
INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is a sleep
disorder characterized by repeated partial or complete
obstructions of upper airways during sleep with consequent
apnea or hypopnea, intermittent arterial oxygen desaturation
and sleep disruption (1). OSAS affects especially middle-aged
and elderly subjects and its prevalence is increasing
worldwide (2).

OSAS is significantly and independently associated with an
increased risk of cardiovascular diseases, cerebrovascular events
and all-cause mortality and some studies have demonstrated that
the incidence of cardiovascular events is related to its severity
(3-5). Atherosclerosis is common in OSAS (6), and the elevated
mortality is associated with the severity of the atherosclerosis
(7). The mechanisms leading to the development and the
progression of atherosclerotic plaques involve multiple factors,
including oxidative stress, endothelial dysfunction, and
inflammatory factors. The continued hypoxia-reoxygenation
episodes have a key role in the pathogenesis of the endothelial
dysfunction: the intermittent hypoxia may induce the production
of reactive oxygen species (ROS) that contribute to the
generation of adhesion molecules, leukocyte activation, and to
an enhanced systemic inflammation (8).

In particular, evaluating the oxidative/antioxidant status of
subjects with OSAS, several authors have observed an increase
in lipid (9-11) and protein oxidation (9, 12) and a decrease in
nitric oxide (NO) metabolites (13), and in antioxidant defenses
(9, 10, 14), even if other authors did not find any difference in
plasma lipid peroxidation, total antioxidant capacity and protein
carbonyl levels between OSAS subjects and controls (15). In
addition, an altered expression of some matrix metalloproteases
(MMPs) and their tissue inhibitors (TIMPs) has been described
in subjects with OSAS (16-22). MMPs, and in particular
gelatinases (MMP-2 and MMP-9), are involved in the
atherosclerotic lesion development and progression (23, 24).
MMPs and oxidative stress seem to be strongly correlated in
subjects with high cardiovascular risk (25, 26, 28-31). The link
between oxidative stress and MMPs has been demonstrated in
several experimental models (32-34): peroxynitrite, in the
presence of gluthation, activates some MMPs via the S-
glutathiolation of the cystein in the propeptide domain (26, 34)
but, at higher concentrations, can lead to the inactivation of
MMP-2 (34). Also hydrogen peroxide (H2O2) activates MMP-2
and promotes the expression of MMP-2 and MMP-9 in human
venous endothelial cells (35). The activation of MMPs via S-
nitrosylation is still unclear, even if a role of NO has been
suggested by some authors (27). In addiction, ROS can influence
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MMP transcription influencing the activity of the mitogen-
activated protein kinase (MAPK), of the MAPK phosphatase or
of the histone deacetylase (36).

Previously we have evaluated the behavior of lipid
peroxidation and protein oxidation (37), the nitric oxide
metabolites and the erythrocyte deformability (38) and also the
gelatinases and their inhibitors in OSAS subjects (in press); the
aim of this research was to examine some parameters of the
oxidative status and their possible relationships with gelatinases
and TIMPs in the same group of subjects with OSAS.

MATERIALS AND METHODS

Patients

We consecutively recruited 48 subjects (36 men and 12
women; mean age 50.3 ± 14.68 years) with obstructive sleep apnea
syndrome from those with suspected OSAS referred to our center.
OSAS was diagnosed after a 1-night cardiorespiratory sleep study:
apneas were defined as the cessation of airflow for ≥10 seconds
and hypopneas were defined as a transient reduction of breathing 
≥ 50% with an oxygen desaturation of ≥3% or as a reduction of
breathing ≥ 30% with an oxygen desaturation of ≥ 4% for ≥10
seconds. Obstructive apneas and hypopneas were distinguished
from central events by the detection of respiratory efforts during
the event. AHI was defined as the number of obstructive apneas
and hypopneas per hour of sleep. Patients with an AHI ≥ 5 were
considered as affected by OSAS and then they were subdivided
according to the AHI value in two subgroups: Low (L= 21 subjects
with AHI < 30) and High (H = 27 subjects with AHI > 30).
Therefore the Low subgroup included subjects with mild to
moderate OSAS, while the H subgroup included the subjects with

severe OSAS. Means and S.D. of age, BMI, waist and neck
circumference, AHI, oxygen desaturation index (ODI), and mean
nocturnal SO2 (mSO2) are reported in Table 1. Twenty-three of the
OSAS subjects had arterial hypertension, 10 had diabetes mellitus
and 6 had cardiovascular disease (history of myocardial infarction
or stroke). Each subject gave the informed consent and the study
was approved by the Ethical Committee.

