure 5.1). At 

time instants t1 and t3, vy = 0, everywhere. For t = t2, t4, vy = 0 at vertical sections 

y2, y4; and are maxima (in absolute value) at y3 and y1. For comparison, the vy 

calculated with the analytical solution (points) is also shown in Figure 5.10. 
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Figure 5.9 - Four snapshots of the free surface elevation in front of the vertical reflecting 
breakwater, taken every T/4 of time interval. 

 

Figure 5.10 - Horizontal velocity distribution along vertical sections y1 and y3 for the snapshot 
(b) and (c) of Figure 5.9. Comparison between analytical (dashed line) and numerical 
(continuous line). 

5.4 Wave energy propagation along the flume 

The wave dimensions for all proceeding worked examples are: H= 0,2m; 

T= 3,5 s. Starting from rest, the wave train takes about 90s (about 25T) to hit 

the wall posed at the opposite site of the flume. Therefore, the runtime of the 
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simulation was set to 196s (t=55 T), enough to represent the evolution of the 

wave field before the U-OWC.  

Figure 5.11 shows a time series of the non-dimensional pressure 

fluctuation p and discharge Qp at 3L from the wavemaker, as a function of 

t/T, in the time interval 10T < t<15T.  

 

Figure 5.11- Pressure fluctuation p and discharge Qp at 3L distance from the wavemaker, as 

a function of t/T. Values have been divided by their own standard deviation . 

The wave energy flux in(t) crossing instantaneously the fixed vertical 

section is given by 

 


d
yin ztvtp d)()( ,      5.1 

and it is represented in Figure 5.12, in the same time interval shown in Figure 

5.11. The mean energy flux is 140 W/m. It is 12% less than the value 

calculated by means of eq. (3.25) with measured values of H and T in the 

flume. 
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Figure 5.12 - The instantaneous energy flux versus time of incident waves, at a distance y=3L. 

InFigure 5.13, some snapshots of envelopes of surface waves propagating 

along the wave flume, are shown at different time instants. At the time instant 

t=0 the wavemaker starts to move. As we can see, a wave group advances 

along the wave flume, as said before, the wave energy advances at the same 

velocity as the wave train, that is the group celerity CG. To estimate CG, we 

sight the position assumed by the base of the head of the train along the flume 

at subsequent time instants. In the first snapshot (t=3T) the group has covered 

about 1/13 of flume length and the head of the group is at a distance of 2.2 

L from the wavemaker. Likewise, in Figure 5.13b  the head of the group is at 

4.7 L from the wavemaker at t=7T; (snapshot c) at t=12T, finally, the group 

is at y= 8.7L and then in the last snapshot (at t=18T) the basis of the head of 

the group is at abscissa y= 12.7L.  

The average group celerity, evaluated as the ratio y/T, is equal to 2.78 

m/s. The theoretical CG, calculated by means of  (3.24) is 12% more than the 

numerical one. This difference is due to numerical errors seen in the Pp and 

Qp. 
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Figure 5.13- Envelopes of waves (H=0.20 m, T=3.5s) in different time instants, generated by 
a wavemaker, propagating in the wave-flume towards the vertical wall.  

The head of the group hits the breakwater (placed at section y/L=26.7) in 

the instant t=25T and is reflected, towards the wavemaker. Starting from this 

time instant, the reflected waves superimpose with the incident ones 

generating a standing wave field expanding from the wall toward the 

wavemaker. The transition between the waves travelling towards the wall and 

the standing waves are clearly visible in Figure 5.14. As we can see, the height 

of the waves of the standing field is bigger than the height of waves generated 

by the wavemaker. The first snapshot taken at t=35T shows the group at 2.4L 

from the vertical wall and at 24 L from the wavemaker. Likewise, in the 

second snapshot, at t= 45T, the head of the group is at 6 L from the vertical 

wall and finally, in the last snapshot, taken at t=55T, the basin of head of the 
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standing wave train is at abscissa y= 12.8L from the wavemaker. The average 

group celerity of the reflecting waves is about equal to CR= 2.5 m/s. 

 

Figure 5.14-  The overlapping of waves propagating towards the wall and waves reflecting 
towards the generator (H=0.20m, T=3.5s).  

