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1 Introduction

In this article we develop the vector-valued generalizations of the Henstock
and McShane integrals within the Riemann-measurable function class, that is,
in a certain sense under natural restrictions placed on the individual function
rather than on the range space. The importance of Riemann measurability in
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the theory of vector-valued integration stems from the facts that (a) a func-
tion is M -integrable (H -integrable) (that is, the gauge in the definition of
the McShane (Henstock) integral can be chosen to be Lebesgue measurable) if
and only if the function is both McShane (Henstock) integrable and Riemann
measurable; and (b) any bounded Riemann measurable function is necessar-
ily M -integrable [28]. It becomes clear from (a) and (b) that the H - and
M -integrals possess a reasonable degree of generality. We should point out
that the Riemann measurable function class is closely related to the theory of
integration set forth by Kolmogorov [19] in the real-valued case and Birkho↵
[1] in the vector-valued case. More precisely, in [36] it is shown that the M -
integral is equivalent to the Birkho↵ integral. The absolute Birkho↵ integral
arises naturally in connection with (b) above. In Theorem 2 we have been able
to extend (b) by showing that absolutely Birkho↵ integrable functions are pre-
cisely those, which are Riemann measurable and have a Lebesgue integrable
majorant. Furthermore, Theorem 1 and Corollary 2 give a partial descriptive
characterization of the absolute Birkho↵ integrable function class.

Several convergence theorems for the Birkho↵ integral can be found in
the literature [2,3,33–35]. However, the proofs are quite involved and their
hypotheses are not easy to check in specific instances. We should emphasize at
this point that, even for a uniformly bounded sequence of Riemann measurable
functions, pointwise convergence does not imply the Riemann measurability
of the limit function. Indeed, Rodŕıguez [32] gives an example of a uniformly
bounded sequence of M -integrable functions defined on [0, 1] and assuming
values in c0(c) that converges pointwise to a non-M -integrable function on
[0, 1]. Theorem 3 makes it clear that almost uniform convergence is natural
for the notion of Riemann measurability. Theorem 6 and Corollary 4 give
two versions of the Dominated Convergence theorem for Riemann-measurable
functions.

In the last section we follow the descriptive approach to the vector-valued
Henstock and McShane integrals, that is, to describe the properties of the in-
definite integrals and to see how the Henstock integral extends the McShane
integral in terms of these properties. The material in this section is motivated
by three well-known facts concerning real-valued functions defined on a closed
interval of the real line. First, an indefinite McShane integral is merely an AC

function whereas an indefinite Henstock integral is an ACG⇤ function (both
indefinite integrals are di↵erentiable to the integrand almost everywhere). Sec-
ond, the ACG� function class appears to be the most natural generalized ab-
solutely continuous function class related to the Henstock integral. It should
be pointed out that the definition of the ACG� property, unlike the definition
of the ACG⇤ property that is based on constant gauges, involves arbitrary

gauges. As a result, the proof of the fact that the ACG� property implies the
ACG⇤ property for an indefinite Henstock integral is indirect and relies heavily
on the di↵erentiability properties of the indefinite integral (see [16, Theorems
9.17 and 11.4]). Third, the domain of a Henstock integrable function can be
written as a countable union of closed sets on each of which the integrand is
McShane integrable. Once again, the proof is indirect and uses the theory of
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the Lebesgue integral, which is equivalent to the McShane integral in this case
(see [16, Theorem 9.18]).

In the vector-valued case the situation changes dramatically. On the one
hand a Henstock integrable c0-valued function defined on a closed interval of
the real line can be McShane integrable on no nondegenerate subinterval [27];
or in any infinite dimensional Banach space there exist Bochner measurable

functions whose indefinite Pettis integrals are not weakly di↵erentiable any-
where [4], while the Pettis integral and the McShane integral are equivalent
within the Bochner measurable function class [10]. Thus, to put it more ex-
plicitly, there is no hope that the above descriptive results may be extended
to vector-valued functions in their full generality using methods similar to the
real-valued case.

The descriptive relationship between the Henstock and McShane integrals
for vector-valued functions has received some attention in [7,26,27]. In [7],
Fremlin proved that a function is McShane integrable if and only if it is both
Henstock and Pettis integrable or equivalently, it is Henstock integrable and
its indefinite Henstock integral is AC (see [26]). In [26], by means of Fremlin’s
criterion it was shown that in some classes of Banach spaces the domain of a
Henstock integrable function can be written as a countable union of closed sets
on each of which the integrand is McShane integrable and the corresponding
indefinite McShane integrals converge to the indefinite Henstock integral in
the Alexiewicz norm.

Our methods refine those in [26] so that we can get most of the results in
a form that is as close as possible to the above real-valued case. Theorem 7
clarifies the relationship between two di↵erent absolute continuity concepts,
the AC⇤ and AC

⇤
� properties, defined in terms of constant and measurable

gauges, respectively. Theorems 8 and 9 provide descriptive criterions for M -
integrability. In Theorems 10 and 11 we give a set of necessary and su�cient
conditions for M -integrability of a Henstock integrable function in terms of
the absolute continuity properties of the indefinite integral. Theorems 12 and
13 contain su�cient conditions for the H -integral to extend the M -integral
in the natural way as mentioned above in this introduction. General su�cient
conditions to insure the convergence of a sequence of the indefinite McShane
integrals on some closed subsets of the domain to the indefinite Henstock
integral on the whole domain in the Alexiewicz norm are given in Theorems
14 and 15. We conclude this note with Theorem 16, which characterizes the
H - and M -integrals in terms of the ‘global smallness’ of the Riemann sums.

The reader who is not familiar with the extensions of the Riemann, Mc-
Shane, and Henstock integrals to the case of vector-valued functions may wish
to consult [5,6,11,14,15,7–10,20,22,24].

2 Notation and definitions

The following notation will be observed in the remainder of this note. We will
restrict our attention throughout to a closed nondegenerate interval [a, b] of the
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real line. In what follows, I will denote a closed nondegenerate subinterval of
[a, b]. X denotes a real Banach space and X

⇤ its dual. The symbol BX stands
for the unit ball of X. Given F : [a, b] ! X, �F (I) denotes the increment of
F on I. Let E be a set and let t be a point, then dist(t, E) is the distance from
t to E, @E, �E , and µ(E) will denote the boundary of E, the characteristic

function of E, and Lebesgue measure of E, respectively. For ease of notation,
we will drop the adjective Lebesgue and refer to measurable and negligible sets.
Finally, a gauge on E is any positive function defined on E.

An extensive list of definitions appears next. We begin with the notion of
Riemann measurability and then outline briefly a few definitions relevant to
the Henstock and McShane integrals as well as to the Birkho↵ integral and
its absolute version referred to as the Riemann-Lebesgue integral in [17] and
[18]. It is important to note that in the real-valued case the absolute Birkho↵
coincides with the ordinary Lebesgue integral [17, Theorems 1.3 and 1.4]. The
reader should consult [31] for a thorough discussion of other equivalent defi-
nitions of the Birkho↵ integral and the absolute Birkho↵ integral and [23] for
an extension of the Birkho↵ integral to locally convex spaces.

