GAPPCO: an easy to configure Geometric
Algebra coprocessor based on GAPP pro-
grams

D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S.
Vitabile

Abstract. Because of the high numeric complexity of Geometric Alge-
bra, its use in engineering applications relies heavily on tools and devices
for efficient implementations. In this article, we present a novel hardware
design for a Geometric Algebra coprocessor, called GAPPCO, which is
based on Geometric Algebra Parallelism Programs (GAPP). GAPPCO
is a design for a coprocessor combining both the advantages of optimiz-
ing software with a configurable hardware able to implement arbitrary
Geometric Algebra algorithms. The idea is to have a fixed hardware
easily and fast to be configured for different algorithms. We describe
the new hardware design together with the complete tool chain for its
configuration.

Mathematics Subject Classification (2010). Primary 99799; Secondary
00A00.

Keywords. Geometric Algebra, Geometric Algebra Computing, Gaalop,
GAPP, GAPPCO.

1. Introduction

Especially since the introduction of CGA (Conformal Geometric Algebra) by
David Hestenes et al. [9] [13] there is an increasing interest in using Geomet-
ric Algebra in engineering. Since for many engineering applications runtime
performance is a big issue, many tools have been developed for efficient im-
plementations of Geometric Algebra algorithms.

Most existing hardware architectures are based on vectorization and
vector operations such that components of an operation can be performed
independently in parallel and there are already solutions making use of this
architecture [11]. Another approach to overcome the limitations of Geometric
Algebra is to look for dedicated hardware architectures for the acceleration of

2 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

Geometric Algebra Algorithm
R 2

Gaalop
(Symbolic Optimization)

¥
GAPP

Geometric Algebra Parallelization Programs

FIGURE 1. Gaalop generating optimized GAPP programs
from Geometric Algebra algorithms

Geometric Algebra algorithms. Integrated circuit technology offers a means
to achieve high performance with field-programmable gate arrays (FPGAs).
The first serious approach was described by Perwass et al. [16] in 2003. A
different approach was presented by Gentile et al. [8] in 2005. An update
on this work was given by Franchini et al. in a series of papers such as [1],
(2], [3], [4], [5] and [7]. The first custom-fabricated integrated circuit ASIC
implementation was introduced by Mishra and Wilson [14] in 2006.

A good way of losing the high complexity of Geometric Algebra before
going to the real computing device is to precompute / precompile Geometric
Algebra algorithms based on the Geometric Algebra algorithms optimizer
Gaalop [12]. What remains after its optimization process are mainly parallel
computations of multivector coefficients each consisting of sums of products,
which are again efficiently to be parallelized. The GAPP (Geometric Algebra
Parallelism Programs) language as the general structure of these optimized
computations is generated by Gaalop (see Fig. 1). It is described in the book
[10]. Please refer to Sect. 2 for an introduction to GAPP.

Gaalop already supports optimized hardware (HW) generation [18].
But, with every new algorithm the FPGA has to be completely reprogrammed.
The solution that we present in this paper is more far-reaching. Here, we com-
bine the GAPP technology with new developments in fixed HW solutions for
Geometric Algebra, especially the ConformalALUof [6], implementing con-
formal transformations in hardware. We use this solution as an example for
GAPPCO, a general coprocessor design based on GAPP. GAPPCO is a co-
processor design combining both the advantages of optimizing software with
a configurable hardware able to implement arbitrary Geometric Algebra al-
gorithms. The idea is to have a fixed hardware, easily and fast to be config-
ured for different algorithms. Compared to standard hardware architectures
it makes use of variable-size vectors, pipeling and fast register access.

Please refer to Sect. 3 for the general design and to Sect. 4 for the first
version called GAPPCO 1.

GAPPCO 3

CLUScript

2
GaalopScript
. 2

GAPP

Geometric Algebra Parallelization Programs

4
GAPPCO
GAPP
Coprocessor
configuration data

F1GURE 2. Configuration chain for GAPPCO.

2. CLUScript, GaalopScript and GAPP

We describe the configuration chain for GAPPCO based on an example: the
reflection of a sphere in a plane. It is inspired by the reflector functional-
ity of the ConformalALU [6], implementing this operation in hardware. The
reflection oeration is the most basic transformation in Conformal Geomet-
ric Algebra, since all the conformal transformations can be composed based
on it. Rotations and Translations, for instance, consist of two consecutive
reflections related to two specific planes.