In conclusion, the standing wave field expands from the breakwater to the 

wavemaker with the same speed of the progressive wave field. 

5.5 Conclusive remarks 

Some preliminary tests on the numerical wave flume were conducted in 

order to validate the procedure. Firstly, the wave generation and propagation 

in the flume was checked comparing the surface displacement generated 

numerically with the analytical solution for transient waves generated in a 

flume (Huges,1993) initially at rest. As seen, there is a good agreement 

between the numerical results and the analytical ones, confirming that the 

approximate relationship for the stroke [eq.(3.8)] is well posed. Moreover, as 
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concerning the progressive waves field, we found that the wave kinematics is 

very close to Stoke’s first order wave kinematics and dynamics. Indeed, both 

the head pressure waves, the horizontal and vertical components of velocity, 

calculated at some fixed depth below the free surface, are in a punctual 

agreement with analytical values.  

Also from an energetic point of view, results agree with theory. The wave 

energy propagation along the flume calculated by means of (3.24) is 12% 

bigger than the numerical one. As regards to the standing waves field, the 

numerical envelope of waves in front of a vertical reflective wall, confirm the 

existence of nodes and anti-nodes, as well known by theory. 
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6 Results 

6.1 The waves before the U-OWC 

The wave field in front of the absorber breakwater is produced by the 

interaction between the incoming waves and the pulsating discharge through 

the plant. Therefore, the resultant wave field is quite different from the 

standing wave field in front of a vertical reflecting wall. 

We could assume that the wave field before the U-OWC is periodic in 

space and time and the surface elevation and the velocity potential in front of 

the absorber are given respectively by (Boccotti, 2007a): 

( , ) cos( )cos( ) sin( )cos( ),Iy t H ky t H ky t         (6.1) 
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k d z
g

kd

H ky t H ky t

 
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  

  

    (6.2) 

Figure 6.1  shows the overlapping of several snapshots of the surface waves 

in the flume. Each frame is taken every 1/20T, during a wave period.  

 

 

Figure 6.1 - Envelope of surface waves (H=0.20 m, T=3.5 s) in different time instants in front 
of U-OWC breakwater. 

A detailed view is shown in Figure 6.2. As we can see, in front of the U-

OWC wall, nodes disappear, giving place to “pseudo-nodes”, which are points 

where the amplitude of  is at its minimum but different from zero. 
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Figure 6.2 - Wave envelope of the quasi-standing wave field in front of the U-OWC shown 
in Figure 6.1 . 

Moreover, when the incident wave train has impacted the absorber-

breakwater, the wave amplitude at the breakwater wall is smaller than in front 

of a vertical reflecting wall.  

Referring to the scheme of Figure 6.3  where Hv and Hn are the quasi-

antinode height and the quasi-node height respectively, the equivalent 

incident wave height Hi, and the reflected wave height Hr, can be calculated 

by means of Healy’s formula: 

𝐻𝑖 =
𝐻𝑣+𝐻𝑛

2
        (6.3) 

𝐻𝑟 =
𝐻𝑣−𝐻𝑛

2
       (6.4) 

Hv and Hn being equal to 0.32 m and to 0.08 m, we have Hi=0.2m, 

Hr=0.12m respectively and hence the reflection coefficient  

𝐾𝑟 =
𝐻𝑣−𝐻𝑛

𝐻𝑣+𝐻𝑛
 ,       (6.5) 

is equal to 60%. 
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Figure 6.3 - Wave envelope of the quasi-standing wave field in which Hv is the quasi-antinode 
height and Hn is the quasi-node height. 

Figure 6.4 shows four snapshots of the free surface elevation , in front of 

the U-OWC. The chosen time instant is the same as in Figure 5.9. Also 

sections y1, y2, y3 and y4, mark the same distance from the wall (L/4, L/2; 3L/4, 

and L, respectively) in the two cited Figures. 

 

Figure 6.4 - Four snapshots of the free surface elevation , at different time instants in front 
of the U-OWC breakwater. 

Despite the trend of  being quite similar in the homonymous panels of 

Figure 5.9 and Figure 6.4, the horizontal velocity distributions exhibit quite a 

different trend between standing and quasi-standing wave field. As we can see, 

vy is at its maximum under crests (y4,t1), (y2,t3), and its minimum under troughs 
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(y4,t3), (y2,t1), as occurs for a progressive wave. Near the breakwater wall 

(abscissa y1), vy crosses the z axis in proximity to the outer opening (instants t1 

and t3). 

