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Obstructive sleep apnea syndrome (OSAS) is commonly associated with endothelial dysfunction, atherosclerosis and
cardiovascular disorders. On the basis of this observation, our aim was to examine the oxidative status and the matrix
metalloproteases (MMP) profile in a group of subjects with OS#&Senrolled 48 subjects with OSAS defined after a
1-night cardiorespiratory sleep studyho were subsequently subdivided in two subgroups according to the severity of
OSAS (low grade = L-OSAS; high grade= H-OSABJ measured the parameters of oxidative stress, such as lipid
peroxidation, protein oxidation, total antioxidant statu#) nitric oxide metabolites (NOx), and the plasma
concentrations of the gelatinases (MMP-2 and MMP-9) and their tissue inhibitors (TIMPTIMIRe2). We found a
significant impairment of oxidative status in H-OSAS compared to L-OSAS and higher plasma levels of MMP-9 and
TIMP-1 in H-OSAS compared to L-OSAS. In this study we observed a positive correlation b&Bv¥RS and MMP-

9, a positive correlation between PC and MMP-9, and a negative correlation between NOx and MMP-9, especially in
the whole group of OSAS subjecthese data underline how strong interrelationships among some parameters of the
oxidative stress, in particular those reflecting lipid peroxidation, protein oxidation and NOx, and MMP-9 are evident in
OSAS subjectsAll these information may be useful in the clinical practice keeping in mind the cardiovascular
complications generally accompanying the obstructive sleep apnea syndrome.

Key words:obstructive deep apnea syndrome, oxidative stress, matrix metalloproteases, tissue inhibitors of metalloprotease, lipid
peroxidation, nitric oxide

INTRODUCTION In particular evaluating the oxidative/antioxidant status of
subjects with OSAS, several authors have observed an increase
Obstructive sleep apnea syndrome (OSAS) is a sleem lipid (9-11) and protein oxidation (9, 12) and a decrease in
disorder characterized by repeated partial or completaitric oxide (NO) metabolites (13), and in antioxidant defenses
obstructions of upper airways during sleep with consequen(9, 10, 14), even if other authors did not find anyedénce in
apnea or hypopnea, intermittent arterial oxygen desaturatioplasma lipid peroxidation, total antioxidant capacity and protein
and sleep disruption (1). OSASedts especially middle-aged carbonyl levels between OSAS subjects and controls (15). In
and elderly subjects and its prevalence is increasin@ddition, an altered expression of some matrix metalloproteases
worldwide (2). (MMPs) and their tissue inhibitors (TIMPs) has been described
OSAS is significantly and independently associated with arin subjects with OSAS (16-22). MMPs, and in particular
increased risk of cardiovascular diseases, cerebrovascular eveggslatinases (MMP-2 and MMP-9), are involved in the
and all-cause mortality and some studies have demonstrated tratherosclerotic lesion development and progression (23, 24).
the incidence of cardiovascular events is related to its severitylMPs and oxidative stress seem to be strongly correlated in
(3-5).Atherosclerosis is common in OSAS (6), and the elevatedubjects with high cardiovascular risk (25, 26, 28-3he link
mortality is associated with the severity of the atherosclerosibetween oxidative stress and MMPs has been demonstrated in
(7). The mechanisms leading to the development and thseveral experimental models (32-34): peroxynitrite, in the
progression of atherosclerotic plaques involve multiple factorspresence of gluthation, activates some MM®a the S-
including oxidative stress, endothelial dysfunction, andglutathiolation of the cystein in the propeptide domain (26, 34)
inflammatory factors.The continued hypoxia-reoxygenation but, at higher concentrations, can lead to the inactivation of
episodes have a key role in the pathogenesis of the endothelisIMP-2 (34).Also hydrogen peroxide (@,) activates MMP-2
dysfunction: the intermittent hypoxia may induce the productionand promotes the expression of MMP-2 and MMP-9 in human
of reactive oxygen species (ROS) that contribute to thevenous endothelial cells (35)he activation of MMPs/ia S-
generation of adhesion molecules, leukocyte activation, and toitrosylation is still uncleareven if a role of NO has been
an enhanced systemic inflammation (8). suggested by some authors (27). In addiction, ROS can influence
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MMP transcription influencing the activity of the mitogen- severe OSAS. Means and S.D. of age, BMI, waist and neck
activated protein kinase (MAPK), of the MAPK phosphatase orcircumferenceAHI, oxygen desaturation index (ODI), and mean
of the histone deacetylase (36). nocturnal SQ(MSQ) are reported iffable 1. Twenty-three of the
Previously we have evaluated the behavior of lipid OSAS subjects had arterial hypertension, 10 had diabetes mellitus
peroxidation and protein oxidation (37), the nitric oxide and 6 had cardiovascular disease (history of myocardial infarction
metabolites and the erythrocyte deformability (38) and also ther stroke). Each subject gave the informed consent and the study
gelatinases and their inhibitors in OSAS subjects (in press); theias approved by the Ethical Committee.
aim of this research was to examine some parameters of the On fasting venous blood, collected by puncture from the
oxidative status and their possible relationships with gelatinasesntecubital vein of each subject after the night of
andTIMPs in the same group of subjects with OSAS. cardiorespiratory sleep study and immediately transferred to
glass tube anticoagulated with E&K3, we evaluated lipid
peroxidation, protein carbonyl (PC) groups, total antioxidant
MATERIALS AND METHODS status (AS), nitric oxide metabolites (NOXx), gelatinases (MMP-
2 and -9) and their tissue inhibitors (TIMP-1 and -2).
Patients
Lipid peroxidation
We consecutively recruited 48 subjects (36 men and 12
women; mean age 50.3 + 14.68 years) with obstructive sleep apnea Lipid peroxidation was evaluated in plasma by detection of
syndrome from those with suspected OSAS referred to our.centehiobarbituric acid-reactive substances (TBARS), generated by
OSAS was diagnosed after a 1-night cardiorespiratory sleep studgeroxidative processes, which include lipid peroxides and
apneas were defined as the cessation of airfloeX¥0rseconds malonildialdehyde.The evaluation ofTBARS was made by
and hypopneas were defined as a transient reduction of breathifigorimetry, using 1,1,3,3-tetramethoxypropane as standard.
> 50% with an oxygen desaturationx8% or as a reduction of
breathing> 30% with an oxygen desaturation ®f4% for 210 Protein carbonyl (PC) groups
seconds. Obstructive apneas and hypopneas were distinguished
from central events by the detection of respiratofyrisf during The PC groups were measured by an enzyme-linked
the eventAHI was defined as the number of obstructive apneasmmunosorbent assay (ELISA) kit (BioCell PC test kit, Enzo
and hypopneas per hour of sleep. Patients withHin= 5 were  Life ScienceAG, Switzerland).
considered as fafcted by OSAS and then they were subdivided
according to th&HI value in two subgroups: Low (£ 21 subjects  Total antioxidant status (TAS)
with AHI < 30) and High (H = 27 subjects withHI > 30).
Therefore the Low subgroup included subjects with mild to  TAS was obtained using assay kit (Calbiochem, La Jolla,
moderate OSAS, while the H subgroup included the subjects witklSA) which relies on the ability of plasma antioxidant substances