Figure 2 describes the chain of the main languages, needed for the con-
figuration of GAPPCO, namely

e CLUScript for the interactive and visual development of the Geometric

Algebra algorithm

e GaalopScript for the symbolic optimization of the algorithm
e GAPP for the generation of the specific configuration data for GAPPCO
resulting finally in the specific configuration data of GAPPCO.

CLUScript is the scripting language of CLUCalc [15], a tool for the
visualization of Geometric Algebra algorithms. Figure 3 shows the reflection
of a green sphere related to the red plane, which is resulting in the reflected
yellow sphere as described in Listing 1.

LisTING 1. CLUScript for the computation of the reflection
of an object a (point or sphere) related to a plane m

DefVarsN3 (); // use the conformal geometric algebra
_BGColor = Color(1,1,1); // Background white
:IPNS; // use the IPNS representation

al = 1;

4 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

FicURrRE 3. Reflection of a sphere.

a2 =
ad
ad
ml

m2

|
O O O ==

m3
m4 =

a = alxelt+a2xe2+a3xe3+adxeinf+ e0;
m = mlxel+m2xe2+m3xe3+mdxeinf ;
?Dotproduct = a.m;

a_par = 2x(Dotproduct)=m;

7a_Refl = a — a_par;

: Green;
ra;
:Red;
:20*m;
:Yellow;
ca_Refl;

This CLUScript first defines the Geometric Algebra to be used (in this
case the Conformal Geometric Algebra), the background colour for the visu-
alization (white in this case) and the representation of the geometric objects
(in this case the inner product null space representation). Then, the spe-
cific parameters of the objects a and m are defined. The object a is either a

GAPPCO 5

point or a sphere to be reflected at m which is a plane with normal vector
(m1,m2,m3) and m4 as the distance to the origin (please refer, for instance,
to [10] for details about the representation of geometric objects in Confor-
mal Geometric Algebra). The question mark indicates the multivectors to be
shown in the output window of CLUCalc. At the end of the CLUScript, the
original sphere is visualized in green, the plane in red and the reflected sphere
in yellow.

Listing 2 describes the corresponding Geometric Algebra algorithm as
a GaalopScript. In principle, GaalopScript is a subset of CLUScript, essen-
tially describing the core Geometric Algebra algorithm. The big advantage
is, that after the interactive and visual development of an algorithm, the core
CLUScript algorithm can be cut and paste as input language for the symbolic
optimization process of Gaalop.

LisTiNG 2. GaalopScript for the computation of the reflec-
tion of an object a at a plane m

a alxel+a2xe2+ad3xe3+adxeinf+ e0;

m = mlxel+m2+e2+m3xe3+mdxeinf ;

?Dotproduct = a.m;

a_par = 2x(Dotproduct)=m;

?a_Refl = 0.5%(a — a_par);

The question mark in a GaalopScript indicates the multivectors to be
computed explicitly (either as an intermediate or as a final result).

Note: the multiplication of the result by 0.5 is done, because the re-
sulting computations become easier (and in CGA the multiplication with a
scalar does not change the geometric object).

The GAPP (Geometric Algebra Parallelism Programs) language de-
scribes the general structure of the computations after the Gaalop optimiza-
tion process (see Fig. 1). As described in the book [10], Geometric Algebra
algorithms with all kind of products of multivectors always have the same
principle structure. This is described in the GAPP instruction set of Table 4.
The initial GAPPCO design focuses on this standard GAPP instruction set.
If, for instance, divisions or square roots are needed, the instruction set has
to be extended (see [17]).

The reflection algorithm of Listing 2 does not use any extended op-
erations such as divisions and square roots. This is why the corresponding
GAPP code (generated by Gaalop) uses the standard GAPP instruction set
as presented in Listing 3.