Definition 1 Let f : [a, b] ! X and let E ⇢ [a, b] be measurable. The func-
tion f is said to be Riemann measurable on E if for each " > 0 a closed set
F ⇢ E with µ(E \ F ) < " and a positive number � exist such that

����
KX

k=1

{f(tk)� f(t0k)} · µ(Ik)
���� < "

whenever {Ik}Kk=1 is a finite collection of pairwise nonoverlapping intervals
with max

1kK
µ(Ik) < � and tk, t

0
k 2 Ik \ F .

Definition 2 (a) A partial McShane partition of [a, b] is a finite collection
P = {(Ik, tk)}Kk=1 such that {Ik}Kk=1 is a family of mutually nonoverlapping
intervals and tk 2 [a, b] for each k. P is subordinate to a gauge � on [a, b] if
Ik ⇢ (tk � �(tk), tk + �(tk)) for each k. P is said to be a McShane partition of
[a, b] provided {Ik}Kk=1 covers [a, b].

We say that a function f : [a, b] ! X is McShane integrable on [a, b], with
McShane integral w 2 X, if for each " > 0 there is a gauge � on [a, b] such
that ����

KX

k=1

f(tk)µ(Ik)� w

���� < " (1)

whenever {(Ik, tk)}Kk=1 is a McShane partition of [a, b] subordinate to �.
(b) A partial Henstock partition (Henstock partition) of [a, b] is a partial

McShane partition (McShane partition) {(Ik, tk)}Kk=1 of [a, b] with tk 2 Ik for
each k. A function f : [a, b] ! X is Henstock integrable on [a, b], with Henstock

integral w 2 X, if for each " > 0 there is a gauge � on [a, b] such that (1) holds
for each Henstock partition {(Ik, tk)}Kk=1 of [a, b] subordinate to �.

(c) A function f : [a, b] ! X is said to be M -integrable (H -integrable) on
[a, b] if it is McShane (Henstock) integrable on [a, b] and for each " > 0 there
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exists a measurable gauge � on [a, b] that corresponds to " in the definition of
the McShane (Henstock) integral of f on [a, b].

Definition 3 Let E ⇢ [a, b] be measurable.
(a) A Birkho↵ partition of E is any at most countable family ⇧ = {Ek}

of mutually disjoint measurable sets that covers E.
(b) Let � and ⇧ be two Birkho↵ partitions of E. We say that � refines ⇧

if each set in � is a subset of some set in ⇧.
(c) A function f : E ! X is said to be (absolutely) Birkho↵ integrable on

E, with (absolute) Birkho↵ integral w 2 X, if for each " > 0 there is a Birkho↵
partition ⇧ of E such that for any Birkho↵ partition � = {Ek} that refines
⇧ the series

P
k f(tk)µ(Ek) is unconditionally (absolutely) summable and

����
X

k

f(tk)µ(Ek)� w

���� < " (2)

whenever tk 2 Ek for each k.

We now define various notions of bounded variation (V B and V B⇤), gen-
eralized bounded variation (V BG and V BG⇤), absolute continuity (AC, AC⇤,
and AC

⇤
� ), and generalized absolute continuity (ACG, ACG⇤, and ACG

⇤
�) on

a set.

Definition 4 Let F : [a, b] ! X and let E be a nonempty subset of [a, b].
(a) The function F is V B (resp. V B⇤) on E if

V(F,E) = sup

⇢����
KX

k=1

�F (Ik)

����

�
< 1 (resp. V⇤(F,E))

where the supremum is taken over all finite collections {Ik}Kk=1 of nonoverlap-
ping intervals with @Ik ⇢ E (resp. @Ik \ E 6= ?).

(b) The function F is said to be AC (resp. AC⇤) on E if for each " > 0
there exists a positive number ⌘ such that

����
KX

k=1

�F (Ik)

���� < " (3)

for each finite collection of pairwise nonoverlapping intervals {Ik}Kk=1 with
@Ik ⇢ E (resp. @Ik \ E 6= ?) and

KX

k=1

µ(Ik) < ⌘. (4)

(c) Suppose that the set E is measurable. The function F is said to be
AC

⇤
� on E if for each " > 0 a positive number ⌘ and a measurable gauge � on

E exist such that (3) holds for each partial Henstock partition {(Ik, tk)}Kk=1
of [a, b] with tk 2 @Ik \ E and (4) subordinate to �.

(d) The function F is V BG (resp. V BG⇤, ACG, ACG⇤, ACG
⇤
�) on E if E

can be written as a countable union of sets on each of which F is V B (resp.
V B⇤, AC, AC⇤, AC

⇤
� ).
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Remark 1 If in Definition 4 the norm is placed inside the sum, then we obtain
the corresponding strong function classes (the adjective strong serves as an
indication that the norm is inside the sum). It can be easily shown that in
the real-valued case the strong functions classes are equivalent to the ordinary
ones.

Remark 2 A straightforward argument shows that a function is V B⇤ (resp.
AC⇤, AC⇤

� ) on E1 [E2 whenever it is V B⇤ (resp. AC⇤, AC
⇤
� ) on both E1 and

E2.

Next, define the scalar derivatives (see [29] for some historical background
behind this notion), the scalar equivalence, and the Pettis integral (see [38] for
the general theory of this integral).

Definition 5 Let F : [a, b] ! X and let E ⇢ [a, b]. A function f : E ! X

is a scalar derivative of F on E if for each x
⇤ in X

⇤ the function x
⇤
F is

di↵erentiable almost everywhere on E and (x⇤
F )0 = x

⇤
f almost everywhere

on E (the exceptional set may vary with x
⇤).

Definition 6 Let E ⇢ [a, b] and let f, g : E ! X. The function f is said to
be scalarly equivalent to the function g on E if for each x

⇤ in X
⇤
x
⇤
f = x

⇤
g

almost everywhere on E (the exceptional set may vary with x
⇤).

Definition 7 Let f : [a, b] ! X.
(a) The function f is Pettis integrable on [a, b] if for each measurable set

E in [a, b] there is a vector ⌫f (E) 2 X such that the Lebesgue integral
R
E x

⇤
f

exists and is equal to x
⇤(⌫f (E)) for all x⇤ in X

⇤.
(b) The function f is Pettis integrable on [a, b] if there is an AC function

F : [a, b] ! X such that f is a scalar derivative of F on [a, b].

A comment on the above definition is appropriate here. While part (a) is the
original Pettis’ definition [30], part (b) is a descriptive definition of the Pettis
integral and the interested reader should refer to [11] or [25] for the details
related to this definition.