Table 1. Means £ S.D. of age, anthropometric characteristic and OSAS parameters in the two subgroups of OSAS patients.

L-OSAS H-OSAS

(n=21) (n=27)
Males/Females 12 /9 25 /2
Age (years) 453 + 144 52.8 £ 14.2
BMI (kg/m?) 35.72 + 8.49 35.10 + 6.47
Waist circumference (cm) 1142 + 14,5 122.5 + 16.6
Neck circumference (cm) 41.50 + 3.25 46.62 + 4.15%**
AHI 15.13 £ 8.15 56.63 £ 18.90%**
mS0, (%) 93.4 + 2.68 89.50 + 3.45%**
ODI 14.28 + 9.39 55.38 + 25.75%**

***p < 0.001 versus L-OSAS {&lents ‘t' test for unpaired data). BMI, body mass index; mS@ean oxygen saturatioAHl,
apnea/hypopnea index; ODI, oxygen desaturation index.

Table 2. Means + S.D. of oxidative parameters, nitric oxide metabolites, gelatinases and their inhibitors in the two subgroups of OSAS
patients.

L-OSAS H-OSAS
TBARS (nmol/ml) 5247 + 0.469 7351 + 1.629%%*
PC (nmol/mg prot) 0.230 = 0.088 0.382 + 0.099%**
TAS (mmol/l) 1.370 + 0.162 1237 + 0.112%*
NOX (micromol/l) 33 .47 + 10.05 22.84 + 7.79%%x
MMP-9 (ng/ml) 89.22 + 11.07 106.8 + 14.78%%*
TIMP-1 (ng/ml) 64.87 + 5.53 70.40 + 5.09%%*
MMP-2 (ng/ml) 37.90 + 10.44 34.12 + 7.39

TIMP-2 (ng/ml) 104.8 + 8.35 106.6 + 10.19

*P < 0.01 **P < 0.001 versus L-OSAS {&lents ‘t’ test for unpaired data).
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Table 3. Values of r for linear correlations between oxidative parameters, nitric oxide metabolites, gelatinases and their inhibitors in
the two subgroups and in the whole group of OSAS patients.