The waves envelope before the U-OWC is shown in Figure 6.5. As we can 

see, a standing wave field is expanding from the absorber towards the 

wavemaker. The head of the incident wave train impacts the breakwater at the 

instant t=25T. After this moment, the partial reflection and the absorption by 

the plant starts, and in the proximity of the breakwater, we can see the 

overlapping of waves propagating towards the U-OWC (wave train A) and 

waves moving, in the opposite direction, towards the generator (wave train 

B). The wave train B expands gradually so that reflected waves superimpose 

to the incoming waves (train A). As we can see in Figure 6.5a this wave field 

has reached a distance 2.14 L from the U-OWC wall, marked by a vertical 

dashed line. The transition between the two wave fields (the incoming one 

and the reflected) is clearly visible by the inclined lines of the envelope. 

Going forward, panel (b) shows a snapshot at t= 45T. As we can see, the 

wave field before the absorber is covering about 23% of the total of the flume 

and 10 period after (see panel c), is established in half the flume.  The three 

snapshots enable us to estimate the advancing velocity of wave train B, which 

is the velocity with which the energy of this field expands towards the 

wavemaker.  

The average group celerity CR of wave train B is equal to 2.36 m/s and it is 

only 5 % less than propagation speed of the incoming waves. 
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Figure 6.5 - Three snapshots of the waves envelopes (H=0.20m T=3,5s) before the U-OWC 
at different time instants. 

Figure 6.6, shows the distribution of horizontal velocity vy, along vertical 

sections y1, y2, y3 and y4, at the same time instants considered in Figure 5.9. At 

the time instants t=t1 and t=t3 the horizontal velocity is not zero along every 

vertical section, unlike the horizontal velocity distribution of standing waves 

in front of a reflected wall. In fact, at these time instants the free surface 

elevation is at its minimum but different from zero because of the existence 

of pulsating discharge, and the phase difference between the progressive and 

the reflected waves. In particular, at the vertical section placed at L/4 from 

the absorber, in the time instant t=t3 (= t0 + 1/2T), we can observe a change 

in the sign of the horizontal velocity along the z-axis. This phenomenon can 

be observed in Figure 6.7, where the vectors of water velocity in the wave 

flume at t3 are represented. The position of section y1 is indicated by the 

vertical yellow line. The inversion of the sign of the horizontal velocity is due 
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to the superimposition of the standing wave (i.e. the field that there would be 

without absorption) and the wave generated by the pulsating discharge.  

 

Figure 6.6 - Distribution of horizontal velocity vy, along vertical sections y1, y2, y3 and y4, in the 
time instants of Figure 6.4. 

As we can see, there is an evident macro circulation of the velocity at t3, 

the instant when the trough is at a quarter of a wavelength before the plant, 

horizontal velocity is positive (i.e. directed towards the plant) below the quote 

of the upper opening of the vertical duct, and it is negative near the free 
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surface. Before the wave absorber, when a trough is at the wall, the discharge 

is exiting the plant, so the water must flow from the absorber towards the 

wavemaker, but after a while the water rises, so a mass of water must enter 

from marked section y1. This is the reason why in the lower part of this section 

the water flows towards the plant, while in the upper part, it moves in the 

opposite direction. In other terms, near the surface the motion induced by the 

discharge prevails, whereas that induced by waves is stronger near the bottom. 

 

  

Figure 6.7 – Snapshots of the vectors of the water velocity in the flume. The yellow line 
represents the vertical section y1, placed at L/4 from the U-OWC at t= 173.25 s (=t3). 
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Lastly, Figure 6.8 shows what happens to the air-water interface inside the 

chamber, during a wave cycle. The position of the interface is shown at 

intervals equal to 1/20T. The sequence of instants during a rise up of the free 

surface is shown on the left of the panel (a). It is related to the increasing of 

the instantaneous level of water on the absorber wall, as shown in the diagram 

on the right. Panel (b) of Figure 6.8 shows a sequence of positions of the water 

surface in the chamber during its movement downward. The decrease of the 

water level is associated with the lowering of the free surface displacement on 

the wall. It is noticeable that the water surface inside the chamber remains 

horizontal during all stages of its movement. It is a remarkable difference from 

what happens in conventional OWC.  