Customarily, we say that a function f is McShane (M -, Henstock, H -,
Pettis) integrable on a set E ⇢ [a, b] if the function f�E is McShane (M -

, Henstock, H -, Pettis) integrable on [a, b] and
R
E f =

R b
a f�E . Standard

arguments show that a McShane (M -, Henstock, H -) integrable function on
[a, b] is McShane (M -, Henstock, H -) integrable on any subinterval I of [a, b].
Moreover, a McShane (M -, Birkho↵, absolutely Birkho↵) integrable function
on [a, b] is McShane (M -, Birkho↵, absolutely Birkho↵) integrable on any
measurable subset of [a, b] (see [20, Theorem 9] and [17, Lemma 1.6]). If f
is integrable on [a, b], then it will be convenient to use the phrase ‘indefinite

integral’ to mean the function F (t) =
R t
a f . In this case, it is easy to verify that

F is continuous on [a, b], the function f is a scalar derivative of F on [a, b],

and
R
I f = �F (I) for any subinterval I of [a, b]. At last, kfkA = sup

a<tb

��R t
a f

��

is the Alexiewicz norm of the function f .
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Recall that the upper integral of a real-valued function f on a measurable
set E is defined to be

Z

E
f = inf

⇢Z

E
' : ' is summable on E and f  ' on E

�
.

The function f is said to satisfy condition (N) on E if µ⇤(f(A)) = 0 for each
negligible set A ⇢ E (µ⇤ represents the usual Lebesgue outer measure).

If (T,T ) is a topological space, then dens(T,T ) denotes the smallest car-
dinal for which there is a dense set of that cardinality. This cardinal is called
the density character of (T,T ). Each cardinal number is identified with the
first ordinal number of that cardinality.

The cardinal number {(µ) is defined to be the minimal cardinal number {
such that there exists the union of { negligible sets of positive outer Lebesgue
measure.

3 Characterizations of absolutely Birkho↵ integrable functions

This section explores some necessary and su�cient conditions to distinguish
absolutely Birkho↵ integrable functions among Riemann measurable functions.
It will be seen from Theorem 2 that the absolute Birkho↵ integral is very simi-
lar to the Bochner and Talagrand integrals (see [10] and the references therein).
Though Lemma 1 was stated implicitly in [17, p. 56] as well as Corollary 1
and Theorem 1 were stated in [18, p. 52] without any reference to a proof, we
provide here complete proofs since we believe that these basic facts are not
obvious.

Lemma 1 Let E ⇢ [a, b] be measurable and let f : E ! X. If f is absolutely

Birkho↵ integrable on E and a Birkho↵ partition {Ek} of E corresponds to

some positive number " in the definition of the absolute Birkho↵ integral of f

on E, then the function ' defined by

' =
X

k:µ(Ek)>0

sup
Ek

kfk · �Ek + kfk ·
X

k:µ(Ek)=0

�Ek

is summable on E and kfk  ' on E.

Proof It is clear that Mk = sup
Ek

kfk < 1 whenever µ(Ek) > 0. For each k

with µ(Ek) > 0 pick a point tk in Ek such that kf(tk)k � Mk � 1. Since

X

k:µ(Ek)>0

Mk · µ(Ek) 
X

k:µ(Ek)>0

kf(tk)k · µ(Ek) +
X

k:µ(Ek)>0

µ(Ek) < 1,

the function ' is summable on E. Further, by the construction of the function
', we have kfk  ' on E. The proof is complete.
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Corollary 1 below, which is an immediate consequence of our lemma, shows
that absolutely Birkho↵ integrable functions are remarkably similar to Bochner
and Talagrand integrable ones— the upper integral of the norm of an abso-
lutely Birkho↵ integrable function is finite.

Corollary 1 Let E ⇢ [a, b] be measurable and let f : E ! X. If f is absolutely

Birkho↵ integrable on E, then
R
Ekfk < 1.

Now we are ready to prove that the indefinite Birkho↵ integral of an ab-
solutely Birkho↵ integrable function is sV B.

Theorem 1 Let f : [a, b] ! X. If f is absolutely Birkho↵ integrable on [a, b],
then the indefinite Birkho↵ integral of f is sV B on [a, b] and

sV

✓Z ·

a
f, [a, b]

◆


Z

[a,b]
kfk.

Proof Fix ⌘ > 0. By Corollary 1, there exists a summable function ' on [a, b]
such that kfk  ' on [a, b] and

Z b

a
' <

Z

[a,b]
kfk+ ⌘.

Let a Birkho↵ partition ⇧ of [a, b] correspond to " = ⌘ in the definition of the
absolute Birkho↵ integral of ' on [a, b].

Let {Dk}Kk=1 be a finite collection of mutually disjoint measurable sets that
covers [a, b]. For each k, let a Birkho↵ partition ⇧k = {Enk} of Dk correspond
to " = ⌘/K in the definition of the absolute Birkho↵ integral of f on Dk.

Clearly, we may assume that
KS

k=1
⇧k refines ⇧. For each pair of n and k, pick

a point tnk in Enk. Consequently, we get

KX

k=1

���
Z

Dk

f

��� 
KX

k=1

���
Z

Dk

f �
X

n

f(tnk)µ(Enk)
���+

KX

k=1

X

n

kf(tnk)k ·µ(Enk) <

⌘ +
KX

k=1

X

n

'(tnk)µ(Enk)  2⌘ +

Z b

a
' < 3⌘ +

Z

[a,b]
kfk.

As ⌘ > 0 was arbitrary, we have the desired estimate for the strong variation
of the indefinite Birkho↵ integral of the function f . The proof is complete.

In Corollary 2 below we will be able to prove a partial converse to Theorem
1 under an additional assumption on the density character of the dual unit
ball equipped with the w⇤-topology. To do this, we need the following auxiliary
fact.

Lemma 2 Let F : [a, b] ! X. Suppose that dens(BX⇤ , w
⇤) < {(µ). If F is

sV B on [a, b] and f is a scalar derivative of F on [a, b], then
R
[a,b]kfk < 1.
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Proof By [29, Theorem 3.1], there exists a summable function ' on [a, b] such
that |x⇤

f |  ' almost everywhere on [a, b] for each x
⇤ in BX⇤ (the exceptional

set may vary with x
⇤).

Let � denote dens(BX⇤ , w
⇤) and let {x⇤

↵}↵<� ⇢ BX⇤ be w
⇤-dense in BX⇤ .

For each ↵ < � define a set E↵ by

E↵ = {t 2 [a, b] : |x⇤
↵f(t)|  '(t)}.

Further, set

N =
[

↵<�

[a, b] \ E↵

and note that N is negligible. Now it follows that

kf(t)k = sup
↵<�

|x⇤
↵f(t)|  '(t)

for each t 62 N . The proof is complete.

The key result of this section, Theorem 2, provides a complete description
of the absolute Birkho↵ integrability in terms of Riemann measurability.

Theorem 2 Let E ⇢ [a, b] be measurable and let f : E ! X. Then the

function f is absolutely Birkho↵ integrable on E if and only if f is Riemann

measurable on E and
R
Ekfk < 1.

Proof The necessity part of the theorem results from the equivalence of the
Birkho↵ and M -integrals and Corollary 1.

For the su�ciency, suppose that the function f is Riemann measurable on
E and ' is a summable function on E such that kfk  ' on E.

The Riemann measurability of f on E implies that there exists a se-
quence {Fn}1n=1 of pairwise disjoint closed subsets of E such that the set

N = E \
1S

n=1
Fn is negligible and f is bounded and Riemann measurable (and,

consequently, Birkho↵ integrable) on Fn for each n (see [28, Theorems 1 and
5]).

