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Abstract

Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical
studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant
species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs
(Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed
dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal
by these megafrugivores in a continuous Brazilian Atlantic forest.

Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group
of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22
tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be
explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to
disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas
and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of
these megafrugivores in the Brazilian Atlantic forest.

Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as
seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in
places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they
generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that
have muriquis and tapirs as the last living seed dispersers.
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Introduction

It has been hypothesized that in biodiversity-rich ecosystems,

the extinction of some species will not cause a substantial loss in

ecosystem function if remnant species play equivalent roles and are

capable of taking over the functions played by extinct species (i.e.

functional redundancy) [1]. Analysis of the seed dispersal network

in tropical forests shows high connectedness and diet overlap

among several species and groups of vertebrates [2], suggesting

high redundancy in the system. The selective and relatively fast

removal in the diversity and biomass of large-bodied vertebrates,

a phenomenon named ‘‘defaunation’’ [3], is creating shifts in

vertebrate communities often dominated now by few small-bodied

species [4,5], with potential changes in their functional diversity in

the vertebrate communities. Erosion of functional diversity via

defaunation may ultimately affect differently the recruitment of

plant species, depending on functional traits such as fruit and seed

sizes [6,7,8,9].

Large vertebrates are particularly important, because they

remove a larger amount of seeds, disperse them for longer

distances, and are able to disperse larger seeds than smaller

frugivores [10,11,12,13]. Primates play an important role in forest

dynamics, as they are the largest arboreal forest frugivores and

constitute 25%–40% of the frugivore biomass in most tropical

forests [14]. Ateline primates (e.g. Ateles, Brachyteles, Logothrix), for

instance, can disperse millions of seeds per year [15], and thanks to

their wide variety of feeding behaviors, they create different seed

shadows and dispersal kernels [11,16]. Another important fruit-

eating group in the neotropics is large ungulates, such as peccaries,

deer and tapirs, which comprises the largest extant frugivores in

tropical forests. While peccaries and deer are most seed predators,

tapirs (Tapirus spp.) eat large amounts of fruits, disperse large

quantities of seeds, often at long distances, and are able to disperse

very large seeds even across heavily disturbed areas [17,18,19].

These megafrugivores are amongst the most hunted animals in the

neotropics. For instance every year about 47,000 tapirs and
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700,000 ateline monkeys are killed in the Amazon forest for

subsistence [20]. The situation is no better in the Atlantic forest,

where only 12% of the original forest is left [21] and hunting is still

widespread [22].

Neotropical rainforests may be particularly sensitive to the

removal of frugivores because between 40% and 90% of woody

species bear fleshy fruits dispersed by vertebrates [23]. Although

seed dispersal by primates and ungulates has been widely studied

in terms of seed dispersal [24,25,26], we lack comparative studies

on seed dispersal effectiveness between co-occurring large-bodied

species. Are the largest megafrugivores, tapirs and ateline

primates, redundant or complementary seed dispersers? This

question is particularly important if we want to predict the impact

of defaunation on plant recruitment [27] and ecosystem function.

Here we compare the seed dispersal effectiveness of the largest

remaining arboreal and terrestrial frugivores in the Neotropical

forests, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus

terrestris) (Figure 1).

Methods

Study Site
This study was carried out at Carlos Botelho State Park

(hereafter CBSP), a 37,644 ha Protected Area in a continuous

massif named ‘‘Serra de Paranapiacaba’’ in São Paulo state,

southeastern Brazil (24u449 S, 47u449 W; Figure 2). The

topography is hilly, with slopes ranging from 10u up to 50u
degrees, and very few flat tracts, usually along larger rivers. There