On fasting venous blood, collected by puncture from the
antecubital vein of each subject after the night of
cardiorespiratory sleep study and immediately transferred to
glass tube anticoagulated with EDTA-K3, we evaluated lipid
peroxidation, protein carbonyl (PC) groups, total antioxidant
status (TAS), nitric oxide metabolites (NOx), gelatinases (MMP-
2 and -9) and their tissue inhibitors (TIMP-1 and -2).

Lipid peroxidation

Lipid peroxidation was evaluated in plasma by detection of
thiobarbituric acid-reactive substances (TBARS), generated by
peroxidative processes, which include lipid peroxides and
malonildialdehyde. The evaluation of TBARS was made by
fluorimetry, using 1,1,3,3-tetramethoxypropane as standard.

Protein carbonyl (PC) groups

The PC groups were measured by an enzyme-linked
immunosorbent assay (ELISA) kit (BioCell PC test kit, Enzo
Life Sciences AG, Switzerland).

Total antioxidant status (TAS)

TAS was obtained using an Assay kit (Calbiochem, La Jolla,
USA) which relies on the ability of plasma antioxidant substances
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L-OSAS 

(n = 21) 

H-OSAS 

(n = 27) 

Males/Females 12  / 9 25 / 2 

Age (years) 45.3 ± 14.4 52.8 ± 14.2 

BMI (kg/m
2
) 35.72 ± 8.49 35.10 ± 6.47 

Waist circumference (cm) 114.2 ± 14.5 122.5 ± 16.6 

Neck circumference (cm) 41.50 ± 3.25 46.62 ± 4.15*** 

AHI 15.13 ± 8.15 56.63 ± 18.90*** 

mSO2 (%) 93.4 ± 2.68 89.50 ± 3.45*** 

ODI 14.28 ± 9.39 55.38 ± 25.75*** 

 
***P < 0.001 versus L-OSAS (Student’s ‘t’ test for unpaired data). BMI, body mass index; mSO2, mean oxygen saturation; AHI,
apnea/hypopnea index; ODI, oxygen desaturation index.

Table 1. Means ± S.D. of age, anthropometric characteristic and OSAS parameters in the two subgroups of OSAS patients.

 

 L-OSAS H-OSAS 

TBARS (nmol/ml) 5.247 ± 0.469 7.351 ± 1.629*** 

PC (nmol/mg prot) 0.230 ± 0.088 0.382 ± 0.099*** 

TAS (mmol/l) 1.370 ± 0.162 1.237 ± 0.112** 

NOx (micromol/l) 33 .47 ± 10.05  22.84 ± 7.79*** 

MMP-9 (ng/ml) 89.22 ± 11.07 106.8 ± 14.78*** 

TIMP-1 (ng/ml) 64.87 ± 5.53 70.40 ± 5.09*** 

MMP-2 (ng/ml) 37.90 ± 10.44 34.12 ± 7.39 

TIMP-2 (ng/ml) 104.8 ± 8.35 106.6 ± 10.19 

 
**P < 0.01 ***P < 0.001 versus L-OSAS (Student’s ‘t’ test for unpaired data).

Table 2. Means ± S.D. of oxidative parameters, nitric oxide metabolites, gelatinases and their inhibitors in the two subgroups of OSAS
patients.



to inhibit the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline
sulfonic acid) (ABTS) to the radical cation ABTS.+ by a
peroxidase (39). The radical concentration was measured by
spectrophotometry.

Nitric oxide metabolites (NOx)

Considering that in vivo NO has a very short life (less than
0.1 s) and it is converted into nitrite (NO2

–), which has a half-life
of few minutes, and into the more stable nitrate (NO3

–), NOx
represents almost only the nitrate concentration. In the
laboratory method adopted by us at first nitrate was converted
into nitrite by a nitrate reductase, and then nitrite was assessed
by spectrophotometry after addition of Griess reagent.

Gelatinases and their inhibitors

Plasma concentrations of gelatinases (MMP-2 and MMP-9)
and their inhibitors (TIMP-1 and TIMP-2) were evaluated using
respectively the Human MMP-2 ELISAand Human MMP-9
ELISA kit (Boster Biological Technology, LTD) and the Human
TIMP-1 ELISA and Human TIMP-2 ELISA kit (Boster
Biological Technology, LTD).

Statistical analysis

Data were expressed as means ± S.D. The statistical difference
between the Lsubgroup and the H subgroup of OSAS subjects
was estimated using the Student’s “t” test for unpaired data; the
correlations were performed employing the linear regression test.
The null hypothesis was rejected for Pvalues < 0.05.