L-OSAS H-OSAS All OSAS patients
TBARS vs. MMP-9 -0.138 0.375# 0.541%**
TBARS vs. MMP-2 0.044 —0.248 —0.243
TBARS vs. TIMP-1 0.085 —-0.403 * 0.121
TBARS vs. TIMP-2 0.072 -0.227 —-0.064
PC vs. MMP-9 -0.377 0.294 0.395%*
PC vs. MMP-2 -0.014 0.073 —0.111
PC vs. TIMP-1 0.088 -0.186 0.249
PC vs. TIMP-2 0.147 -0.046 0.001
TAS vs. MMP-9 0.483* -0.166 -0.157
TAS vs. MMP-2 —0.085 0.401* 0.185
TAS vs. TIMP-1 0.245 0.353 0.021
TAS vs. TIMP-2 0.043 0.211 0.068
NOx vs. MMP-9 0.506* —-0.358 —0.283 #
NOx vs. MMP-2 -0.300 0.103 0.001
NOx vs. TIMP-1 -0.099 0.057 -0.262
NOx vs .TIMP-2 0.090 0.074 0.016

#P=0.05, *P< 0.0,5 *P< 0.01, ***P < 0.001 (linear regression).

to inhibit the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline mean oxygen saturation and the oxygen desaturation index
sulfonic acid) (ABTS) to the radical catioABTS+ by a  (Tablel).
peroxidase (39)The radical concentration was measured by In the H subgroup of OSAS subjects we found a

spectrophotometry significant increase in lipid peroxidation and protein oxidation
and a significant decrease in total antioxidant status and in NO
Nitric oxide metabolites (NOx) metabolites in comparison with the dubgroup Table 2).

Similarly, in the H subgroup of OSAS subjects we observed a
Considering thain vivo NO has a very short life (less than significant increase in the plasma concentration of MMP-9
0.1 s) and it is converted into nitrite (B which has a half-life  and TIMP-1 in comparison with the Lsubgroup, while
of few minutes, and into the more stable nitrate {IONOx regarding the plasma concentration of MMP-2 @&idP-2 no
represents almost only the nitrate concentration. In thestatistical diference was observed between the two subgroups
laboratory method adopted by us at first nitrate was converte(Table 2).
into nitrite by a nitrate reductase, and then nitrite was assessed Considering the aim of this research, we examined all the

by spectrophotometry after addition of Griess reagent. correlations among the parameters of oxidative status and the
parameters of the metalloproteinases profile. From this statistical
Gelatinases and their inhibitors evaluation was evident that in the subgroups MMP-9 was

positively correlated witffAS and NOXx Table 3, Figs. 3 and4)
Plasma concentrations of gelatinases (MMP-2 and MMP-9Wwhile in the H subgroup we found a positive correlation between
and their inhibitors (TIMP-1 an@IMP-2) were evaluated using MMP-9 and TBARS (Table 3, Fig. 1), a positive correlation
respectively the Human MMP-2 ELISAnd Human MMP-9 between MMP-2 and@AS and a negative correlation between
ELISA kit (Boster BiologicalTechnology LTD) and the Human TIMP-1 andTBARS (Table 3). In the whole group of OSAS
TIMP-1 ELISA and HumanTIMP-2 ELISA kit (Boster  subjects only MMP-9 was positively correlated wWitBARS

Biological Technology LTD). and carbonyl groups while it was negatively correlated with
NOXx (Table 3, Figs. 1, 2 and4).
Satistical analysis In addition we evaluated the correlations among the indicators

of oxidative stress, the MMPs profile, and the parameters of OSAS
Data were expressed as means + Bt statistical dierence  severity in the entire group of OSAS subjeéte. found a positive
between the lsubgroup and the H subgroup of OSAS subjectscorrelation betweeBARS andAHI and betweenTBARS and
was estimated using theuBents “t” test for unpaired data; the ODI and a negative correlation betwdARS and mSQ(Table
correlations were performed employing the linear regression test). PC were positively correlated wittidl and ODI and negatively
The null hypothesis was rejected fovdtues < 0.05. correlated with mS© (Table 4), while TAS was negatively
correlated wittAHI and ODI and positively correlated with mgO
(Table 4). Regarding the NOx, we noted a negative correlation with
RESULTS AHI and ODI and a positive correlation with mS@able 4). We
also observed a positive correlation between MMP-%dficand
First of all, the Land H subgroup of OSAS subjects are between MMP-9 and ODI and a negative correlation between
significantly diferent regarding the neck circumference, the MMP-9 and mS@ (Table 4); no significant correlation among
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MMP-2, TIMP-1, TIMP-2 and polysomnographic parameters wastotal antioxidant status and NO metabolites are significantly
found. influenced by the degree of severity of this syndrome (37, 38).
The behavior of oxidative status is dependent in particular on the
DISCUSSION hypoxia-reoxygenation episodes that characterize OSAS (8, 40).
An increased mitochondrial ROS synthesis in endothelial cells

