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Abstract 

 
Exosomes released by Chronic myelogenous leukemia cells (CML-derived exosomes) contain 
high amount of miR-126. CML-derived exosomes, internalized by endothelial cells, modulate 
adhesive and migratory abilities of CML cells. Curcumin treatment of CML cells cause a 
selective packaging of OncomiR-21 into the released exosomes (Curcu-exosomes), that may 
contribute to the antileukemic effect of Curcumin. Curcu-exosomes attenuate also the 
promotion of the angiogenic phenotype mediated by CML-derived exosomes. These data 
indicate that CML-derived exosomes are involved in CML progression and that Curcumin 
could be a potential adjuvant agent for CML treatment with a double effect, on cancer cells 
and on tumour microenvironment. 
 

Abstract 

Exosomen die vrijgegeven worden door Chronische Myelogene Leukemie cellen (CML-
afgeleide exosomen) bevatten een grote hoeveelheid miR-126. CML-afgeleide exosomen, 
die geïnternaliseerd worden door endotheliale cellen, moduleren de adhesieve en 
migratoire eigenschappen van CML-cellen. De behandeling van CML-cellen met Curcumin 
leidt tot de selectieve verpakking van OncomiR-21 in the vrijgegeven exosomen (Curcu-
exosomen), dit kan bijdragen tot het anti-leukemische effect van Curcumin. Curcu-exosomen 
vertragen ook de bevordering van het angiogene fenotype door CML-afgeleide exosomen. 
Deze data geven een indicatie dat CML-afgeleide exosomen betrokken zijn bij CML 
progressie en dat Curcumin een mogelijk adjuvant agens kan zijn voor de behandeling van 
CML met een dubbel effect, zowel op de kankercellen als op de tumor micro-omgeving.  

 
Summary - Informative abstract  

 
Introduction: Chronic myeloid leukemia (CML) is a myeloproliferative disorder in which 
leukemic cells harbor a reciprocal t(9:22) chromosomal translocation that leads to the 
formation of Bcr-Abl, a chimeric oncoprotein with a constitutive tyrosine kinase activity. In 
turn, Bcr-Abl modulates several biological mechanisms, among which induced proliferation, 
inhibition of apoptosis and alteration of leukemic blasts adhesion to the bone marrow (BM) 
microenvironment. Well described resistance mechanisms limit the use of selective tyrosine 
kinase inhibitors (TKIs), such as Imatinib mesylate. It has become clear that leukemic cancer 
cells are able to produce their own signals in BM in order to support their growth and 
survival, also through the release of extracellular vesicles, such as exosomes. Tumor derived 
exosomes are nanovesicles which contain proteins and microRNAs that mediate cell-cell 
communication and are involved in angiogenesis and tumor progression. It has been 
described that exosomal content sorting change in response to cell stimuli, such as under a 
specific treatment. Curcumin derived from the plant Curcuma longa has been shown to 
exhibit antitumor activities in a wide spectrum of human cancer. Results: To elucidate 
whether miRNAs secreted from chronic myelogenous leukemia cells (CML) are shuttled into 
endothelial cells affecting their phenotype, we first analysed miRNAs content in exosomes 
derived from LAMA84 CML cells. Among the 124 miRNAs identified in LAMA84 exosomes, 
we focused our attention on miR-126 which was found to be over-expressed in exosomes 
compared with producing parental cells. Transfection of LAMA84 with Cy3-labelled miR-126 
and co-culture of leukemia cells with endothelial cells (ECs) confirmed that miR-126 is 
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shuttled into HUVECs. The treatment of HUVECs with LAMA84 exosomes for 24 hours 
reduced CXCL12 and VCAM1 expression, both at the mRNA and protein level, and negatively 
modulated LAMA84 motility and cells adhesion. Transfection in HUVECs of miR-126 inhibitor 
reversed the decrease of CXCL12 and restored the motility and adhesion of LAMA84 cells 
while the over-expression of miR-126, showed opposite effects. 
Moreover, the addition of Curcumin to CML cells caused a dose-dependent increase of PTEN, 
target of miR-21. Curcumin treatment also decreased AKT phosphorylation and VEGF 
expression and release. Colony formation assays indicated that Curcumin affects the survival 
of CML cells. Some observation suggest a possible cellular disposal of miRNAs by exosomes. 
To elucidate if Curcumin caused a decrease of miR-21 in CML cells and its packaging in 
exosomes, we analyzed miR-21 content in K562 and LAMA84 cells and exosomes, after 
treatment with Curcumin. Furthermore, we showed that addition of Curcumin to CML cells 
caused a downregulation of Bcr-Abl expression through the cellular increase of miR-196b.   
The effect of Curcumin was then investigated on a CML xenograft in SCID mice. We observed 
that animals treated with Curcumin, developed smaller tumors compared to mice control. 
Real time PCR analysis showed that exosomes, released in the plasma of the Curcumin-
treated mice, were enriched in miR-21 with respect the control. 
Finally, we discovered that the treatment of HUVECs with exosomes released by CML cells 
after Curcumin treatment (Curcu-exosomes) reduced RhoB expression and negatively 
modulated endothelial cells motility. We showed that the addition of CML control exosomes 
to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these 
effects thus attenuating their angiogenic properties. This antiangiogenic effect was 
confirmed with in in vitro and in vivo vascular network formation assays. SWATH analysis of 
the proteomic profile of Curcu-exosomes revealed that Curcumin treatment deeply changes 
their molecular properties, in particular, Curcumin induces a release of exosomes depleted 
in pro-angiogenic proteins and enriched in proteins endowed with anti-angiogenic activity. 
Among the proteins differential expressed we focused on MARCKS, since it was the most 
modulated protein and a target of miR-21. Conclusion: Our results show that the miR-126 
shuttled by exosomes is biologically active in the target cells, and support the hypothesis 
that exosomal miRNAs have an important role in tumor-endothelial crosstalk occurring in 
the bone marrow microenvironment, potentially affecting disease progression. Moreover, 
our results suggested that a selective packaging of miR-21 in exosomes may contribute to 
the antileukemic effect of Curcumin in CML. Curcumin treatment of CML cells attenuates the 
promotion of the angiogenic phenotype of ECs mediated by CML-derived exosomes, 
modulating also the endothelial barrier organization. These data indicate that Curcumin 
could be a potential adjuvant agent for CML treatment with a double effect, on cancer cells 
and on tumour microenvironment. 

 
 

Samenvatting – Informatief abstract 

Introductie: Chronische myeloïde leukemie (CML) is te wijten aan een verstoring in de 
proliferatie van myeloïde progenitor cellen, waarbij de leukemische cellen een reciproke 
t(9/22) chromosomale translocatie bevatten die leidt tot de vorming van Bcr-Abl, een 
chimeer onco-eiwit met een constitutieve tyrosine kinase activiteit. Op zijn beurt moduleert 
Bcr-Abl verschillende biologische mechanismen: het induceert proliferatie, inhibeert 
apoptose en verandert de adhesie van leukemische blasten in de beenmerg (BM) micro-
omgeving. Goed beschreven resistentiemechanismen limiteren het gebruik van selectieve 
tyrosine kinase inhibitoren (TKIs) zoals imatinib mesylaat. Het is duidelijk geworden dat 
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leukemische kankercellen in staat zijn om hun eigen signalen in het BM te produceren, en zo 
hun eigen groei en overleving te ondersteunen, mede door de vrijstelling van extracellulaire 
vesikels, zoals exosomen. Tumor-afgeleide exosomen zijn nanovesikels die eiwitten en 
microRNAs bevatten en die cel-cel communicatie bewerkstelligen en betrokken zijn bij 
angiogenese en tumor progressie. Het is beschreven dat de inhoud van deze exosomen 
verandert in respons op cel stimuli, zoals een specifieke behandeling. Het is aangetoond dat 
Curcumin, een afgeleide van de plant Curcuma longa, anti-kanker eigenschappen bezit in 
een wijd spectrum van humane kankers. Resultaten: Om na te gaan of miRNAs, 
gesecreteerd door chronische myelogene leukemie cellen, worden opgenomen in 
endotheliale cellen en hun fenotype beïnvloeden, hebben we eerst de miRNA inhoud van 
exosomen geanalyseerd die afgescheiden werden door LAMA84 CML cellen. Onder de 124 
geïdentificeerde miRNAs in de LAMA84 exosomen, focusten we onze aandacht op miR-126 
dat overgeëxpresseerd was in de exosomen in verhouding met de productie in parentale 
cellen. Transfectie van LAMA84 met Cy3 gelabeld miR-126 en cocultuur van leukemiecellen 
met endotheliale cellen (ECs) bevestigde dat miR-126 overgebracht werd naar HUVECs. De 
behandeling van HUVECs met LAMA84-exosomen gedurende 24 uur reduceerde CXCL12 en 
VCAM1 expressie, zowel op mRNA als op eiwitniveau, en reduceerde de motiliteit en 
celadhesie van LAMA84. Transfectie van miR-126 in HUVECs deed de reductie van CXCL12 
teniet en herstelde de motiliteit en adhesie van LAMA84 cellen, terwijl overexpressie van 
miR-126 de omgekeerde effecten toonde. Bovendien, de toevoeging van Curcumin aan CML 
cellen veroorzaakte een dosisafhankelijke stijging van PTEN, een target van miR-21. 
Curcumin behandeling verlaagde ook AKT-fosforylatie en VEGF-expressie en -secretie. Een 
kolonievormende assay toonde aan dat Curcumin de overleving van CML cellen beïnvloedde. 
Sommige observaties suggereren een mogelijke cellulaire afgifte van miRNAs door 
exosomen. Om na te gaan of Curcumin een verlaging in miR-21 in CML cellen en de 
verpakking in exosomen beïnvloed, hebben we de hoeveelheid van miR-21 na Curcumin 
behandeling bepaald in K562 en LAMA84 cellen en exosomen. Verder hebben we 
aangetoond dat de toevoeging van Curcumin aan CML cellen een neerregulatie van Bcr-Abl 
expressie veroorzaakte via een cellulaire toename van miR-196b. Het effect van Curcumin is 
vervolgens onderzocht in een xenograft van CML in SCID muizen. We observeerden dat de 
dieren die behandeld werden met Curcumin kleinere tumoren ontwikkelden in vergelijking 
met de controlemuizen. Real-time PCR analyse toonde aan dat de exosomen, die vrijgegeven 
werden in het plasma van met Curcumin behandelde muizen, aangerijkt waren met miR-21 
ten opzichte van de controle. Tenslotte ontdekten we dat de behandeling van HUVECs met 
exosomen, afgegeven door de CML cellen na behandeling met Curcumin (Curcu-exosomen), 
de RhoB expressie reduceerde en de motiliteit van endotheelcellen negatief beïnvloedde. 
We toonden aan dat de toevoeging van exosomen uit CML controlecellen aan HUVECs een 
verhoging veroorzaakte van IL8 en VCAM1 levels, maar dat Curcu-exosomen deze effecten 
omkeerden en daarbij de angiogene eigenschappen onderdrukte. Dit anti-angiogeen effect 
werd bevestigd door in vitro en in vivo vasculaire netwerkformatie assays. SWATH analyse 
van het proteomisch profiel van Curcu-exosomen toonde dat Curcumin behandeling de 
moleculaire eigenschappen grondig veranderde. In het bijzonder induceerde Curcumin de 
afgifte van exosomen met verminderde pro-angiogene eiwitten en aangerijkt in eiwitten met 
anti-angiogene activiteit. Van deze differentieel geëxpresseerde eiwitten focusten we ons op 
MARCKS, aangezien dit zowel het sterkst gewijzigde eiwit was, als een target voor miR-21. 
Conclusie: Onze resultaten tonen aan dat miR-126, dat getransfereerd wordt door 
exosomen, biologisch actief is in de doelcellen. Dit ondersteund de hypothese dat exosomale 
miRNAs een belangrijke rol spelen in de tumor-endotheliale crosstalk die plaatsvindt in de 
beenmergmicro-omgeving en die potentieel bijdraagt tot ziekte progressie. Bovendien 
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suggereren onze resultaten dat de selectieve verpakking van miR-21 in exosomen kan 
bijdragen tot het antileukemisch effect van Curcumin in CML. Curcuminbehandeling van CML 
cellen vertraagd de bevordering van het angiogene fenotype van ECs, gemedieerd door CML-
afgeleide exosomen, en moduleert de organisatie van de endotheliale barrière. Deze data 
duiden erop dat Curcumin tot potentieel adjuvant agens kan dienen voor de behandeling 
van CML met een dubbel effect, zowel op de kankercellen als op de tumor micro-omgeving.  
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CHAPTER 1 

 
 
 
 
 

Background 
 
 

 

1.1 Chronic Myelogenous Leukemia: from the molecular biology of the 
disease to targeted therapy 

 

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder originated from a 

hematopoietic stem cell or multipotent progenitor cell1. Clinically, this disease can be 

subdivided into three phases: chronic, accelerated and acute2. The chronic phase can 

progress to an accelerated phase, characterized by a further increase of myeloid progenitor 

cells respect to differentiated cells in the blood and bone marrow (BM), leading to a 

subsequent blast crisis, typical feature of acute phase2. 

Cytogenetically, the well-known marker of this disease is the Philadelphia (Ph) 

chromosome, originated from a reciprocal t(9:22) (q34:q11) translocation, though not all 

CML patients harbor Ph chromosome. This aberration generates the fusion of the breakpoint 

cluster region (BCR) and the abelson tyrosine kinase (ABL) genes, located on chromosome 22 

and 9, respectively, leading to BCR-ABL fusion gene1. This fusion gene encodes for Bcr-Abl 

chimeric protein, an oncoprotein with constitutive tyrosine kinase activity that characterizes 

the molecular biology of CML1. 

In most cases, it has been documented that different breaking points in BCR gene (called 

major or “M”, minor or “m” and micro or “µ”), generate three main Bcr-Abl fusion proteins 

of 210, 190 and 230 kDa3. Despite the presence of different isoforms, the most common Bcr-

Abl protein described in CML patients is the 210 kDa (called p210)3. 

The ABL tyrosine kinase constitutively active in Bcr-Abl chimeric protein is able to modulate 

several signalling transduction pathways that include Phosphoinosite-3-Kinase/AKT, 

Ras/MAP-Kinases and factors such as Stat54. Recently, it was described an interaction 
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between Bcr-Abl and Interferon regulatory factor 5 (IRF5) showing, interestingly, that the 

inactivation of IRF5 contributes to leukemic transformation5. 

The constitutive kinase activity of Bcr-Abl and, in turn, the alteration of several signalling 

transduction pathways, leads this chimeric oncoprotein to play a crucial role and drives 

several disease progression mechanisms3,4. In CML, Bcr-Abl is involved in increased 

proliferation, altered cell adhesion, inhibition of apoptosis and enhanced bone marrow 

angiogenesis resulting, thus, an excellent candidate for targeted therapy3,6,7. 

This aberrant oncoprotein has contributed to the development of new target therapies like 

tyrosine kinase inhibitors (TKIs), such as Imatinib mesylate (IM) 8. IM has revolutionized the 

therapy of CML patients, decreasing drastically the number of patients that need 

hematopoietic stem cell transplantation8. IM is an ATP-competitive inhibitor that binds the 

ATP binding pocket of Bcr-Abl oncoprotein, leading to the inactivation of their constitutive 

kinase activity8. The inhibition of Bcr-Abl activity causes the inactivation of the related 

downstream signalling pathways and, in turn, the decrease of cell proliferation and induction 

of apoptosis, restoring the physiological hematopoiesis8. Recently, other more selective and 

potent TKIs against BCR-ABL, such as Dasatinib and Nilotinib, were introduced as new 

therapeutic options2. 

Although TKIs have truly revolutionized the treatment of CML, mechanisms of resistance to 

these drugs have been documented9–11. These mechanisms are subdivided in innate and 

acquired resistances, which limit the use of these drugs9–11. The research of novel targeted 

therapeutic options are needed in order to overcome the drug resistance, perhaps 

supported by natural adjuvant therapies. 

 

1.2 Role of bone marrow microenvironment in CML 

Bone marrow (BM) microenvironment is a dynamic and interactive set of stromal cells, 

that include endothelial cells, reticular cells, macrophages, adipocytes, chondroblasts, 

mesenchymal stromal cells (MSCs) among others12–15. Stromal cells secrete extracellular 

matrix components, such as laminin, collagen I and IV, glycosaminoglycans, fibronectin, 

hyaluronic acid proteoglycans, building a live scaffold that becomes a stromal niche into the 

bone marrow12–15. 

Stromal microenvironment is strongly involved also in cancer progression16. Close interest is 

focused on the complex interaction between cancer cells and host cells in the pathological 
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tumour microenvironment16. It has been described that in the BM microenvironment, MSCs 

are able to attract tumour cells and promote tumour growth, survival, metastasis, osteolysis, 

and drug resistance16. Leukaemia cells are stimulated to produce several molecules that 

include adhesive proteins, cytokines, growth factors, chemokines and their receptors such as 

CXCL8, CXCL12 and CXCR4, involved in CML progression17,18. CXCL12 is a chemokine that 

binds specifically to CXCR4, a G-protein coupled receptor. In vitro and in vivo studies have 

described a key role of CXCR4/CXCL12 axis in the migration of cells within tissues and in the 

homing of immune cells in the bone marrow17. In the CML progression, a modulation of 

CXCR4/CXCL12 interaction has a role in the mobilization of leukemic cells in the 

bloodstream18,19. CXCL8, known also as IL-8, is a pro-inflammatory chemokine frequently 

over-expressed in endothelial cells, stromal cells and in several tumours where, in synergy 

with VEGF, contributes to modulate tumour growth and angiogenesis20,21.  

It has been documented that the cross-talk between endothelial cells and tumour cells 

contributes to tumour angiogenesis22. VCAM1 is a cell-cell adhesion molecule constitutively 

expressed on the endothelial cells in the bone marrow, where it has a key role in the homing 

of Ph positive leukemic cells23. 

The complex cell-cell and cell-ECM interactions that occur between tumour cells and tumour 

microenvironment components could be subdivided in: I) dependent interactions, mediated 

by adhesion molecules; II) independent interactions, mediated by soluble molecules such as 

chemokines and growth factors24,25. During the last decade, it was described a novel way of 

independent intercellular communication mediated by extracellular vesicles (EVs)26,27. EVs is 

an “umbrella” term that indicates an heterogeneous group of membranous vesicles released 

by different cell types28. EVs can be subdivided into 2 main classes: exosomes and 

microvesicles, distinguished according to their different biogenesis, dimension and 

molecular composition26,27. We focused our attention on exosomes, that play a crucial role 

in the cross-talk between tumour cells and tumour microenvironment, modulating tumour 

progression29–31. 

 

1.3 Exosomes: biogenesis, structure and functions. 

Exosomes are cup-shaped membranous nanovescicles with a diameter of around 30-

100 nm32. Their biogenesis is mediated by an endosomal mechanism: part of the 

extracellular membrane is incorporated in a cytoplasmic early endosome (EE), which will 
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contain the proteins present in the extracellular side of the cellular membrane to the inner 

side of the EE, leading to the generation of mature endosome33–35. The inward budding of 

the mature endosome membranes leads to the formation of intraluminal nanovesicles 

(ILVs), creating multivesicular bodies (MVBs) into the cytoplasm. At this step, MVBs can fuse 

to the lysosomes, leading to degradation of their content, or fuse to the extracellular 

membrane, leading to the release of their ILVs (now called exosomes) in extracellular space 

and, then, in body fluids34,35. 

The molecular mechanisms involved in exosomes biogenesis are still unclear33,34. Nowadays, 

two theories are the main accepted: one mediated by the endosomal sorting complex 

required for transport (ESCRT) molecules (called ESCRT-dependent) and another mediated 

by neurosphyngomielase activity and ceramide biosynthesis (called ESCRT-independent)36,37. 

It has been demonstrated that exosomes contains a complex milieu of proteins, lipids and 

nucleic acids, that are reported, in a continuous updating process, in database as ExoCarta 

and Vesiclepedia38,39. Up to date, 9769 different proteins exosomal were identified, such as 

enzymes, GTPases, tetraspanins like CD9, CD63 and CD81, proteins involved in exosomes 

biogenesis as Alix and TSG101, heat-shock proteins, among others38. In several exosomal 

analysis, proteins such as CD9, CD63, CD81, Alix and TSG101, are considered potential 

markers for exosome characterization33,34. Moreover, it has been demonstrated that 

exosomes contain DNA and several coding and non-coding RNA molecules40,41. MicroRNAs 

(miRNAs) are small (19–22 nucleotides) non-coding RNA molecules that, binding to partially 

complementary 3’ UTR of mRNA target, lead it to degradation or translation inhibition42. 

MicroRNAs analysis has described the presence of 2838 different miRNAs found in 

exosomes. The lipid bilayer membrane of exosomes is enriched in phospholipids, 

diglycerides, ceramide, eicosenoic acid, cholesterol, sphingolipids, sphingomyelin and 

biologically active lipids such as leukotrienes and prostaglandins27,43. Exosomal lipid 

membranes confer an high-degree of stability and protection to the content against several 

enzymes such as proteases and nucleases 44. 