 

Figure 6.8 – Free surface displacement. On the left in the U-OWC chamber; on the right at 
the U-OWC wall. 
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Indeed, several authors (see Viviano et al., 2016) observed the formation 

of waves and jets inside the chamber. This happens mostly with the highest 

waves, producing some impulsive wave loads on the wall and some risks to 

the power take off system. It is due to the fact that wave can propagate inside 

the chamber because of the large opening of conventional OWCs. Conversely, 

waves cannot enter into the U-OWC thank to the presence of the vertical 

duct, which transforms wave energy into water flow energy. 

6.2 Plant efficiency estimate 

In order to verify the share of the incident wave flux absorbed by the U-

OWC, we calculated the energy flux in different sections along the wave 

flume. Figure 6.9 shows the energy flux versus time at three different vertical 

sections. Panel (a) shows the energy flux of the incoming wave train (i.e. the 

waves generate by the wavemaker) at some wavelengths from the wavemaker; 

panel (b), the energy flux of the wave field before the U-OWC and, finally, 

panel (c) shows the energy flux absorbed by the plant. 

 

Figure 6.9 - The instantaneous energy flux versus time: (a) of incident waves; (b) in front of 
the energy absorber; (c) inside the plant. [Values refer to unitary widths of both the flume and 
the absorber.] 
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The mean energy flux of waves generated by the wavemaker is 

approximatively equal to 140W/m. The mean energy flux of the wave fields 

before the U-OWC is about 74W/m and, finally, the mean absorbed power is 

64W/m.  

These values are consistent with what emerges when applying the energy 

balance equation to the control volumes indicated in Figure 6.10. In fact, the 

energy flowing through section AB (=140W/m), is partially reflected by the 

absorber and partially absorbed by it (=64W/m). The balance of energy 

applied to volume CDEF, states that the energy flux crossing section CD is 

equal to the energy flux volume through section EF, the mean energy inside 

CDEF being constant. On the contrary, the energy content of volume ABEF 

is varying in time due to the expansion of the reflected wave field, towards the 

wavemaker. The energy variation inside ABEF equals the difference between 

the energy flux in AB and EF. 

 

Figure 6.10 - Control volumes for energy balance check. in is the energy flux per unit length 

of the incoming waves; 0 is the mean energy flux per unit length of waves before the 

absorber, and abs is the mean energy flux absorbed by a unitary length of the plant. 

The energy absorbed by the plant is 46% of the energy generated by the 

wavemaker. The performance of the plant depends on the resonance. If the 

wave period is equal to the eigenperiod, the plant works in resonance.  

To check how close to resonance the working conditions are, we look at 

the pressure fluctuation p, at the outer opening of the vertical duct and at 
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the discharge Qp, in the plant, (see Figure 6.11). The time shift T* between p 

and, Qp, is equal to 3/20T. A T* positive means that the wave period is smaller 

than the eigenperiod (Boccotti, 2015), while T*<0 indicates that the wave 

period is greater. Therefore, in the present case, to improve the plant’s 

performance, we should increase the wave period. 

 

Figure 6.11 - Pressure fluctuation p at the outer opening and discharge Qp in the plant, as a 

function of t/T. Values have been divided by their own standard deviation . [The Qp is 
positive if it enters the plant.] 

6.3 The frequency response of  the plant 

In the previous section, we illustrated the interaction between the U-OWC 

and a wave train with T=3.5 s and H=0.2m. As shown, under this condition 

the plant is able to absorb about 50% of the incident waves power. In order 

to check the performance of the plant whilst varying the periods of incoming 

waves, we carried out several simulations, for 3.5 s< T < 9 s, maintaining the 

wave height at the fixed value of 0.2m.  

We define the absorption coefficient A, as the ratio between the mean 

power absorbed by the plant abs, and the mean energy flux in, of the incident 

waves. The incident wave power in, is calculated at a fixed abscissa of the 

wave flume located far enough from the absorber during the time interval in 

which a stationary progressive wave is established. 
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Figure 6.12 shows in versus wave period T, [line with crosses]. For 

comparison, the values calculated by linear wave theory [eq. (3.25)] have been 

reported too [dashed line].  