Fix " > 0. Let a Birkho↵ partition ⇧ of E \ N correspond to " in the
definition of the absolute Birkho↵ integral of the function ' on E \N . Then
for each Birkho↵ partition {Ek} of E \N that refines ⇧ we obtain the result
that X

k

kf(tk)k · µ(Ek) 
X

k

'(tk)µ(Ek) < 1

whenever tk 2 Ek.
For each n let ⇧n = {Ekn} be a Birkho↵ partition of Fn such that

����
X

k

f(tkn)µ(Ekn)�
X

k

f(t0kn)µ(Ekn)

���� <
"

2n
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whenever tkn, t
0
kn 2 Ekn. By part (RLC1) of Theorem 10 of [31], we may

assume that
1S

n=1
⇧n refines ⇧. Consequently, we obtain

����
1X

n=1

X

k

f(tkn)µ(Ekn)�
1X

n=1

X

k

f(t0kn)µ(Ekn)

���� <

1X

n=1

"

2n
= ",

where all the sums are absolute whenever tkn, t
0
kn 2 Ekn. Now part (FC) of

Theorem 10 of [31] applies to the function f to show the absolute Birkho↵
integrability of f on E \N . This completes the proof.

Corollary 2 Let f : [a, b] ! X. Suppose that dens(BX⇤ , w
⇤) < {(µ). If f

is M -integrable on [a, b] and the indefinite McShane integral of f is sV B on

[a, b], then f is absolutely Birkho↵ integrable on [a, b].

Proof Let F denote the indefinite McShane integral of f on [a, b]. Since f

is a scalar derivative of the sV B function F on [a, b], Lemma 2 yields thatR
[a,b]kfk < 1. As f is Riemann measurable on [a, b], by the above theorem,

f is absolutely Birkho↵ integrable on [a, b]. The proof is complete.

4 Sequences of Riemann-measurable functions

In this section we consider several important properties of the sequences of
Riemann measurable functions. For the reader’s convenience, we recall that
a function sequence {fn} defined on [a, b] converges to a function f almost

uniformly on a set E ⇢ [a, b] if for each " > 0 there is a measurable set S ⇢ E

with µ(S) < " such that {fn} converges uniformly to f on E \ S. The proof
of the following theorem is left to the reader.

Theorem 3 Let E ⇢ [a, b] be measurable and let fn : [a, b] ! X, n 2 N, be
Riemann measurable on E. If {fn} converges to a function f almost uniformly

on E, then f is Riemann measurable on E.

In the remainder of this section we address sequences of H -integrable func-
tions. We begin with the notions of uniformly H -integrable function sequence
and �-Cauchy function sequence.

Definition 8 Let fn : [a, b] ! X, n 2 N, be H -integrable on [a, b].
(a) The sequence {fn} is said to be uniformly H -integrable on [a, b] if for

each " > 0 there is a measurable gauge � on [a, b] such that

����
KX

k=1

fn(tk)µ(Ik)�
Z b

a
fn

���� < "

for all n whenever {(Ik, tk)}Kk=1 is a Henstock partition of [a, b] subordinate to
�.



On the integration of Riemann-measurable functions 11

(b) The sequence {fn} is said to be �-Cauchy on [a, b] if for each " > 0
there is a measurable gauge � on [a, b] and a positive integer N such that

����
KX

k=1

fm(tk)µ(Ik)�
KX

k=1

fn(tk)µ(Ik)

���� < "

for all m,n � N whenever {(Ik, tk)}Kk=1 is a Henstock partition of [a, b] sub-
ordinate to �.

In point of fact, the above (a) and (b) turn out to be very close to one another,
while (b) is sometimes easier to verify than (a). The proof of the next theorem
is exactly the same as that of the corresponding fact in the real-valued case.
The reader may want to see the relevant details in [16, Exercise 13.10].

Theorem 4 Let fn : [a, b] ! X, n 2 N, be H -integrable on [a, b]. Then {fn}
is �-Cauchy sequence on [a, b] if and only if the sequence {

R b
a fn} converges

and the sequence {fn} is uniformly H -integrable on [a, b].

For convenience, we recall the statement of the Uniform Henstock lemma
(see [26, Lemma 2]).

Lemma A Let f : [a, b] ! X be Henstock integrable on [a, b] and let " >

0. Suppose that a gauge � on [a, b] corresponds to " in the definition of the

Henstock integral of f on [a, b]. If {(Ik, tk)}Kk=1 is a partial Henstock partition

of [a, b] subordinate to �, then

����
KX

k=1

f(tk)�Ik �
KX

k=1

f�Ik

����
A

 2".

The following simple convergence theorem is extremely important to note.

Theorem 5 Let fn : [a, b] ! X, n 2 N. If {fn} is uniformly H -integrable on

[a, b] and converges to a function f pointwise on [a, b], then f is H -integrable

on [a, b] and
Z b

a
fn !

Z b

a
f as n ! 1. (5)

Moreover,

kfn � fkA ! 0 as n ! 1. (6)

Proof We omit the proof of H -integrability of the function f and (5) since it
proceeds by the standard technique as that in [16, Theorem 13.16].

To prove (6), fix " > 0 and let a measurable gauge � on [a, b] correspond
to "/8 in the definitions of the Henstock integral of f and fn on [a, b] for all
n. Choose a Henstock partition {(Ik, tk)}Kk=1 of [a, b] subordinate to � (this
is possible since {fn} is uniformly H -integrable on [a, b]). As {fn} converges
pointwise on [a, b], there exists an integer N such that kfn(tk) � fN (tk)k 
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"/4(b � a) for all n � N and for all k 2 {1, . . . ,K}. Now, using Lemma A to
yield the majorant "/4 for the first and fourth terms on the right, compute

kfn � fkA 
����fn �

KX

k=1

fn(tk)�Ik

����
A

+
KX

k=1

k{fn(tk)� fN (tk)} · �IkkA+

KX

k=1

k{fN (tk)� f(tk)} · �IkkA +

����
KX

k=1

f(tk)�Ik � f

����
A

 "

4
+

"

4
+

"

4
+

"

4
= "

for all n � N . This completes the proof.

A simple but very useful su�cient condition for the uniform H -integra-
bility of a function sequence reads as follows (cf. [13, Theorem 5]).

Theorem 6 Let fn : [a, b] ! X, n 2 N, be H -integrable on [a, b]. Suppose
that {fn} converges to a function f almost uniformly on [a, b]. If there exists

a summable function ' on [a, b] such that kfm � fnk  ' on [a, b] for all

m and n, then {fn} is uniformly H -integrable on [a, b]. Furthermore, f is

H -integrable on [a, b] and (6) holds.