is a high altitudinal variation inside CBSP, ranging from 30 m to

1100 m a.s.l. Average rainfall is about 2,000 mm/year, with no

clear dry season and mean temperature is 20uC. The vegetation is

Ombrophilous Dense Atlantic Forest, ranging from lowland to

montane physiognomy [28]. More than 1151 species of woody

plants have been recorded, with the most abundant families

represented by Myrtaceae, Arecaceae, Lauraceae, Rubiaceae,

Sapotaceae and Moraceae [29]. The landscape around the park is

dominated by monocultures of Pinus and Eucalyptus, pastures, and

other small-scale agricultural crops. The Paranapiacaba massif

comprises more than 120,000 ha of Atlantic Forest distributed

through four protected parks and several private properties and

holds an almost complete assemblage of threatened mammals,

including jaguars (Panthera onca), bush dogs (Speothos venaticus), tapirs

(Tapirus terrestris) and muriquis (Brachyteles arachnoides), although

white-lipped peccaries (Tayassu pecari) are locally extinct [22,30].

Specifically, our study was conducted in the home range of a group

of 35 southern muriquis Brachyteles arachnoides (hereafter muriquis),

corresponding to approximately 850 ha at about 750 m a.s.l,

located at the extreme north of CBSP [31] (Figure 2).

Feces Deposition Pattern and Seed Dispersal
From April 2008 to July 2009, we searched for tapir feces by

walking along a grid of existing trails and also following tapirs

tracks distributed throughout the study area, totaling 198 km

walked, with an average of 14 km per month. The effort was

distributed in such a way that all topographic features (small rivers,

dry valleys, slope and top hill) were sampled in equal proportions.

We defined as ‘‘latrine’’ a clump of tapir feces with different ages

inside a 5-meter radius [25]. The latrines were visited monthly and

we collected dispersed seeds in one third of the whole fecal

material in order to not interfere in the use of the latrine, so to

quantify the seed dispersal we multiplied the results of the analyzed

samples by three.

During the same period, we followed individuals of the sub-

groups of muriquis habituated to human presence, from sunrise

(5:15 h) to sunset (18:30 h) totaling 246,7 km walked with an

average of 17,5 km per month. Observations totaled 432 h of

direct contact, of which 382 h (89%) were on adults. We totaled 31

complete days of observation following the same sub-group from

sunrise (waking-up site) to sunset (sleeping site) and 20 incomplete

days (i.e. observation interrupted for more than 1 hour). To verify

the sub-group size we collected data on the number of muriquis

surrounding the focal individual (about 15 m) three times a day

(8:00, 12:00 and 16:00). Points along daily routes were geoposi-

tioned every 15 minutes. To determine the feces deposition

pattern, each observed defecation event, here defined as a defeca-

tion of a single individual at the same place within 1 minute, was

also geopositioned. The deposition pattern was defined as

‘‘clumped’’ if the feces fell in less than 30 cm radius, or ‘‘scattered’’

if, while falling, the feces collided with the leaves and branches of

the understory and reached the ground in more than 30 cm radius

[26].

Muriqui and tapir feces were collected and analyzed in the

laboratory. When tapir feces were located in water we only

collected them if the boluses were whole (i.e. not broken or

dissolved). For all samples, we recorded the topographical feature

(water, dry valley, slope or hilltop), distance (m) from the nearest

Figure 1. The largest arboreal and terrestrial frugivore in the Neotropics: the muriqui (Brachyteles arachnoides) (A) and the tapir
(Tapirus terrestris) (B). Photos by Pedro Jordano and Mauro Galetti, respectively.
doi:10.1371/journal.pone.0056252.g001
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tree with DBH .40 cm and all possible parental fruiting trees in

an area of 25 m radius. All feces were sieved through a mesh of

262 mm and all remaining seeds were identified with the aid of

guides [32] and by comparing with a collection of voucher

specimens. Seeds were also counted, measured with digital calipers

with 0.01 mm precision and classified as ‘‘predated’’ if broken or

chewed or ‘‘non predated’’ if no damage was observed [33]. The

seeds #2 mm (e.g. Coussapoa sp.) were collected in a plate under

the sieve and whenever possible were identified and the number of

seeds estimated. We also collected fallen fruits under fruiting trees,

removed the pulp and measured the seeds for comparison with

dispersed seeds. To estimate the minimum seeds dispersed by

month by muriquis we used the average of 30.6 seeds dispersed by

day, obtained from five complete days where we were able to

collect at least 4 defecation of the same individual (R. S. Bueno,

unpublished data) and multiplied by 30 days. For tapirs, we used

the average of 140 seeds per individual per month. This was based

on the number of new seeds found per month in specific latrines

that were monitored monthly.