Exosomes will target recipient cells through unclear uptake mechanisms; however, four 

mechanisms are mainly accepted: I) interaction with target cell through specific receptor-

ligand interaction in a juxtacrine fashion; II) binding as a ligand for cell membrane receptors; 

III) aspecific fusion with target cell membrane; IV) internalization through a phagocytosis 

mechanism45–48. Exosomes are described in several body fluids such as blood, saliva, breast 
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milk, sperm, urine, synovial liquid, among others44. The presence of exosomes in several 

body fluids suggest the idea of their key role in paracrine and distant cell-cell communication 

needed in physiological and pathological processes44. Exosomes modulate the biological 

functions of target cells acting as an horizontal transmitter of protein and miRNAs. Valadi et 

al, described, for the first time, miRNAs and mRNAs contained into exosomes and that 

exosomal mRNAs could be transferred and translated in target cells49. Exosomal miRNAs can 

be shuttled to target cells keeping their biological functions, modulating then the expression 

of target cell mRNAs in a post-transcriptional manner50–52. Interestingly, MVBs are jointed to 

miRNA effector complexes, indicating the existence of a selective packaging mechanism of 

miRNA into exosomes53. 

 

1.3.1 Exosomes in cancer 

Several studies have described even more clearly a pleiotropic role of Tumour Derived 

Exosomes (TDEs) in the tumour microenvironment, leading to the promotion of tumour 

progression48. The tumour microenvironment modulation is dependent on the exosomes-

mediated cell-cell communication between cancer and host cells54. 

TDEs promote primary tumour growth, inducing extracellular matrix remodeling through 

the expression of activators of metalloproteinase proteins (MMPs) and angiogenesis48. 

Moreover, TDEs are involved in drug-resistance mechanisms. Safei et al described, for the 

first time, that cisplatin-resistant ovarian cancer cells are able to eliminate hydrophilic 

anticancer drugs by loading the compound into the exosomes that highly express multidrug 

resistance-associated protein 2 (MRP2)55. It was recently demonstrated that exosomes 

released by breast cancer cell lines following Trastuzumab (antibody-based drug against 

HER2) treatment, contain high amount of HER2 membrane receptor. Exosomes, containing 

HER2 receptor, once released in the conditioned media can bind selectively Trastuzumab, 

decreasing the drug amount available to target parental cancer cells56; in this way,  cancer 

cells maintain their oncogenic potential. 

TDEs are also involved in the selection and promotion of pre-metastatic niche, preparing 

the future metastases sites. Exosomes are considered one of the most casual agents for the 

“seed and soil” theory57, according to which the “education” of the pre-metastatic site is 

necessary for the acceptance of circulating cancer cells48,58–60. Recently, in melanoma 

patients, it was demonstrated that TDEs are involved in the pre-metastatic niche formation 
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activating bone marrow progenitor cells58. Moreover, Costa-Silva et al demonstrated that 

pancreatic ductal adenocarcinoma derived exosomes induce liver pre-metastatic niche 

formation in naive mice, increasing liver metastates31.  

Overall, these data suggest a crucial role of exosomes in the tumour microenvironment, 

inducing biological effects on targeted cells and leading to cancer progression. TDEs, with 

their content and their presence in several body fluids, could be one of the most attractive 

sources of potential non-invasive liquid biopsy biomarkers44. 

 

1.4 Curcumin: a small antioxidant molecule with potent anticancer effects 

Curcumin (diferuloylmethane) is a polyphenol, first isolated in 1815 and identified as 

(1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl) -1,6- heptadiene-3,5-dione (IUPAC ID)61. This 

powder is extracted from Curcuma longa, a spice used frequently in southeast Asia, a 

continent with low incidence of some cancers61. It has been clearly documented that diet is 

strongly involved on the differences in cancer epidemiology62.  

Curcumin is described to modulate several molecular targets that include transcription 

factors, growth factors and their receptors, cytokines, enzymes, and genes regulating cell 

proliferation and apoptosis63. The anticancer properties of Curcumin have been 

demonstrated by its inhibition of tumour initiation, migration, invasion and angiogenesis64. 

Moreover, in leukemic cancer cells, Curcumin is able to induce apoptotic-mediated cell 

death and inhibits cancer cell proliferation through the upregulation of miR-15a and miR-16 

that, in turn, decrease the expression of the anti-apoptotic Bcl-2 and the leukemic oncogene 

WT1. Curcumin suppresses tumour growth and metastasis in colorectal cancer through 

downregulation of miR-21, a well known oncomiRNA65,66. Difluorinated Curcumin (CDF), a 

nontoxic analog of the dietary ingredient Curcumin has been shown to modulate also the 

expression of miR-21 and PTEN in pancreatic cancer67. 

In this work, we focused our attention on the idea to explore the potential anticancer 

effects of Curcumin in CML cells mediated by their released exosomes, in order to 

investigate also its potential role as adjuvant therapy in CML.  

 
1.5  Rationals and Objectives 

The main objective of my research project was to further understand the role played by 

CML-derived exosomes in the paracrine cross-talk between leukaemia cells and endothelial 
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cells. The pattern of miRNA and protein expression of CML-derived exosomes was evaluated 

in order to select specific molecules involved in tumour angiogenesis. 

Two CML cell lines (LAMA84 and K562) and the endothelial cells HUVECs were used as 

experimental models. The experimental strategy was to isolate LAMA84 and K562-derived 

exosomes and to treat HUVECs with exosomes in order to study the cross-talk between 

tumour and host cells. Moreover, I evaluated if Curcumin treatment of CML cells could 

induce exosomes-mediated anticancer effects, studying also the modulation of the cross-talk 

with ECs. 

 

The aims of this thesis can be subdivided into three subsequent steps: 

1. To investigate the pattern of miRNA expression in exosomes released by CML cells, in 

order to evaluate the expression of miRNAs involved in CML progression that could 

be shuttled to endothelial cells. (Paragraphs: “Exosomal shuttling of miR-126 in 

endothelial cells modulates adhesive and migratory abilities of chronic 

myelogenous leukemia cells” 68); 

2. To investigate if Curcumin treatment of CML cells is able to induce anticancer effect 

modulating the expression of selected miRNAs and proteins in cells and in the 

released exosomes, both in vitro and in vivo.  (Paragraphs: “Curcumin inhibits in vitro 

and in vivo chronic myelogenous leukemia cells growth: a possible role for 

exosomal disposal of miR-21” 69); 

3. To investigate the effects of exosomes released by CML cells treated with Curcumin 

in the cross-talk with endothelial cells. I studied also their protein profile, in order to 

evaluate if Curcumin treatment reduces the effects of CML-derived exosomes on 

CML progression (Paragraphs: “Curcumin modulates chronic myelogenous leukemia 

exosomes composition and affects angiogenic phenotype, via exosomal miR-21” 70) 

 

1.5.1 Exosomal shuttling of miR-126 in endothelial cells modulates adhesive 

and migratory abilities of chronic myelogenous leukemia cells  

Our research group recently showed that CML cell lines, LAMA84 and K562 cells and 

patient’s leukemic blasts, release exosomes that are involved in the neovascularization by 

targeting directly endothelial cells. The treatment of HUVECs with LAMA84 exosomes 

activates the release of IL-8 and the induction, both in vitro and in vivo, of an angiogenic 
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phenotype71,72. It was demonstrated that exosomes contain miRNAs that can be shuttled to 

target cells; miR-210 and miR-92a, contained into exosomes released by K562 cells, can 

enhance endothelial cell migration and tube formation73,74. 

During the first year of my PhD program I focused my attention on the miRNAs profiling of 

exosomes released by CML cells. In preliminary experiments, we found that miR-126 was 

expressed 6 fold greater in LAMA84 exosomes compared with parental cells. Target 

prediction algorithms have shown that miR-126 targets both vascular cell adhesion molecule 

1 (VCAM1) and CXCL12 mRNAs; their modulation, is described to have a role in adhesion to 

endothelial cells and in leukocyte homing in bone marrow, respectively75,76. In this context, it 

has been also demonstrated that CXCL12 up-regulates VCAM1 in myeloma cells and chronic 

lymphocytic leukaemia B cells and this modulation can play a crucial role in the localization 

of cancer cells to the bone marrow23,77. 

In this first study, we investigated the exosomes-mediated cross-talk between CML and 

endothelial cells, evaluating if exosomes released by LAMA84 cells, containing high amount 

of miR-126, could transfer this miRNA into HUVECs, thus leading to a potential modulation of 

CML progression. 

 

1.5.2 Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia 

cells growth: a possible role for exosomal disposal of miR-21 

Several natural polyphenols, such as Curcuminoids, can modulate, both in vitro and in vivo, 

the expression of several miRNAs78. Curcumin is the main active natural polyphenol 

extracted from rhizomes (Curcuma longa). Interestingly, it has been shown that Curcumin is 

able to inhibit several biological process involved in cancer progression, as cell proliferation, 

inflammation, invasion, angiogenesis, and apoptosis in several cancers79,80. Curcumin 

downregulates, in human colon-rectal carcinoma cell lines, the expression of several miRNAs 

(miR-17-5p, miR-20a, mir-21 and miR-27a) associated with increased apoptosis, decreased 

cell proliferation, and tumour invasion81. Curcumin is able to downregolate also miR-21, a 

miRNA with oncogenic properties found overexpressed in several cancer types. Curcumin 

leads to a decrease of tumour growth and progression in colorectal cancer66. Bioinformatics 

analysis, confirmed experimentally, shows that mir-21 targets the 3’-UTR of PTEN, one of the 

most frequently mutated or silenced tumour suppressors in several cancers. PTEN is 

involved in the inhibition of PI3K-AKT pathway and in the modulation of VEGF expression in 
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many solid tumors82–84. Several studies have shown that the antagonistic effect of PTEN on 

PI3K/AKT signalling pathway is deregulated in numerous leukaemia, both in vitro and in vivo, 

due to a decrease in the expression of PTEN at gene and/or protein level85. PTEN is also 

involved in the biological processes of BCR-ABL-mediated leukemogenesis86. 

MiR-196b is another microRNA associated with leukaemia: it has been described a miR-

196b downregulation in EB-3 cells and in patients with B-cell acute lymphocytic leukaemia 

(ALL) and, in contrast, an over-expression in patients with acute myeloid leukaemia (AML)87. 

The role of miR-196b in CML is still unclear. The expression of miR-196b is lower in CML 

patients than in healthy individuals. Bioinformatics analysis indicated Bcr-Abl as predictive 

target of miR-196b, and low expression levels of miR-196b were correlated with up-

regulation of the oncogene Bcr-Abl88. 

Curcumin could be a promising natural compound that, in a strategy of adjuvant therapy 

coupled with classical tyrosine kinase inhibitor, may improve the treatment of CML patients 

resistant to TKIs89. 

Our preliminary results showed that Curcumin treatment of LAMA84 and K562 CML cells, 

caused a downregulation of miR-21 in cells and an upregulation in the released exosomes. In 

this study, we investigated if the treatment of CML cells with Curcumin caused an inhibition 

of PTEN/AKT pathway, via exosomal miR-21. We observed that Curcumin enhances a 

disposal of the oncomiR-21 in exosomes and this biological mechanism may contribute to 

the antileukemic effect. 

 

1.5.3 Curcumin modulates chronic myelogenous leukemia exosomes 

composition and affects angiogenic phenotype, via exosomal miR-21 

Angiogenesis is a complex process that depends on the interaction between growth 

factors, cytokines and a number of components of the extracellular matrix90,91. Sabatel et al. 

demonstrated that miR-21 over-expression reduced the angiogenic capacity of HUVECs by 

directly targeting RhoB, a Rho GTPase involved in the regulation of cell growth, cellular 

signaling and cytoskeleton reorganization91,92. Endothelial cell-cell junctions maintain a 

restrictive barrier that is tightly regulated to allow dynamic responses to permeability-

inducing angiogenic factors. These angiogenic stimuli lead to a transient remodeling of 

adherens junctions (AJs), such as VE-Cadherin, depending on Rho GTPase-controlled 

cytoskeletal rearrangements93.  
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As reported in this thesis, LAMA84 exosomes were enriched in miR-126, an angiomiR that 

was biologically active in endothelial cells, leading to an exosome-mediated cross-talk in the 

bone marrow microenvironment. We assessed if exosomes released by CML cell treated 

with Curcumin could revert the pro-angiogenic effects of CML-derived exosomes. We 

demonstrated that exosomes released by CML cells treated with Curcumin (Curcu-

exosomes), are enriched in miR-21 and are internalized by HUVECs. Curcu-exosomes were 

able to downregulate the expression of RhoB, a predictive target of miR-21, thus leading to 

affect the endothelium monolayer integrity. In order to achieve a wider comprehension on 

the molecular mechanisms mediated by CML exosomes, underlying the modulation of 

angiogenesis, we performed a proteomic profile of exosomes released by CML cells treated 

or not with Curcumin using a SWATH-MS approach. We focused our attention on the 

different expression of proteins with pro or anti-angiogenic properties. 
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CHAPTER 2 

 
 

 

Materials and Methods 
 
 
 

Cell culture and reagents  

Chronic myelogenous leukemia cells K562 and LAMA84 were obtained from (DMSZ, 

Braunschweig, Germany), and cultured in RPMI 1640 medium (Euroclone, UK) supplemented 

with 10% fetal bovine serum (Euroclone, UK), 100 U/ml penicillin, 100 mg/ml streptomycin 

and 2 mM L-glutamine (Euroclone, UK). HUVECs were purchased from Lonza (Clonetics, 

Verviers, Belgium) and grown in endothelial growth medium (EGM) according to supplier’s 

information. In some experiments K562 and LAMA84 cells were treated with 1 μM GW4869, 

a neutral sphingomyelinase 2 inhibitor, also a  well-known inhibitor of exosomes release. All 

other reagents were purchased from Sigma (St. Louis, MO, USA), if not otherwise cited. 

Exosomes isolation  

Exosomes released by K562 and LAMA84 cells treated or not with Curcumin (20 and 40 μM) 

during a 24 h culture period, were isolated from conditioned culture medium (CM) 

supplemented with 10% FBS (previously ultracentrifuged) by different centrifugation steps: 5 

minutes at 300g in order to eliminate cells and debris; 15 minutes at 3000g in order to 

eliminate apoptotic bodies and 30 minutes at 10.000g in order to eliminate microvesicles. 

The cleaned  CM were ultracentrifuged for 90 minutes at 100.000g at 4°C on a density 

gradient ultracentrifugation on a 30% sucrose/D2O cushion. Vesicles contained in the 

sucrose cushion were recovered, washed, ultracentrifuged for 90 minutes in PBS and 

collected for downstream analysis. Exosome protein content was determined by the 

Bradford method. 
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Dynamic light scattering (DLS) analysis  

Exosome size distribution was determined by DLS experiments. Exosome samples were 

diluted 30 times to avoid inter-particle interaction and placed at 20°C in a thermostated cell 

compartment of a Brookhaven Instruments BI200-SM goniometer with a solid-state laser 

tuned at 532 nm. Scattered intensity autocorrelation functions g2(t) were measured by using 

a Brookhaven BI-9000 correlator and analyzed in order to determine the distribution P(D) of 

the diffusion coefficient D by using a constrained regularization method or alternatively a 

gamma distribution. The size distribution, namely the distribution of hydrodynamic diameter 

Dh, was derived by using the Stokes-Einstein relation: D = (kBT)/(3πη Dh), where D is the 

diffusion coefficient, kB is the Boltzman constant, η is the medium viscosity and T is the 

temperature. The mean hydrodynamic diameter of exosomes was calculated by fitting a 

Gaussian function to the measured size distribution.  

Curcumin quantification in exosomes by HPLC assay 

HPLC analyses were performed with a Shimadzu LC-10ADVP instrument with a binary pump 

LC-10ADVP, a UV SPD-M20A Diode Array detector, a 20 μL injector and a computer 

integrating apparatus (EZ Start 7.3 software). HPLC solvents (HiPerSolvChromanorm) were 

obtained from VWR International (Milan, Italy). Chromatographic separation was performed 

on a reversed-phase column Chromolith® Performance (RP-18e, Merck, 100 × 4.6 mm) and a 

mobile phase of methanol [Mobile phase A] and TFA 0.01% (v/v) aqueous solution [Mobile 

phase B]. The developed gradient method consisted of % change in mobile phase B with 

respect to time (0.01→3.00 min: 99.5% B; 3.01→15.00 min: 12% B; 15.01→16.99 min 12% B; 

17.00→25.00 min 0% B; 25.01→30.00 min 99.5% B). The mobile phase was filtered through 

Whatman filter 0.45 μm and degassed before use. The flow rate was set at 1 mL/min and the 

UV wavelength at 257, 280, 400 and 420 nm. In these conditions, the retention time for 

Curcumin was 17.1 minutes. Stock and working standard solutions were prepared as follow: 

50 mg of Curcumin working standard dissolved in 50 mL of acetone. This stock standard 

solution was diluted to prepare six sets of calibration standards of Curcumin at 

concentrations range of 0.02–1.00 μg/mL in acetone. (LOQ = 0.01 μg/ ml). The standard 

calibration curve was constructed using peak area versus known concentrations of 

Curcumin. HPLC reports were highly reproducible and linearly related to concentration 
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(regression equation y = 54144 ×– 84.22; R 0.9944; R2 0.9888). The linear regression line was 

used to determine the linearity and concentration of the samples.  

200 μl of exosomes sample (2 μg/μl in protein content determined by Bradford method), 

isolated by both K562 and LAMA84 cells treated with Curcumin (10, 20 and 40 μM) (Curcu-

exosomes) or not (control exosomes), were added to 200 μl of methanol and centrifuged at 

14.000 rpm for 10 min; after that, the supernatant (20 μl) was analyzed by HPLC as described 

above. Each sample was analyzed in triplicate in order to have significative results.  

Proliferation assay 

In order to evaluate cell proliferation a Methyl-thiazol-tetrazolium (MTT) assay was done. 

K562 and LAMA84 cells were plated in triplicate at 2×105 per well and treated with different 

concentrations of Curcumin (5–40 μM) for 24 hours. HUVECs were plated in triplicate at 

5×104 per well and treated with exosomes derived from K562 and LAMA84 cells treated or 

not with Curcumin (20 and 50 μg/ml) for 24 hours. Means and standard deviations (SD) 

generated from three independent experiments are reported as the percentage of viable 

cells.  

Uptake of LAMA84 and K562 exosomes by HUVECs  

K562 and LAMA84 exosomes were labeled with PKH26 according to supplier’s information. 

Briefly, exosomes were incubated with PKH26 for 10 minutes at room temperature. Labeled 

exosomes were washed in PBS by ultracentrifugation and pellets were resuspended in low 

serum medium and incubated with HUVECs for 1- 4 hours at 4°C or 37°C. HUVECs, grown on 

coverslips coated with type I collagen (Calbiochem, Darmstadt, Germany), were treated with 

different doses of K562 or LAMA84 exosomes, K562 and LAMA84 Curcu-exosomes or low 

serum medium. In some experiment, HUVECs were also pretreated with 50 μM 5-ethyl-N-

isopropyl amiloride (EIPA), well known inhibitor of exosomes uptake, for 1 hour. After 

incubation, cells were stained with Alexa Fluor 633® phalloidin or Actin Green (Molecular 

Probes, Life Technologies, Carlsbad, California, U.S) that binds F-actin with high affinity; 

nuclei were stained with Hoechst (Molecular Probes, Life Technologies, Carlsbad, California, 

U.S) and analysed by confocal microscopy. Each picture was acquired with laser intensities 

and amplifier gains adjusted to avoid pixel saturation. Each fluorophore used was excited 

independently and sequential detection was performed. Each picture consisted of a z-series 
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of images of 1024–1024 pixel resolution. IMAGE-J software (http://imagej.nih.gov/ij/) was 

used in order to perform a semi-quantitative analysis of fluorescence intensity; we selected 

the perinuclear area in a section at 5 μm and measured the fluorescence intensity. Values 

are the mean ± SD of 15 measurements from three independent experiments. 

 

TaqMan Human MicroRNA Array for Profiling of miRNAs 

The RNAspin Mini (GE Healthcare Science, Uppsala, Sweden) kit was exploited to isolated 

total cellular RNA and miRNAs from LAMA84 cells and their exosomes; the RNA quality was 

confirmed through 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Then was 

performed the reverse transcription of 600 ng of total RNA using Megaplex™ RT Primers 

Human Pool A (Life Technologies, Carlsbad, California, U.S.), according to manufacturer’s 

instructions. Reverse transcription reaction conditions were optimized as follow: 16°C for 2 

minutes, 42°C for 1 minute, 50°C for 1 second for 40 cycles, 85°C for 5 minutes then hold at 

4°C. The product cDNA was diluted, mixed with TaqMan® Gene Expression Master Mix and 

loaded into each of the eight fill ports on the TaqMan® Human MicroRNA Array A (Life 

Technologies, Carlsbad, California, U.S.). The array was centrifuged at 1200 rpm twice for 1 

minute each and then run on ABI-PRISM 7900 HT Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA) using the manufacturer’s recommended program. SDS 2.1 

software was used in order to quantify data; miR-18b or RNU6-2 were selected as 

endogenous control in order to exploit them for data normalization. The cycle threshold (Ct) 

value, which was calculated relatively to the endogenous control, was used for our analysis 

(ΔCt). The 2-ΔΔCT (delta-delta-Ct algorithm) method was used to calculate the relative changes 

in gene expression. 