LisTING 3. Resulting GAPP code of Listing 2.

assignInputsVector inputsVector = [al,a2,a3,a4 ,ml,m2,m3,m4];

resetMv Dotproduct [32];
setVector ve0 = {inputsVector[—7,2,1,0]};

6 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

setVector vel = {1.0,inputsVector[6,5,4]};
dotVectors Dotproduct [0] = <ve0,vel >;

//a_-Refl[1] = (0.5 % inputsVector [0])

// — (Dotproduct [0] * inputsVector[4])
[32];

setVector ve2 = {0.5,Dotproduct|[—0]};

setVector ve3 = {inputsVector[0,4]};

dotVectors a_Refl[1] = <ve2,ved>;

resetMv a_Refl

//a_-Refl[2] = (0.5 % inputsVector[1])

// — (Dotproduct [0] * inputsVector[5])
setVector ved = {0.5,Dotproduct|[—0]};

setVector veb = {inputsVector[1l,5]};

dotVectors a_Refl [2] = <ved,ved>;

//a_-Refl [3] = (0.5 % inputsVector[2])

// — (Dotproduct [0] * inputsVector [6])
setVector ve6 = {0.5,Dotproduct|[—0]};

setVector ve7 = {inputsVector[2,6]};

dotVectors a_Refl [3] = <veb,veT7>;

//a_Refl[4] = (0.5 * inputsVector[3])

// — (Dotproduct [0] * inputsVector [7])
setVector ve8 = {0.5,Dotproduct|[—0]};

setVector ve9 = {inputsVector[3,7]};

dotVectors a_Refl [4] = <ve8,ve9>;

//a_-Refl [5] = 0.5
assignMv a_Refl [5] = [0.5];

First of all, the 8 input values of the program (al,a2,a3,a4,m1,m2,m3
and m4) are assigned to the inputsVector. Then, the coefficients of the mul-

tivectors Dotproduct and a_Refl are computed.

From the multivector Dotproduct only the index 0 is needed. It is the
dot product of the two vectors ve0 and vel consisting of entries from the

inputsVector as well as the value 1.0 as a constant.

Then the entries 1, 2, 3, 4 and 5 of the multivector a_Refl are computed.
The first entry, for instance, is the dot product of the vectors ve2 and ve3 con-
sisting of input values, constants and the result of the negated Dotproduct[0]
(because of consistency reasons, -Dotproduct[0] is written Dotproduct[-0] in

the GAPP language).

GAPPCO 7

3. GAPPCO

GAPPCO is a design for a Geometric Algebra Computing coprocessor com-
bining the advantages of optimizing software with a fixed hardware able to
implement arbitrary Geometric Algebra algorithms. GAPPCO is based on
Geometric Algebra Parallelism Programs (GAPP) that are already optimized
in a sense that only the really needed computations are left. The idea is to
have a fixed hardware easily and fast to be configured for different algo-
rithms. While the GAPPCO design is a design for reconfigurable hardware,
it is flexible in the sense that it can be used for ASICs and SOCs in the
future.

GAPPCO consists of one or more GAPP units. Each GAPP unit is able
to realize small GAPP programs (as, for instance, the GAPP program of List-
ing 3). The host interface is responsible for the data communication between

GAPP unit

Host <) GAPPCO

GAPP unit

F1GURE 4. GAPPCO coprocessor with host interface.

host and GAPPCO and for the configuration of GAPPCO (see Fig. 4).

inputsVector

L 2

GAPP unit

L 2

Resulting Vector

FIGURE 5. GAPP unit processing an inputsVector (vector
with all the scalar input values) to resulting vectors.

As soon as a GAPP unit is configured, inputsVectors can be received
from the host and resulting vectors can be sent to the host (see Fig. 5). For

8 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

runtime performance purposes, the architecture of GAPP units is pipelined
as much as possible.

4

DotVectors DotVectors

\ / ™ /
\/ ./
y N
N
A !\
\ i PN
i / 5 W

DotVectors /' DotVectors

N

FIGURE 6. GAPP unit consisting of 2 levels of Dot Vectors
units equipped with a configuration interface.

A GAPP unit consists of a network of one or more DotVectors units
organized in one or more levels (see Fig. 6). The connections have to be
configured before runtime based on the specific configuration data (see Sect.
4.2).

Vector0 Vector1

FIGURE 7. Parallel dot product of two n-dimensional vec-
tors Vector0 and Vectorl (n parallel products followed by
log(n) parallel addition steps).