Figure 2. Location of the study area in the Atlantic forest, Brazil. (A) Historic distribution (in gray) and actual remnants (in green) of the
Atlantic forest; (B) Location of the studied area (in yellow) for group of muriquis (Brachyteles arachnoides) in Carlos Botelho State Park (hatched area);
(C) routes of the muriquis (gray dotted lines) and defecations of muriquis (+) and tapirs (Tapirus terrestris)(black dots). Green is forest remnants and
light gray is open matrix (pastures) in B and C.
doi:10.1371/journal.pone.0056252.g002
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Germination Experiments
We conducted germination tests to determine the effect of the

passage through tapir and muriqui guts on the germination success

(germinated seeds/total seeds) and time to germination (average

days for germination) of the seeds. Due to the difficulty in finding

large enough quantities of seeds for the trials, we chose one small-

seeded (Hieronyma alchorneoides, Phyllanthaceae) and one large-

seeded species (Cryptocarya mandioccana, Lauraceae). The fruits

collected on the ground or directly from trees were manually

defleshed and seeds cleaned. For C. mandioccana we also used the

whole fruits (i.e. with pulp). We just used seeds with no sign of

insect damage or predation. The seeds of H. alchorneoides are

dispersed by muriquis, tapirs, and small birds, while the seeds of C.

mandioccana are dispersed by primates (muriquis and howlers

monkeys), tapirs, and piping guans (Aburria jacutinga) [34,35]. We

sowed 100 seeds of C. mandioccana, 25 from tapir feces, 25 from

muriqui feces, 25 seeds cleaned manually and 25 whole fruits (with

pulp), and 75 of H. alchorneoides with the same methods as C.

mandioccana, excepting whole fruits. The seeds were placed

individually in plastic bags with sterilized soil and placed in

a greenhouse located right at the border of the CBSP forest. The

greenhouse is covered with a shadow mesh of 50% of sunlight

retention and all seeds were watered and monitored daily.

Statistical Analyses
To verify the redundancies and complementarities of the seed

dispersal by tapirs and muriquis, here defined as the spatial

(deposition pattern in space), quantitative (number of seeds

dispersed) and qualitative (germination) overlap, we adopted the

following criteria and indicators [36]: number of species dispersed,

number of dispersed seeds per feces, size of dispersed seeds,

pattern of feces deposition (clumped or scattered), rate and time

for germination (measured in greenhouse), and spatial distribution

of the feces. Since feces can be analyzed as a point-based pattern

process, we used the empty space function to estimate the spacing

between each event (feces) in order to test the individual and joint

contribution of muriquis and tapirs on spatial seed dispersal. The

lower the empty space is, the more widespread is the dispersal.

The package spatstat available in R was used in this step [37]. We

generated three empty space maps using distmap function for three

situations: muriquis only; tapirs only; muriquis+tapirs. To un-

derstand the contribution of muriquis and tapirs to spatial seed

dispersal, we distributed 1,000 random points on the area of

interest using a Poisson-based distribution. For each random point,

we estimated the empty space (i.e. distance to nearest feces) for the

three situations mentioned above. T-tests were applied to test

statistic significances between empty space estimates for paired

seed disperser situations. Seed deposition quantity (i.e. the number

of seeds within a determined radius per any random position) was

estimated for muriquis, tapirs and muriquis+tapirs using in-

terpolation methods available within spatstat R package. We

estimated the number of seeds dispersed within a search radius of

250 m. This value was adopted because it is close to the average

empty space accounted for feces deposition recorded for the

species with the largest empty space (i.e. tapir). Student T-tests

were applied to test statistic significances for seed deposition

quantity for paired seed disperser situations.