 

Figure 6.12 – The mean energy flux of the incident wave. The dashed line shows the 
theoretical results, calculated by eq. (3.25) and, the line crosses, the numerical results. 

As we can see, there is a reasonably good agreement, being that the 

maximum difference between theoretical and numerical values, 

corresponding to the same abscissa, is less than 10%. 

For each generated wave, we calculated the mean energy flux absorbed by 

the plant. In Figure 6.13, the absorption coefficient A, is shown.  As we can 

see, the plant absorbs about 58% on average of the incident wave power. In 

particular, A reaches its maximum with waves having periods between 4s and 

4.5s. In correspondence to these periods, the plant absorbs 87% of the wave 

energy, suggesting us that it is working in resonance. 
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Figure 6.13 – The absorption coefficient A, versus wave period T. 

The resonant coefficient R, introduced in section 4, is a useful index to 

check how close to resonance the plant is working. R is calculated starting 

from the phase difference between the water discharge Qp and the fluctuating 

wave pressure at the outer opening of the plant p.  As said, values of R less 

than zero mean that the wave period is greater than the eigenperiod, whereas 

values greater than zero mean that the wave period is smaller than the 

eigenperiod. Values close to 0 mean that the plant is near to resonance. Figure 

6.14 shows the values of R, for each period of the generated waves. As we can 

observe, the nearest value to zero is -0.2, and it occurs at T= 4 s.  

 

Figure 6.14 – The resonant coefficient R, for the different wave periods analyzed. 
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Finally, in order to check Boccotti’s theory concerning the wave field in 

front of the U-OWC, we calculated the ratio between the celerity group of the 

reflected waves and the celerity group of the incoming waves, and the 

amplification factor . The latter represents the quotient between the wave 

amplitude at the breakwater converter and the wave amplitude at a 

conventional reflecting breakwater.  

Tab.1 shows a synthesis of the main results obtained. The values of the 

amplification factor , about on average equal to 0.84, confirm that the wave 

amplitude at the breakwater is always smaller than the amplitude before a 

conventional reflecting breakwater subjected to the same incoming waves. 

Tab.1 shows also that  is much closer to 1 as the absorption coefficient A, 

decreases. Also, the ratio between the celerity group of the reflecting waves 

field and the incident waves is close to 1. 

Tab.1 – The plant performance obtained from the CFD simulations. 

Time 
Period 

[s] 

Incident 
waves 
power 
[W/m] 

Absorption 
waves 
power 
[W/m] 

Absorption 
coefficient 

[%] 

Resonance 
coefficient 

CR/CG 
Amplification 

factor 

3.5 142.4 67.8 47.6 0.36 0.90 0.85 

4.0 180.3 157.4 87.3 -0.20 0.86 0.77 

4.5 164.6 143.6 87.3 -0.41 0.89 0.63 

5.0 179.1 149.6 83.5 -0.53 0.95 0.72 

5.5 181.1 136.2 75.2 -0.62 0.93 0.81 

6.0 180.3 123.1 68.3 -0.68 0.91 0.87 

6.5 187.9 101.5 54.0 -0.72 0.93 0.92 

7.0 192.1 105.9 55.1 -0.76 0.94 0.86 

7.5 188.7 70.6 37.4 -0.83 0.92 0.92 

8.0 192.4 76.0 39.5 -0.89 0.92 0.95 

9.0 209.0 76.5 36.6 -1.04 0.93 0.94 
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6.4 Comparison between experimental data and 
numerical simulations  

Boccotti et al. (2007) describe the result of the experiment carried out, 

directly, at sea on a 1:6 scale model of a U-OWC breakwater conceived for 

the Mediterranean coast. The physical model and the plant used in this thesis 

have the same size.  