Each DotVectors unit is responsible for the computation of one coeffi-
cient of one multivector. There is an implicit parallelism in this computation
according to Fig. 7. The multiplications of each of the vector elements can
be done in parallel as well as parts of the additions (see Fig. 7).

GAPPCO 9

The GAPP example of Sect. 2 is restricted to the number of two vectors
to be multiplied, while GAPP, generally, is supporting a higher number of
vectors to be multiplied.

FIGURE 8. Internal configuration data structure for GAP-
PCO based on the reflection example

Fig. 2 presents the configuration chain for GAPPCO as described in
Sect. 2. For the last step, the generation of the GAPPCO configuration data,
the particular GAPP listing has to be translated into a more suitable format
as presented in Fig. 8. It mainly describes the DotVectors units for Dotprod-
uct (1 dotVectors unit with 2 vectors of width 4) and for a_Refl (4 dotVectors
units, each with 2 vectors of width 2) with their intermediate or final results.
Very important for the GAPP unit configuration is the routing list assign-
ing numbers to input values, constant values and intermediate values. These
numbers are used for the input definitions of the DotVectors units. In our
example, the needed constants are 0.5 and 1.0. The routing list is the base
for the register file as one important component of the GAPPCO I design
presented in Sect. 4.

10 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

4. GAPPCO1
Here, we describe the first GAPPCO design (GAPPCO I) together with its

configuration data in some more detail.

4.1. GAPPCO I architecture

GAPPCO 1 is a configurable coprocessor consisting of N DotVectors units
(Fig. 9).

Configurable GAPPCO I
Register file (M 32-bit registers)

input data/results
F->
process
process_end ﬁ ﬁ ﬁ
Host
configure Controller
conf _end
- DotVectors1 DotVectors2 | --- | DotVectorsN
configuration
bitstream ~=>
| D

FIGURE 9. Configurable GAPPCO I block diagram

Each basic DotVectors unit can calculate the sum of 4 products (4-
width DotVectors unit). The block diagram of each DotVectors unit is de-
picted in Fig. 10. It is composed of 4 multiplier units (MULT11, MULT12,
MULT13, and MULT14) and 3 adder units (ADD11, ADD12, and ADD13).
Each DotVectors unit can be configured as one 4-width DotVectors unit or
two 2-width DotVectors units. To make the unit configurable, considering
the first level of adders, the output of each adder unit can be either provided
as result or used as input of a further adder unit. A demultiplexer unit is
used for this purpose. The enable inputs of each demultiplexer are part of
the configuration data provided by the GAPP configurator (GAPPConf) on
the host side.

This first GAPPCO design uses basic 4-width DotVectors units since
this width is sufficient to support reflection operations and therefore the fun-
damental conformal geometric operations. As described in [6], each conformal
geometric operation can be obtained as multiple consecutive reflection oper-
ations. The final GAPPCO design will be based on larger DotVectors units
so as to support more complex GA algorithms.

The number N of DotVectors units depends on the resource availability
on the target FPGA device. As shown in Fig. 9, GAPPCO I also includes a
controller unit and a register file consisting of M 32-bit registers to store input
data (inputsVector and constants) and output results (both intermediate and
final) of the DotVectors units.

GAPPCO 11

MULTI1 MULTI2 MULT13 MULT14
0
t
\V4 ADDI1 ADDI12
IS
C
t
9 ENI1 ENI2
S —>/ DEMUXI11 —>/ DEMUXI12
1
I u |
ADDI3

F1GURE 10. DotVectorsl block diagram

4.2. Configuration phase (before runtime)

Before runtime, the GAPP configurator (GAPPConf) on the host side pro-
vides the configuration bitstream needed to configure DotVectors units.

When the controller receives the “configure” command from GAPP-
Conf, it configures GAPPCO I according to the configuration bits and sends
the “conf_end” status signal to the host (see Fig. 9).