To compare the intraspecific sizes of seeds dispersed by

muriquis and tapirs, we used a nested ANOVA with disperser

nested within the specific identity of the plant. The disperser factor

had three levels, muriquis, tapirs (seeds collected from dung) and

control, i.e., a random sample of seeds collected from trees and

ground. We used post hoc t-test based on standard errors

estimated from the linear predictor of the ANOVA model to

uncover particular differences.

Germination velocity was analyzed through a Cox proportional

hazards regression model [38] in which the change of stage was

given by the germination of seeds. To deal with ties we used the

Efron approximation, since it is accurate and computationally

efficient.

To compare the overlap in number of species with different seed

size we used a contingency table together with residual analysis

and a randomization test to uncover particular significant

differences across the table. Randomization was done within each

seed size level.

Results

Frugivory and Seed Rain Generated by Muriquis and
Tapirs

We analyzed 106 defecations of muriquis and 49 of tapirs.

Muriquis dispersed 28 seed species, with an average of 23.3617.5

(13–86) seeds larger than 2 mm per fecal sample, while tapirs

dispersed six seed species, with an average of 72.5648.8 (13–183)

seeds larger than 2 mm per fecal sample. Muriquis dispersed

2.0461.25 (mean 6 SD) species with a maximum of five species in

a single defecation, while tapirs dispersed 1.2660.45 species with

a maximum of 2 species in a single defecation. Several seed species

smaller than 2 mm were deposited in a single defecation (e.g.

Coussapoa microcarpa, Urticaceae with more than 80 seeds). Of all

seeds found in tapir feces, just 12 seeds of Cryptocarya mandioccana

(4.7%, n = 261) were mechanically predated. Two species were

predated by muriquis (Ocotea catharinensis, Lauraceae and Copaifera

trapezifolia, Fabaceae) but were not found in their feces. Muriquis

defecated on average 10 times a day (R. S. Bueno, unpublished

data) but we were not able to define tapirs defecation rate.

We found low similarity (17.2%) in the assemblages of plant

species dispersed by muriquis and tapirs, and highly asymmetric

complementarity between the two frugivorous. Muriquis comple-

mented tapirs by 79% while tapirs complemented muriquis only

with 3%. Only five species of 28 species recorded were dispersed

by both tapirs and muriquis (Supplemental Material). The palm

Euterpe edulis was dispersed exclusively by tapirs, while muriquis

were the exclusive dispersers of 23 species.

We conservatively estimated that one muriqui could disperse at

least 918 seeds .2 mm per month, or 11,016 seeds per year. One

tapir can disperse at least 140 seeds .2 mm per month or 1,680

seeds per year. Therefore, a muriqui troop with 35 individuals is

able to disperse at least 385,000 seeds .2 mm/year. In the home

range of muriquis studied group (850 ha), 22 individuals of tapirs

were identified based on molecular analysis (A. Sanches, unpubl.

data), which could disperse 36,960 seeds/year.

Seed Size Selection
Muriquis dispersed seeds from a wide range of sizes, from

Miconia cabussu (Melastomataceae) with less than 2 mm to Parinari

excelsa (Chrysobalanaceae) with 23.4 mm seed diameter (Figure 3).

For tapirs, the smallest dispersed seed was Hieronyma alchorneoides

(Phyllanthaceae) with 3.1 mm, and the largest was Eugenia sp1 with

29.2 mm diameter. In general muriquis selected a subset of

relatively small seeds in plant species (Eugenia sp., Pouteria sp., P.

bullata and C. mandioccana) with seeds over 15 mm of diameter (t

.2.4, d.f. = 686, P,0.0114). Exceptions to this pattern were

Parinaria excelsa and Vantanea compacta for which we collected only

two and ten seeds, respectively, from muriquis feces. In contrast, in

8 out of 10 species with small seeds (,13 mm of diameter)

muriquis did not select for a subset of seed size but in Byrsonimia sp.