The data of this study confirm the results previously exposed to hypoxia has been provedAB)it is known,in vitro
described by us and in fact lipid peroxidation, protein oxidation hypoxia induces leukocyte activation (41) and ROS production
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Fig. 1. Correlations between MMP-9 ariBARS in the two  Fig. 2. Correlations between MMP-9 and PC in the two
subgroups and in the whole group of OSAS patients. subgroups and in the whole group of OSAS patients.
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Fig. 3. Correlations between MMP-9 arfAS in the two

subgroups and in the whole group of OSAS patients.

Fig. 4. Correlations between MMP-9 and NOx in the two
subgroups and in the whole group of OSAS patients.

and some authors (8) have also described an increased R@Bserve the close positive correlation betwd@ARS and
synthesis by monocytes and granulocytes from OSAS subjectsarbonyl groups (data not shown) as well as the strong negative
ROS indirectly influence several nuclear transcription factorscorrelation betweelTBARS and TAS (data not shown) and
such as NB that leads to an increased production of cytokinesbetween carbonyl groups afiédS (data not shown), especially

and adhesion molecules, and the hypoxia-inducible fdctor
(HIF-1a), that increases the sympathetic activity (8, 40).

in the entire group of OSAS subjects.

The increase in NkB is associated with the endothelial
these considerations seem to find an equilibrium point when weysfunction, confirmed by decreased levels of activated
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Table 4. Values of r for linear correlations between the OSAS parameters and oxidative parameters, nitric oxide metabolites,
gelatinases and their inhibitors in the whole group of OSAS patients.

vs. AHI vs. mSO, vs. ODI
TBARS 0.885%** —0.524%*%*%* 0.881%**
PC 0.684%** —0.462%* 0.631%**
TAS —0.544*** 0.423%* —0.472%*
NOx —0.615%** 0.418%* —0.523**%*
MMP-9 0.450%* —0.482%%* 0.360*
MMP-2 —0.278# 0.149 —0.393*
TIMP-1 0.255 -0.238 0.235
TIMP-2 —-0.049 -0.131 -0.104

#P=0.05, *P< 0.05, *P< 0.01, **P < 0.001 (linear regression).

endothelial NO synthases (eNOS) (42)his last datum 54), it should be considered if and how the oxidative stress and
contributes to explain the behavior of NO metabolites in OSAShe MMPs might play a role in the development of these
subjects and in particular why its trend is dependent on iteomplications.At the same time the literature data underline
severity degred\s the oxygen is a substrate of NOS, the frequenthow the use of & may reduce lipid peroxidation and protein
episodes of desaturation decrease NOS activity; in additiompxidation (55-60) and may increa$AS (61) and NO (58, 62-
hypoxia is also responsible for alterations in gene regulation, s67) as well as the same treatment may reduce the plasma levels
it could suppress the transcription of the eNOS gene (43). or the production of MMP-9 (18, 19).

On cultured human umbilical vein endothelial cells, an  Considering the prognosis of these subjects, especially of
intermittent hypoxia causes significant lower levels of NO, NOSthose with severe OSAS, another aspect that deserves to be
activity and NOS mRNAexpression (44), while in animal underlined is if oxidative stress and gelatinases may be
models it has been proved that the intermittent hypoxia downeontemplated as pharmacologicagtrin this clinical condition.
regulates the eNOS expression inducingkFactivity and the In conclusion, we found an alteration of the parameters of
consequent overproduction dWNF-a, which inhibits eNOS the oxidative status and of the MMPofile in OSAS subjects
expression (45). In OSAS an increased ®B-may also reduce that seems to be more evident in the subgroup of subjects with
the levels of activated eNOS and all these premises seem to besevere degree of the disease evaluated accordingAsdithe
confirmed by the negative correlation betw8&ARS and NOx  The data of this study moreover show interesting statistical
(data not shown) and between carbonyl groups and NOx (datorrelations among lipid peroxidation, protein oxidation and
not shown) in the entire group of OSAS subjects. MMP-9.

As well as for the parameters of the oxidative status, also
MMP-9 andTIMP-1 are influenced by the degree of severity of
this syndrome; this finding agrees with the data obtained by some
authors (16, 18, 19, 22) in adults with OSAS, although fierdif
from what found by other authors in children with OSAS (17).

The activity of MMPs is regulated by the folitMPs:
TIMP-1 inhibits in particular MMP-9 whil&'IMP-2 inhibits 1.

Conflict of interests: None declared.
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