As shown in Fig. 10, each basic Dot Vectors unit consists of 4 multiplier
units, 3 adder units, and 2 demultiplexer units. The first index of each mul-
tiplier, adder or demultiplexer unit indicates the number of the DotVectors
unit, while the second index specifies the number of the multiplier, adder or
demux unit. For each 4-width DotVectors unit, the configuration bitstream
is composed of:

e cnable inputs of demultiplexer units

addresses of input operands of each multiplier unit
signs of input operands of each multiplier unit
address (addresses) of output result (results)
result /results type (intermediate or final)

As an example, the configuration bits for the DotVectorsl unit in Fig.
10 are reported in Table 1.

The enable bit values of the demultiplexer units (EN11 and EN12) spec-
ify if the DotVectors unit has to be configured as one 4-width DotVectors
unit (EN11=EN12=0) or two 2-width DotVectors units (EN11=EN12=1).
Furthermore, for each multiplier unit, the configuration bitstream specifies
the signs of the input operands (e.g. MULT11 signl and MULT11_sign2) as
well as the addresses of the registers (within the register file) where the input

12 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

operands have to be read (e.g. MULT11_addrl and MULT11_addr2). If the
operand sign is negative (sign bit = 1), a sign changing operation will be
performed before the operand is sent to the multiplier unit to be processed.
Regarding the register addresses, a register file composed of 32 32-bit registers
has been considered for this first design and therefore each address field in
the configuration bitstream is composed of 5 bits. Finally, for each configured
DotVectors unit, the configuration data specifies the address of the register
where the output result has to be written back (e.g. RESULT11 addr) as well
as the result type (intermediate calculation or final result). If the DotVectors
unit is configured as two 2-width DotVectors units, two results will be pro-
vided (RESULT11 and RESULT12). The configuration data are read by the
controller unit that configures accordingly the configurable Dot Vectors units.

TaBLE 1. Configuration bits for DotVectorsl of Fig. 10 (A
register file composed of 32 32-bit registers has been con-

sidered for this first design and therefore 5-bit addresses are
needed)

Field N
EN11 1
EN12 1
MULT11_addrl 5
MULT11 signl 1
MULT11.addr2 5
MULT11 sign2 1
MULT12_addrl 5
MULT12_signl 1
MULT12_addr2 5
MULT12_sign2 1
MULT13_addrl 5
1
5
1
5
1
5
1
5
1
5
1

MULT13signl
MULT13_addr2
MULT13_sign2

MULT14 _addrl

MULT14 sign1

MULT14 _addr2

MULT14 sign2
RESULT11_addr
RESULT11_type (intermediate or final)
RESULT12_addr (optional)
RESULT12_type (optional)

This first GAPPCO design is restricted to two types of results, namely,
intermediate and final, as needed in the examples chosen for this first proof-
of-concept. Therefore, one configuration bit is used to specify the result type

GAPPCO 13

(0 for final results and 1 for intermediate results). However, more complex
GA applications need different levels of intermediate results. Final computa-
tions need intermediate results of level 1, level 1 computations have to wait
for intermediate results of level 2, level 2 computations have to wait for in-
termediate results of level 3, and so on. In the final GAPPCO design, further
configuration bits will be used to specify intermediate results of different lev-
els. As an example, two configuration bits will allow us to define four levels
of results: 00 for final results, 01 for intermediate results of level 1, 10 for
intermediate results of level 2, and 11 for intermediate results of level 3.

GAPP units of different size each containing a different number of
variable-width DotVectors units can be configured within the GAPPCO co-
processor.

The entire configuration bitstream of GAPPCO I will be composed of
the fields reported in Table 2. The first 4-bit field of the bitstream specifies
the number of GAPP units to be configured within the coprocessor (e.g.
). Furthermore, for each GAPP unit, the configuration bitstream specifies
the number of basic 4-width DotVectors units that are needed to obtain the
required GAPP unit as well as the configuration bits needed to configure each
basic DotVectors unit. The configuration data for each basic Dot Vectors unit
are structured as reported in Table 1. Using the configuration bits listed in
Table 2, we can configure a GAPPCO I coprocessor composed of up to 16
GAPP units each consisting of up to 16 4-width DotVectors units.