During the experiment at sea, several sea states, formed by wind waves or 

by a superimposition of wind waves and swells were recorded. They were 

characterized by energy spectra whose peaks ranged between 2 s and 9 s. The 

authors measured the wave pressure fluctuations on the outer opening of the 

vertical duct and in the undisturbed wave field with a transducer placed at the 

same depth beneath the mean water level. In each record, which lasted 5 min, 

they obtained the values of the significant wave height, the peak period Tp and 

the absorption coefficient A. Figure 6.15 shows A as a function of Tp. Each 

point represents a record. In total, there are 187 records, 96 of them are wind 

waves (marked by spreaders), 60 records are of swells (marked by points) and 

about 31 records represent wind waves superimposed on swells. 

Figure 6.16 shows the data of Figure 6.15 and the values of A obtained in 

the present work (bold line with rhombus). For comparison, a regression of 

Boccotti et al. (2007), data has been reported too (dashed line). Both the two 

lines show that A grows rapidly for increasing wave periods up to a maximum 

ranging between 4s and 5 s. The maximum value of A is close to 90% for both 

the experiments (both the physical and the numerical ones).  

 



 

122 
 

 

Figure 6.15 – The absorption coefficient as a function of the peak period obtained by Boccotti 
et al. (2007). 

 

Figure 6.16 – Comparison of the absorption coefficient carried out by Boccotti et al., 2007 
and the absorption coefficient calculated by means of CFD simulations. 

The plant tested at sea achieved better performance with lower frequencies 

than those reached in the numerical flume with periodic waves. In particular, 
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very high values of A occurred with some records of long swells. In these 

cases, the wave height at the absorbing breakwater grows with respect to the 

wave height at a conventional reflecting breakwater. Therefore, the 

amplification factor  is greater than 1. This phenomenon is evident looking 

at Figure 6.17. It shows the comparisons of the spectrum of the p recorded 

on the outer opening of the vertical duct and the spectrum of p recorded in 

the undisturbed wave field at the same depth beneath the mean water level. 

This super amplification corresponds with a  of about 2.4. 

According to Boccotti’s theory, the extraordinarily large value of  is not 

the reason for the large energy absorption, in that it is due to the slowing down 

of the propagation speed of the reflected wave energy, CR. Indeed, if the 

absorber works far from the resonance condition (i.e. when waves with very 

large wave period occur) and it absorbs 100% of the incident wave energy, the 

celerity of the reflected wave field is zero. This means that at the breakwater-

converter there is a huge wave amplification, which remains locked to the 

breakwater and cannot expand backwards. The fact that there is no energy 

advancing seaward implies that the whole incident wave energy is absorbed 

by the plant (Boccotti, 2015). 

In order to verify the behavior of the plant under this condition we 

conducted two numerical simulations which replicate the interaction with the 

sea states of Figure 6.17.  
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Figure 6.17 – The spectra of the pressure fluctuations p, on the outer opening of the vertical 
duct and in the undisturbed field. (a)  the spectra of a record of swells with Hs = 0.191 m. (b) 
the spectra of a record of swells with Hs = 0.159 m. [Boccotti et al., 2007.] 
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Figure 6.18 represents a scheme of a piece of spectrum (POS), at the 

undisturbed wave field (E5) and at the breakwater converter (E2). The r.m.s. 

of a POS is given by 


2

1

d)(
f

f
POS ffE ,      (6.1) 

and the  of a POS, is defined as 


2

1

2

1

d)(d)(
2

1
52

f

f

f

f
POS ffEffE .    (6.2) 

 

Figure 6.18 – Reference scheme for the analysis of the deformation of the frequency spectrum 
from the undisturbed wave field (E5) to the breakwater converter (E2) [Boccotti et al. (2007)]. 

The periodic wave generated in the CFD simulation has a period T= Tp, 

and a crest-to-trough height 𝐻 = 𝐻𝑠/√2 having the same r.m.s. of the surface 

displacement as the sea waves. 

Referring to the POS of Figure 6.17a having 0.089< f < 0.135, we obtain  

(i) H = 0.07 m, T = 9s; 

and, to the POS of Figure 6.17b having 0.092< f < 0.155, we obtain  

(ii) H = 0.09 m, T = 8. 
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Figure 6.19 shows the energy flux abs, absorbed by the plant. In particular, 

panel (a) shows the abs of the plant subjected to waves (i) and panel (b) abs of 

the plant subjected to waves (ii). 

 

Figure 6.19 – The energy flux absorbed by the plant. Panel (a) refers to wave (i) Panel (b),to 
wave (ii). 

