
Targeted next generation sequencing of breast implant-
associated anaplastic large cell lymphoma reveals mutations in
JAK/STAT signalling pathway genes, TP53 and DNMT3A

Breast implant-associated anaplastic large cell lymphoma

(BI-ALCL) is an uncommon neoplasm occurring in women

with either cosmetic or reconstructive breast implants (Cle-

mens et al, 2016). Until now, most studies have focused on

defining the clinico-pathological features of BI-ALCL, leading

to its inclusion as a new provisional entity, a subtype of

anaplastic lymphoma kinase (ALK)-negative ALCL, in the

revised World Health Organization classification of lymphoid

malignancies (Swerdlow et al, 2016). BI-ALCL is character-

ized by the presence of CD30+ large atypical lymphocytes fre-

quently confined to the peri-implant seroma fluid.

Nevertheless, solid infiltrating masses and cases pursuing an

aggressive clinical course have been reported. The surgical

and pathological staging system designed by Clemens et al

(2016) suggests that BI-ALCL has a pattern of progression

similar to that of solid tumours rather than non-Hodgkin

lymphomas, and that the effusion- and solid-types might

represent different stages of the same disease rather than two

distinct variants.

The molecular pathogenesis and mechanisms of progres-

sion of BI-ALCL, however, remain largely unknown, thus

limiting the identification of biomarkers that enable disease

prognostication and optimal treatment. Hence, we performed

targeted next generation sequencing of seven BI-ALCL, iden-

tified in the archives of three institutions over 7 years, to

investigate the presence of underlying somatic mutations.

Informed consent was obtained from patients and the study

was performed in accordance with the Declaration of Hel-

sinki. DNA extracted from micro-dissected tumour cells of

formalin-fixed paraffin-embedded BI-ALCL samples

(QIAamp DNA Mini kit; Qiagen, Germantown, MD, USA)

was used to prepare DNA libraries (Sureselect kit; Agilent

Technologies, Santa Clara, CA, USA). Sequencing was per-

formed on a HiSeq2500 (Illumina, San Diego, CA, USA)

using a panel of 465 cancer-associated genes (Table SI). The

sequence data were aligned to the human reference genome

(hg19) and variants were identified using NextGENe

(SoftGenetics, State College, PA, USA). The average read

depth of the samples was 4009 (Table SII). Somatic muta-

tions were identified by comparison of variants detected in

lymphoma with those from matched constitutional DNA.

Common variants (>1% frequency) present in the 1000 gen-

omes database, and the database of Columbia University

were removed. Somatic mutations were classified using the

prior literature, and two different prediction algorithms

(SIFT http://sift.bii.a-star.edu.sg and Polyphen-2 [PP2]

http://genetics.bwh.harvard.edu/pph2/). The exonic somatic

variants were confirmed by bidirectional Sanger sequencing

using Big-Dye terminators v3.1 (Applied Biosystems, Carls-

bad, CA, USA).

The clinical and pathological features of the patients are

summarized in Table I. Informative results were obtained in

five of seven cases (Table SII); analysis failed in two cases

due to the poor quality of DNA. Five somatic variants affect-

ing four genes were identified in two cases: one intronic and

four within coding regions (Fig 1 and Table SIII).

A STAT3 missense variant (p.S614R) affecting the SH2

domain, which mediates STAT3 dimerization, was detected in

one of these two BI-ALCLs. JAK/STAT signalling is implicated

in cell proliferation, differentiation and apoptosis, and aber-

rant activation of STAT3 has been reported in several human

cancers associated with persistent immune stimulation and/or

inflammation. Notably, the gain-of-function mutation

(S614R) was recently described in one BI-ALCL (Blombery

et al, 2016), and has been reported in angioimmunoblastic T

cell lymphomas, chronic lymphoproliferative disorders of nat-

ural killer cells, and T-cell large granular lymphocyte leukae-

mias (Odejide et al, 2014). Moreover, gain-of-function

mutations in STAT3 have been reported in 18% of systemic

ALK-negative ALCLs and 5% of cutaneous ALCLs (Crescenzo

et al, 2015). An in vitro study using BI-ALCL-derived cell

lines also showed activation of the JAK/STAT pathway

through autocrine production of interleukin 6, suggesting a

possible pathogenic mechanism (Lechner et al, 2012).

A frameshift deletion causing a premature stop codon in

SOCS1 (p.P83Rfs*20) was detected in the BI-ALCL harbour-

ing the STAT3 mutation. SOCS1 is a negative feedback regu-

lator of the JAK/STAT pathway. The p.P83Rfs*20 mutation

deletes the C-terminal SOCS box domain and partially

deletes the SH2 domain, which downregulates the kinase

activity of JAK. Loss-of-function mutations of SOCS1, lead-

ing to constitutive activation of JAK/STAT signalling, have

been described in B-cell lymphomas and in classical Hodgkin

lymphomas (Mottok et al, 2009). Moreover, SOCS1 was

found to be silenced by miR-155 in ALK-negative ALCL

(Merkel et al, 2015). Mutations in STAT3 and SOCS1 suggest

that deregulated activation of the JAK/STAT pathway may

contribute to the development of BI-ALCL.
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A missense mutation of TP53 (p.D259Y) affecting the

DNA binding domain was also observed in the aforemen-

tioned case. Although TP53 mutations are uncommon in

peripheral T-cell lymphomas (PTCLs) (Odejide et al, 2014),

p.D259Y has been documented in several solid tumours

(Petitjean et al, 2007).

The second BI-ALCL case with a somatic variant harboured

a nonsense mutation in DNMT3A (p.W176X). DNMT3A is a

DNA methyltransferase required for genome-wide de novo

methylation. Mutations in DNMT3A, mostly impairing

DNMT3A catalytic activity, have been reported in 8–22% of

myeloid neoplasms and 33% of PTCLs (Odejide et al, 2014;

Yang et al, 2015). Recent studies have identified DNMT3A

mutations in pre-leukaemic haematopoietic stem cells (HSCs)

within the founding clones of acute myeloid leukaemias (Yang

et al, 2015), in CD34+ progenitors of T-cell lymphomas (Ode-

jide et al, 2014) and in 16% of early T-cell precursor acute

lymphoblastic leukaemias (ALLs), a subgroup of T-lineage

ALLs characterized by specific stem cell and myeloid features

(Yang et al, 2015). It has been speculated that DNMT3A-

mutant HSCs are predisposed to undergo neoplastic transfor-

mation upon acquiring mutations in other genes, which coop-

erate with DNMT3A mutations, fostering the development of

distinct haematological malignancies. Our finding suggests

that DNMT3A mutations in BI-ALCL might contribute to

malignancy by deregulating the DNA methylation landscape of

neoplastic T-cells or their precursors.

No somatic mutations were identified in three out of five

evaluable cases. Nevertheless, it remains plausible that,

similar to observations in systemic and cutaneous ALCL

(Crescenzo et al, 2015), deregulation of the JAK/STAT path-

way via the generation of fusion transcripts might occur in

subsets of non-mutated BI-ALCLs.

Altogether our results confirm that mutations in JAK-

STAT pathway genes occur in BI-ALCL, with the identifica-

tion of SOCS1 mutation for the first time in this disease and

TP53 and DNMT3A mutations as additional somatic events.

Our findings add to the nascent literature regarding the

genetic alterations underlying BI-ALCL and suggest further

exploration of the involved molecular pathways in this

malignancy.
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