RESULTS

First of all, the Land H subgroup of OSAS subjects are
significantly different regarding the neck circumference, the

mean oxygen saturation and the oxygen desaturation index
(Table 1).

In the H subgroup of OSAS subjects we found a
significant increase in lipid peroxidation and protein oxidation
and a significant decrease in total antioxidant status and in NO
metabolites in comparison with the Lsubgroup (Table 2).
Similarly, in the H subgroup of OSAS subjects we observed a
significant increase in the plasma concentration of MMP-9
and TIMP-1 in comparison with the Lsubgroup, while
regarding the plasma concentration of MMP-2 and TIMP-2 no
statistical difference was observed between the two subgroups
(Table 2).

Considering the aim of this research, we examined all the
correlations among the parameters of oxidative status and the
parameters of the metalloproteinases profile. From this statistical
evaluation was evident that in the Lsubgroups MMP-9 was
positively correlated with TAS and NOx (Table 3, Figs. 3 and4)
while in the H subgroup we found a positive correlation between
MMP-9 and TBARS (Table 3, Fig. 1), a positive correlation
between MMP-2 and TAS and a negative correlation between
TIMP-1 and TBARS (Table 3). In the whole group of OSAS
subjects only MMP-9 was positively correlated with TBARS
and carbonyl groups while it was negatively correlated with
NOx (Table 3, Figs. 1, 2 and 4).

In addition we evaluated the correlations among the indicators
of oxidative stress, the MMPs profile, and the parameters of OSAS
severity in the entire group of OSAS subjects. We found a positive
correlation between TBARS and AHI and between TBARS and
ODI and a negative correlation between TBARS and mSO2 (Table
4). PC were positively correlated with AHI and ODI and negatively
correlated with mSO2 (Table 4), while TAS was negatively
correlated with AHI and ODI and positively correlated with mSO2

(Table 4). Regarding the NOx, we noted a negative correlation with
AHI and ODI and a positive correlation with mSO2 (Table 4). We
also observed a positive correlation between MMP-9 and AHI and
between MMP-9 and ODI and a negative correlation between
MMP-9 and mSO2 (Table 4); no significant correlation among
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 L-OSAS   H-OSAS All OSAS patients 

TBARS vs. MMP-9 –0.138     0.375# 0.541*** 

TBARS vs. MMP-2  0.044 –0.248 –0.243 

TBARS vs. TIMP-1  0.085    –0.403 * 0.121 

TBARS vs. TIMP-2  0.072 –0.227 –0.064 

    

PC vs. MMP-9 –0.377   0.294       0.395** 

PC vs. MMP-2 –0.014   0.073 –0.111 

PC vs. TIMP-1  0.088 –0.186   0.249 

PC vs. TIMP-2  0.147 –0.046  0.001 

    

TAS vs. MMP-9    0.483* –0.166 –0.157 

TAS vs. MMP-2 –0.085      0.401*   0.185 

TAS vs. TIMP-1  0.245   0.353   0.021 

TAS vs. TIMP-2  0.043   0.211   0.068 

    

NOx vs. MMP-9    0.506* –0.358   –0.283 # 

NOx vs. MMP-2 –0.300   0.103  0.001 

NOx vs. TIMP-1 –0.099   0.057 –0.262 

NOx vs .TIMP-2   0.090   0.074   0.016 

 
#P= 0.05, *P< 0.0,5 **P< 0.01, ***P < 0.001 (linear regression).

Table 3. Values of r for linear correlations between oxidative parameters, nitric oxide metabolites, gelatinases and their inhibitors in
the two subgroups and in the whole group of OSAS patients.



MMP-2, TIMP-1, TIMP-2 and polysomnographic parameters was
found.

DISCUSSION

The data of this study confirm the results previously
described by us and in fact lipid peroxidation, protein oxidation,

total antioxidant status and NO metabolites are significantly
influenced by the degree of severity of this syndrome (37, 38).
The behavior of oxidative status is dependent in particular on the
hypoxia-reoxygenation episodes that characterize OSAS (8, 40).
An increased mitochondrial ROS synthesis in endothelial cells
exposed to hypoxia has been proved (8). As it is known, in vitro
hypoxia induces leukocyte activation (41) and ROS production
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Fig. 1. Correlations between MMP-9 and TBARS in the two
subgroups and in the whole group of OSAS patients.
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Fig. 2. Correlations between MMP-9 and PC in the two
subgroups and in the whole group of OSAS patients.



and some authors (8) have also described an increased ROS
synthesis by monocytes and granulocytes from OSAS subjects.
ROS indirectly influence several nuclear transcription factors
such as NF-κB that leads to an increased production of cytokines
and adhesion molecules, and the hypoxia-inducible factor-1α
(HIF-1α), that increases the sympathetic activity (8, 40). All
these considerations seem to find an equilibrium point when we

observe the close positive correlation between TBARS and
carbonyl groups (data not shown) as well as the strong negative
correlation between TBARS and TAS (data not shown) and
between carbonyl groups and TAS (data not shown), especially
in the entire group of OSAS subjects.