Seed Dispersal Redundancy by Megafauna

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e56252

Rafael
Realce



(t = 2.36, d.f. = 686, P = 0.0187) and C. guaviroba (t = 2.35,

d.f. = 686, P = 0.0197) muriquis selected for a subset of large

seeds. Overall tapirs did not seem to select fruit/seed sizes except

for C. mandioccana for which seeds in tapir dung were on average

significantly smaller than the average of the whole set of available

seeds (t = 6.69, d.f. = 686, P,0.0001).

Further, from an extended review of the literature on seeds

dispersed by muriquis and tapirs in the Atlantic forest (Table S1),

we found that muriquis disperse a significantly higher number of

seeds from small-seeded species (,15 mm), while tapirs addition-

ally disperse a few large-seeded species (.25 mm) (Figure S1).

Germination Trial
Germination time of C. mandioccana (Figure 4a) was significantly

shortened for seeds that were ingested and defecated by muriquis

(z .4.9, P,0.0001) and tapirs (z .4.2, P,0.0001) compared with

seeds manually removed from fruits and those that remain within

the fruit pulp. Also seeds manually removed from fruits had

a shorter germination time compared with seeds embedded in the

pulp (z = 2.4, P,0.0001). All these effects were solely due to the

fact that ingestion, defecation, and manual extraction of seeds,

reduced the germination time of seeds of C. mandioccana roughly by

5–8 days, but once seeds started to germinate in any treatment the

germination success was similar in all cases. In contrast for H

alchorneoides no effect on germination was observed when we

compared ingested and defecated seeds by muriquis and tapir with

seeds manually removed from the pulp (z = 1.4, P = 0.17).

Spatial Seed Deposition
Out of the 266 registered muriqui defecation events, 55 (21%)

feces reached the ground in a cohesive block (,0.3 m), while in

211 cases (79%) feces were fragmented as they hit the understory,

generating a locally widespread seed rain, from 0.3 m to more

than 3 m radius, especially when on steep slopes. Fifty-nine feces

(22%) fell in the water, 26 (10%) on dry valleys, 85 (32%) on

slopes, and 90 (34%) on hilltops. We found that for the 49 tapir

feces, 11 (22%) were in the water, five (10%) on dry valley, 16

(33%) on slopes and 17 (35%) on hilltops.

For muriquis, the average distance of the defecations from trees

with DBH .40 cm was 2.961.9 m (range = 0.1–8.4 m, N = 92)

and for tapirs 2.561.7 m (0.2–9.1 m, N = 49), showing a random

pattern with no preference in defecating near tree trunks. On just

two occasions, we were able to accurately measure the seed

dispersal distance for muriquis and found that Eugenia sp. 1 seeds

were dispersed 169 and 693 m from the parent tree. On 16

occasions, it was possible to measure the distance of muriqui-

defecated seeds from a conspecific adult, with average of

12.769.2 m (2–25 m). For tapirs we never identified a conspecific

adult inside the 25 m radius circle searched.

When analyzing the spatial distribution of feces for muriquis

only, tapirs only and muriquis+tapirs, we observed that the spatial

distribution of seeds deposited by muriquis was more scattered.

The average empty space for muriquis was 122.662.7 m, while

for tapirs it was almost double (202.164.4 m). But if we combine

both dispersers the average empty space decreases to

106.662.3 m (Figure 5). The t-test was highly significant when

comparing muriquis+tapirs vs. muriquis only (t =24.5437,

P,,0.001), muriquis+tapirs vs. tapirs only (t =219.12,

P,,0.001) and muriquis only vs. tapirs only (t =215.37,

P,,0.001). Seed deposition at any random position within study

site were estimated as 68.260.3 seeds for muriquis only, 28.460.6

for tapirs only and 78.560.4 for muriquis+tapirs (Figure 5). The t-

test was highly significant when comparing muriquis+tapirs vs.

muriquis only (t = 20.65, P,,0.001), muriquis+tapirs vs. tapirs

Figure 3. Comparative seed size selection by muriquis (Brachyteles arachnoides) and tapirs (Tapirus terrestris) vs. control (seeds
collected from trees) in Carlos Botelho State Park, Atlantic Forest, Brazil (n.s non significant, * P,0.05, ** P,0.01, *** P,0.001).
doi:10.1371/journal.pone.0056252.g003
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only (t = 71.42, P,,0.001) and muriquis only vs. tapirs only

(t = 60.62, P,,0.001).