Proof Fix " > 0. By the absolute continuity of the indefinite Lebesgue integral
of ', choose a positive number ⌘ such that

R
E ' < "/3 whenever E ⇢ [a, b]

is measurable and µ(E) < ⌘. Next, choose a measurable set S ⇢ [a, b] with
µ(S) < "/3 such that {fn} converges uniformly to f on F = [a, b] \S. Clearly,
we may assume that F is closed. Choose a positive integerN such that kfm(t)�
fn(t)k < "/3(b�a) for all m,n � N and for all t in F . Let a measurable gauge
�0 on [a, b] correspond to "/3 in the definition of the Henstock integral of ' on
[a, b]. Define a measurable gauge � on [a, b] by

�(t) =

(
�0(t), if t 2 F,

min(�0(t), dist(t, @S)), if t 2 S.

Suppose that {(Ik, tk)}Kk=1 is a Henstock partition of [a, b] subordinate to �,
m,n � N and, using the Saks-Henstock lemma (see e.g. [25, Lemma 1]),
compute

����
KX

k=1

fm(tk)µ(Ik)�
KX

k=1

fn(tk)µ(Ik)

���� 
����

X

k:tk2F

fm(tk)µ(Ik)�

X

k:tk2F

fn(tk)µ(Ik)

����+

����
X

k:tk2S

fm(tk)µ(Ik)�
X

k:tk2S

fn(tk)µ(Ik)

���� <

"

3
+

X

k:tk2S

'(tk)µ(Ik) 
"

3
+

����
X

k:tk2S

'(tk)µ(Ik)�

X

k:tk2S

(H)

Z

Ik

'

����+ (L)

Z

S
k:tk2S

Ik

' <
"

3
+

"

3
+

"

3
= ".
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This shows that the sequence {fn} is �-Cauchy on [a, b]. By Theorem 4, the
sequence {fn} is uniformly H -integrable on [a, b]. Now Theorem 5 applies to
the sequence {fn} to yield H -integrability of f and the relation (6). The proof
is complete.

Remark 3 See [37, p. 425] for a version of the above theorem dealing with
Henstock integrable vector-valued functions.

Corollary 3 Let fn : [a, b] ! X, n 2 N, be H -integrable on [a, b]. If {fn}
converges uniformly on [a, b], then {fn} is uniformly H -integrable on [a, b].

Remark 4 Compare [3, Proposition 5] where an analogous result is proven for
Birkho↵ integrable functions.

Remark 5 The function sequence {fn = n�{0}} converges almost uniformly
to 0 on [0, 1]. However, the sequence {fn} is not uniformly H -integrable on
[0, 1] (see [16, p. 209]).

It is rather important to note that the hypotheses of the next corollary
imply absolute Birkho↵ integrability of all the functions.

Corollary 4 Let fn : [a, b] ! X, n 2 N, be Riemann measurable on [a, b].
Suppose that {fn} converges to a function f almost uniformly on [a, b]. If

there is a summable function ' on [a, b] such that kfnk  ' on [a, b] for each

n, then fn for each n and f are absolutely Birkho↵ integrable on [a, b] and (6)

holds.

Proof By Theorem 3, the function f is Riemann measurable on [a, b]. Now
it follows from Theorem 2 that fn for each n and f are absolutely Birkho↵
integrable on [a, b]. Now Theorem 6 applies to the sequence {fn} to yield the
relation (6). The proof is complete.

Remark 6 Compare [35, Theorem 5.1] and [3, Theorem 7] where similar results
are approached by using the Birkho↵ definition of an integral.

5 The descriptive relationship between the H - and M -integrals

We begin with an examination of the AC⇤ and AC
⇤
� function properties closely

related to the H - and M -integrals. An easy proof makes it clear that these
two properties are equivalent for functions defined on a closed interval. The
general case however does not have obvious solutions. The first new result in
this section, Theorem 7, relates these function properties to one another (cf.
[39, Lemma 6]) in the case where the domain is an arbitrary measurable set.
Before addressing the general situation, we first consider a simpler situation
in the following lemma.
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Lemma 3 Let F : [a, b] ! X and let E ⇢ [a, b] be nonempty and measurable.

If F is AC
⇤
� on E, then for each " > 0 an increasing sequence of measurable sets

{En}1n=1 that cover E and a decreasing sequence of positive numbers {⌘n}1n=1

exist such that, for each n, (3) holds for each finite collection of pairwise

nonoverlapping intervals {Ik}Kk=1 with @Ik \ En 6= ? and

KX

k=1

µ(Ik) < ⌘n. (7)

Proof Fix " > 0. Let ⌘ > 0 and a measurable gauge � on E correspond to " in
part (c) of Definition 4. For each positive integer n, set

En =

⇢
t 2 E : �(t) >

1

n

�
and ⌘n = min

✓
⌘,

1

n

◆
.

Fix n for the moment. Let {Ik}Kk=1 be a finite collection of pairwise nonover-
lapping intervals with @Ik \ En 6= ? and (7). For each k, pick a point tk 2
@Ik \ En and note that

�(tk) >
1

n
� ⌘n.

On the other hand, since

KX

k=1

µ(Ik) < ⌘n  ⌘,

we have µ(Ik) < ⌘n for each k. It follows that {(Ik, tk)}Kk=1 is a partial Henstock
partition of [a, b] subordinate to �. Consequently, (3) holds and the sequences
{En}1n=1 and {⌘n}1n=1 have all the desired properties.

Theorem 7 Let F : [a, b] ! X and let E ⇢ [a, b] be measurable. If F is

AC
⇤
� on E, then for each � > 0 there exists a closed set P ⇢ E such that

µ(E \ P ) < � and F is AC⇤ on P .

Proof We may assume that µ(E) > 0, since the other case is trivial. Fix a
positive number � < µ(E). By the preceding lemma, for each positive integer
n a measurable set Hn ⇢ E with µ(E \Hn) < �/2n+1 and ⌘n > 0 exist such
that

����
KX

k=1

�F (Ik)

���� <
1

n

whenever {Ik}Kk=1 is a finite collection of pairwise nonoverlapping intervals
with @Ik \Hn 6= ? and (7). Set

H =
1\

n=1

Hn.
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Note that

µ(E \H) = µ

✓ 1[

n=1

(E \Hn)

◆
<

1X

n=1

�

2n+1
=

�

2
<

µ(E)

2
.

In particular, it is clear that H is nonempty.
We will prove that F is AC⇤ on H. Given a positive number ", pick a

positive integer n0 so that 1/n0 < " and let ⌘ = ⌘n0 . Then we have

����
KX

k=1

�F (Ik)

���� <
1

n0
< "

whenever {Ik}Kk=1 is a finite collection of pairwise nonoverlapping intervals
with @Ik \H 6= ? and (4). This shows that F is AC⇤ on H. Finally, choose a
closed set P ⇢ H so that µ(H \ P ) < �/2. It follows that

µ(E \ P ) = µ(E \H) + µ(H \ P ) <
�

2
+

�

2
= � < µ(E).

Of course µ(P ) > 0 and F is AC⇤ on P . The proof is complete.

Corollary 5 Let F : [a, b] ! X and let E ⇢ [a, b] be a measurable. If F

is ACG
⇤
� on E, then there exists an increasing sequence {Pn}1n=1 of closed

subsets of E such that the set E \
1S

n=1
Pn is negligible and F is AC⇤ on Pn for

each n.