TABLE 2. Configuration bitstream of GAPPCO I

Field N. of bits
N. of GAPP units 4
N. of 4-width DotVectors units for GAPP unit 1 4

Configuration bits for DotVectorsl of GAPP unit 1 | as listed in Table 1
Configuration bits for Dot Vectors2 of GAPP unit 1 | 7

Configuration bits for DotVectorsn of GAPP unit 1 |”
N. of 4-width DotVectors units for GAPP unit 2 4
Configuration bits for DotVectorsl of GAPP unit 2 | as listed in Table 1
Configuration bits for DotVectors2 of GAPP unit 2 | ”

Configuration bits for DotVectorsm of GAPP unit 2 | ”

N. of 4-width DotVectors units for GAPP unit r 4
Configuration bits for DotVectorsl of GAPP unit r | as listed in Table 1
Configuration bits for DotVectors2 of GAPP unit » |”

Configuration bits for Dot Vectorsp of GAPP unit » | ”

14 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

4.3. System operation phases (at runtime)

As shown in Fig. 9, at runtime, when the host sets the “process” control
signal, GAPPCO I starts input data processing, and, after completion, sets
the “process_end” status signal.

GAPPCO I is based on a pipelined architecture.

System operation phases at runtime are as follows:

1. The host writes input data (inputsVector and constantsVector) to the
register file

2. The coprocessor reads input data from the register file

3. The coprocessor executes operations

4. The coprocessor writes results (both intermediate and final) back to the
register file

5. The host reads results from the register file

The controller unit supervises the DotVectors units operation. Each
DotVectors unit reads its input data from the proper registers of the register
file (as set during the configuration phase) and writes the result (results) to
the proper register (registers) of the register file. If this result is an interme-
diate result, it will be further processed by other DotVectors units.

4.4. Example (Reflector)

Fig. 11 shows the GAPP unit configured to execute reflection operations. As
required by the reflection operation, three basic DotVectors units are used:
the first one is configured as one 4-width DotVectors unit, while the second
one and the third one are both configured as two 2-width DotVectors units.

Register file

adde [0 |1 |23 4 |5]|6|7]8]09 10 11 12 13 14
data | al |a2 | a3 | a4 |ml |m2|m3|m4|1.0]|0.5 pro:l)uogt[o] a_Refl[1] | a_Refl[2] | a_Refl[3] | a_Refl[4] | ...
DotVectors1 DotVectors2 DotVectors3
4-width 2-width 2-width 2-width 2-width
DotVectors DotVectors | | DotVectors DotVectors | | DotVectors
Dotproduct[0] a Refl[1] a_Refl[2] a_Refl[3] a Refl[4]

FIGURE 11. GAPP unit configured to execute reflection operations

The configuration bitstream is reported in Table 3. It is based on the
configuration data format presented in Fig. 8.

GAPPCO 15

5. Conclusion

This article presents a new quality of Geometric Algebra hardware solutions.
GAPPCO is a hardware design for a coprocessor combining both the ad-
vantages of optimizing software with a fixed hardware able to implement
arbitrary Geometric Algebra algorithms. The idea is to have a fixed hard-
ware easily and fast to be configured for different algorithms. This article
describes the new hardware design together with the complete tool chain for
its configuration. While the GAPPCO design of this article is a design for
reconfigurable hardware, it is flexible in the sense that it can be used for
ASICs and SOCs in the future.

References

[1] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impastato, F. Sorbello,
G. Vassallo, and S. Vitabile. A sliced coprocessor for native Clifford algebra
operations. In Proceedings of the 10th IEEE Euromicro Conference on Digital
System Design - Architectures, Methods and Tools (DSD 2007), pages 436—439,
Aug 2007.

[2] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. An embed-
ded, fpga-based computer graphics coprocessor with native geometric algebra
support. Integration, The VLSI Journal, 42(3):346-355, June 20009.

[3] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. Fixed-size
quadruples for a new, hardware-oriented representation of the 4d clifford alge-
bra. Advances in Applied Clifford Algebras, 21(2):315-340, June 2011.

[4] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. Design space
exploration of parallel embedded architectures for native clifford algebra oper-
ations. IEEE Design and Test of Computers, 29(3):60-69, June 2012.

[5] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. De-
sign and implementation of an embedded coprocessor with native support
for 5d, quadruple-based clifford algebra. IEEE Transactions on Computers,
62(12):2366-2381, Dec 2013.