Discussion

Tapirs and muriquis have distinct seed dispersal effectiveness

(both quantitative, qualitative and spatial), and differ in the

diversity of plant species, total number of seeds, aggregation and

seed sizes dispersed (Table 1). The quantity of seeds and diversity

of dispersed species by muriquis was similar to other studies

conducted at the same forest type [26,39,40]. However, the low

diversity and quantity of seeds dispersed by tapirs was not

expected, especially considering that about 83% of woody plants

in the study site have fleshy fruits that are dispersed by animals

[23,29]. For instance, other studies found that tapirs dispersed

more species even where species with fleshy fruits were less

abundant [33]. A recent review on tapir seed dispersal shows that

the diversity of seeds dispersed by tapirs is much higher in the

Amazon, cerrado or semideciduous forests than in ombrophylous

forests (our study area) [41].

Seed Size
The seed size (width) is typically employed as the main

characteristic that defines the array of dispersers [42]. Since small

seeds generally have a wide spectrum of dispersers, resulting in

a potential compensation mechanism in the absence of one

disperser or another, as the seed size increases, diversity of

dispersers decrease [19,43]. In addition, larger seeds have more

nutritional reserve, favoring growth in low light and nutrient

availability [44]. The largest seeds found at our study site were

Attalea dubia, Eugenia sp. 1, Pouteria sp., Pouteria bullata and Parinari

excelsa, all with more than 15 mm of average width. All but Attalea

dubia rely exclusively on tapirs and muriquis for seed dispersal and

are heavily predated by squirrels and bruchids. Although other

studies report Attalea seeds being dispersed by tapirs [45,46], we

found no Attalea seed in tapir feces in our study area.

The tapir behavior of defecating in latrines can reduce seed

predation by bruchids and rodents [47], and the aggregated spatial

distribution of many palm species, including those with large seeds

such as Maximiliana maripa, is attributed to tapir seed dispersal [48].

In our study area, we do not know any plant species with spatial

distribution that could reflect dispersal in tapir’s latrines.

In terms of seed size selection, in general muriquis do not select

seeds of small-seeded species (,13 mm), as they ingested the

whole range of sizes available in the plant community, while in

plant species with seeds larger than 15 mm muriquis selected for

a subset of relatively small seeds. The seed size limit that an adult

muriqui can ingest is 23 mm, 22% larger than the seed size limit

swallowed by woolly monkeys (Lagothrix lagotricha) in Colombia

[15]. For tapirs, there is no apparent size limit, since they are able

to swallow seeds with width up to 40 mm [33,49], which is much

larger than any seed species found at our study site. A literature

review of seed sizes dispersed by tapirs and muriquis in the

Brazilian Atlantic forest also support our finding from Carlos

Botelho State Park (Table S1, Figure S1).

Spatial Seed Deposition
Seed shadow in rainforests basically consists of the spatial

distribution of the seeds generated by animal dispersers, which is

mainly influenced by the gut passage time, defecation pattern

(frequency), movement and habitat use [50]. In our study area,

tapirs have a solitary habit and occur in relatively lower density

than muriquis (2.58 individual/km2, A. Sanches, unpublished

data) and defecate mostly in latrines or in water bodies, while

muriquis occur in relatively higher density (4.11 individual/km2,

R. S. Bueno, unpublished data), have a fission-fusion strategy

Figure 4. Germination speed of two plant species dispersed by muriquis (Brachyteles arachnoides) or tapirs (Tapirus terrestris) vs.
control treatments: Cryptocarya mandioccana (a) and Hieronyma alchorneoides (b).
doi:10.1371/journal.pone.0056252.g004
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with sub-groups consisting of about 5 to 20 or more individuals,

which means a higher probability of seed dispersal across

different microsites. So, while tapirs clearly generate a clumped

distribution of seeds, muriquis generate both scattered and

clumped seed dispersal, a pattern also reported for Ateles paniscus

in Peru [51]. Indeed, the muriquis scattered seeds throughout

their home range along diurnal travel routes by defecating on

average 10 times a day (R. S. Bueno, unpublished data), but also

because most of the feces hit the leaves and branches of the

understory, reaching the ground often spread around 3 meters.