The increase in NF-κB is associated with the endothelial
dysfunction, confirmed by decreased levels of activated
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Fig. 3. Correlations between MMP-9 and TAS in the two
subgroups and in the whole group of OSAS patients.
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Fig. 4. Correlations between MMP-9 and NOx in the two
subgroups and in the whole group of OSAS patients.



endothelial NO synthases (eNOS) (42). This last datum
contributes to explain the behavior of NO metabolites in OSAS
subjects and in particular why its trend is dependent on its
severity degree. As the oxygen is a substrate of NOS, the frequent
episodes of desaturation decrease NOS activity; in addition,
hypoxia is also responsible for alterations in gene regulation, so
it could suppress the transcription of the eNOS gene (43).

On cultured human umbilical vein endothelial cells, an
intermittent hypoxia causes significant lower levels of NO, NOS
activity and NOS mRNAexpression (44), while in animal
models it has been proved that the intermittent hypoxia down-
regulates the eNOS expression inducing NF-κB activity and the
consequent overproduction of TNF-α, which inhibits eNOS
expression (45). In OSAS an increased NF-κB may also reduce
the levels of activated eNOS and all these premises seem to be
confirmed by the negative correlation between TBARS and NOx
(data not shown) and between carbonyl groups and NOx (data
not shown) in the entire group of OSAS subjects.

As well as for the parameters of the oxidative status, also
MMP-9 and TIMP-1 are influenced by the degree of severity of
this syndrome; this finding agrees with the data obtained by some
authors (16, 18, 19, 22) in adults with OSAS, although it differs
from what found by other authors in children with OSAS (17).

The activity of MMPs is regulated by the four TIMPs:
TIMP-1 inhibits in particular MMP-9 while TIMP-2 inhibits
especially MMP-2 (46) and this prerequisite explains easily the
positive correlation between MMP-9 and TIMP-1 and between
MMP-2 and TIMP-2 observed in the entire group of OSAS
subjects (data not shown). The trend of the gelatinases and
their tissue inhibitors may be imputable to their cosecretion or
to a compensatory effect (47) and it influences the extracellular
matrix remodeling (48, 49).

However, the principal aim of this study has regarded the
possible interrelationships between the parameters reflecting the
oxidative stress and the gelatinases in OSAS subjects. The
intermittent hypoxia that induces the ROS overproduction may
contribute to the generation of mediators of inflammation and at
the same time may activate, together with other proteases, the
MMPs (25, 26, 50). We believe that in OSAS the behavior of the
gelatinases is dependent especially on their overproduction
stimulated by the hypoxia-reoxygenation events and by some
cytokines, such as IL-6 and TNF-α (21, 51-53) and this
physiopathological consideration substantiates the significant
positive correlation found among TBARS, carbonyl groups and
MMP-9 in the whole group of OSAS subjects.

Bearing in mind that OSAS is a clinical condition
accompanied by different complications, such as arterial
hypertension, coronary disease and cerebrovascular events (3-5,

54), it should be considered if and how the oxidative stress and
the MMPs might play a role in the development of these
complications. At the same time the literature data underline
how the use of cPAP may reduce lipid peroxidation and protein
oxidation (55-60) and may increase TAS (61) and NO (58, 62-
67) as well as the same treatment may reduce the plasma levels
or the production of MMP-9 (18, 19).

Considering the prognosis of these subjects, especially of
those with severe OSAS, another aspect that deserves to be
underlined is if oxidative stress and gelatinases may be
contemplated as pharmacological target in this clinical condition.

In conclusion, we found an alteration of the parameters of
the oxidative status and of the MMPprofile in OSAS subjects
that seems to be more evident in the subgroup of subjects with
a severe degree of the disease evaluated according to the AHI.
The data of this study moreover show interesting statistical
correlations among lipid peroxidation, protein oxidation and
MMP-9.

Conflict of interests: None declared.
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