Quantitative polymerase chain reaction (qPCR) for miRNAs and pre-miRNAs  

The expression of miR-126 and miR-21 was evaluated through miScript PCR assay (QIAGEN, 

Hilden, Germany). RNAspin Mini kit (GE Healthcare Science, Uppsala, Sweden) was exploited 

in order to extract total cellular RNA and miRNAs from K562, LAMA84 cells (and their 

released exosomes) and HUVECs. MiScript II RT Kit (QIAGEN, Hilden, Germany) was used to 

performe the reverse transcription reaction, described by the manufacturer’s instructions; 

reaction buffers were selected for downstream analysis: specifically, was used miScript 

HiSpec Buffer for cDNA synthesis to detect mature miRNA and miScript HiFlex Buffer for 

http://imagej.nih.gov/ij/
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cDNA synthesis of precursor miRNAs. qPCR was performed using miScript SYBR Green PCR 

Kit (QIAGEN, Hilden, Germany). Mature miR-126, miR-21 and miR-196b were detected 

through miScript Primer Assay and pre-miR-126 and pre-miR-21 by miScript Precursor Assay, 

according to manufacturer’s instructions. RNU6-2 was used as stable endogenous control. 

Expression levels of miRNAs and pre-miRNA were determined using the comparative Ct 

method to calculate changes in Ct and ultimately fold and percent change. An average Ct 

value for each RNA was obtained from triplicate reactions.  

 

qPCR for PTEN, VEGF, BCR-ABL, RhoB, VCAM1, IL8, MARCKS, VEGFR, ZO1 and VE-Cadherin  

1 μg of total RNA extracted from HUVECs using the RNAspin Mini kit (GE Healthcare Science, 

Uppsala, Sweden) was reverse transcribed using the High Capacity cDNA Archive kit (Life 

Technologies, Carlsbad, California, U.S.), according to manufacturer’s instructions. RT-QPCR 

was performed in 48-well plates using the Step-One Real-Time PCR system (Applied 

Biosystem). For quantitative SYBER® Green Real Time PCR, reactions were carried out in a 

total volume of 20 μl containing 2× SYBR® Green I Master Mix (Applied Biosystems), 2 μl 

cDNA and 300 nM forward and reverse primers. Primers sequence were: GAPDH 

(5′ATGGGGAAGGTGAAGGTCG3′, 5′GGGTCATTGATGGCAACAATAT3′), MARCKS 

(5′TGCTCTTTGCCACCCGATAA3′, 5′ACCCTAAAACTGCACACTGCT3′), VEGFR 

(5′CGGTCAACAAAGTCGGGAGA3′, 5′CAGT GGCACCACAAAGACACG3′) ZO1 (5′ 

TTAAGCCAGCCTCTCAACAGAAA3′, 5′GGTTGATGATGCTGGGTTTGT3′), and VE-Cadherin 

(5′GATCAAGTCAAGCGTGAGTCG3′; 5′AGCCTCTCAATGGCGAACAC3′). RNAspin Mini kit was 

also used in order to extract total cellular RNA from K562 and LAMA84 cells and exosomes.  

1 μg of total RNA was reverse transcribed through High Capacity cDNA Archive kit (Life 

Technologies, Carlsbad, California, U.S.), according to manufacturer’s instructions. PTEN, 

VEGF and BCR-ABL transcript levels were measured by TaqMan Real Time PCR, using 

TaqMan gene expression assay for PTEN (Hs00262123 m1), VEGF (Hs0090005.m1) (Life 

Technologies, Carlsbad, California, USA). TaqMan gene expression assay were also 

performed for CXCL12 (Hs00171022_m1), VCAM1 (Hs00174239 m1), IL8 (HS00174103 m1), 

RhoB (Hs03676562 m1) BCR-ABL (Hs03024541_ft) and GAPDH (Hs99999905 m1), all 

obtained from Invitrogen (Foster City, CA, USA). Data were analyzed as previously described. 
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GAPDH was choose as a stable endogenous control and changes in the target mRNA content 

were determined using the comparative Ct method, as described in the previously. 

 

Shuttling assays for Cy3-labeled-miRNA precursor 

miR-126 precursor (QIAGEN, Hilden, Germany) was labelled with Label IT siRNA Tracker Cy3 

Kit, according to the manufacturer’s instructions (Mirus, Madison, WI, USA). LAMA84 cells 

(6x104) were transfected with 10 nM of Cy3-labeled pre-miR-126 using HiPerFect 

Transfection Reagent (QIAGEN, Hilden, Germany) (LAMA84/Cy3-miR-126). The day after 

transfection, cells were seeded on transwells, 3 μm pore filters in cocolture with HUVECs 

over night. LAMA84 cells did not migrate through the 3 μm pore filters after 18 h (data not 

shown). HUVECs were stained with Hoechst and analysed by confocal microscopy. 

 

Inhibition of exosome release 

LAMA84 cells, transfected with Cy3-labeled pre-miR-126, were seeded in the upper wells of 

transwells and incubated with 1 and 5 μM GW4869; in the bottom wells were plated also 

endothelial cells. After incubation for 18 hours, the cells were processed in accordance with 

manufacture’s instruction and finally stained with Hoechst and analyzed by confocal 

microscopy. 

Transfection of K562, LAMA84 and HUVECs cells with miR-21 mimic or inhibitor  

Transfection of miScript miR-126 or miR-21 mimic and inhibitor (QIAGEN, Hilden, Germany) 

in K562, LAMA84 and HUVECs cells was performed according Fast-Forward Transfection 

protocol (QIAGEN, Hilden, Germany). 6 × 104 cells per well were seeded in a 24-well plate in 

500 μl of EGM medium. miScript miR-126 inhibitor (2’-O-Me-miR-126), miR-21 inhibitor (2′-

O-Me-miR-21), miR-126 mimic (2 μM) or miScript miR-21 mimic (2 μM) were diluted in 100 

μl culture medium without serum to obtain a final 5 nM miRNA concentration for working 

solution. Transfection of K562 and LAMA84 cells was performed, for 18 hours, through 

HiPerFect Transfection Reagent (QIAGEN, Hilden, Germany), according to manufacturer’s 

instructions. AllStars Negative Control siRNA (QIAGEN, Hilden, Germany) and MiScript 

Inhibitor Negative Control (QIAGEN, Hilden, Germany) were used as negative controls, as 

indicated by manufacture’s technical specifications. Transfection efficiency was determined 

through qPCR.  
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Luciferase activity assay  

The 3’-UTRs of CXCL12 and VCAM1 mRNAs were cloned in pEZX-MT01 vector (Genecopoeia, 

Rockville, MD USA), designed based on the sequence of miR-126 binding sites. 8x 104 

HUVECs per well in a 24- well plate were seeded in 500 μl of an appropriate culture medium 

and cells were transfected with 300 ng of the pEZX-MT01 firefly luciferase report 

appropriately diluted in 60 μl culture medium without serum. HUVECs were then 

cotrasfected with 6 pmol of miR 126 mimic or inhibitor using Attractene Transfection 

Reagent (QIAGEN, Hilden, Germany) according to manufacturer’s protocol. To assess 

whether exosomal miR-126 targets directly VCAM1 and CXCL12 mRNAs, after the 

transfection with pEZXMT01 vector, HUVECs, were incubated with 50 μg/ml of LAMA84 

exosomes. The PTEN 3’ UTR cloned in pEZX-MT01 vector was obtained from Genecopoeia 

(Rockville, MD, USA), designed based on the sequence of miR-21 binding sites. K562 and 

LAMA84 cells (12 × 104 per well) in a 24-well plate were seeded in 500 μl of RPMI medium 

and transfected with 300 ng of the pEZX-MT01 firefly luciferase report diluted in 60 μl 

culture medium without serum. K562 and LAMA84 cells were also cotransfected with 6 pmol 

miR-21 mimic or miR-21 inhibitor using Attractene Transfection Reagent (QIAGEN, Hilden, 

Germany) according to manufacturer’s protocol. To investigate if Curcumin treatment 

induces a modulation of miR-21 expression, leading to an inhibition of expression of its 

target PTEN, K562 and LAMA84 cells were incubated with 20 and 40 μM of Curcumin after 

the transfection of pEZX-MT01 vectors. The 3′-UTRs of RhoB was cloned in pEZX-MT01 

vector (Genecopoeia, Rockville, MD USA) based on the sequence of miR-21 binding sites. 8 × 

104 HUVECs per well in a 24 well plate were seeded in 500 μl of an appropriate culture 

medium, the cells were transfected with 300 ng of the pEZX-MT01 firefly luciferase report 

diluted in 60 μl culture medium without serum. HUVECs were cotransfected with 6 pmol of 

miR-21 mimic or miR-21 inhibitor using Attractene Transfection Reagent (QIAGEN, Hilden, 

Germany) according to manufacturer’s protocol.  To test if exosomal miR-21 targets RhoB 

mRNA, HUVECs were incubated with 20 μg/ml of exosomes released by CML cells treated or 

not with Curcumin, after the transfection with pEZXMT01 vector. 

GloMax®-Multi Detection System (Promega Corp., Madison, WI, USA) was used in order to 

measure consecutively the Firefly and Renilla Luciferase activities 24 hours after transfection 

through Dual Glo® Luciferase Assay System kit (Promega Corp, Madison, WI, USA). 
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Transfections were repeated for each samples, three times in duplicate. Normalized data 

were calculated as the ratio of Renilla/Firefly Luciferase activities.  

 

Adhesion assay 

HUVECs grown as a monolayer were transfected or not with miR-126 mimic, miR-126 

inhibitor or scramble controls and incubated for 24 hours with indicated conditions. After 

treatment, HUVECs were washed with PBS, LAMA84 cells were added for 2 hours at 37°C 

and  adherent cells were stained with haematoxylin/eosin staining. Each test group was 

assayed in triplicate; five high power (400x) fields were counted for each condition. 

 

Motility assay 

HUVECs monolayer transfected or not with miR-126 mimic, miR-126 inhibitor or scramble 

controls, were incubated for 24 hours with different amount of exosomes. After treatment, 

conditioned media aliquots were centrifuged to remove cellular debris and used as 

chemoattractant. LAMA84 cells were suspended in serum-free RPMI 1640 medium 

supplemented with 0.1% BSA in transwells with 8 μm pore filters and exposed to 

chemoattractants, for 18 hours. After incubation, cells migrated in the bottom wells were 

counted. 

ELISA for VEGF, AKT, pAKT and IL8 

Conditioned medium (CM) of HUVECs, transfected or not with miR-126 mimic or inhibitor, 

was collected from cells stimulated for 24 hours with different amount of LAMA84 exosomes 

and centrifuged in order to remove cellular debris. CXCL12 protein concentrations was 

evaluated by an ELISA kit (R&D Systems, Minneapolis), according to the manufacturer’s 

protocol. Conditioned medium (CM) of K562 and LAMA84 cells, treated with different 

concentration (10, 20, 40 μM) of Curcumin, transfected or not with miR-21 mimic or 

inhibitor, was collected from cells after 24 hours of incubation. Moreover, CM of K562 and 

LAMA84 cells,  treated with 1 μM GW4869 or cotreated with Curcumin and 1 μM GW4869, 

were also collected from cells after 24 h of incubation. VEGF protein levels were measured in 

CM aliquots (purified by centrifugation in order to remove cellular debris) using an ELISA kit 

(Invitrogen Carlsbad, California, USA), according to the manufacturer’s protocol.  
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K562 and LAMA84 cells, treated with (20, 40 μM) Curcumin, transfected or not with miR-21 

mimic or inhibitor, were collected and opportunely lysated. K562 and LAMA84 cells, treated 

with 1 μM GW4869 and/or cotreated with Curcumin and 1 μM GW4869, were also collected 

and lysated after 24 hours of incubation. An ELISA assay (Invitrogen, Carlsbad, California, 

USA) was performed in order to quantify pAKT levels, according to the manufacture’s 

protocol: specifically, was used AKT1 (pS473) ultrasensitive ELISA kit, that allows to quantify 

the level of AKT1 protein that is phosphorylated at 473 serine residue. To normalize the 

sample for the total AKT1 amount, we used an AKT1 (total) ELISA kit (Invitrogen, Carlsbad, 

California, USA). 

CM of HUVECs, transfected or not with miR-21 mimic or inhibitor, and treated with 20 and 

50 μg/ml of Curcu-exosomes and control exosomes, was collected from the cells after 6 

hours of incubation in order to measure IL8 levels. CM aliquots were then centrifuged to 

remove cellular debris and IL8 protein levels were measured using an ELISA kit (Invitrogen 

Carlsbad, California, USA), according to the manufacturer’s protocol.  

Western blot  

After protein extraction with Laemmly lysis buffer, equal amount of proteins (50µg) of every 

samples were subjected to SDS-PAGE electrophoresis on Bolt™ 4-12% Bis-Tris Gels / MES 

running buffer System (Invitrogen, Carlsbad, California, USA), according to the manufacture’s 

protocol. Immunoblotting was performed for 1 hour at constant 50 Volt on nitrocellulose 

membrane (Hybond-ECL, Amersham Bioscience, Little Chalfont, UK). The membrane was 

probed overnight at 4°C with specific primary antibodies: Alix, TSG101, PTEN, AKT, pAKT, 

Bcr-Abl, MARCKS and actin (Cell Signaling Technology, Beverly, MA). Immunocomplexes with 

appropriate HRP-linked secondary antibody were detected by the enhanced 

chemiluminescence detection system (Super Signal, Pierce, Rockford, IL, USA). K562 or 

LAMA84 cells (5 × 106) were incubated with 20 and 40 μM Curcumin or DMSO for 24 hours 

(negative control). HUVECs were incubated, for 24 hours, with 20μg/ml of exosomes derived 

from K562 treated or not with 20μM of Curcumin. 

Motility assay  

K562 and LAMA84 cells, treated or not with 20, 40 μM Curcumin, were suspended in serum-

free RPMI 1640 medium supplemented with 0.1% BSA in transwells with 8 μm pore filters 
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and exposed to complete RPMI 1640 as chemoattractant, for 24 hours. Some samples were 

cotreated with 20, 40 μM Curcumin and 1 μM GW4869. After incubation, cells migrated in 

the bottom wells were counted. HUVECs treated with 20 and 50 μg/ml of Curcu-exosomes 

were also suspended in serum-free RPMI 1640 medium supplemented with 0.1% BSA in 

transwells with 8 μm pore filters and exposed to complete RPMI 1640 as chemoattractant 

for 6 hours. After incubation, cells migrated in the bottom wells were counted.  

Colony formation assay  

K562 or LAMA84 cells were seeded in 6-well (2000/ml/well) in Iscove’s methicellulose 

medium (Methocult H4230, Stem Cell Technologies, Vancouver, Canada) containing or not 

different concentration of Curcumin (10, 20, 40 μM). After 7 days of culture, K562 and 

LAMA84 colonies were observed by phase-contrast microscopy and photographed. The 

number and area of ten colonies per condition were measured with the IMAGE-J software 

(http://rsbweb.nih.gov/ij/).  

 

Transendothelial migration assay 

The transendothelial permeability of HUVECs monolayers was evaluated using Transwell 

polycarbonate insert filters (Corning, Little Chalfont, UK pore size 0.4 μm). HUVECs were 

grown as a tight monolayer and treated for 3 and 6 hours with Curcu-exosomes and 

exosomes released by control cells. FITC-dextran (500 kDa, Sigma) was added at cell 

monolayers in 200 μl of culture medium for 30′. Samples were removed from the lower 

chamber for fluorescence measurements using Glomax.  

Moreover, HUVECs monolayer were grown in the upper well of transwells coated with type I 

collagen, with 8 μm pore filter and incubated with different amount of LAMA84 exosomes 

(10–50 μg/ml). After incubation for 18 hours, LAMA84 cells were added and transmigration 

of the cells was evaluated after other 18 hours by counting the LAMA84 cells in the bottom 

well. 

HUVEC tube formation on Matrigel  

Matrigel was used to test the effects of exosomes on the in vitro vascular tube formation. 

Exosomes released by K562 and LAMA84 cells treated or not with Curcumin (20 μM), were 

added to HUVECs plated on Matrigel in endothelial basal medium containing 0.2% of FBS as 



29 
 

indicated. Cells were incubated for 3 hours and then evaluated by phase-contrast 

microscopy and photographed. 

Immunofluorescence analysis  

Confluent HUVEC monolayers were grown on coverslips coated with type I collagen 

(Calbiochem, Darmstadt, Germany) and were treated with 50 μg/ml of LAMA84 exosomes or 

low serum medium for 24 hours. After incubation, cells were processed as previously 

described by our group [7]; briefly, cells were fixed in 3.7% paraformaldehyde followed by 

permeabilization with 0.1% Triton X-100 for 3 min. Incubation with anti-CXCL12 (1:100; Cell 

Signalling Technologies) was performed in PBS 1% BSA overnight at 4°C. After incubation, 

cells were stained with Texas Red-conjugated secondary anti mouse antibodies (1:100; 

Molecular Probe, Eugene, OR) and analysed by confocal microscopy (Leica TSC SP8). 

Confluent HUVEC monolayers grown on coverslips coated with type I collagen were treated 

also with 20 μg/ml of CML Curcu-exosomes, control exosomes or low serum medium for 6 

hours. After incubation, cells were processed as previously described92. Antibodies used in 

these experiments were anti-RhoB (1:100; Novus), anti-ZO1 (1:100; Santa Cruz technology) 

and anti VE-Cadherin (1:100; Santa Cruz technology). Cells were stained with Texas Red-

conjugated secondary anti mouse antibodies (1:100; Molecular Probe, Eugene, OR) and 

analysed by confocal microscopy (Nikon A1).  

FACS analyses  

VCAM1 expression on HUVECs cell membrane was determined by flow cytometry analysis. 

HUVECs transfected or not with miR-126 mimic or inhibitor were incubated for 6 hours or 

overnight with 20 μg/ml of LAMA84-exosomes in a low serum medium (EGM:RPMI, 1:9). 1 

x106 of HUVECs were washed in PBS and incubated with 20 μl of anti-VCAM1-PE antibody 

(BD Biosciences, Mountain View, CA, USA) for 15 minutes at 4°C according to manufacturer’s 

instructions. Isotype matched irrelevant antibodies were used as a negative control. Viable 

cells were gated by forward and side scatter and analysis was performed on 100,000 

acquired events for each sample. Expression of HUVECs intracellular RhoB was also 

determined by flow cytometry analysis. HUVECs, transfected or not with miR-21 mimic and 

inhibitor, were treated with 20 μg/ml of K562 exosomes treated or not with Curcumin for 6 

h. After treatment, the cells were centrifuged for 5 min at 300 × g and washed with PBS/ 
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BSA. 100 μl of Fixation buffer (reagent A of Leucoperm, AbDSerotec) was added for 15 min 

at room temperature, then the cells were washed in PBS/BSA and centrifuged for 5 min at 

300 × g. Cells were resuspended with 100 μl of permeabilization buffer (reagent B of 

Leucoperm, AbDSerotec). Soon after, a RhoB unconjugated primary antibody (Novus 

Biologicals) was added for 30 min at room temperature. Cells were washed with PBS/BSA 

and a FITC secondary antibody was added for 15 min. Stained cells were washed with 

PBS/BSA and analysed on a FACS Calibur (Becton Dickinson) using Cellquest software (BD 

Biosciences, NJ, USA).  

Proteomic analyses: Sample preparation, SWATH-MS and data analysis  

250 μg of exosomes released by curcumin-treated and control K562 cells were subjected to 

in-solution digestion using 50% 2,2,2-trifluoroethanol (TFE) in PBS, as previously described 

(Principe et al), with some modifications. Briefly, after 2 minutes sonication in an ice bath, 

exosomes were incubated with constant shaking for 2 h at 60°C; extracted exosomal 

proteins were reduced with 5 mM DTT for 30′ at 60°C, alkylated with 25 mM iodoacetamide 

(IAA) for 30′ in the dark at room temperature and digested for 18 hours adding trypsin at a 

ratio of 1:50 (w/w). After stopping digestion, extracted peptides were desalted using C18 

Macrospin columns, dried and resuspended in 5% acetonitrile (ACN)/H2O (5:95, v/v) 

containing 0.1% formic acid (FA). A pool containing an equal amount of all three samples has 

been prepared to generate the spectral reference library for SWATH-MS analysis.  