Proof Suppose that E is the union of a sequence {Em}1m=1 of measurable sets
such that F is AC

⇤
� on Em for each m. It follows from Theorem 7 that for each

m there exists a sequence {Plm}1l=1 of closed subsets of Em such that the set

Em \
1S
l=1

Plm is negligible and F is AC⇤ on Plm for each l. For each positive

integer n, set

Pn =
[

l,m:l+mn+1

Plm.

It is now easily seen that the sequence {Pn}1n=1 has all the desired properties.

Now we give a descriptive criterion to distinguish M -integrable functions
among H -integrable functions defined on [a, b] (cf. Fremlin’s criterion, [7,
Theorem 8]).

Theorem 8 Let f : [a, b] ! X. Then f is M -integrable on [a, b] if and only if

f is H -integrable on [a, b] and its indefinite Henstock integral is AC on [a, b].

Proof If f is M -integrable on [a, b], then H -integrability of f is obvious. By
Lemma 6 of [20], the indefinite McShane integral of f is AC on [a, b].

If f is H -integrable on [a, b] and its indefinite Henstock integral is AC on
[a, b], then combining Theorem 4 of [28] and Theorem 3 of [26] shows that f

must be both Riemann measurable and McShane integrable on [a, b]. Lastly,
Theorem 7 of [28] applies to f to show that f is in fact M -integrable on [a, b].
The proof is complete.
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The next step is to show that the M - and Pettis integrals are equivalent
within the Riemann measurable function class. To do this, we will extend
Corollary 4 of [28] that relates the M -integral to the McShane integral by
replacing McShane integrability with Pettis integrability.

Theorem 9 Let f : [a, b] ! X and let E ⇢ [a, b] be measurable. Then f is

M -integrable on E if and only if f is both Riemann measurable and Pettis

integrable on E.

Proof The necessity part of the theorem is obvious.
Suppose that f is both Riemann measurable and Pettis integrable on E.

Since f is Riemann measurable on E, by part (d) of Theorem 1 of [28], there
exists a sequence {Fn}1n=1 of pairwise disjoint closed subsets of E such that

the set N = E \
1S

n=1
Fn is negligible and f is bounded on Fn for each n. Now

it follows from Theorem 5 of [28] that f is M -integrable on Fn for each n.
Since the Birkho↵ integral [1] and the M -integral are equivalent, f is Birkho↵
integrable on each of these sets. Finally, note that f is Birkho↵ integrable to
zero on N . Thus, E is covered by a sequence of measurable sets on each of
which f is Birkho↵ integrable. As f is Pettis integrable on E, by Fremlin’s
lemma on the Birkho↵ integral (see [9, §9]) f must be Birkho↵ integrable on
E, which is equivalent to M -integrability of f on E. The proof is complete.

Corollary 6 Let f : [a, b] ! X. If f is H -integrable on [a, b] and is sV B on

[a, b], then f is M -integrable on [a, b].

Proof Let F be the indefinite Henstock integral of f on [a, b]. For each x
⇤

in X
⇤, since the function x

⇤
F is both ACG⇤ and V B on [a, b], it must be

AC on [a, b]. It follows that f is Dunford integrable on [a, b] and (D)
R
I f =

(H)
R
I f for each I. As the function F is sV B on [a, b], the series

P1
k=1 �F (Ik)

converges absolutely whenever {Ik}1k=1 is a sequence of mutually nonover-
lapping intervals. By Proposition 2B of [10], f is Pettis integrable on [a, b].
Now Theorem 9 applies to show that f is M -integrable on [a, b]. The proof is
complete.

Corollary 7 Let f : [a, b] ! X. Suppose that dens(BX⇤ , w
⇤) < {(µ). If f

is H -integrable on [a, b] and the indefinite Henstock integral of f is sV B on

[a, b], then f is absolutely Birkho↵ integrable on [a, b].

The next theorem provides a descriptive su�cient condition for M -integra-
bility on a closed set (cf. [26, Theorem 5]).

Theorem 10 Let f : [a, b] ! X be H -integrable on [a, b] and let F : [a, b] !
X be the indefinite Henstock integral of f . Suppose that E is a nonempty closed

subset of [a, b]. If F is AC⇤ on E, then f is M -integrable on E.

Proof By Theorem 5 of [26], f is McShane integrable on E. Since f is Riemann
measurable on E, Theorem 7 of [28] applies to f . This completes the proof.
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In addition, we have a necessary condition for M -integrability on a mea-
surable set, the AC

⇤
� property of the indefinite integral. The proof follows

essentially as that of Theorem 6 in [26] and is omitted.

Theorem 11 Let f : [a, b] ! X be H -integrable on [a, b] and let F : [a, b] !
X be the indefinite Henstock integral of f . Suppose that E is a nonempty

measurable subset of [a, b]. If f is M -integrable on E, then F is AC
⇤
� on E.

Corollary 8 If f : [a, b] ! X is H -integrable on [a, b], then the indefinite

Henstock integral of f is ACG
⇤
� on [a, b].

Proof Since f is Riemann measurable on [a, b], by part (d) of Theorem 1 of
[28], there exists a negligible subset N of [a, b] such that [a, b]\N can be written
as the union of a sequence {Fn}1n=1 of pairwise disjoint closed sets on each of
which f is bounded. Note that f is certainly M -integrable to zero on N . By
Theorem 11, the indefinite Henstock integral of f is AC

⇤
� on N . Combining

Theorem 5 of [28] and Theorem 11 shows that the indefinite Henstock integral
of f is also AC

⇤
� on each of the sets Fn, which is what we desired.

Corollary 9 If f : [a, b] ! X is H -integrable on [a, b], then there exists

an increasing sequence {Pn}1n=1 of closed subsets of [a, b] such that the set

[a, b] \
1S

n=1
Pn is negligible and the indefinite Henstock integral of f is AC⇤ on

Pn for each n.

Remark 7 According to Example 1 of [27], there exists a c0-valued Henstock
integrable function defined on [a, b] that is not McShane integrable on any
nondegenerate subinterval of [a, b] and, as a result of this fact, its indefinite
Henstock integral is not even ACG on [a, b] (cf. Corollary 5).

However, in Banach spaces that do not contain an isomorphic copy of c0 we
establish the following somewhat stronger result (cf. Theorem 10 of [26] and
Corollary 8).

Theorem 12 Suppose that X does not contain an isomorphic copy of c0. If

f : [a, b] ! X is H -integrable on [a, b], then [a, b] can be written as a countable

union of closed sets on each of which the indefinite Henstock integral is both

V B⇤ and AC as well as the function f is M -integrable.

Proof By Corollary 4.4 of [25], there exists a sequence {Fn}1n=1 of closed sets

such that [a, b] =
1S

n=1
Fn and the indefinite Henstock integral of f is both V B⇤

and AC on Fn for each n. As the indefinite Henstock integral of f is scalarly
di↵erentiable to f |Fn on Fn, Corollary 5.1 of [25] yields the Pettis integrability
of f on Fn. Now it follows from Theorem 9 that f is M -integrable on Fn for
each n. The proof is complete.