This in-transit seed deposition alternates with clumped seed

deposition due to the concentration of seeds under muriquis’

sleeping sites. However, the muriquis in our study used 23

different sleeping sites and rarely used the same sleeping site for

two consecutive days, which can mitigate this clumped distribu-

tion. This difference of defecation pattern between muriquis and

tapirs is reflected in our analysis for spatial distribution of feces

and seed deposition where muriquis left half the empty space

when compared to tapirs. Therefore, the probability of a seed

dispersed by tapirs of colonizing a favorable site is much less than

that of seeds dispersed by muriquis.

Seed Germination
We found no difference in the germination success of seeds that

were dispersed by tapirs and muriquis. The gut treatment of these

frugivores shortened the germination times of C. mandioccana,

indicating that pulp removal is relevant for germination in this

species, and probably also in other species dispersed by muriquis

[26,40]. Ingestion and defecation reduced the germination time of

C. mandioccana by 5 to 8 days compared with seeds manually

removed from the pulp and seeds remaining in the pulp. Although

this may seem a small improvement in germination for C.

mandioccana, it can become quite relevant if seed predation and

decay are minimized via shorter exposure to seed predators and

microbes, and also via removal of pulp that may act as an

incubator for fungus and bacteria likely to rot seed tissues. This

may be particularly relevant if the main demographic sieve

controlling C. mandioccana population is at the seed stage. Rodents

and invertebrates prey heavily upon C. mandioccana seeds,

particularly beneath the parent tree (L. Culot, unpublished data).

Redundancies and Complementarities
Muriquis and tapirs are the last representatives of a formerly

rich neotropical frugivore megafauna [5,52]. While muriquis

Figure 5. Spatial distribution of dispersed seeds: tapir (Tapirus terrestris) (A), muriqui (Brachyteles arachnoides) (B) and combined
dispersed seeds by both megafrugivores (C) in 850 ha Atlantic forest, Brazil. Frequency of seed deposition at any random position
recorded on muriquis and tapirs feces estimated by 1,000 random points overlapped on the maps A, B and C (D).
doi:10.1371/journal.pone.0056252.g005
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disperse a higher diversity and quantity of seeds, spreading them

throughout the forest, there is a seed size limit that they disperse,

they avoid secondary forests and they do not cross large open areas

[53,54]. Tapirs show no seed size restriction (for the local flora),

use degraded forest and cross open areas, including going outside

the park limit. Thus, despite dispersing a lower diversity of species

and depositing them in a clumped pattern, they provide an

important function in seed dispersal that is not performed by

muriquis. Tapirs visit frequently the fragments neighboring the

park and may move seeds to these areas (R. Bueno unpublished

data).

Although we did not evaluate post-dispersal seed fate, muriqui

feces attract higher abundance and diversity of secondary seed

dispersers, such as dung beetles, than tapir feces (L. Culot, M.

Boutefeu and E. Bovy unpublished data), increasing the probabil-

ity of germination and escape from seed predation. On the other

hand, some authors have found that post-dispersal seed predation

on seeds in tapir dung is lower than seeds not immersed in latrines

[55].

We found that muriquis dispersed 28 species during 18 mo of

this study, but it is likely they eat a much higher diversity of fruits.

Studies on muriqui diet in neighboring sites recorded another 36

fruit species that were not observed in muriquis feces in our study

but are known to occur in our study area [56,57]. In addition,

84% of the 434 tree species in our study area have fleshy fruits

[23]. Tapirs, on the other hand, are less frugivorous in the

ombrophilous Atlantic forest than in the Amazon and semidecid-

uous forests and cerrados [58]. Although, we are aware that our

sample size represents a specific period of forest phenology and

fruit availability, we believe that the results indicate a general

pattern for both species in the Atlantic forest (see Table S2).