All the analyses were performed using a Triple TOF 5600 Plus System (AB Sciex, Framingham, 

U.S.A.) equipped with an Eksigent ekspert nano LC 425 system. After being cleaned and pre-

concentrated on a C18 reverse-phase trap column, employing a mobile phase, from loading 

pump, containing 0.1% v/v FA in water at a flow rate of 5 μl/min, peptides were separated 

on the C18 analytical column, equilibrated at 40°C with a solvent A (0,1% FA in water), at a 

flow rate of 300 nL/ min, using a 100 min gradient method: (10–40% solvent B over 60 min, 

40–70% solvent B over 15 min; 70–95% solvent B over 1 min, hold solvent B at 95% for 5 

min, 95–10% solvent B in 1 min and hold solvent B at 10% for remaining 18 min. The solvent 

B was 98% ACN and 0,1% FA. To generate the spectral reference library, the pooled sample 

was subjected to traditional Information Dependent Acquisition (IDA). The mass 

spectrometer was operated such that an MS scan (400–1250 m/z; accumulation time 250 

ms) analyzed TOF in high resolution mode (> 30,000), followed by 50 MS/MS scans (230–
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1500 m/z, accumulation time 65 ms) analyzing TOF in high sensitivity mode (resolution > 

15,000) with rolling collision energy. For fragmentation, precursors, with charges from 2 to 

5, were selected if exceeding a threshold of 100 counts per second (cps); former ions were 

excluded for 12s. The IDA file was submitted to Protein Pilot™ 4.5 software (AB SCIEX, 

Toronto, Canada) using Uniprot as human protein database. The search was performed with 

the following settings: identification as sample type, iodoacetamide cysteine alkylation, 

digestion by trypsin; no special factors; run of false discovery rate analysis; protein pilot 

score > 0.05 with a 10% confidence threshold.  

For SWATH acquisition, peptides were analysed in SWATH-MS mode. At a cycle time of 2s, 

50 ms TOF/MS survey scan was performed between 400– 1250Da with 34 × 25 Da swath. 

Each SWATH MS/MS acquisition was performed between 230–1500 Da using a 76 ms 

accumulation time. Data from three independent experiments were acquired for each 

sample. The SWATH files were processed by Peak View v2.2 and Marker View. In Peak View 

they were analyzed using the following parameters: 10 peptides; 7 transitions; peptide 

confidence threshold of 90%; FDR threshold of 5%; exclusion of modified peptides; XIC 

Extraction Window of 15 min; XIC width set at 75 ppm. Protein list with FDR lower than 5% 

was exported to Marker View for statistical data analysis. Gene ontology and pathway 

analyses were performed using iPathway Guide (http://www.advaitabio.com/ 

ipathwayguide). 

Ethics statement  

All animal experiments were conducted following the University of Palermo and Italian 

Legislation for Animal Care.  

CML mouse xenograft  

Male SCID mice four-to-five week old were obtained from Charles River (Charles River 

Laboratories International, Inc., MA, USA) and acclimated for a week. Mice received 

sterilized diet and filtered water ad libitum. Animals were observed daily and clinical signs 

were noted. Mice were randomly assigned to six groups of five each. Each mouse was 

inoculated subcutaneously (sc) in the right flank with viable single cells (2 × 107) suspended 

in 0.2 ml of PBS. Mice were treated every day, per os, for 2 weeks, with 2 mg of Curcumin or 

vehicle (corn oil) as control and no adverse reaction was observed in all mice following 
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administration of this dose of Curcumin or corn oil. One week after the last day of 

treatment, mice were sacrificed, tumours were removed and measured and plasma 

exosomes were purified. Blood was collected by post-mortem cardiac puncture into blood 

collection tubes, centrifuged at 850 × g for 20 min at 20°C and the supernatant (plasma) was 

collected. Plasma was centrifuged at 3000 g for 15′ at 4°C, at 10.000 g for 30′. The tumour 

weights were calculated assuming that 1mm3 = 1mg. Tumour volume was evaluated by 

caliper using the formula: L × W2/2 = mm3 where L and W are the longest and shortest 

perpendicular measurements in millimeters, respectively.  

RNA isolation from exosomes released in mice plasma  

Exosomal RNA from prefiltered plasma was isolated through exoRNeasy kit (Qiagen Hilden, 

Germany) according to the manufacturer’s protocol. mir-21 levels were tested by miScript 

PCR System (QIAGEN, Hilden, Germany) following RNA extraction from 500 μl of plasma 

collected from mice treated with Curcumin and control mice, treated with vehicle (corn oil). 

Matrigel plug assay  

Four weeks old BALB/c mice (Charles River Laboratories International, Wilmington, MA) 

were injected subcutaneously with 200 μl Matrigel (BD Biosciences Pharmingen, San Diego, 

CA) containing 100 μg of K562 and LAMA84 cells-derived exosomes treated or not with 

Curcumin or PBS (negative control). After 4 weeks the plugs were removed and the degree 

of vascularization was evaluated through determination of hemoglobin content using the 

Drabkin method (Drabkin’s reagent kit)54.  
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CHAPTER 3 

 
 

Results 
 

 

3.1  Exosomal shuttling of miR-126 in endothelial cells modulates adhesive 

and migratory abilities of chronic myelogenous leukemia cells 

 

HUVECs internalize LAMA84 exosomes 

LAMA84 cells are able to release nanovesicles into the culture medium, that we 

isolated on a sucrose gradient and characterized as exosomes, as previously demonstrated 

from our group72. The uptake of isolated exosomes by endothelial cells was examined by 

labelling exosomes with PKH-26: HUVECs treated with LAMA84 exosomes, internalized 

exosomes in a time and dose-dependent manner (Figure 1, panel a). 

As shown in Figure 1a, exosomes are rapidly internalized into HUVECs at 37°C and localized 

in the perinuclear compartment after 4 hours of incubation. However, is shown that the 

uptake of exosomes in HUVECs was blocked by incubation at 4°C (Figure 1, panel a) or by 

treatment with 50 μM of EIPA (Figure 1, panel b), a well-known blocker of 

macropinocytosis94, thus supporting the hypothesis that exosomes internalization could be 

performed by endocytosis45,75. 

 

LAMA84 exosomes transport miRNAs 

It has been described that exosomes contain coding and non-coding RNA molecules, 

among which miRNAs49. Interestingly, Bioanalyzer analysis of RNAs isolated from exosomes 

released by LAMA84 showed the abundance of short RNAs, such as miRNA population49. 

Thus, we performed a TaqMan low-density miRNA array in order to determine an exosomal 

profile of miRNAs with known functions. This experiment helped us to identify significative 

differences of expression of selected miRNAs in exosomes versus parental LAMA84 cells. 

With this high-throughput technique we were able to identify 200 miRNAs: 76 miRNAs were 
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only expressed in LAMA84 parental cells (38%), 18 miRNAs were expressed only in LAMA84 

exosomes (9%) and 106 miRNAs were differentially expressed between LAMA84 exosomes 

and LAMA84 cells (53%). All together, these data showed that LAMA84 exosomes contain 

124 miRNAs and support the idea of a selective sorting of miRNAs into the exosomes. After a 

bioinformatic analyses we selected miR-18b as stable endogenous control for miRNAs 

normalization since it showed no statistical variation of expression between cells and 

exosomes. Moreover, comparable data were obtained using RNU6, a well-known small 

nuclear RNA used for miRNAs normalization in different experimental models. Comparing 

exosomal versus LAMA84 parental cells miRNAs, we identified 89 miRNAs with increased 

level (FC > 2) and 17 miRNAs with decreased level (FC < 0.5). 

Our research group had previously demonstrated that LAMA84 exosomes stimulate 

angiogenesis, both in vitro and in vivo72. Now we focused our attention on miRNAs related to 

angiogenic pathway, specifically miR-126 which we found enriched in LAMA84 exosomes 

with respect to LAMA84 parental cells. This data was further validated by miRNA expression 

in a single qPCR assay. 

 

Exosome-mediated shuttling of miR-126 into endothelial cells 

In order to demonstrate, the uptake of miR-126 derived from LAMA84 exosomes, in ECs, 

we treated HUVECs with different amount (20–50 μg/ml) of LAMA84 exosomes and, after 24 

hours we analysed the levels of expression of miR-126 in HUVECs. miR-126 was up-regulated 

in a dose-dependent manner compared with untreated cells, as reported in Figure 2a. 

In order to exclude the hypotheses that LAMA84 exosomes could induce, in HUVECs, the 

expression of endogenous miR-126, we quantified the expression of precursor miR-126 (pre-

miR-126) in ECs through qPCR. As reported in Figure 2b, we found no significant difference 

of pre-miR-126 expression level after treatment of ECs with 20–50 μg/ml of LAMA84 

exosomes. 

In order to confirm and visualize the transfer of exosomal miR-126 into HUVECs, LAMA84 

cells were before transfected with Cy3-labeled pre-miR-126 and then co-cultured with 

HUVECs in transwells. Cy3-miR-126 signals were detected in HUVECs cytosol after 24 hours 

of co-culture (Figure 2 panel c). On the contrary, we did not detect red fluorescence in 

HUVECs co-coltured with LAMA84 cells treated with 1–5 μM of GW4869, a neutral 
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sphingomyelinase (nSMase) 2 inhibitor, also well-known as exosome release inhibitor37, and 

with untransfected LAMA84 cells (Figure 2 panel c).  

 

Exosomal miR-126 targets CXCL12 and VCAM 3’-UTR mRNA in HUVECs 

Bioinformatic analyses showed that both VCAM1 and CXCL12 could be considered 

predictive mRNAs target of miR-126. We confirmed that LAMA84 exosomes-derived miR-126 

binds the 3’ UTR of CXCL12 mRNA using a Firefly/Renilla Duo-Luciferase reporter vector 

(pEZX-MT01), which has the 3’UTR of CXCL12 cloned downstream of the firefly luciferase 

gene (Figure 3a) (CXCL12-pEZX). 

Interestingly, the firefly luciferase activity was decreased around 50% when HUVECs 

transfected with CXCL12-pEZX were incubated with 50 μg/ml of LAMA84 exosomes, 

compared with untreated HUVECs transfected with this vector (Figure 3b). The transfection 

of miR-126 mimic into HUVECs, containing CXCL12-pEZX, reduced the activity of firefly 

luciferase around 45% compared with untransfected HUVECs, similarly to LAMA84 exosomes 

treatment. On the contrary, we assessed an increased firefly luciferase activity when HUVECs 

containing CXCL12-pEZX were transfected with miR-126 inhibitor. The treatment of CXCL12-

pEZX transfected HUVECs with LAMA84 exosomes, after silencing of miR-126, reverted the 

increased luciferase activity (Figure 3b).  

Similar results were obtained when HUVECs were transfected with a Firefly/ Renilla Duo-

Luciferase reporter vector (pEZX-MT01) containing the VCAM1 3’UTR mRNA downstream of 

luciferase gene (Figure 3c-d). These data support the idea that exogenous miR-126 carried by 

exosomes keeps its biological functions in target HUVECs. 

 

LAMA84 exosomes modulate CXCL12 expression in endothelial cells 

We assessed the inhibitory effect of miR-126 on CXCL12 expression at both mRNA and 

protein level. Through qPCR analysis, we demonstrated that the treatment of HUVECs with 

LAMA84 exosomes, for 24 hours, caused a decrease in CXCL12 transcript in a dose-

dependent manner, specifically of 60% and 75% in HUVECs treated with 20 and 50 μg/ml of 

exosomes respectively (Figure 4a). 

These data were confirmed also at protein level with an ELISA assay: treatment of HUVECs 

with LAMA84 exosomes, for 24 h, caused a dose-dependent decrease of CXCL12 protein in 
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HUVEC conditioned medium (Figure 4b). The results were also confirmed by 

immunofluorescence assays (Figure 4c). 

In order to confirm the function of miR-126 delivered by LAMA84 exosomes in endothelial 

cells, we performed an ELISA assay of conditioned medium of HUVECs transfected with    

mir-126 inhibitor or mimic and then treated with different amounts of LAMA84 exosomes.  

We demonstrated, by ELISA assay, that the inhibition of miR-126 levels in HUVECs increased 

the protein level of CXCL12 in conditioned medium and reversed the effects of LAMA84 

exosomes treatment (Figure 4d); in contrast, the overexpression of miR-126 in HUVECs led 

to a significantly decreased CXCL12 protein in conditioned media and enhanced the effect of 

exosomes (Figure 4e). Taken together, our data indicate that the LAMA84 exosomes 

treatment induce a dose and time-dependent regulation of CXCL12 expression in HUVECs, 

confirmed by the study of gain and loss of function for miR-126. 

 

LAMA84 exosomes modulate VCAM1 expression in HUVECs 

Bioinformatic analysis revealed VCAM1 3’-UTR mRNA as a predictive target of miR-126; 

thus, through qPCR analysis, we evaluated if the treatment of HUVECs with LAMA84 

exosomes induce a modulation of VCAM1 mRNA expression. Interestingly, LAMA84 

exosomes induce, in dose dependent manner, VCAM1 mRNA expression up to 12 hours of 

treatment while there was a decrease in VCAM1 mRNA levels at later time points, suggesting 

a time-dependent regulation of VCAM1 expression (Figure 5a). 

We demonstrated that VCAM1 mRNA expression increased 3 fold in HUVECs transfected 

with miR-126 inhibitor (2’-OMemiR-126) compared with untransfected cells (Figure 5b). 

VCAM1 mRNA expression was not affected by the increase of miR-126 mimic, as shown in 

Figure 5c. FACS analyses shown that the VCAM1 protein level expressed in HUVEC surface 

decreased after 24 hours of treatment with 20 μg/ml of exosomes (Figure 5d) compared 

with control cells. HUVECs transfected with 2-Ome-miR-126 showed an increase of VCAM1 

localization on the cell surface and reversed the effect of exosomes (Figure 5d). On the 

contrary, the treatment with LAMA84 exosomes (20 μg/ml) of HUVECs control and 

transfected with miR-126 mimic did not further affect VCAM1 protein expression compared 

with HUVECs only transfected with miR-126 mimic (Figure 5d). This is probably due to the 

presence of  small amount of VCAM1 in the HUVEC surface after treatment with exosomes, 

carrying miR-126, or in HUVECs transfected with miR-126 mimic does not allow observation 
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of a further VCAM1 inhibition. Altogether, our data indicate that the LAMA84 exosomes 

treatment induces a dose and time-dependent regulation of VCAM1 expression in HUVECs, 

confirmed also by the study of gain and loss of function for miR-126. 

 

miR-126 delivered by exosomes reduces LAMA84 cells migration 

Cell migration is a crucial step for several biologic events including leukemic blasts 

mobilization from bone marrow. In order to investigate if LAMA84 exosomes have a role also 

in the modulation of leukemic cell migration we analysed the effects of conditioned medium 

(CM) from HUVECs treated with LAMA84 exosomes (10–50 μg/ml) on LAMA84 cells motility. 

LAMA84 cells migration towards HUVEC conditioned medium, for 24 hours, decreased in a 

dose dependent manner, as shown in figure 6. LAMA84 cells were unable to migrate 

towards HUVEC conditioned medium in less than 18 hours. 

We obtained similar results when we used conditioned medium from HUVECs transfected 

with mir-126 mimic, while the silencing of miR-126 in HUVECs increased LAMA84 cells 

migration compared with untransfected cells (Figure 6). The use of a CM, from exosome-

treated and miR-126 inhibitor transfected HUVECs, enhanced the LAMA84 cells motility 

compared with untransfected endothelial cells (Figure 6). 

On the contrary, CM from HUVECs, transfected with miR-126 mimic and treated with 

LAMA84 exosomes, showed a slight modulation of LAMA84 cells motility (Figure 6), likely 

because the overexpression of miR-126 could not be further affected by the amount of 

miRNA shuttled by exosomes. These results suggest that miR-126 shuttled by LAMA84-

exosomes affected LAMA84 cells migration. 

 

miR-126 shuttled by exosomes modulates LAMA84 cells adhesion on HUVECs 

In order to better understand the biological consequences of VCAM1 downregulation, we 

performed an adhesion assay. Specifically, to evaluate if LAMA84 exosomes treatment of 

HUVECs induces a time-dependent modulation of LAMA84 cells adhesion on HUVECs 

monolayer, we performed a time-course adhesion assay. As showed in Figure 7a the 

adhesion of LAMA84 cells on HUVECs monolayer increased up to 12 hours compared with 

control HUVECs while we observed a decreased ability to adhere to endothelial monolayer 

after 24 hours of pre-treatment with LAMA84 exosomes. 
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HUVECs transfected with mir-126 mimic decreased the leukaemia cell adhesion (Figure 7b) 

while the silencing of miR-126 in HUVECs reversed the effect of exosomes and restored the 

adhesion of LAMA84 cells on HUVECs monolayer (Figure 7c).  

 

Effect of miR-126 shuttled by exosomes on transendothelial migration of LAMA84 cells 

In order to investigate, in vitro, whether the modulation of CXCL12 and VCAM1 expression 

by miR-126 contained into LAMA84 exosomes could play an important role in leukemic 

blasts mobilization from the bone marrow, a transendothelial migration assay was 

performed. HUVECs monolayer were treated with different amount (10, 20, 50 μg/ml) of 

LAMA84 exosomes for 6, 12 and 24 hours. Interestingly, transendothelial migration of 

LAMA84 cells toward a complete medium (used as chemoattractant) decreased when 

HUVECs were treated with exosomes for 6 hours and markedly increased when HUVECs 

were treated with exosomes for 24 hours, as shown in Figure 8. 

 

 

3.2  Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells 

growth: a possible role for exosomal disposal of miR-21 

 

Characterization of exosomes released from K562 and LAMA84 cells after treatment with 

Curcumin  

Chronic myelogenous leukemia cell lines (K562 and LAMA84) were treated with different 

concentrations (5–40 μM) of Curcumin for 24 hours. Cells viability was evaluated by MTT 

assay. The results showed that 40 μM Curcumin slightly inhibits cell proliferation (about 

25%), compared to control cells (DMSO 0.001%) (Figure 9a-b). Nanovesicles released from 

K562 and LAMA84 cells treated with Curcumin were isolated on a sucrose gradient and 

characterized as exosomes through biochemical and dimensional analysis: nanovesicles were 

analysed by Western blotting (Figure 9c-d) using antibodies specific for Alix and TSG-101, 

well known exosomal markers; DLS (dynamic light scattering) analyses indicated that 

isolated exosomes had an average hydrodynamic diameter of about 100 nm, in agreement 

with literature data (Figure 9e). 

 

Curcumin decreases miR-21 levels in CML cells  
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The treatment of K562 and LAMA84 with Curcumin causes, as demonstrated by qPCR 

assay, a 50% reduction of cellular miR-21, as compared to DMSO treated cells (Figure 10a-b). 

Interestingly, miR-21 was enriched in exosomes released by K562 and LAMA84 cells, after 

treatment with 20 and 40 μM of Curcumin (Figure 10a-b). 

In order to investigate if Curcumin modulated miR-21 expression or induced a selective 

packaging of miR-21 in exosomes, K562 and LAMA84 cells were cotreated with 20–40 μM 

Curcumin and 1 μM of GW4869, a neutral sphingomyelinase (nSMase) 2 inhibitor, also well-

known inhibitor of exosomes release37,95. GW4869 induced an increase of miR-21 in K562 

(Figure 11a) and LAMA84 (Figure 11b) cells compared with K562 and LAMA84 cells treated 

with Curcumin, the cotreatment with GW4869 and Curcumin partially reversed this effect, as 

shown in Figure 11. 

Moreover, in order to exclude the hypothesis that Curcumin treatment of K562 and LAMA84 

cells could directly modulate miR-21 expression, we evaluated, through qPCR, the levels of 

miR-21 precursor (pre-miR-21) both in K562 and LAMA84 cells. As shown in Figure 12, we 

found no significant difference of pre-miR-21 expression level in K562 (Figure 12a) and 

LAMA84 cells (Figure 12b) in the different experimental conditions. 

 

MiR-21 targets PTEN 3′-UTR mRNA  

Bioinformatic analysis indicates PTEN as a predictive target of miR-21. In NSCLC cells it has 

been showed that Curcumin exerts an anticancer effect associated to an inhibition of miR-21 

and concomitant upregulation of PTEN96. In our system, we confirmed that miR-21 binds 

directly to PTEN 3′ UTR mRNA using a Firefly/Renilla Duo-Luciferase reporter vector (pEZX-

MT01), where the 3′ UTR of PTEN was cloned downstream of the firefly luciferase gene 

(PTEN-pEZX). K562 cells incubated with 20 and 40 μM Curcumin and transfected with this 

reporter vector showed an increased firefly luciferase activity compared with untreated cells 

(Figure 13a) transfected with PTEN-pEZX. K562 cells cotransfected with miR-21 inhibitor and 

PTEN-pEZX showed an increased activity of firefly luciferase respect to untransfected K562 

cells, similarly to Curcumin treatment. On the contrary, luciferase activity decreased when 

K562 cells, containing the reporter vector, were transfected with miR-21 mimic.  