In general, with no restrictions either on the integrand or the range space
an indefinite Henstock integral is at most V BG⇤ [25, Theorem 3.3]. In the
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next theorem, we are able to remove from Theorem 12 the assumption that
the range space does not contain an isomorphic copy of c0 by placing a stronger
restriction on the indefinite integral. We first need an elementary fact that we
have been unable to find in print.

Lemma 4 Let F : [a, b] ! X. Suppose that E is a closed subset of [a, b]
with a, b 2 E, F is sV B on E, and F |E is continuous on E. Then the linear

extension of F from E to [a, b] is continuous on [a, b].

Proof Let G be the linear extension of F from E to [a, b] and let {In}1n=1 be
the sequence of intervals contiguous to E. We make note of the facts that (i)
as G is linear on each In,

kG(bn)�G(an)k  k�F (In)k

whenever [an, bn] ⇢ In for each n; (ii) as F is sV B on E,

1X

n=1

k�F (In)k < 1. (8)

Without any loss of generality, we may assume that t is a right-hand limit
point of E and will prove that the function G is right-hand continuous at t.
Fix " > 0. Let a positive number � correspond to "/2 in the definition of the
continuity of F |E at t. By (8), there exists a positive integer N such that

X

n>N

k�F (In)k <
"

2
.

Since t is a right-hand limit point of E, we can choose a positive number �1  �

so that
N[

n=1

In \ (t, t+ �1) = ?.

We seek to estimate the norm kF (t0)�F (t)k for each t
0 2 (t, t+�1). Suppose

that t
0 62 E since the other case is obvious. Then t

0 2 In0 for some n
0
> N .

Denote an0 = inf In0 and compute

kF (t0)� F (t)k  kF (t0)� F (an0)k+ kF (an0)� F (t)k 

k�F (In0)k+ kF (an0)� F (t)k <
"

2
+

"

2
= ".

The proof is complete.

Theorem 13 Let f : [a, b] ! X be H -integrable on [a, b]. If the indefinite

Henstock integral of f is sV BG on [a, b], then [a, b] can be written as a count-

able union of closed sets on each of which the indefinite Henstock integral of

f is both sV B and AC as well as the function f is M -integrable.
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Proof Let F denote the indefinite Henstock integral of f . Since F is continuous
and sV BG on [a, b], it follows from Theorem 2 of [12] that

[a, b] =
1[

i=1

Pi

where Pi is closed and F is sV B on Pi for each i. Fix a positive integer i. Let
ai = inf Pi, bi = supPi and let Fi be the linear extension of F from Pi to [ai, bi].
By Theorem 3 of [12], Fi is sV B [ai, bi]. As F is scalarly di↵erentiable to f |Pi

on Pi, part (f) of Theorem 3.1 of [25] applies to the function Fi to show that
Fi is scalarly di↵erentiable on [ai, bi] to a function fi such that fi|Pi = f |Pi .
Now, by Theorem 3.2 of [29], we obtain that fi is Pettis integrable on [ai, bi]
and so is the function f on Pi. Thus, f is both Riemann measurable and Pettis
integrable on Pi. This means, by Theorem 9, that f is M -integrable on Pi.

To see that F is AC on Pi, fix x
⇤ in X

⇤. We claim that the real-valued func-
tion x

⇤
Fi is AC on [ai, bi]. Indeed, the function x

⇤
Fi is V B on [ai, bi] and sat-

isfies condition (N) on [ai, bi]. The second fact is valid since x
⇤
Fi|Pi = x

⇤
F |Pi

satisfies condition (N) on Pi and x
⇤
Fi satisfies condition (N) on each interval

where it is linear. Furthermore, by Lemma 4, the function Fi is continuous
on [ai, bi]. Now the Banach-Zarecki Theorem [16, Theorem 6.16] applies to
x
⇤
Fi to show that the function x

⇤
Fi is AC on [ai, bi]. Consequently, we have

x
⇤(�Fi(I)) =

R
I x

⇤
fi for each interval I in [ai, bi] so that the function Fi dif-

fers from the indefinite Pettis integral of fi on [ai, bi] by constant. This means
that Fi is AC on [ai, bi] and so is F on Pi. The proof is complete.

In what follows, we will need two more auxiliary results that rely on Lemma
A. The statement of the first, which is Lemma 3 of [26], is included for com-
pleteness.

Lemma B Let f : [a, b] ! X be Henstock integrable on [a, b], let f be Henstock

integrable on a measurable subset E of [a, b], and let " > 0. Then there is a

gauge � on [a, b] such that

����
KX

k=1

f�Ik\E �
KX

k=1

f�Ik

����
A

 "

whenever {(Ik, tk)}Kk=1 is a partial Henstock partition of [a, b] subordinate to �

with tk 2 E for each k.

Lemma 5 Let f : [a, b] ! X be Henstock integrable on [a, b], let N be a

negligible subset of [a, b], and let " > 0. Then there is a gauge � on [a, b] such
that ����

KX

k=1

f�Ik

����
A

 "

whenever {(Ik, tk)}Kk=1 is a partial Henstock partition of [a, b] subordinate to �

with tk 2 N for each k.
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Proof Clearly, f is Henstock integrable on N and
R b
a f�I\N = 0 for all I. Fix

" > 0. By Lemma B, there exists a gauge � on [a, b] such that

����
KX

k=1

f�Ik\N �
KX

k=1

f�Ik

����
A

 "

whenever {(Ik, tk)}Kk=1 is a partial Henstock partition of [a, b] subordinate to
� with tk 2 N for each k. Consequently, we get

����
KX

k=1

f�Ik

����
A


KX

k=1

kf�Ik\NkA +

����
KX

k=1

f�Ik\N �
KX

k=1

f�Ik

����
A

 ".

The proof is complete.

We are now in a position to give a more involved approximation property of
the Henstock integral including the convergence in the Alexiewicz norm. This
approximation property, which is an improvement of Theorem 8 of [26] that
removes the need for the whole domain to be covered by closed sets on each
of which the integrand is McShane integrable, has considerably broadened the
present paper. The proof uses a technique similar to that of [26], Theorem 8.
The relevant details appear below.

Theorem 14 Let f : [a, b] ! X be Henstock integrable on [a, b]. If there exists

a negligible subset N of [a, b] such that [a, b] \N can be written as a countable

union of closed sets on each of which f is McShane integrable, then [a, b] \N
can be written as the union of an increasing sequence {Fn}1n=1 of closed sets

on each of which f is McShane integrable and

kf�Fn � fkA <
1

n
(9)

Proof With no loss of generality, we may assume that

[a, b] \N =
1[

i=1

Pi,

where Pi ⇢ Pi+1, Pi is closed, and f is McShane integrable on Pi for each i.
Fix " > 0 and a positive integer n. We will prove that a closed set F exists

such that Pn ⇢ F ⇢ Pi(n,") for some i(n, ") > n and kf�F �fkA < ". For each
i, let a gauge �i on [a, b] correspond to Pi and "/2i+1 in Lemma B and let a
gauge �0 correspond to N and "/2 in Lemma 5. Define a gauge � on [a, b] by

�(t) =

8
><

>:

�n(t), if t 2 Pn,

min(�i(t), dist(t, Pi�1)), if t 2 Pi \ Pi�1 for some i > n,

�0(t), if t 2 N.
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Choose a Henstock partition {(Ik, tk)}Kk=1 of [a, b] subordinate to �. Let Dn =
Pn, Di = Pi \ Pi�1 for each i > n, and

F =
1[

i=n

[

k:tk2Di

Ik \ Pi.