[6] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. Confor-
malalu: A conformal geometric algebra coprocessor for medical image process-
ing. IEEE Transactions on Computers, 64(4):955-970, April 2015.

[7] S. Franchini, A. Gentile, F. Sorbello, G. Vassallo, and S. Vitabile. Embedded
coprocessors for native execution of geometric algebra operations. Advances in
Applied Clifford Algebras, 2016.

[8] Antonio Gentile, Salvatore Segreto, Filippo Sorbello, Giorgio Vassallo, Salva-
tore Vitabile, and Vincenzo Vullo. Cliffosor, an innovative FPGA-based archi-
tecture for geometric algebra. In ERSA 2005, pages 211-217, 2005.

[9] David Hestenes. Old wine in new bottles: A new algebraic framework for
computational geometry. In Eduardo Bayro-Corrochano and Garret Sobczyk,
editors, Geometric Algebra with Applications in Science and Engineering.
Birkhauser, 2001.

[10] Dietmar Hildenbrand. Foundations of Geometric Algebra Computing. Springer,
2013.

16 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

[11] Dietmar Hildenbrand, Justin Albert, Patrick Charrier, and Christian Stein-
metz. Geometric algebra computing for heterogeneous systems. Advances in
Applied Clifford Algebras Journal, 2016.

[12] Dietmar Hildenbrand, Patrick Charrier, Christian Steinmetz, and Joachim
Pitt. Gaalop home page. Available at http://www.gaalop.de, 2015.

[13] Hongbo Li, David Hestenes, and Alyn Rockwood. Generalized homogeneous co-
ordinates for computational geometry. In G. Sommer, editor, Geometric Com-
puting with Clifford Algebra, pages 27-59. Springer, 2001.

[14] Biswajit Mishra and Peter R. Wilson. Color edge detection hardware based
on geometric algebra. In European Conference on Visual Media Production
(CVMP), 2006.

[15] Christian Perwass. The CLU home page. Available at http://www.clucalc.info,
2010.

[16] Christian Perwass, Christian Gebken, and Gerald Sommer. Implementation
of a Clifford algebra co-processor design on a field programmable gate array.
In Rafal Ablamowicz, editor, Clifford Algebras: Application to Mathematics,
Physics, and Engineering, Progress in Mathematical Physics, pages 561-575.
6th International Conference on Clifford Algebras and Applications, Cookeville,
TN., Birkh&user, 2003.

17

Christian Steinmetz. Optimizing a geometric algebra compiler for parallel ar-
chitectures using a table-based approach. In Bachelor thesis TU Darmstadt,
2011.

Florian Stock, Dietmar Hildenbrand, and Andreas Koch. Fpga-accelerated
color edge detection using a geometric-algebra-to-verilog compiler. In Sym-
posium on System on Chip (SoC), Tampere, Finland, 2013.

18

D. Hildenbrand

Hochschule RheinMain, Ruesselsheim,
Germany

e-mail: dietmar.hildenbrand@gmail.com

S. Franchini

Innovative Computer Architectures Lab,
DIID Department,

University of Palermo,

Italy

e-mail: silvia.franchini@unipa.it

A. Gentile

Innovative Computer Architectures Lab,
DIID Department,

University of Palermo,

Italy

e-mail: antonio.gentile@unipa.it

GAPPCO

G. Vassallo

Innovative Computer Architectures Lab,
DIID Department,

University of Palermo,

Italy

e-mail: giorgio.vassalloQunipa.it

S. Vitabile

Department of Biopathology and Medical Biotechnologies,
University of Palermo,

Ttaly

e-mail: salvatore.vitabileQunipa.it

17

18 D. Hildenbrand, S. Franchini, A. Gentile, G. Vassallo and S. Vitabile

TABLE 3. Configuration bitstream for GAPP unit realizing

reflector functionality

Fields Values
N. of GAPP units 1

N. of 4-width DotVectors units for GAPP unit 1 3
Configuration bits for Dot Vectorsl

EN11/EN12 0/0
MULT11_addrl/MULT11_signl (0 for 4, 1 for -) 7/1
MULT11_addr2/MULT11 sign2 8/0
MULT12_addr1/MULT12_sign1 2/0
MULT12_addr2/MULT12_sign2 6/0
MULT13_addr1/MULT13_sign1 1/0
MULT13_addr2/MULT13_sign2 5/0
MULT14_addr1/MULT14 sign1 0/0
MULT14_addr2/MULT14 sign2 4/0
RESULT11_addr/RESULT11_type (0 for final, 1 for intermediate) | 10/1
RESULT12_addr (optional)/RESULT12_type (optional) -/-
Configuration bits for Dot Vectors2