In order to confirm that the effect of Curcumin on the decrease of miR-21 is related to an 

selective exosomal disposal, we performed a cotreatment of K562 cells with 1 μM GW4869 

and 20 and 40 μM Curcumin. We demonstrated that GW4869 reduced the luciferase activity 
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in PTEN-pEZX transfected K562 cells compared with control cells, as showed in Figure 13a. 

The cotreatment with 1 μM GW4869 and 20 and 40 μM Curcumin caused an increase of 

luciferase activity in PTEN-pEZX transfected K562 (Figure 13a) with respect to PTEN-pEZX 

transfected K562 cells treated with GW4869 alone. Similar results were obtained in LAMA84 

cells (Figure 13b). These data indicate that Curcumin caused a decrease of miR-21, in K562 

and LAMA84 cells, and consequently an increase of PTEN, its direct target.  

 

Curcumin induces PTEN expression in CML cells  

Our data showed that also in our model, miR-21 targets the 3′ UTR of PTEN mRNA. 

Quantitative PCR analysis demonstrated that Curcumin treatment of CML cells, for 24 hours, 

caused a dose-dependent increase of PTEN mRNA (Figure 14a). Specifically, PTEN mRNA 

levels increase of 2,5 and 4 fold in K562 and LAMA84 cells after treatment with 20 and 40 

μM of Curcumin, respectively (Figure 14a). These results were confirmed also at protein level 

through western blotting analysis; addition of Curcumin to CML cells, for 24 h, caused a 

dose-dependent increase in PTEN protein in K562 and LAMA84 cells lysate (Figure 14b). 

In order to confirm the effect of Curcumin on the selective sorting of miR-21 into the 

exosomes, we performed a cotreatment of CML cells with 1 μM GW4869 and 20 μM 

Curcumin. As showed in Figure 15a and b, GW4869 blocks the upregulation of PTEN 

mediated by Curcumin in K562 and LAMA84 cells both at mRNA and protein levels. 

 

To further evaluate the role of miR-21 in the modulation of PTEN levels we knocked down 

miR-21 in CML cells using the miR-21 inhibitor (2′-OMe-miR-21). After evaluation of 

transfection efficiency of miR-21 inhibitor or mimic in K562 and LAMA84 cells through qPCR, 

we observed that the inhibition of miR-21 increases PTEN mRNA expression in both cell lines 

(Figure 16). On the contrary, the addition of miR-21 mimic caused, as expected, a decrease 

of PTEN expression (Figure 16).  In order to evaluate, in K562 and LAMA84 cells, if the 

downregulation of PTEN expression in miR-21 mimic transfected cells was reverted after the 

addition of Curcumin, we treated the miR-21 mimic transfected CML cells with 20 μM of 

Curcumin. As shown in Figure 16 (black bars with white dots), Curcumin counteracted the 

effect of the transfection with miR-21 mimic, decreasing the expression of PTEN mRNA. On 

the contrary in K562 and LAMA84 cells transfected with miR-21 inhibitor and treated with 
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Curcumin, we observed a higher increase of PTEN mRNA expression than CML cells 

transfected with miR-21 inhibitor alone (Figure 16, white bars). 

Our data suggest that Curcumin treatment in CML cells induces a decrease of mir-21 

mediated by exosomes sorting that, in turn, causes the modulation of PTEN expression, 

confirmed by the study of gain and loss of function for miR-21. 

 

Curcumin modulates AKT phosphorylation in CML cells  

It is demonstrated that PTEN is involved in the phosphatidylinositol 3-kinase (PI3K)/AKT 

transduction signalling pathway, downregulating AKT phosphorylation.  

To elucidate the effect of Curcumin treatment, in CML cells, on AKT pathway, we observed, 

through ELISA assay, that the addition of Curcumin, for 24 h, caused a dose-dependent 

decrease of AKT phosphorylation in CML cells, as shown in Figure 17a and b. In order to 

support our hypothesis that the decrease of miR-21 was related to a selective packaging of 

this miRNA into CML exosomes, we treated leukemia cells with GW4869 1 μM and, as 

expected, this treatment caused an increase of AKT phosphorylation. Moreover, the 

cotreatement of CML cells with GW4869 1 μM and Curcumin 20–40 μM, reverted the effects 

of Curcumin (Figure 17a-b). 

 

The role of miR-21 was further evaluated by performing an ELISA assay for AKT 

phosphorylation of CML cells lysates, after transfection with an inhibitor or mimic of miR-21 

(Figure 18a-b). MiR-21 expression was knocked down in CML cells using the miR-21 inhibitor 

(2′-OMe-miR-21), as demonstrated with real time PCR assay. We observed that the inhibition 

of miR-21 in CML cells decreased the AKT phosphorylation similar to Curcumin treatment. In 

contrast, the overexpression of miR-21 in CML cells increased AKT phosphorylation (Figure 

18a-b). Quantitative PCR analysis shows the overexpression efficiency of miR-21, in CML cells 

transfected with miR-21 mimic. 

Our results suggest that Curcumin treatment induces in CML cells, a dose-dependent 

regulation of AKT phosphorylation, confirmed by the study of gain and loss of function for 

miR-21.  

 

Curcumin modulates VEGF expression in CML cells  
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Several studies demonstrate that PTEN modulation of the PI3K/AKT signalling pathway is 

also related to a downregulation of expression of vascular endothelial growth factor 

(VEGF)97. In our experimental model, qPCR analysis demonstrated that Curcumin treatment 

of CML cells, for 24 hours, caused a dose-dependent decrease in VEGF mRNA. Specifically, 

50% decrease of VEGF mRNA levels was observed in both K562 and LAMA84 cells after 

treatment with 40 μM of Curcumin (Figure 19a). Transfection of miR-21 inhibitor (2′-OMe-

miR-21) in both CML cells, caused a decrease of VEGF mRNA expression similar to Curcumin 

treatment (Figure 19b). On the contrary, the transfection of miR-21 mimic increased VEGF 

mRNA expression, due to its effect on the induction of PTEN expression (Figure 19b). 

In order to investigate, in K562 and LAMA84 cells, if the effects of the transfection with miR-

21 mimic reverted after Curcumin treatment, we treated the miR-21 mimic transfected CML 

cells with 20 μM Curcumin. Interestingly, Curcumin treatment counteracted the effect of the 

transfection with miR-21 mimic, causing a decreased expression of VEGF mRNA, as shown in 

Figure 19b (white bars). In contrast, in K562 and LAMA84 cells transfected with miR-21 

inhibitor and treated with Curcumin, we observed a higher decrease of VEGF mRNA 

expression than CML cells transfected with miR-21 inhibitor alone (Figure 19b, white bars 

with black dots). 

 

In order to confirm the effects of Curcumin on VEGF protein level, we performed an ELISA 

assay on conditioned medium of K562 and LAMA84 cells treated both with 20 and 40 μM 

Curcumin, for 24 h. Curcumin treatment caused a dose-dependent decrease of VEGF 

released from CML cells (Figure 19c). We observed similar effects after transfection of     

miR-21 inhibitor in both CML cells, while the transfection of miR-21 mimic in K562 and 

LAMA84 cells induced an increase of secreted VEGF (Figure 19c). The effects of the 

transfection with miR-21 mimic reverted after the treatment with Curcumin (Figure 19c, 

white bars), causing a decrease of VEGF release. On the contrary in K562 and LAMA84 cells 

transfected with miR-21 inhibitor and treated with Curcumin, we observed a higher decrease 

of VEGF release than CML cells transfected with miR-21 inhibitor alone (Figure 19c, white 

bars with black dots).  

In order to support our hypothesis that the decrease of miR-21 was determined by a 

selective packaging of this miRNA in CML exosomes, we performed a cotreatment in both 



43 
 

K562 and LAMA84 cells with GW4869 1 μM and Curcumin 20–40 μM. As expected, GW4869 

abrogated the down regulation of VEGF by Curcumin in both CML cells (Figure 19d).  

 

Curcumin reduces colony  formation capability of CML cells 

Methocult colony formation assay shows that both K562 and LAMA84 cells, treated with 

Curcumin (20–40 μM), form colonies in methylcellulose with a smaller area compared to 

untreated cells (Figure 20a). This assay was also performed with K562 and LAMA84 cells 

transfected with miR-21 mimic or inhibitor.  K562 and LAMA84 cells transfected with miR-21 

mimic are able to form colonies greater compared to untransfected cells (Figure 20b), while 

transfection with miR-21 inhibitor reduces the colonies size with respect to control cells, 

similarly to Curcumin treatment.  

 

Curcumin reduces CML cells migration  

Cell migration is a crucial step for several biologic events including leukemic blasts 

mobilization from bone marrow. We evaluated the effect of Curcumin treatment (20–40 

μM) on K562 and LAMA84 cells motility. The addiction of Curcumin inhibited in a dose-

dependent manner, the motility of K562 and LAMA84 cells towards complete medium 

(Figure 21). Interestingly, the cotreatment with 20–40 μM of Curcumin and 1 μM GW4869 

reverted the effect of Curcumin, while the treatment with GW4869 alone increases the 

motility of CML cells. These results suggest that Curcumin affected migration of both CML 

K562 and LAMA84 cells. 

 

Curcumin inhibits Bcr-Abl expression in CML cells by increasing miR-196b levels  

BCR–ABL is an aberrant tyrosine kinase with constitutive activity that triggers several 

downstream pathways, thus inducing the enhanced survival and proliferation of CML cells.  

qPCR analysis shows that Bcr-Abl transcript levels decreased of about 20% and 45% in K562 

cells after treatment with 20 and 40 μM of Curcumin, respectively (Figure 22a). Similar data 

were obtained in LAMA84 cells treated for 24 hours with 40 μM of Curcumin. Western 

blotting analysis confirmed these results also at protein level, where the addition of 

Curcumin to both CML cells, for 24 hours, caused a dose-dependent decrease of Bcr-Abl 

protein (Figure 22b). In order to elucidate the biological mechanisms that causes Bcr-Abl 

decreased expression, we focused our attention on miR-196b, a microRNA that 
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bioinformatics algorithms shows to target Bcr-Abl. The addition of Curcumin in both K562 

and LAMA84 cells caused, as demonstrated by qPCR assay, an increase of cellular miR-196b, 

as compared to DMSO treated cells. In contrast, miR-196b levels was decreased in exosomes 

released by both CML cells after treatment with 20 and 40 μM of Curcumin (Figure 22c-d). 

These data suggested that Curcumin increased miR-196b cellular levels leading to a 

reduction of Bcr-Abl protein amount in CML cells.  

 

Anticancer effects of Curcumin in vivo  

In order to validate, in an in vivo model, our in vitro data, we evaluated the effects of 

Curcumin on a xenograft CML tumour model. K562 and LAMA84 cells were inoculated 

subcutaneously in SCID mice and subsequently treated every day, for 2 weeks, with 2 mg of 

Curcumin or vehicle control (corn oil). One week after the last day of treatment, mice were 

sacrificed, tumours were extracted and exosomes were isolated from mice plasma. 

Interestingly, mice treated with Curcumin had smaller tumours with respect to mice treated 

only with corn oil (Figure 23a-b). Moreover, we isolated exosomes released in the plasma of 

mice treated with Curcumin and control. qPCR analysis showed that exosomes released in 

the plasma of Curcumin treated mice were enriched in miR-21 with respect control mice 

(Figure 23c). 

Taken together, these results confirmed our hypothesis that the anticancer effects of 

Curcumin may occur through the miR-21 selective packaging in exosomes. 

 

 

3.3  Curcumin modulates chronic myelogenous leukemia exosomes 

composition and affects angiogenic phenotype, via exosomal miR-21 

 

Curcumin quantification in exosomes  

Exosomes released by K562 and LAMA84 cells treated (for 24 hours) or not with Curcumin 

(10, 20 and 40 μM), were purified from conditioned medium and isolated, as reported in the 

previous work69. Aliquots of samples were used in order to quantify Curcumin in exosomes 

by HPLC analysis.  

Table 1 shows the amount of Curcumin extracted from exosomes released by K562 and 

LAMA84 cells treated with different concentrations (10, 20 and 40 μM) of Curcumin. Values 
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are the mean ± SD of 3 samples. The results indicated that the Curcumin content in 

exosomes increased as a function of Curcumin concentrations added to both cell lines.  

 

Viability assay of HUVECs treated with Curcu-exosomes  

We demonstrated that exosomes released by CML cells after treatment, for 24 hours, with 

20 μM of Curcumin contain small amounts of Curcumin (Table 1). For HUVECs treatment we 

tested two different concentrations of Curcu-exosomes (20 and 50 μg/ml) and we selected 

the treatment with 20 μM of Curcumin because we previously demonstrated that these 

exosomes were particularly enriched in miR-2169. It was performed an MTT assay in order to 

analyse cells viability and results indicated that the addition of CML Curcu-exosomes and 

control exosomes did not affect the endothelial cells (ECs) viability (Figure 25).  

 

Uptake of Curcu-exosomes by HUVECs   

In order to evaluate the ability of ECs to uptake K562 Curcu-exosomes, we treated HUVECs 

with exosomes labeled with PKH-26, a lypophilic dye. We demonstrated that HUVECs are 

able to internalize K562 Curcu-exosomes but with a slower kinetic than K562 control 

exosomes (Figure 26). We obtained similar results after treatment of ECs with Curcu-

exosomes released by LAMA84 cells after Curcumin addition (data showed in the published 

paper70).  

 

Curcu-exosomes shuttled miR-21 into HUVECs  

In the previous work we demonstrated that the exosomes released by CML cells treated with 

Curcumin are enriched in miR-2169. In order to demonstrate the transfer of miR-21 in ECs, 

we treated HUVECs with 20 and 50 μg/ml of Curcu-exosomes released by K562 cells and, 

then, the expression levels of miR-21 were analyzed in HUVECs. As shown in Figure 27a, miR-

21 levels increased in HUVECs treated with Curcu-exosomes compared with untreated or 

treated with K562 control exosomes.  

Moreover, in HUVECs transfected with miR-21 inhibitor (2′-OMe-miR-21), we observed a 

decrease of miR-21 expression but the addition of Curcu-exosomes reverted this effect.  

In contrast, we showed that the increased level of miR-21 in HUVECs transfected with      

miR-21 mimic was further augmented after treatment with Curcu-exosomes (Figure 27a). In 

order to exclude the hypothesis that the addition of CML Curcu-exosomes, in HUVECs, could 
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induce the expression of endogenous miR-21, we evaluated also the levels of precursor   

miR-21 (pre-miR-21) through qPCR assay. Interestingly, we found no statistically significant 

difference of pre-miR-21 expression level after treatment of ECs with 20 and 50 μg/ml of 

K562 Curcu-exosomes, as shown in Figure 27b. We obtained similar results after the 

treatment of HUVECs with exosomes released by LAMA84 cells treated or not with Curcumin 

(data shown in the published paper70). 

 

MiR-21 targets RhoB 3′-UTR mRNA  

Bioinformatics analysis indicates that RhoB is a predictive target of miR-21. Moreover, 

is described that miR-21 overexpression affects endothelial organization into capillary like 

structures and cell migration91. 

We confirmed that miR-21 binds directly to RhoB 3′UTR mRNA using a Firefly/Renilla Duo-

Luciferase reporter vector (pEZX-MT01), where the 3′ UTR of RhoB was cloned downstream 

of the firefly luciferase gene (RhoB-pEZX). When HUVECs, transfected with reporter vector, 

were treated with Curcu-exosomes (20 μg/ml), we observed a decrease of the firefly 

luciferase activity compared with untreated cells or HUVECs treated with exosomes control 

(Figure 28). Interestingly, we demonstrated that the down regulation of miR-21 in HUVECs 

transfected with RhoB-pEZX and miR-21 inhibitor, increases the activity of firefly luciferase 

with respect to untransfected HUVECs. Moreover, treatment of HUVECs with K562 Curcu-

exosomes transfected with RhoB–pEZX and miR-21 inhibitor reverted the effect of miR-21 

inhibitor only. On the contrary, luciferase activity decreased when HUVECs containing the 

reporter vector were transfected with miR-21 mimic, similarly to the results obtained with 

the treatment with Curcu-exosomes. The treatment of HUVECs, transfected with RhoB–pEZX 

and miR-21 mimic, with Curcu-exosomes released by K562 cells, increased the effect of miR- 

21 mimic (Figure 28). We obtained similar effects in HUVECs, transfected with miR-21 mimic 

and inhibitor, treated with Curcu-exosomes released by LAMA84 cells (data shown in the 

published paper70). 

 

Treatment of HUVECs with Curcu-exosomes inhibited RhoB expression  

Since our results demonstrated that, in this experimental model, miR-21 targets directly the 

3′ UTR of RhoB transcript, we investigated if CML exosomes treatment could induce, in 

HUVECs, a modulation of RhoB mRNA expression. As expected, K562 Curcu-exosomes 
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caused a decrease of RhoB mRNA expression, as show in Figure 29a. In HUVECs transfected 

with miR-21 inhibitor, we observed a 3 fold increase of RhoB mRNA expression compared 

with untrasfected cells. The addition of Curcu-exosomes in HUVECs transfected with miR-21 

inhibitor reduced the effect of miR-21 inhibitor, leading to a decrease of expression of RhoB 

mRNA (Figure 29a). Transfection of HUVECs with miR-21 mimic decreased the amount of 

RhoB mRNA of about 60% (Figure 29a). The addition of Curcu-exosomes, in HUVECs 

transfected with miR-21 mimic, increased the downregulation of RhoB expression (Figure 

29a). We obtained similar results in HUVECs transfected with miR-21 mimic and inhibitor 

and treated with exosomes released by LAMA84 cells after Curcumin addition (data shown 

in the published paper70).  

According to these data, FACS analyses confirmed a decrease of RhoB expression also at 

protein level in HUVECs after Curcu-exosomes addition. Moreover, this effect was increased 

when HUVECs were transfected with miR-21 mimic. On the contrary, when HUVECs were 

transfected with miR-21 inhibitor, Curcu-exosomes addition reverted the decrease of RhoB 

expression (Figure 29b).  

Our results, confirmed by the study of gain and loss of function for miR-21, suggested that 

CML Curcu-exosomes treatment induces an exosome-mediated increase of miR-21 in 

endothelial cells that, keeping its biological functions in target cells, causes the modulation 

of RhoB expression (Figure 29a-b). 

 

Curcu-exosomes inhibited the migration of endothelial cells  

Angiogenesis is dependent on cell migration. In order to investigate, in HUVECs, the 

biological effects of RhoB inhibition, related to miR-21 shuttled by CML Curcu-exosomes, we 

evaluated the effect of Curcu-exosomes addition on HUVECs motility. As described, we 

observed that the treatment with CML exosomes increased the motility of ECs69. 

Interestingly, Curcu-exosomes addition is able to inhibit the motility of HUVECs, towards 

complete medium, in a dose-dependent manner. We obtained similar results after the 

transfection of miR-21 mimic in HUVECs treated with K562 exosomes (Figure 30). On the 

contrary, the transfection of miR-21 inhibitor induces, in HUVECs, an increased cell motility. 

However, the effects obtained after transfection with miR-21 mimic are more significant 

after the treatment with Curcu-exosomes (Figure 30), because of the stronger decrease of 

HUVECs motility with respect to the effects Curcu-exosomes alone. In contrast, in HUVECs 
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transfected with miR-21 inhibitor we observed an increase of cell motility, similar to the 

treatment with control exosomes. Moreover, the effects of miR-21 inhibitor transfection 

were reverted after the treatment with K562 Curcu-exosomes (Figure 30).  

 

Treatment of HUVECs with Curcu-exosomes modulated IL8 expression and secretion  

It is demonstrated that IL-8 have a crucial role in angiogenesis and in tumour 

progression. As previously showed, the treatment of HUVECs with CML-exosomes is able to 

increase IL-8 mRNA levels and this effect was reverted after treatment of ECs with Curcu-

exosomes (Figure 31a). These results were also confirmed at protein level evaluating, by an 

ELISA assay, the levels of IL-8 on conditioned medium of HUVECs treated with 20 and 50 

μg/ml of Curcu-exosomes and control exosomes; as expected, control exosomes treatment 

caused a dose-dependent increase of IL8 released from HUVECs, while this effect was 

reverted after treatment with Curcu-exosomes (Figure 31b). We obtained similar results in 

HUVECs treated with Curcu-exosomes released by LAMA84 cells (data shown in the 

published paper70).  

 

Treatment of HUVECs with Curcu-exosomes modulated VCAM1 expression  

As previously described by our research group, K562 and LAMA84 exosomes are able to 

induce VCAM1 expression after treatment of endothelial cells for 6 hours54. Here we showed 

that the addition of increasing concentration of exosomes released by CML cells to HUVECs 

caused, as expected, a dose-dependent increase in VCAM1 mRNA expression in endothelial 

cells, while the treatment with Curcu-exosomes reverted this effect (Figure 32a). Then, in 

order to evaluate VCAM1 expression at protein level, we performed a FACS analysis. We 

observed an increase of VCAM1 protein in HUVECs treated with control exosomes released 

by K562 cells while the treatment with Curcu-exosomes reverted this effect, with VCAM1 

expression levels comparable to the untreated cells (Figure 32b,c). We obtained similar 

results in HUVECs treated with Curcu-exosomes released by LAMA84 cells, both at mRNA 

and protein level (data shown in the published paper70). 