It is easy to check that F is closed, Pn ⇢ F , and F ⇢ Pi(n,") for some i(n, ") >
n. Using Lemma B, Lemma 5, and the fact that for each k with tk 2 N the
set F \ Ik is either empty or a singleton, we get

kf�F �fkA 
1X

i=n

����
X

k:tk2Di

(f�F\Ik�f�Ik)

����
A

+

����
X

k:tk2N

(f�F\Ik�f�Ik)

����
A

=

1X

i=n

����
X

k:tk2Di

(f�F\Ik � f�Ik)

����
A

+

����
X

k:tk2N

f�Ik

����
A



1X

i=n

����
X

k:tk2Di

(f�Pi\Ik � f�Ik)

����
A

+
"

2
<

1X

i=n

"

2i+1
+

"

2
 ".

Define inductively a sequence {Fn}1n=1 of sets and a sequence {in}1n=1 of
positive integers as follows. Let F1 be a closed set such that P1 ⇢ F1 ⇢ Pi1 for
some i1 > 1 and kf�F1 � fkA < 1. For each n > 1, let Fn be a closed set such
that Pin�1 ⇢ Fn ⇢ Pin for some in > in�1 and kf�Fn �fkA < n

�1. Evidently,
the sequence {Fn}1n=1 has all the desired properties. The proof is complete.

Corollary 10 Let f : [a, b] ! X be H -integrable on [a, b]. Suppose that at

least one of the following statements holds:

(i) X does not contain an isomorphic copy of c0;

(ii) the indefinite Henstock integral of f is sV BG on [a, b].
Then [a, b] can be written as the union of an increasing sequence {Fn}1n=1 of

closed sets on each of which f is M -integrable and (9) holds.

Theorem 15 If f : [a, b] ! X is H -integrable on [a, b], then a negligible

subset N of [a, b] exists such that [a, b] \N can be written as the union of an

increasing sequence {Fn}1n=1 of closed sets on each of which f is bounded and

(9) holds.

Proof Since f is Riemann measurable on [a, b], by part (d) of Theorem 1 of
[28], a negligible set N exists such that the set [a, b] \ N can be written as a
countable union of closed sets on each of which the function f is bounded. As
a bounded Riemann measurable function is M -integrable (see [28, Theorem
5]), the remainder of the proof runs the same lines as our proof of Theorem
14.

The last result of this note is related to the concepts of globally small

Riemann sums and functionally small Riemann sums as defined in [21].
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Theorem 16 Let f : [a, b] ! X.

(a) If f is H -integrable (M -integrable) on [a, b], then for each " > 0
a closed set F ⇢ [a, b] and a measurable gauge � on [a, b] exist such that

µ([a, b] \ F ) < ", f is bounded on F , and

����
X

k:tk 62F

f(tk)µ(Ik)

���� < " (10)

whenever {(Ik, tk)}Kk=1 is a Henstock (McShane) partition of [a, b] subordinate
to �.

(b) If for each " > 0 a measurable set E ⇢ [a, b] and a measurable gauge �

on [a, b] exist such that f is H -integrable (M -integrable) on E and (10) holds

for each Henstock (McShane) partition {(Ik, tk)}Kk=1 of [a, b] subordinate to �,

then f is H -integrable (M -integrable) on [a, b].

Proof We will prove the H -integrability case since in the other case the proof
is similar.

Suppose first that f is H -integrable on [a, b] and let " > 0. By the preced-
ing theorem, there exists a closed set F ⇢ [a, b] such that µ([a, b] \ F ) < ", f

is bounded on F , and k
R b
a f �

R
F fk < "/3. Let a measurable gauge � on [a, b]

correspond to "/3 in the definitions of the Henstock integral of f on [a, b] and
on F . Let {(Ik, tk)}Kk=1 be a Henstock partition of [a, b] subordinate to � and
compute

����
X

k:tk 62F

f(tk)µ(Ik)

���� 
����

KX

k=1

f(tk)µ(Ik)�
Z b

a
f

����+

����
Z b

a
f �

Z

F
f

����+

����
Z b

a
f�F �

KX

k=1

f�F (tk)µ(Ik)

���� <
"

3
+

"

3
+

"

3
= ".

For (b), let " > 0. Choose a measurable set E ⇢ [a, b] and a measurable
gauge �1 on [a, b] such that f is H -integrable on E and

����
X

k:tk 62E

f(tk)µ(Ik)

���� <
"

3

whenever {(Ik, tk)}Kk=1 is a Henstock partition of [a, b] subordinate to �1. Since
f�E is H -integrable on [a, b], a measurable gauge �  �1 on [a, b] exists such
that

����
X

k:t0k2E

f(t0k)µ(I
0
k)�

X

k:t00k2E

f(t00k)µ(I
00
k )

���� <
"

3
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whenever {(I 0k, t0k)}K
0

k=1 and {(I 00k , t00k)}K
00

k=1 are Henstock partitions of [a, b] sub-
ordinate to �. For such partitions, we have

����
K0X

k=1

f(t0k)µ(I
0
k)�

K00X

k=1

f(t00k)µ(I
00
k )

���� 
����

X

k:t0k 62E

f(t0k)µ(I
0
k)

����+

����
X

k:t0k2E

f(t0k)µ(I
0
k)�

X

k:t00k2E

f(t00k)µ(I
00
k )

����+

����
X

k:t00k 62E

f(t00k)µ(I
00
k )

���� <
"

3
+

"

3
+

"

3
= ".

By the Cauchy criterion for H -integrability, the function f is H -integrable
on [a, b]. The proof is complete.

We close the paper with a few comments on the context of our results.
It remains unclear to us whether our assumption on the w

⇤-density character
of the dual unit ball can be removed from the hypotheses of Corollary 2 and
Lemma 2. We also do not know if there is a Riemann measurable function that
is scalarly equivalent to zero, but not absolutely Birkho↵ integrable. We should
note that if such a function exists, it is certainly both unbounded and Birkho↵
integrable. Unfortunately, we have been unable to completely remove the use of
gauges from our characterization of an indefinite Henstock integral in terms of
the various generalized absolute continuity properties. In particular, it would
be interesting to find some classes of infinite dimensional Banach spaces (or
some conditions on the particular function) in which the indefinite Henstock
integral is necessarily ACG⇤.

We thank the referee for many helpful insights toward improving our orig-
inal manuscript. The third author expresses his appreciation to the University
of Palermo Department of Mathematics and Computer Science for its hospi-
tality in summer 2015, during which part of this research was carried out.
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