As we can see the energy flux assumes many negative values, meaning that 

the plant is not tuned with the incoming waves (i.e. operations are far from 

resonance). It is confirmed by very low values of A shown in Tab.2, 

disagreeing with Boccotti's theory estimations. The resonance coefficient is 

close to -1. Furthermore, in these two simulations, the amplification factor  

is close to 1 and the ratio between the CR and CG (= group celerity of the 

reflected wave / group celerity of the incoming wave), is close to one instead 

of approaching zero as indicated by theory. 

Tab.2 – The summary of the simulations of two wave groups in which their period is 
greater than eigenperiod of the plant. 

T (s) H [m] 

Incident 
waves 
power 
[W/m] 

Absorption 
waves 
power 
[W/m] 

Absorption 
coefficient 

[%] 

Resonance 
coefficient 

CR/CG 
Amplification 

factor 

8 0.09 40.5 6.27 15.5 -1 0.91 1.00 

9 0.07 25.1 0.37 1.5 -1 0.94 1.01 
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Conclusions 

In this work, we carried out a numerical experiment aiming to analyze the 

interaction between waves and a U-OWC breakwater. The numerical method 

adopted is the numerical integration of Reynolds averaged Navier-Stokes 

equation (RANS) using the volume of fluid (VOF) model, to describe the 

multiphase flow, implemented in the commercial code Ansys Fluent 17.0, 

Academic Version. To validate the numerical flume, we carried out some 

preliminary tests finalized to compare numerical results of a vertical reflecting 

wall with the analytical solution of linear standing waves.  

The geometry and size of the U-OWC breakwater utilized in this work is 

the same as the 1:6 scale physical model of breakwater tested by Boccotti et 

al. (2007) directly, at sea, off the coast of Reggio Calabria (in the eastern coast 

of the Messina Straits). 

The performance of the plant depends on whether it is working in 

resonance or not. Tuning of the plant with waves is revealed by the presence 

of a time shift between the water discharge into the plant and the pressure 

fluctuation at the outer opening of the vertical duct. To check the plant 

working conditions, we choose waves with characteristics (height and period) 

similar to those which interacted with the plant at sea. Therefore, we made 

several simulations, varying the wave period in the range [3.5, s 9 s] and 

maintaining the wave height fixed at 0.2m.  

With an incoming wave train having height of H=0.20 m and period of 

T=4 s, the plant absorbs nearly the 90% of the incoming wave energy. In this 

condition the lag between the fluctuating pressure on the outer opening of the 

plant and the pulsating discharge is near to zero. It is a result which agree very 

well with the performance measured at sea in correspondence to wind 
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generated waves with similar periods. Moreover, a relevant issue emerged 

from the present work concerning the oscillations of the air-water interface in 

the chamber. Unlike what occurs in conventional OWCs, the free surface 

remains practically horizontal during its motion. This matter has some 

positive consequence for structural safety, because there is no impact pressure 

on the inner wall of the chamber, as observed in conventional OWCs. 

Some remarkable differences arise in the interaction with very large wave 

periods. Indeed, Boccotti et al. (2007) found that with some long swells the 

plant achieved high values of absorption coefficient, despite its working 

conditions being far from resonance. They gave an explanation of this 

occurrence in light of Boccotti’s theory concerning the wave field in front of 

the U-OWC (Boccotti, 2007). The basic assumption of theory is that the 

propagation speed of the envelope of the reflected wave CR can vary between 

zero and CG. As a consequence, the reflected wave field is locked near the 

breakwater wall and doesn’t expand towards the open sea (the wavemaker). 

All the numerical simulations carried out in this work showed that CR is nearly 

equal to CG. Moreover, we have not found any large absorption far from 

resonance. These results are congruent with an alternative formulation of 

Boccotti’s theory, which is based on the assumption that CR = CG. Also, the 

obtained values of A are consistent with this formulation.  

Considering the discrepancies which emerged from the results of the 

physical experiment in correspondence with the largest wave periods, we 

cannot draw conclusions concerning the validity of Boccotti’s theory, at least 

regarding the plant behavior for R -1 (i.e. for periods much larger than the 

eigenperiod). An experiment on a physical model carried out in a long wave 

flume could give a definitive answer. 
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