EN21/EN22 1/1
MULT?21_addrl/MULT21 signl (0 for +, 1 for -) 9/0
MULT21_addr2/MULT?21_sign2 0/0
MULT22_addrl/MULT22 signl 10/1
MULT22_addr2/MULT?22_sign2 4/0
MULT23_addrl /MULT23 signl 9/0
MULT23_addr2/MULT23_sign2 1/0
MULT24 _addrl/MULT24 signl 10/1
MULT24_addr2/MULT24 _sign2 5/0
RESULT21_addr/RESULT21 _type (0 for final, 1 for intermediate) | 11/0
RESULT22_addr (optional)/RESULT22_type (optional) 12/0
Configuration bits for Dot Vectors3

EN31/EN32 1/1
MULT31_addrl/MULT31 signl (0 for +, I for -) 9/0
MULT31_addr2/MULT31_sign2 2/0
MULT32_addrl/MULT32 signl 10/1
MULT32_addr2/MULT32_sign2 6/0
MULT33_addrl/MULT33_signl 9/0
MULT33_addr2/MULT33_sign2 3/0
MULT34_addrl/MULT34_signl 10/1
MULT34_addr2/MULT34_sign2 7/0
RESULT31_addr/RESULT31_type (0 for final, 1 for intermediate) | 13/0
RESULT32_addr (optional)/RESULT32_type (optional) 14/0

GAPPCO 19

TABLE 4. The main commands of the Geometric Algebra
Parallelism Programs (GAPP) language; a more detailed list
can be found in [17]

Command: assignInputsVector
Syntax: assignInputsVector inputsVector = [vary,vars,. .. var,];
Description: Assigns scalar inputs variables vary, vars, ..., vary,
to the vector of the inputs.
Arguments: wvar;: the i-th scalar input variable.
Example: assignInputsVector inputsVector = [x1,x2,x3,y1,y2,y3];
Command: resetMv
Syntax: resetMv multivector;
Description: Creates a multivector and initializes it with zeros.
Arguments: multivector: the name of the multivector which should be created.
Example: resetMv v1;
Command: setMv
Syntax: setMv dest[selgest, sS€ldestys- - - 1S€ldest,,]
= src[selsre; yS€lsreys- - - yS€lsre, |
Description: Copies certain blades from a source to a destination multivector.
The order of the selector lists is important.
Arguments: dest: the destination multivector.
s€lgest;: the i-th component of the destination multivector.
sre: the source multivector/vector.
selgre,: the i-th component of the source multivector.
Example: setMv v1[1,2] = inputsVector[0,3];
Command: setVector
Syntax: setVector dest = {argy,arga,...,argn};
Description: Creates a vector from a list of arguments
Arguments: dest: the destination vector.
arg;: the i-th argument to be assigned in the destination vector,
which can be a constant (e.g. 2.0) or an extract from a
multivector /vector (e.g. mv[l,2]).
Example: setVector ve0 = {0.5,v1[1,2],v3[1],v1[4,5]};
Command: dotVectors
Syntax: dotVectors dest[sel] = (vectory,vectors,. .. wector,);
Description: Calculates the dot product of the given vectors
and stores it in a component of a multivector.
Arguments: dest: the destination multivector.
sel: the component index of the destination multivector.
Example: dotVectors pl[4] = (ve0,vel,ve2);
Command: assignMv
Syntax: assignMv dest[selgest, yS€ldesty s - - yS€ldest,,] = [vali,vala,. .. valy];
Description: Assigns values to components of a multivector.
Arguments: dest: the destination multivector.

Example:

selgest;: The i-th component of the destination multivector.
val;: the i-th constant value.
assignMv p1[5,6] = [1.0,3.0];