 

Curcu-exosomes inhibited in vitro and in vivo tube formation  

In order to evaluate the potential modulation of angiogenesis mediated by Curcu-exosomes 

in an in vitro model of angiogenesis, we analyzed the ability of HUVECs to form capillary-like 
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structures when plated on Matrigel. HUVECs maintained in low serum medium were unable 

to form a tube network while the addition of CML exosomes induced, as previously 

described by our research group, an endothelial network formation (Figure 33a)54. 

Interestingly, the treatment with Curcu-exosomes inhibited the development of capillary 

structures (Figure 33a, Curcu-Exo). 

Furthermore, a Matrigel plugs assay was performed in order to evaluate, in vivo, the 

angiogenic modulation of CML exosomes by examining the recruitment of vasculature into 

subcutaneously implanted Matrigel plugs containing CML exosomes54,98. The plugs 

containing control CML exosomes became more vascularized with respect to plugs with 

Curcu-exosomes (Figure 33b). This analysis was performed evaluating haemoglobin 

concentration in the Curcu-exosomes-containing implants in comparison with control 

exosomes-containing Matrigel plugs (Figure 33c). We obtained similar results with Curcu-

exosomes released by LAMA84 cells (data shown in the published paper70). 

According to these results, HUVECs treated with K562 control exosomes showed an increase 

in VEGFR mRNA expression levels respect to the addition of exosomes released by K562 

treated with Curcumin (Figure 33d) and LAMA84 cells (data shown in the published paper70).  

 

Effect of Curcu-exosomes on endothelial cell tight and adherent junctions  

In order to elucidate the effects of Curcu-exosomes on endothelial barrier stabilization, in 

particular on tight junctions, we analyzed by immunofluorescence, the localization of ZO1 in 

control HUVECs treated or not with Curcu-exosomes. The addition of 20 μg/ml of control 

exosomes caused a delocalization of ZO1 with respect to HUVECs control in which ZO1 was 

localized in plasma membrane. In HUVECs treated with 20 μg/ml of Curcu-exosomes 

released by K562 (Figure 34a) and LAMA84 (data shown in the published paper70) cells, we 

observed a localization of ZO1 in HUVECs plasma membrane similar to untreated cells. 

Moreover, we evaluated the effects of exosomes on the expression of endothelial specific 

transmembrane adhesion molecules, such as VE-Cadherin. Untreated HUVECs had a 

continuous peripheral VE-Cadherin staining, while the staining intensity decreased in 

HUVECs after treatment with 20 μg/ml of exosomes released by K562 (Figure 34b) and 

LAMA84 (data shown in the published paper70) cells. This destabilizing effect was reverted 

after treatment with Curcu-exosomes (Figure 34b), thus supporting our hypothesis that 

Curcu-exosomes are involved in endothelial barrier stabilization.  
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Permeability of HUVEC monolayers  

Vascular permeability is a parameter of endothelial cell function and its alterations are 

involved in cancer metastasis. In order to investigate if Curcu-exosomes decreased the 

alteration of HUVEC monolayers we performed a permeability assay with FITC-dextran. As 

showed in Figure 35a, upper panel, the permeability of HUVEC monolayer increased after 

treatment, for 3 and 6 hours, with CML exosomes, while the treatment with Curcu-

exosomes partially protected the endothelial monolayer. Moreover, fluorescence 

quantitative analysis showed a five fold of increase of permeability after treatment with 

control exosomes and that increase was  reverted after treatment with Curcu-exosomes.  

The confocal analyses confirmed that Curcu-exosomes protected the integrity of HUVECs 

monolayer with respect to control exosomes. As shown in Figure 35b, we observed an 

alteration of the monolayer after treatment with CML exosomes. In contrast, the treatment 

of endothelial monolayer with Curcu-exosomes, deacreased the alteration of the EC 

monolayer, but caused a rearrangement of actin, according to RhoB inhibition (Figure 29). 

The treatment with K562 Curcu-exosomes (Curcu-Exo K562 20 μg/ml) of the endothelial 

monolayer caused a decrease of RhoB expression with respect to the treatment with K562 

control exosomes (Exo K562 20 μg/ml), as shown in Figure 35b, lower panel. Overall, these 

results indicated that Curcu-exosomes could protect the EC monolayer and reduced the 

vascular permeability. 

 

Proteomic analyses of exosomes released by K562 cells treated or not with Curcumin  

It is demonstrated that tumour-derived exosomes are able to modulate target cells 

phenotype shuttling both RNAs and cargo proteins. In order to better investigate how 

exosomal proteins from curcumin-treated K562 cells can mediate the anti-angiogenic effect 

observed on HUVECs, a proteomic analysis through SWATH-MS approach was performed, on 

exosomes released by K562 cells treated or not with Curcumin. SWATH analysis is a 

quantitative label-free method that combines the high specificity of Data Independent 

Acquisition (DIA) method with a targeted data extraction strategy. Only proteins with a p ≤ 

0.05 and a log10 fold-change > 0.2 or < −0.2 (for upregulated and downregulated proteins, 

respectively) were selected for further analysis. A total of 30 proteins, differentially 

modulated in exosomes released by K562 cells following treatment with curcumin, were 
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identified; with respect to exosomes released by K562 control cells, Curcu-exosomes showed 

4 up-regulated and 26 down-regulated proteins. 

iPathway Guide (http://www.advaitabio.com/ipathwayguide.html) was exploited in order 

to perform a GO enrichment analysis on all differentially expressed proteins suggesting a 

significant enrichment for those GO terms linked with biosynthetic processes and 

translation. In particular, the following GO terms resulted significantly enriched: intracellular 

transport (p-value = 0.008; BP), nitric-oxide synthase regulator activity (p-value = 0.028; MF), 

translation (p-value = 0.009; BP), nucleic acid binding (p-value = 0.016; MF), cellular 

biosynthetic process (p-value = 0.0018; BP), ribonucleoprotein complex (p-value = 0.013; 

CC), anion transmembrane transporter activity (p-value = 0.016; MF), structural constituent 

of ribosome (p-value = 0.033; MF), nucleus (p-value = 0.014; CC), ribosomal subunit (p-value 

= 0.015; CC.). Among them, nitric-oxide synthase regulator activity, referred to hsp90aa1 and 

hsp90ab1 proteins, is particularly interesting due to the fact that the nitric oxide (NO) 

pathway appear to be involved in tumour angiogenesis and spread. It is documented that 

Heat shock protein 90 (HSP90) binds directly to endothelial NO synthase (eNOS), promoting 

its activity and increasing NO production99. An accurate MEDLINE search allowed us to 

discover that approximately 50% of modulated protein dataset was involved with the 

angiogenic, invasive and metastatic processes (Table 2). Among these proteins, we focused 

our attention on MARCKS-related protein (MARCKSL1) because it is the mainly down-

regulated protein, with a 10.6 fold down-regulation. Interestingly, miR-21 has been shown to 

target directly also the mRNA of MARCKS. We decided to further investigate the role played 

by this protein in the anti-angiogenic effect of Curcumin.  

 

Treatment of HUVECs with Curcu-exosomes modulated MARCKS expression  

Recently, miR-21 has been shown to directly target MARCKS, by binding in the 3′ UTR 

region (from the nt713–734) of its transcript. MARCKS are known to affect the architecture 

of the actin cytoskeleton in endothelial cells, modulating EC motility and permeability100. In 

order to validate the high-throughput proteomic data, we evaluated MARCKS expression 

both at mRNA and protein level. As showed in Figure 36a, we observed, through qPCR, that 

Curcumin induced a decrease of MARKCS mRNA expression. Moreover, Curcu-Exosomes 

treatment of HUVECs induced a modulation of MARCKS mRNA expression. In HUVECs 

transfected with miR-21 inhibitor (2′-O Me miR-21), MARCKS mRNA expression showed a 5 
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fold increase with respect to untrasfected cells. On the contrary, transfection of HUVECs 

with mir-21 mimic caused a 60% decrease of the relative amount of MARCKS mRNA (Figure 

36b).  

Interestingly, through Western Blotting analysis we observed an increase of MARCKS, at 

protein level, in HUVECs treated with control exosomes compared to untreated HUVECs, 

while the treatment with Curcu-exosomes reverted this effect (Figure 36c,d). We also 

observed, by FACS analyses, a decrease of MARCKS after treatment with Curcu-exosomes, 

and this effect was reinforced when HUVECs transfected with miR-21 mimic were treated 

with Curcu-exosomes. The treatment of HUVECs, transfected with miR-21 inhibitor, with 

Curcu-exosomes has proved to be able to revert the effect on MARCKS decreased expression 

(Figure 36e). Taken together, these results confirmed that Curcu-exosomes carry miR-21 

that, keeping the biological functions, inhibits MARCKS expression in endothelial cells. 
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CHAPTER 4 

 
 

Discussion 
 
 

  

4.1  Exosomal shuttling of miR-126 in endothelial cells modulates adhesive 

and migratory abilities of chronic myelogenous leukemia cells 

 
 It is known that in chronic myelogenous leukemia the bone marrow 

microenvironment contributes to cancer progression through the crosstalk between BM 

resident cells and cancer cells. This crosstalk could be involved in drug resistance and CML 

stem cell survival101. Endothelial cells, one of the most important component of bone 

marrow, have a crucial role in tumour development and progression. ECs form tumour-

associated vessels to provide nutritional and oxygen support to the tumour or may sustain 

leukemia cell growth and dissemination through the secretion of cytokines and extracellular 

matrix components102. 

Our study increases the knowledge in the complex interaction between bone marrow 

microenvironment and cancer cells by investigating the role of tumour derived exosomes. 

Our research group previously demonstrated that LAMA84 cells release exosomes able to 

induce in endothelial cells an angiogenic phenotype stimulating IL-8 dependent autocrine 

loop, both in vitro and in vivo71,72,98.  

In this study we showed that CML cells may modulate, in vitro, gene expression in 

endothelial cells by the release of exosomal miRNAs that are biologically active. The analysis 

of the pattern of miRNA expression showed a similarity in the miRNAs detected in exosomes 

and parental cells. However, according with other literature data103, we observed that 

miRNAs loading into exosomes seems to be not casual but regulated by a sorting 
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mechanism, that is still unclear. Our experiments indicate that exosomes are incorporated 

with an energy and ceramide-dependent pathway. In order to support this idea, we 

observed that the incubation of LAMA84 cells at 4°C or with GW4869 inhibited the transfer 

of exosomal miR-126 into HUVECs. 

Of the 124 miRNAs that we identified in exosomes, we focused our attention on miR-126, 

considered an angiomiR overexpressed in highly vascularized tissues. It is described that 

miR-126 is involved in many aspects of endothelial cell biology, including cell motility and 

survival, vasculature integrity and cytoskeletal organization104. The involvement of miR-126 

in cancer biology is related not only to modulation of angiogenesis but also directly in cancer 

pathogenesis105. In myeloid leukemia, miR-126 was found to down-regulate HOXA9, an 

oncogene encoding a transcription factor that regulates hematopoietic development106. 

Cammarata and colleagues found that miR-126, upregulated in acute myeloid leukemia, 

induced cell proliferation via the inhibition of PLK, one member of the Polo-like kinase that 

regulates the cell cycle107. Our study suggests that miR-126 may affect CML progression 

modulating the bone marrow microenvironment, due to inappropriate cancer cell retention, 

adhesion and motility. 

We also observed that CXCL12 and VCAM1, critical components of the bone marrow niche, 

are in part regulated by miR-126 contained in LAMA84 exosomes. CXCL12 is a chemokine 

abundantly produced by the bone marrow microenvironment, and the described axis with 

its receptor CXCR4 is important in malignant cell trafficking108,109. Sipkins and colleagues 

have demonstrated that disruption of the interactions between CXCL12 and its receptor 

CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to the 

BM110. Our data showed that exosomal shuttling of miR-126 to endothelial cells decreases 

CXCL12 release from HUVECs and concomitantly reduces the motility of LAMA84 cells 

towards HUVEC conditioned medium. To further analyse the role of miR-126 in the 

modulation of CXCL12 secretion, we transfected HUVECs with the inhibitor of miR-126 that 

can bind and inhibit miR-126 molecules, or its negative control scramble oligomer. As 

expected, in HUVECs transfected with miR-126 inhibitor, we observed a decrease of about 

45% of miR-126 expression and concomitantly an increase of CXCL12 protein level. 

Consistently with these data, the transfection of HUVECs with miR-126 mimic caused a 
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decrease of CXCL12 level and lower migration tendency of LAMA84 cells toward EC 

conditioned medium. 

Another target of miR-126 that may be involved in CML disease progression is VCAM1, a cell-

cell adhesion molecule. Literature data showed that miR-126 downregulated VCAM1 

expression in endothelial cells through a post-trascriptional mechanism76. Fish et al. also 

reported that VCAM1 mRNA levels were elevated upon miR-126 inhibition, but were not 

decreased in the presence of miR-126 mimic thus supporting the hypothesis of a regulative 

mechanism at translational level75. Moreover, it was demonstrated that forced expression of 

miR-126 in Lin- bone marrow cells induced minimal change in the relative levels of VCAM1 

mRNA but caused a decrease in the proportion of surface VCAM1-positive Sca-1hi c-Kithi cells 

within this population111. Functionally, a recent report from Salvucci and colleagues reported 

that miR-126 contained in G-CSF-mobilized vesicles in the bone marrow induced 

hematopoietic stem/progenitor cell (HSPC) mobilization by reducing the expression of 

VCAM1 in HSPC endothelial cells and other non-hematopoietic cells111. 

We found that the treatment of HUVECs with LAMA84 exosomes, for 24 hours, 

downregulated VCAM1 mRNA and protein expression and caused a decrease of LAMA84 

adhesion cells on the HUVECs monolayer. We provide evidences that this mechanism can be 

related to exosomal miR-126 and these effects were partially reduced by transfection of 

miR-126 inhibitor in HUVECs. As a functional consequence of the diminished amount of 

VCAM1 in ECs, the adhesion of LAMA84 to HUVECs was reduced after exosome treatment. 

In our previous study, we demonstrated that the treatment of endothelial cells with 

exosomes for short times (6 hours), induced VCAM1 at both the mRNA and protein level and 

increased adhesion of LAMA84 cells on the HUVECs monolayer72. 

In this new study, we found that the treatment of endothelial cells with exosomes for 24 

hours downregulated VCAM1 mRNA and protein expression and caused a decrease of 

LAMA84 adhesion cells on the HUVECs monolayer. In order to explain these apparently 

contrasting results, we hypothesize that in the first 6 hours, the exosome treatment of 

HUVECs induces the expression of VCAM1 to allow the adhesion of the cancer cells on the 

endothelium, as the first step of cells migration. After a longer time of HUVECs exposure to 

exosomes, LAMA84 cells lose the ability to adhere on the endothelial cells and increase their 

capacity to migrate towards a richer source of chemoattractants. 
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The downregulation of CXCL12 and VCAM1 by miR-126 and their upregulation when this 

miRNA is knocked down indicate that miR-126 is deeply involved in the regulation of these 

two proteins. We demonstrated with an in vitro transendothelial cell migration assay that 

the treatment of HUVECs with LAMA84 exosomes induces LAMA84 cell migration through 

endothelial monolayer, likely due to a decrease of VCAM1-mediated adhesion of leukemia 

cells to ECs and a concomitant chemotaxis toward serum. 

Our data suggest a potential exosome-mediated crosstalk in the bone marrow 

microenvironment that could facilitate the exit of LAMA84 cells from the bone marrow and 

their dissemination in the bloodstream at least partly due to the delivery of exosomal      

miR-126. 

 

4.2  Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells 

growth: a possible role for exosomal disposal of miR-21 

 The understanding of the molecular basis of chronic myeloid leukemia development 

led to the synthesis of Imatinib mesylate (IM), a highly specific Brc-Abl, tyrosine kinase 

inhibitor. Although a vast majority of patients with CML respond to IM, resistance might 

occur de novo or during treatment112. Resistance to IM or to the second, third generation of 

TKIs has attracted the attention to find new therapies or different compounds to use as 

adjuvants for conventional therapy. In this work we investigated the antineoplastic effect of 

Curcumin in CML cells.  

Curcuminoids are known to inhibit the tumour growth affecting the activity of multiple 

molecular targets involved in carcinogenesis. Curcumin exhibits its anticancer effects by 

regulating genes involved in cellular signaling pathways, including nuclear factor-kappa B, 

protein kinase B (AKT), mitogen-activated protein kinase (MAPK), p53, and other 

pathways113. 

In this study, we provide evidence that Curcumin may affect in vitro and in vivo malignant 

properties of CML cells and we suggest that these effects are mediated by a disposal of miR-

21 in exosomes released by CML cells. 
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In our previous paper, we demonstrated that LAMA84 cells release exosomes containing 

several miRNAs, differentially expressed compared to parental cells. We focused our 

attention on miR-126; LAMA84-exosomes were enriched in this angiomiR that was 

biologically active in endothelial cells. Other groups have also evidenced that miRNAs 

contained in the exosomes released by K562 cells, are able to modulate cell communication 

and influence the genetic changes within CML patients114. Recently, several studies have 

indicated that miRNAs may be considered a new class of oncogenes. These oncomiRNAs 

induce tumour growth negatively regulating tumour suppressor genes. The modulation of 

oncomiRNAs levels might represent an alternative strategy for cancer treatment.  

Ostenfeld et al showed a possible advantage for cancer cells to eliminate tumor-suppressor 

miRNAs via exosomes; this mechanism may support the metastatic process. They 

demonstrated a selective pressure for disposal of miR-23b, which may contribute to the 

transcriptomic changes associated with a cellular metastatic state115.  

De Candia et al demonstrated that reduction of intracellular level of miR-150, a key regulator 

of mRNAs critical for lymphocyte differentiation and functions, via its selective release in the 

external milieu, may regulate gene expression during lymphocyte activation116. 

We hypothesized a novel role for exosome release as a route to cellular disposal of selected 

oncogenic miRNAs, such as miR-21, as a consequence of Curcumin treatment. MicroRNA-21 

has been indicated as a miRNA overexpressed in several solid tumors; miR-21 is involved in a 

number of steps of tumor progression, such as proliferation, angiogenesis, antiapoptotic and 

response to chemotherapy. A number of miR-21 target genes have been identified, including 

PTEN, PDCD4, and BTG2, which play important roles in the oncogenic process117. It was 

demonstrated that decreased expression of miR-21 in human lung cancer cells by inhibition 

of NOX (NADPH oxidase) reduces metastasis118. Moreover the downregulation of miR-21 

expression restrains non-small cell lung cancer cell proliferation and migration through 

upregulation of PDCD4119. 

Few studies have focused on the role of miR-21 in CML progression. Li et al demonstrated 

that anti-miR-21 oligonucleotides (AMO-miR-21) sensitized K562 cells, to arsenic trioxide by 

inducing apoptosis. AMO-miR-21 down-regulated mature miR-21 expression level and 

partially induced up-regulation of PDCD4 level120. Other groups demonstrated that antisense 
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oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 

cells121. 

Our data indicate that Curcumin might exert anticancer effects through elimination of 

oncomiR-21, via exosomes. We showed that Curcumin caused a decrease of miR-21, but not 

pre-miR-21, in CML cells after Curcumin treatment. On the contrary, we observed an 

increase of miR-21 in the exosomes released by CML cells after addition of Curcumin.  

Our results are in line with other studies that demonstrated the effects of Curcumin on 

cancer cell survival through down-regulation of miR-21 and increase of PTEN. PTEN up 

regulation, caused by non-genomic mechanisms, such as post transcriptional regulation by 

non-coding RNA, antagonizes the PI3K-AKT pathway122. This inhibitory effect acts on the PI-

3K-AKT pathway, which controls cell proliferation and survival. 

Focusing our attention on mRNA targets of miR-21 that could be involved in cancer 

progression, we found that the decrease of cellular miR-21, significantly up-regulated the 

expression of PTEN modulating the phosphorylation of AKT. Several studies also showed that 

Curcumin inhibited the phosphorylation of AKT, mTOR, and their downstream substrates. It 

was demonstrated that Difluorinated Curcumin (CDF), a nontoxic analog of Curcumin 

modulated the expression of miR-21 and PTEN in pancreatic cancer and inhibited the growth 

of colon cancer cells67. Functionally, an increase of PTEN and the consequent decrease of 

AKT phosphorylation caused an inhibition of cell survival, as we demonstrated by an in vitro 

colony formation assay. Our current data show a negative correlation between miR-21 and 

PTEN and support the role of Curcumin on modulation of PTEN expression, via a selective 

packaging of miR-21 in CML exosomes. PTEN also modulates VEGF expression, down-

regulating PI3K/AKT pathway; forced expression of PI3K or AKT alone directly increased 

VEGF mRNA expression, suggesting that PI3K and AKT are sufficient to regulate VEGF 

expression. We demonstrated that Curcumin treatment caused a decrease of VEGF, both at 

mRNA and protein levels, in K562 and LAMA84 cells and that this effect is also mediated by 

PTEN, downregulating PI3K/AKT pathway. 