During periods of fruit scarcity muriquis rely mainly on leaves

[31], but our data showed that even when fruits are plenty, tapirs

have mainly a folivorous diet, as we saw many uneaten fleshy fruits

on the forest floor.

Large-bodied primates and ungulates are threatened by habitat

loss and poaching all over the Neotropics [59]. Both muriquis and

tapirs have few remaining populations in the remaining 12% of

the Brazilian Atlantic forest [21,60]. Both fragmented and

continuous defaunated forests are already suffering important

cascading trophic effects. For instance, the extinction of muriquis

will cause a profound change in seed rain and will increase

dispersal limitation by many plant species. Moreover, the

extinction of both muriquis and tapirs will affect the seed dispersal

of large-seeded species (e.g. Sapotaceae, Chrysobalanaceae and

Myrtaceae) increasing extinction risk for these plant species. We

compiled 302 plant species dispersed by tapirs or muriquis in the

Brazilian Atlantic forest (Table S2).

The extinction of tapirs may also disrupt long-distance dispersal

and colonization of large seeded species into open areas or

fragments [61]. Other large primates (e.g. howler monkeys Alouatta

spp.) and ungulates (peccaries and deer) do not replace the seed

dispersal services by muriquis and tapirs. Howlers are highly

folivorous, have a much smaller home range and defecate mostly

beneath the sleeping trees [16,62], while peccaries and deer are

primarily seed predators [63,64].

Therefore, the extinction of these last megafrugivores may

translate into a series of impoverished plant-animal interactions,

whereby the persistence of many plant species will have to rely on

human interventions. Our study demonstrates that both mega-

frugivores are essential for promoting distinct seed dispersal

services in tropical forests.

Supporting Information

Figure S1 Comparative of seed size (diameter) of plant
species eaten by muriquis (Brachyteles arachnoides and
B. hypoxanthus) and tapirs (Tapirus terrestris) in the
Atlantic forest (*P,0.05, ** P,0.01, *** P,0.001,
ns=not significant).

(TIF)

Table S1 Species dispersed and number of seeds per
scat by tapirs (Tapirus terrestris) and muriquis (Bra-
chyteles arachnoides) in Carlos Botelho State Park,
Atlantic Forest, Brazil.
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Table S2 Compiled information from a literature re-
view of seed size of species dispersed by muriquis
(Brachyteles arachnoides and hypoxanthus) and tapirs
(Tapirus terrestris) in the Brazilian Atlantic forest. Plant

names of eaten fleshy fruits follow [33].
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Table 1. Characteristics and seed dispersal effectiveness of
tapirs (Tapirus terrestris) and muriquis (Brachyteles
arachnoides) in the Brazilian Atlantic Forest.

Frugivore traits/role Tapirs Muriquis

Max. Body mass (kg) 250 12

Local density (ind./km2) 2.58* 4.11

Biomass (kg/km2) 601.14 49.32

Home range (ha) 470** 850

Number of fruit species eaten 6 31

Number of scats analyzed (N) 49 106

Spatial seed rain Clumped Scattered

% feces with seeds 32 87

Number of plant species dispersed 6 28

Maximum number of species per scat 2 5

Number of exclusive species 1 23

Maximum seed width (mm) of
dispersed seeds

29.2 23.4

Maximum seed length (mm) of
dispersed seeds

46.3 30.2

Mean number of seeds .2 mm/scat 72.5648.8 23.3617.5

Minimum of seeds .2 mm dispersed/
month/individual

140 918

Minimum of seeds .2 mm dispersed/year1.680 11.016

*A. Sanches, unpublished data;
**[65].
doi:10.1371/journal.pone.0056252.t001
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32. Lorenzi H (1998) Árvores brasileiras. Manual de identificação e cultivo de
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