Angiogenesis in haematological malignancies is similar to that seen in solid tumors; secreted 

VEGF contributes to haematological disease progression by an autocrine or paracrine 

mechanism. VEGF signaling inhibition results in significant tumour growth delay in a wide 
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range of animal models123. As shown by our results, Curcumin treatment caused a decrease 

of VEGF at mRNA and protein levels, in K562 and LAMA84 cells (Figure 19). Masuelli et al 

demonstrated in vivo the anticancer effects of Curcumin alone or in combination with 

resveratrol. The authors observed that the administration of Curcumin in Balb/c mice 

reduced the growth of the transplanted salivary gland cancer cells and this effect is 

potentiated by the combination of Curcumin and resveratrol124.  

Interestingly, we observed an opposite effects of Curcumin on the cellular level of miR-196b, 

a microRNA that was recently associated to CML development. Recent studies have 

indicated that miR-196b inhibits cell proliferation and promotes apoptosis in ALL cells. The 

expression levels of miR-196b were significantly lower in patients with CML than in healthy 

controls88. Bioinformatic analysis suggest that Bcr-Abl is a predictive target of miR-196b. We 

observed that Curcumin caused an increase of miR-196b in CML cells and the decrease of its 

levels in the released exosomes, leading to a down regulation of the chimeric oncoprotein 

Bcr-Abl both at mRNA and protein levels in leukaemia cells.  

Our in vivo experiments demonstrated that Curcumin treatment of animals lead to a 

significant reduction in tumour growth, as measured by the decrease in size of the 

subcutaneous xenografts compared to untreated animals. Moreover, the exosomes amount 

in plasma of treated mice was higher than control mice and we discovered that these 

exosomes are enriched in miR-21 compared to control exosomes. 

Overall, these results suggested an antineoplastic role of Curcumin in CML cells, suggesting 

that Curcumin could be a potential adjuvant agent against CML. Curcumin induced selective 

packaging of oncomiR-21 in exosomes, an increase of miR-196b in CML cells and the 

previous described modulations of PTEN, pAKT, VEGF and Bcr-Abl expression in CML cells, as 

represented in figure 24. 

 

4.3  Curcumin modulates chronic myelogenous leukemia exosomes 

composition and affects angiogenic phenotype, via exosomal miR-21 

 Exosomes play a key role in cell-to-cell communication. Several studies have 

demonstrated that exosomes modulate angiogenic process68,72,90. Our research group 
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discovered that CML cells affect vascular remodeling in in vitro and in vivo models through 

the IL8 modulation in endothelial cells. We also demonstrated that exosomes released from 

CML cells stimulate bone marrow stromal cells to produce IL8 that, in turn, is able to affect 

both in vitro and in vivo leukemia cell malignant phenotype54.  

Recently, the critical role played by miRNAs delivered by exosomes in cell-to-endothelial cell 

communication in leukemia has been investigated. In our previous paper, we demonstrated 

that miR-126 shuttled by CML exosomes is biologically active in targeting endothelial cells 

and affects CML cell motility and adhesion68. Umezu et al. observed that exosomes, collected 

from miR-92a-overexpressing leukemia cells, are internalized by endothelial cells, resulting 

in an enhanced migration and tube formation73. These data indicated that exosomal miRNAs 

have an important role in tumor-endothelial cross-talk occurring in the bone marrow 

microenvironment, potentially affecting disease progression.  

Furthermore, it was demonstrated that some natural compounds can alter gene expression 

involved in cancer progression79. Curcumin, a natural compound present in turmeric, has 

been recognized as a promising anticancer drug and is being developed as a 

chemopreventive agent in various cancers. Preclinical studies have shown that Curcumin has 

antioxidant, anti-inflammatory and antiproliferative activities. Curcumin affects several 

molecules involved in biochemical and molecular cascades, via direct molecular interactions 

and epigenetic modulation of gene expression. The modulation of miRNA expression by 

Curcumin has been shown in several models79. The effects of Curcumin on miRNA expression 

was initially studied in pancreatic cancer cells125. Curcumin was reported to downregulate 

the expression of 18 miRNAs including miR199a* known to target MET proto-oncogene and 

the downstream extracellular signal-regulated kinase 2126. It was also described that 

Curcumin, in retinoblastoma cells, upregulates the expression of 11 miRNAs including miR-

22 that leads to a decreased expression of its downstream genes including the transcription 

factor SP1, implicated in the growth and metastasis of several cancer types127.  

In the previous work, we demonstrated that Curcumin caused a decrease of cellular miR-21 

in CML cells and an increased miR-21 selective packaging in released exosomes. 

Furthermore, we showed that addition of Curcumin to CML cells caused a downregulation of 

Bcr-Abl expression through the cellular increase of miR-196b. Curcumin, therefore, alters  

mRNA expression that may contribute to its antileukemic effect in CML69. MicroRNAs have 
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been reported to play an important role in several functions of endothelial cells, including 

migration and angiogenesis91,128. It was demonstrated that miR-21 overexpression affects 

endothelial cell migration and organization into capillary-like structures. MiR-21 was also 

found to modify actin cytoskeleton organization, thus affecting cell migration and 

angiogenesis91. In this study, we showed that exosomes released by CML cells after 

Curcumin treatment (Curcu-exosomes) deeply changed their molecular composition, 

acquiring antiangiogenic properties. Curcu-exosomes, enriched in miR-21 as previously 

described69, are able to shuttle this miRNA in endothelial cells as a biologically active form.  

Our data are in agreement with the results of Sabatel et al., demonstrating that miR-21 over-

expression reduces the angiogenic capacity of HUVECs91, targeting directly RhoB, a critical 

regulator of actin dynamics. RhoB is a Rho GTPase whose expression is inducible by a variety 

of stimuli including growth factors. Most Rho GTPases act on membranes and affect the 

movement of cell membranes by changing the membrane-associated cytoskeletal actin. 

Endothelial Rho proteins are also involved in ICAM1 mediated signaling events129. Rho may 

be activated through cell-surface signals propagated to the cytoskeletal actin130.  

Curcu-exosomes inhibit the expression of RhoB at protein and mRNA level (Figure 29), via 

miR-21 transport, thus resulting unable to promote the angiogenic phenotype in endothelial 

cells. The biological effects of Curcu-exosomes on endothelial barrier stabilization were 

confirmed with a permeability assay (Figure 35). Several studies have also shown that 

Curcumin is able to counteract the stimuli-induced production of IL8 through the modulation 

of NFκB, JNK, ERK1/2, and p38 pathways. Wang et al showed that Curcumin had an 

inhibitory effect on the expression of IL8 induced by DEHP131. We observed that CML 

exosomes added to HUVECs were able to increase IL8 at mRNA and protein level. We also 

proved that this effect was reverted after treatment of ECs with Curcu-exosomes (Figure 31). 

The antiangiogenic effect of Curcu-exosomes was reinforced by decreasing the expression of 

VCAM1 at mRNA and protein level with respect to control exosomes (Figure 32). These 

antiangiogenic effects were confirmed with in vitro and in vivo angiogenic assays (Figure 33).  

Kalani and colleagues showed that exosomes derived from Curcumin-treated endothelial 

cells alleviated oxidative stress, affecting tight junctions (ZO-1, claudin-5, occludin) and 

adherent junction (VE-cadherin) proteins and mitigated the endothelial cell layer 

permeability induced during EC damage due to high homocysteine levels132. It was also 
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demonstrated that Curcumin had a beneficial effect on blood brain barrier (BBB), under 

ischemic conditions, protecting the tight junction from a possible dysfunction and 

ameliorating the BBB permeability133. 

We also observed that Curcu-exosomes have protective effects on endothelial barrier, 

stabilizing tight and adherent junctions. As it has been showed with an immunofluorescence 

assay, in HUVECs treated with control exosomes, we observed a delocalization of ZO1 and 

VE-Cadherin with respect to control HUVECs in which ZO1 and VE-Cadherin was localized in 

plasma membrane. This effect reverted in HUVECs treated with CML Curcu-exosomes. 

Interestingly our SWATH analysis of exosomes released by control and Curcumin treated 

cells evidenced a relevant and significant modulation of several proteins involved in the 

angiogenic process. In particular, proteomic data highlighted that Curcumin induced the 

release of exosomes depleted in pro-angiogenic proteins such as: Interferon-induced 

transmembrane protein 1 (IFITM1), actinin 4, basigin, Guanine nucleotide-binding protein 

subunit beta-2-like 1 (GNB2L1) and MARCKS134, and enriched in proteins, such as 

Pleckstrin135 and Midkine136, which present known antiangiogenic abilities (Table 2). 

We focused our attention on MARCKS, since it was the most modulated protein, it is 

described as predictive target of miR-21. MARCKS is a phosphoprotein that belongs to the 

myristoylated alanine-rich C-kinase substrate (MARCKS) family and possesses actin-binding 

properties through which it is implicated in control of cell motility134; MARCKS dysregulation 

is closely associated with metastasis in a wide range of cancers and it is also an indicator of 

poor prognosis. MARCKS expression in Curcu-exosomes was about 11 fold less than control 

exosomes; moreover in HUVECs treated with Curcu-exosomes, enriched in miR-21, we 

observed a decrease of MARCKS (Figure 36). The downregulation of this protein was shown 

to contribute to maintain the vascular integrity by stabilizing the endothelial junctions.  

Overall, these data demonstrated that Curcumin is able to induce a modification of CML 

exosomes composition both at protein and miRNA level. Curcu-exosomes were able to 

modulate the endothelial barrier organization and attenuated the angiogenic phenotype. 

Our results indicate that Curcumin could be a potential adjuvant agent for CML treatment 

with a double effect, on cancer cells and on tumour microenvironment. 
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CHAPTER 5 

 
 

Tables and Figures 
 
 
 
 
 

5.1  Exosomal shuttling of miR-126 in endothelial cells modulates adhesive 

and migratory abilities of chronic myelogenous leukemia cells 

 

Figure 1: HUVECs internalize LAMA84 exosomes. a: Analysis at confocal microscopy of HUVECs treated, for 1 hour and 4 
hours, with 20 μg/ml (Exo 20 μg/ml) and 50 μg/ml (Exo 50 μg/ml) of LAMA84 exosomes, compared with untreated HUVECs 
(Control). HUVECs were stained with phalloidin Alexa Fluor (green), nuclear counterstaining was performed using Hoescht 
(blue), exosomes were labelled with PKH26 (red). To evaluate whether exosomes uptake was mediated by endocytosis in an 
energy-dependent process, HUVECs treated with 20 μg/ml (Exo 20 μg/ml) and 50 μg/ml (Exo 50 μg/ml) of LAMA84 
exosomes were incubated at 4°C, for 1 hour and 4 hours and compared with untreated HUVECs. b: Analysis at confocal 
microscopy of HUVECs treated, for 1 hour, with 50 μg/ml of exosomes (Exo 50 μg/ml) and EIPA (50 μM), compared with 
control cells (Control). Scale bar = 10 μm. 
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Figure 2: Exosomes shuttle miR-126 in HUVECs. a: MiR-126 expression in HUVECs treated with different amounts of 
LAMA84 exosomes. miR-126 expression levels in HUVECs treated with 20 and 50 μg/ml of LAMA84 exosomes for 24 hours 

were determined by quantitative Real time PCR analysis. Values are the mean ± SD of 3 independent experiments *p ≤ 0.05. 
b: Pre-miR-126 expression in HUVECs treated with different amounts of LAMA84 exosomes. Pre-miR-126 expression levels 
in HUVECs treated with 20 and 50 μg/ml of LAMA84 exosomes for 24 hours were determined by quantitative Real time PCR 
analysis. c: Localization of exosomal miR-126 into HUVECs. HUVECs were co-cultured with LAMA84/Cy3- miR-126 cells using 
Transwells. In Red is shown Cy3-miR-126 in the cytoplasm of HUVECs (miR-126/Cy3), nuclear counterstaining was done with 
Hoescht (blue). As a negative control, HUVECs were co-cultured with untrasfected LAMA84 (Control). HUVECs were also 
cocoltured with LAMA84/ Cy3-miR-126 cells treated with 1 μM (miR-126/Cy3 + 1 μM GW4869) and 5 μM (miR-126/Cy3 + 5 
μM GW4869) of GW4869. 
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Figure 3: MiR-126 targets CXCL12 and VCAM1. a: Schematic representation of matching sequence between CXCL12 3’UTR 
mRNA and miR-126. b: Luciferase activity of HUVECs transfected with reporter plasmid (CXCL12-pEZX), treated with 
LAMA84 exosomes and/or contrasfected with miR-126 inhibitor or miR-126 mimic. c: Schematic representation of matching 
sequence between VCAM1 3’UTR mRNA and miR-126. d: Luciferase activity of HUVECs transfected with reporter plasmid 
(VCAM1-pEZX), treated with LAMA84 exosomes and/or contrasfected with miR-126 inhibitor or miR-126 mimic. For 
normalization, Renilla luciferase activity was used. Values are the mean ± SD of 3 independent experiments *p 0.05; **p 
0.01. 
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Figure 4: miR-126 shuttled by exosomes modulate CXCL12 expression in HUVECs. a: Real time PCR analysis showed that 
CXCL12 mRNA expression decreased in dose-dependent (20 and 50 μg/ml) manner after addition of exosomes to 

endothelial cells. Values are the mean ± SD of 3 independent experiments **p ≤ 0.01. b: CXCL12 protein levels, assessed by 

ELISA, in HUVEC-conditioned medium obtained after 24 hours of stimulation with: low serum medium (Control), 20 μg/ml 
of exosomes (Exo 20 μg/ml) and 50 μg/ml of exosomes (Exo 50 μg/ml). Values are the mean ± SD of 3 independent 

experiments **p ≤ 0.01. c: Confocal microscopy analyses of HUVECs treated with 50 μg/ml of exosomes for 24 h. HUVECs 
were stained with Texas Red-conjugated anti-CXCL12 antibodies, nuclear counterstaining was performed using Hoescht 
(blue). Scale bar = 10 μm. d: CXCL12 protein levels, assessed by ELISA, in HUVEC-conditioned medium obtained after 24 
hours of stimulation with: low serum medium (Control), 20 μg/ml of exosomes (Exo 20 μg/ml) and 50 μg/ml of exosomes 
(Exo 50 μg/ml). CXCL12 protein levels were also evaluated in HUVECs transfected with miR-126 inhibitor (2-O-Me-miR-126) 
and treated with: 20 μg/ml of exosomes (Exo 20 μg/ml + 2-Me-miR-126) and 50 μg/ml of exosomes (Exo 50 μg/ml + 2-Me-
miR-126). As a negative control, miScript Inhibitor Negative Control (Scramble) was used. e: CXCL12 protein levels were also 
evaluated in HUVECs transfected with miR-126 mimic and treated with: 20 μg/ml of exosomes (Exo 20 μg/ml + miR-126 
mimic) and 50 μg/ml of exosomes (Exo 50 μg/ml + miR-126 mimic). As a negative control of transfection, the AllStars 
Negative Control (Scramble) was used. 
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Figure 5: miR-126 shuttled by exosomes modulates VCAM1 expression in HUVECs. a: Real Time PCR analysis showed a 
time dependent modulation of VCAM1 mRNA expression after the addition of 10 (10 μg/ml), 20 (20 μg/ml) and 50 μg/ml 
(50 μg/ml) exosomes to endothelial cells. b: Real Time PCR analysis of VCAM1 mRNA expression levels in HUVECs 
transfected with miR-126 inhibitor (2-O-Me-miR-126) compared with untrasfected HUVECs (Control). c: Real Time PCR 
analysis of VCAM1 expression levels in HUVECs transfected with miR-126 mimic compared with untrasfected HUVECs 
(Control). d: Histogram shows the MFI (mean fluorescence intensity) of surface expression of VCAM1 in HUVECs after 24 
hours of treatment with: low serum medium (Control), 20 μg/ml of exosomes (Exo 20 μg/ml). Surface expression of VCAM1 
was evaluated, with FACS analysis, in HUVECs transfected with miR-126 inhibitor (2-Ome-miR-126) and treated with 20 
μg/ml of exosomes (2-Ome-miR-126 + Exo 20 μg/ml). As a negative control, miScript Inhibitor Negative Control (scramble) 
was used. Surface expression of VCAM1 was also evaluated in HUVECs transfected with miR-126 mimic (miR-126 mimic) 
and treated with 20 μg/ml of exosomes (miR-126 mimic + Exo 20 μg/ml). Values are the mean ± SD of 3 independent 

experiments *p ≤ 0.05 **p ≤ 0.01. 
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Figure 6: miR-126 delivered by exosomes modulates LAMA84 migration. Effects of conditioned medium (CM) of HUVECs 
pretreated with 10 μg/ml 20 μg/ml and 50 μg/ml of exosomes on LAMA84 cells motility compared with CM from untreated 
HUVECs. LAMA84 cells motility was determined towards conditioned medium of HUVECs transfected with miR-126 inhibitor 
(2’-O-Me-miR-126) and treated with 10 μg/ml (Exo 10μg/ml, 2’-O-Me-miR-126), 20 μg/ml (Exo 20μg/ml, 2’-O-Me-miR-126) 
and 50 μg/ml (Exo 50 μg/ml, 2’-O-Me-miR-126) of LAMA84 exosomes compared with untransfected cells. MiScript Inhibitor 
Negative Control (Scramble) was used as a negative control of miR-126 inhibitor transfection. LAMA84 cells motility 
towards CM of HUVECs transfected with: miR-126 mimic and treated with 10 μg/ml (Exo 10μg/ml, miR-126 mimic), 20 
μg/ml (Exo 20 μg/ml, miR-126 mimic) and 50 μg/ml (Exo 50μg/ml, miR-126 mimic) of LAMA84 exosomes compared with 
untransfected cells. AllStars Negative Control (Scramble) was used as a negative control of miR-126 mimic transfection. 
Values are expressed as Fold of Increase (FOI). Values are the mean ± SD of 5 fields in 3 independent experiments *p 0.05; 
**p 0.01. 
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Figure 7: miR-126 delivered by exosomes modulates LAMA84 adhesion. a. Adhesion of LAMA84 cells to HUVECs treated, 
for 6-12-24 hours, with 20 and 50 μg/ml of LAMA84 exosomes compared with control HUVECs. b: Adhesion of LAMA84 cells 
to HUVECs treated with 20 and 50 μg/ml of LAMA84 exosomes compared with control HUVECs. The adhesion of LAMA84 
cells was evaluated on HUVECs transfected with miR-126 mimic and then treated with 20 and 50 μg/ml of LAMA84 
exosomes. c: The adhesion of LAMA84 cells was evaluated in HUVECs transfected with miR-126 inhibitor and then treated 
with 20 and 50 μg/ml of LAMA84 exosomes. *p 0.05; **p 0.01. 

 

 

 

Figure 8: miR-126 delivered by exosomes modulates LAMA84 transendothelial migration. HUVECs were grown as a 
monolayer and treated with 10, 20, 50 μg/ml of LAMA84 exosomes. After 6-12-24 hours of treatment, we evaluated the 
transendothelial migration of LAMA84 cells. *p 0.05; **p 0.01. 
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5.2  Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells 

growth: a possible role for exosomal disposal of miR-21 

 

Figure 9: K562 a. and LAMA84 b. cell viability was measured by MTT assay after 24 h of treatment with Curcumin (5–10-20–
40 μM). The values were plotted as a percentage of viable cells. Each point represents the mean ± SD of three independent 
experiments, *p ≤ 0.05. Detection of Alix and TSG101 in 30 μg of exosomes purified from conditioned medium of K562 c. 
and LAMA84 d. cells treated with 20 (20C) and 40 (40C) μM of Curcumin. e. Dynamic light scattering (DLS) analysis of 
exosomes released by K562 and LAMA84 control (−) and treated with 20 μM of Curcumin (+). 

 

 

Figure 10: MiR-21 levels in K562 a. and LAMA84 b. cells and their released exosomes after treatment with 20 and 40 μM of 
Curcumin, for 24 hours and in their exosomes, were determined by quantitative real time PCR analysis. Values are the mean 
± SD of 3 independent experiments **p ≤ 0.01. 
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Figure 11: MiR-21 levels in K562 a. and LAMA84 b. cells treated with 20 and 40 μM of Curcumin and/or GW4869 1 μM, for 
24 hours, were determined by quantitative real time PCR analysis. Values are the mean ± SD of 3 independent experiments 
*p ≤ 0.05, **p ≤ 0.01. 
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Figure 12: a. pre-MiR-21 expression in K562 cells treated with 20 and 40 μM of Curcumin, for 24 hours, was determined by 
quantitative real time PCR analysis. b. pre-MiR-21 expression in exosomes released by LAMA84 cells treated with 20 and 40 
μM of Curcumin and/or GW4869 1 μM, for 24 hours, was determined by quantitative real time PCR analysis. 
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Figure 13: Luciferase activity of K562 a. and LAMA84 b. cells transfected with reporter plasmid (PTEN-pEZX) and treated 
with 20 and 40 μM of Curcumin and/or GW4869 1 μM, for 24 hours. K562 (a) and LAMA84 (b) cells transfected with PTEN-
pEZX were also contrasfected with miR-21 inhibitor or miR-21 mimic. Values are the mean ± SD of 2 independent 
experiments *p ≤ 0.05, **p ≤ 0.01. 

 

 

Figure 14: a. PTEN expression in K562 and LAMA84 cells treated for 24 hours, with 20 and 40 μM of Curcumin, was 
determined by quantitative real time PCR analysis. b. Western blot analysis of PTEN in K562 and LAMA84 cells treated with 
20 (20C) and 40 (40C) μM of Curcumin, for 24 hours. Actin was used as loading control. **p 0.01. 
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Figure 15: a. PTEN expression in K562 and LAMA84 cells treated with 20 and 40 μM of Curcumin and/or GW4869 1 μM, for 
24 hours, was determined by quantitative real time PCR analysis. b. Western blot analysis of PTEN in K562 and LAMA84 
cells treated with 20 μM of Curcumin and/or GW4869 1 μM, for 24 hours. Actin was used as loading control. *p 0.05; **p 
0.01. 

 

 

Figure 16: PTEN expression in K562 and LAMA84 cells transfected with miR-21 mimic, miR-21 inhibitor, treated or not with 
20 μM Curcumin, or scramble was determined by quantitative real time PCR analysis. Values are the mean ± SD of 3 
independent experiments *p ≤ 0.05, **p ≤ 0.01. 
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Figure 17: AKT phosphorylation, assessed by ELISA, in K562 a. and LAMA84 b. cells treated with 20 and 40 μM of Curcumin 
and/or GW4869, for 24 hours. Values are the mean ± SD of 2 independent experiments *p ≤ 0.05, **p ≤ 0.01. 
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Figure 18: AKT phosphorylation, assessed by ELISA, in K562 a. and LAMA84 b. cells transfected with miR-21 mimic, miR-21 
inhibitor or scramble and/or treated with 20 μM of Curcumin. Values are the mean ± SD of 2 independent experiments *p ≤ 
0.05, **p ≤ 0.01. 
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Figure 19: a. VEGF expression in K562 and LAMA84 cells treated with 20 and 40 μM of Curcumin, for 24 hours, was 
determined by quantitative real time PCR analysis. b. VEGF expression in K562 and LAMA84 cells transfected with miR-21 
mimic, miR-21 inhibitor or scramble, was determined by quantitative real time PCR analysis. c. VEGF protein level, assessed 
by ELISA, in conditioned medium of K562 and LAMA84 cells transfected with miR-21 mimic, miR-21 inhibitor treated or not 
with 20 μM Curcumin, or scramble or treated with 20 and 40 μM of Curcumin, for 24 hours. d. VEGF protein level assessed 
by ELISA, in K562 and LAMA84 cells treated with 20 and 40 μM of Curcumin and/or GW4869 1 μM, for 24 hours. Values are 
the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01. 
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Figure 20: a. Colony formation assay shows that Curcumin treatment caused a decrease of K562 and LAMA84 colonies area 
with respect to control cells. b. Quantitative analysis of colonies area of K562 and LAMA84 cells treated with 20 and 40 μM 
of Curcumin and/or transfected with miR-21 mimic and miR-21 inhibitor. Values are the mean ± SD of 3 independent 
experiments *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
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Figure 21: Effect of 20 and 40 μM Curcumin on K562 and LAMA84 cells migration. CML cells were also cotreated with 20 
and 40 μM Curcumin and GW4869 1 μM, for 24 hours. Values are the mean ± SD of 3 independent experiments *p ≤ 0.05, 
**p ≤ 0.01. 

 

 

Figure 22: a. Bcr-Abl expression in K562 and LAMA84 cells treated with 20 and 40 μM of Curcumin, for 24 hours, was 
determined by quantitative real time PCR analysis. b. Western blot analysis of Bcr-Abl in K562 and LAMA84 cells treated 
with 20 (20C) and 40 (40C) μM of Curcumin, for 24 hours. Actin was used as loading control. MiR-196b levels in K562 c. and 
LAMA84 d. cells and their released exosomes after treatment with 20 and 40 μM of Curcumin, for 24 hours, were 
determined by quantitative real time PCR analysis. Values are the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 
0.01. 
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Figure 23: a. Representative tumour masses removed from mice treated with corn oil (control) or 2 mg of Curcumin. b. 
Tumour masses size average of mice treated with corn oil (Ctrl) and mice treated with 2 mg of Curcumin. c. MiR-21 levels in 
exosomes collected from serum of control mice and mice treated with 2 mg of Curcumin were determined by quantitative 
real time PCR analysis. Values are the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01 and **p ≤ 0.005. 

 

 

Figure 24: Working hypothesis of the effects of Curcumin on CML cells. Curcumin caused a decrease of cellular levels of 

miR-21 and a concomitant increase of its amount in exosomes. Reduced levels of miR-21 in CML cells induce PTEN 

expression and consequently a decrease of AKT phosphorylation and a downregulation of VEGF expression and release. 

Curcumin also induced the expression of miR-196b and consequently caused a reduction of Brc-Abl expression. 
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5.3  Curcumin modulates chronic myelogenous leukemia exosomes 

composition and affects angiogenic phenotype, via exosomal miR-21 

 

Table 1: Curcumin quantification in exosomes. 

  

 

Figure 25: HUVECs cell viability was measured by MTT assay after treatment with Curcu-Exo (20–50 μg/ml), Curcumin (0.5 
and 2 μM) was used as negative control. The values were plotted as a percentage of viable cells. Each point represents the 
mean ± SD of three independent experiments. 
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Figure 26: Uptake of Curcu-exosomes by HUVECs. Analysis at confocal microscopy of HUVECs treated, for 1 and 3 hours, 
with 20 μg/ml (Exo 20 μg/ml) and 50 μg/ml (Exo 50 μg/ml) of K562 exosomes, compared with HUVECs treated, for 1 and 3 
hours, with 20 μg/ml (Curcu-Exo 20 μg/ml) and 50 μg/ml (Curcu-Exo 50 μg/ml) of exosomes released from K562 cells 
treated with 20 μM Curcumin. HUVECs were stained with ActinGreen (green), nuclear counterstaining was performed using 
Hoescht (blue); exosomes were labelled with PKH26 (red). 
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Figure 27: MiR-21 expression in HUVECs treated with exosomes released by K562 treated or not with Curcumin. a: miR-
21 expression levels in HUVECs treated with 20 μg/ml of K562 Curcu-exosomes and control exosomes were determined by 
quantitative Real time PCR analysis. We also analyzed miR-21 expression in HUVECs treated with K562 Curcu-exosomes and 
control exosomes and/or transfected with miR-21 inhibitor or miR-21 mimic. Values (FOI: fold of induction) are the mean ± 
SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01. b: Pre-miR-21 expression in HUVECs treated with different amounts 
of K562 exosomes. Pre-miR-126 expression levels in HUVECs treated with 20 and 50 μg/ml of K562 exosomes were 
determined by quantitative Real time PCR analysis. We also analyzed pre-miR-21 expression in HUVECs treated with K562 
Curcu-exosomes and control exosomes and/or transfected with miR-21 inhibitor or miR-21 mimic. 
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Figure 28: Luciferase activity of HUVECs transfected with reporter plasmid (RhoB-pEZX), treated with K562 Curcu-exosomes 
and control exosomes and/or cotransfected with miR-21 inhibitor or miR-21 mimic. *p 0.05; **p 0.01. 

 

Figure 29: MiR-21, shuttled by exosomes, modulates RhoB expression in HUVECs. a: Real time PCR analysis showed that 
RhoB mRNA expression decreased in HUVECs treated with Curcu-exosomes compared to control exosomes. Expression of 
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RhoB was evaluated in HUVECs transfected with 2-Ome-miR-21 (miR-21 inhibitor) treated or not with 20 μg/ml of control 
exosomes (miR- 21 inhibitor + Exo 20 μg/ml) and Curcu-exosomes (miR-21 inhibitor + Curcu-Exo 20 μg/ml). Expression of 
RhoB was also evaluated in HUVECs transfected with miR-21 mimic (miR-21 mimic) treated or not with 20 μg/ml of control 
exosomes (miR-21 mimic + Exo 20 μg/ ml) and Curcu-exosomes (miR-21 mimic + Curcu-Exo 20 μg/ml). Values (FOI: fold of 
induction) are the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01. b: Histogram shows the MFI (Mean 
Fluorescence Intensity) relative to the expression of RhoB in HUVECs after treatment with low serum medium (Control), 20 
μg/ml of exosomes (Exo 20 μg/ml) and 20 μg/ml of Curcu-exosomes (Curcu-exo 20 μg/ml). Expression of RhoB was 
evaluated, with FACS analysis, in HUVECs transfected with 2-Ome-miR-21(miR-21 inhibitor) and treated with 20 μg/ml of 
control exosomes (miR-21 inhibitor + Exo 20 μg/ml) and Curcu-exosomes (miR-21 inhibitor + Curcu-Exo 20 μg/ml). Surface 
expression of VCAM1 was evaluated in HUVECs transfected with miR-21 mimic (miR-21 mimic) and treated with 20 μg/ml of 
control exosomes (miR-21 mimic + Exo 20 μg/ml) and 20 μg/ml of Curcu-exosomes (miR-21 mimic + Curcu-Exo 20 μg/ml). 
Values are the mean ± SD of 3 independent experiments *p ≤ 0.05 **p ≤ 0.01. 

 

 

Figure 30: Curcu-exosomes inhibit HUVECs migration. Addition of control exosomes (20, 50 μg/ml) to the upper wells of 
the chamber induces dose-dependent increase of HUVEC migration, the addition of Curcu-exosomes reverts this effects. 
Values are the mean ± SD of 3 fields in three independent experiments *p ≤ 0.05, **p ≤ 0.01. The ability of migrating of 
HUVECs transfected with 2-Ome-miR-21 (miR-21 inhibitor) treated or not with 20 μg/ml of control exosomes (miR-21 
inhibitor + Exo 20 μg/ml) and with 20 μg/ml of Curcu-exosomes (miR-21 inhibitor + Curcu-Exo 20 μg/ml), was evaluated. 
The ability of migration of HUVECs transfected with miR-21 mimic (miR-21 mimic) treated or not with 20 μg/ml of control 
exosomes (miR-21 mimic + Exo 20 μg/ ml) and with 20 μg/ml of Curcu-exosomes (miR-21 mimic + Curcu-Exo 20 μg/ml) was 
also measured. 
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Figure 31: Treatment of HUVECs with Curcu-exosomes modulated IL8 expression. a: Real time PCR analysis showed that 
IL8 mRNA expression decreased in dose dependent manner in EC treated Curcu-exosomes compared to control exosomes. 
Values (FOI: fold of induction) are the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01. b: ELISA assay 
showed that IL8 protein expression decreased in EC treated with Curcu-exosomes respect to control exosomes, in a dose 
dependent manner. 
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Figure 32: a: Real time PCR analysis showed that VCAM1 mRNA expression decreased in dose dependent manner in 
HUVECs treated with Curcu-exosomes compared to control exosomes. Values (FOI: fold of induction) are the mean ± SD of 
3 independent experiments *p ≤ 0.05, **p ≤ 0.01. b: FACS analysis showed that VCAM1 protein expression decreased in EC 
treated with Curcu-exosomes respect to control exosomes. c: Histogram shows the percentage of VCAM1 positive HUVECs 
after 6 hours of treatment with low serum medium (Ctrl), 20 μg/ml of exosomes (Exo 20 μg/ml) and 20 μg/ml of Curcu-
exosomes (Curcu-exo 20 μg/ml). Values are the mean ± SD of 3 fields in three independent experiments *p ≤ 0.05, **p ≤ 
0.01. 
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Figure 33: K562 exosomes stimulate in vitro and in vivo angiogenesis. a: Phase contrast micrographs showing that K562 
control exosomes induce an endothelial network formation on Matrigel, K562 Curcu-exosomes revert this effect. No tube 
formation is observed when HUVECs are plated in low-serum medium (negative control). b: Matrigel plug containing K562 
exosomes stimulate angiogenesis in mice (Exo 100 μg), this effect revert when K562 Curcu-exosomes (Curcu-Exo 100 μg) 
are used. PBS was used as a negative control. c: Haemoglobin concentration in the exosomes-containing Matrigel was 
evaluated with Dabkin’s assay. d: Real time PCR analysis showed that VEGFR mRNA expression decreased in EC treated with 
Curcu-exosomes compared to control exosomes. Values (FOI: fold of induction) are the mean ± SD of 3 independent 
experiments *p ≤ 0.05, **p ≤ 0.01. 
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Figure 34: Alteration of HUVEC monolayer after addition of K562 exosomes. a: Analysis at confocal microscopy of ZO-1 
localization in HUVECs treated with K562 exosomes (Exo K562 20 μg/ml) revealed a decrease of immunostaining compared 
to untreated cells (Ctrl). The treatment with K562 Curcu-exosomes (Curcu-Exo K562, 20 μg/ml) reverted this effect. b: 
Analysis at confocal microscopy of VE-Cadherin localization in HUVECs treated with K562 exosomes (Exo K562 20 μg/ml) 
revealed a decrease of immunostaining compared to untreated cells (Ctrl). The treatment with K562 Curcu-exosomes 
reverted this effect (Curcu-Exo K562 20 μg/ml). 
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Figure 35: Vascular permeability is modulated by K562 control and Curcu-exosomes. a: The permeability of HUVEC 
monolayer increased after treatment, for 3 and 6 hours, with K562 control exosomes (Exo K562) compared to untreated 
HUVEC monolayer (Ctrl), the treatment with Curcu-exosomes (Curcu-Exo K562), protected the endothelial monolayer. b: 
Upper panel: Analysis at confocal microscopy of endothelial monolayer. The integrity of the monolayer was altered, after 
treatment with K562 control exosomes (Exo K562 20 μg/ml); the treatment of Curcu-exosomes alleviated the alteration of 
the EC monolayer (Exo K562 20 μg/ml). Lower panel: Analysis at confocal microscopy of RhoB expression in HUVECs treated 
with K562 Curcu-exosomes and control exosomes. K562 control exosomes (Exo K562 20 μg/ml) induce an increase of 
immunostaining for RhoB compared to untreated cells (Ctrl). The treatment with K562 Curcu-exosomes (Curcu-Exo K562, 20 
μg/ml) reverted this effect. 
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Table 2 - Angiogenesis- and migration-related proteins 

AC
a
 

Protein name 

(Gene name) 

Curcu-Exo vs 

Control Exo
b
 

Description References 
Fold 

Change 
p-Value 

P49006 
MARCKS-related protein                                                                                  

(MARCKSL1) 
-10.6 0.000590 

Regulates of actin assembly dynamics during migration in multiple types of 

cells. Regulation of migration in multiple cell types; its dysregulation is 

associated with metastasis and is an indicator of poor prognosis. Increase 

of cell motility in many cell types (fibroblasts, glial cells, macrophages, 

neutrophils, skeletal myoblasts, endothelial cells and VSMCs)  through 

several molecular mechanisms: protein kinase B pathway, direct binding to 

actin, control of  PIP2 availability at the plasma membrane and regulation 

of  the small GTPases, Rac1 and Cdc42. Key mediator of the H
2
O

2
-induced 

permeability change in bovine aortic endothelial cells. 

137–139 

P13164 

Interferon-induced 

transmembrane protein 1                                                

(IFITM1) 

-7.2 0.000022 

Promotion of cancer progression by enhancing cell migration and invasion 

in gastric cancer and head and neck cancer. Its knockdown inhibits 

migration and invasion by decreasing expression and activity of MMP9, in 

glioma cells. Key Role in the formation of functional blood vessels; 

stabilization of EC-EC interactions during endothelial lumen formation by 

regulating tight junction assembly. 

140–143 

O43707 
Alpha-actinin-4                                                                                                          

(ACTN4) 
-3.2 0.004910 

Enhancement of cancer cell motility, invasion, and metastasis; 

concentration at the leading edge of migrating cells. 
137 

H0YDJ9 
Tetraspanin                                                                                                                             

(CD81) 
-3.1 0.012240 

Components of the endothelial lateral junctions implicated in the 

regulation of cell motility. Involvment in cell migration of tumor and 

immune cells. Its association with the small GTPase Rac limits the GTPase 

activation within the plasma membrane so contributing to regulation of 

Rac activity turnover. 

144,145 

J3KPF3 

4F2 cell-surface 

antigen heavy chain                                                                 

(SLC3A2) 

-2.9 0.032730 

Regulation of tumour cell migration, proliferation, spreading and survival 

in vitro. Transport of L-arginine, required for NO synthesis in HUVECs, in 

association with SLC7A6 or SLC7A7. 

146,147 

P35613 
Basigin                                                                                                                                         

(BSG) 
-2.6 0.000042 

Regulation of expression of vascular endothelial growth factor (VEGF) and 

MMPs in stromal cells; stimulation of the production of MMPs in human 

umbilical vein endothelial 

cells (HUVECs) and of VEGF expression in tumor compartment. 

Involvement in angiogenesis through different ways such as the 

modulation of VEGF isoforms secretion.  

148–150 

P63244 

Guanine nucleotide-

binding 

protein subunit beta-2-like 

1 

(GNB2L1) 

-2.5 0.006900 

Massive up-regulation in vascular endothelial cells during angiogenesis in 

vitro and in vivo and in human carcinoma cells. Involvement in Gbg-

mediated adherens junction assembly in endothelial cells. Regulation of 

VEGF-Flt1-dependent cell migration of endothelial cells and macrophages 

through direct interaction with Flt1 and activation of PI3K/Ak-Rac1. 

151–155  

P02792 
Ferritin light chain                                                                                                             

(FTL) 
-2.1 0.020850 

Binding to a 22-aa subdomain of Hka, so antagonizing antiangiogenic 

effects of this last and enhancing the migration, assembly and survival of 

HKa-treated endothelial cells. 

156 

P08238 

Heat shock protein HSP 

90-beta                                                                                        

(HSP90AB1) 

-1.7 0.036260 

Exposure of endothelial cells to VEGF triggers the association of HSP90 

with VEGFR2, that drives the phosphorylation of FAK on Tyr407 in a RhoA-

ROCK-dependent manner, and recruitment of paxillin and vinculin to FAK 

so leading to the assembly of focal adhesions and endothelial cell 

migration. 

157
 

O00299 

Chloride intracellular 

channel protein 1                                                              

(CLIC1) 

-1.6 0.006680 

Strong expression in endotheliall cells; important in multiple steps of in 

vitro angiogenesis and in regulation of cell surface expression of various 

integrins acting in angiogenesis. Mediation of endothelial cell growth, 

branching morphogenesis and migration,  

possibly via regulation of integrin expression. 

158  

P08567 
Pleckstrin                                                                                                                         

(PLEK) 
4.2 0.044860 

Its overexpression in COS-1 cells leads to a reorganization of the actin 

cytoskeleton partially dependent on Rac1 but independent of PI3K and 

Cdc42. Stabilization of apical junctional adhesion complexes (AJCs), that 

were composed of adherens junctions and tight junctions and are involved 

in cell-to-cell adhesion, by bridging transmembrane cadherins to the 

intracellular microtubule network of proteins. 

135,159 

E9PPJ5 
Midkine                                                                                                                                                                              

(MDK) 
3.5 0.000280 

Abrogation of the VEGF-A–induced proliferation of human microvascular 

endothelial cells in vitro through the downregulation of proangiogenic 

cytokines and through the upregulation of antiangiogenic factors. 

Downregulation of VEGF-A–induced neovascularization and vascular 

permeability in vivo. 

136 
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Figure 36: Curcumin modulates MARCKS expression in K562 cells and HUVECs. a: Real time PCR analysis showed that in 
K562 cells MARCKS mRNA expression decreases after treatment with Curcumin respect to untreated cells. Real time PCR 
analysis showed that MARCKS mRNA expression decreased in HUVECs treated with Curcu-exosomes respect to control 
exosomes. b: Expression of MARCKS was evaluated in HUVECs transfected with 2-Ome-miR-21 (miR-21 inhibitor) treated or 
not with 20 μg/ml of control (miR- 21 inhibitor + Exo 20 μg/ml) and Curcu-exosomes (miR-21 inhibitor + Curcu-Exo 20 
μg/ml). Expression of MARCKS was also evaluated in HUVECs transfected with miR-21 mimic (miR-21 mimic) treated or not 
with 20 μg/ml of control exosomes (miR-21 mimic + Exo 20 μg/ ml) and Curcu-exosomes (miR-21 mimic + Curcu-Exo 20 
μg/ml). Values (FOI: fold of induction) are the mean ± SD of 3 independent experiments *p ≤ 0.05, **p ≤ 0.01. c: Western 
blotting analyses of MARCKS in HUVECs treated with Curcu-exosomes and control exosomes. d: Densitometric analysis of 
Western blotting against MARCKS. e: Facs analysis of MARCKS expression. 
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