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a b s t r a c t

In a non-local fractional-order model of thermal energy transport recently introduced by the

authors, it is assumed that local and non-local contributions coexist at a given observation

scale: while the first is described by the classical Fourier transport law, the second involves

couples of adjacent and non-adjacent elementary volumes, and is taken as proportional to

the product of the masses of the interacting volumes and their relative temperature, through

a material-dependent, distance-decaying power-law function. As a result, a fractional-order

heat conduction equation is derived. This paper presents a pertinent finite element method

for the solution of the proposed fractional-order heat conduction equation. Homogenous and

non-homogeneous rigid bodies are considered. Numerical applications are carried out on 1D

and 2D bodies, including a standard finite difference solution for validation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Non-local models of thermal energy transport have been used in recent physics and engineering applications to describe

“small-scale” and/or high-frequency thermodynamic processes [1–10].

Early models of non-local thermal energy transport, in rigid as well as elastic bodies, are the well-known integral models by

Eringen [1–2]. They involve a thermal energy exchange with a local Fourier contribution related to the spatial gradient of the

thermal energy flux, and a non-local integral term convoluting temperature gradients in the whole body with a distance-decaying

attenuation function [1–2]. Models of this sort have been applied to describe thermo-elastic coupling in micro-electro-mechanical

resonators [3].

In more recent years, fractional models of non-local thermal energy transport have been awarded a growing attention [4–10].

Being capable of interpolating among the integer-order operators of classical differential calculus, fractional operators have been

used indeed in several contexts of physics and engineering [11–37]. They have proved suitable for reproducing long-memory

effects and long-range spatial effects [20–22], with successful applications to viscoelasticity [23–28] and non-local elasticity

[29–36]. Generalized transport equations have also been derived from fractional statistical mechanics [37]. Regarding, in par-

ticular, heat transfer problems in rigid as well as elastic bodies, fractional operators have been used in ref. [4–5] to model
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long-memory effects, and in ref. [6–10] to model long-memory with long-range spatial effects, providing fractional time [4–6]

and fractional time-space [7–9] heat conduction equations.

Very recently a non-local model of thermal energy transport has been proposed by the authors [38–41], based on the

assumption that two contributions coexist at a considered observation scale: (i) a local thermal energy transfer, described by

the Fourier transport law; (ii) a non-local, long-range thermal energy transport, involving couples of adjacent and non-adjacent

elementary volumes, and modeled as proportional to the product of the masses of the interacting volumes, and to the relative

temperature at their locations, through a material-dependent distance-decaying function. In the resulting heat conduction

equation at a given location, volume integral accounts for the long-range thermal energy transfer between the given location

and all surrounding adjacent and non-adjacent locations, including the material-dependent distance-decaying function that

governs the long-range heat transfer [38–41]. It has been demonstrated that any strictly positive distance-decaying function

can be selected, for the model to fulfill the second principle of thermodynamics [38–41]. In particular, in ref. [38–41] power-

law distance-decaying functions have been chosen, resulting in a fractional-order heat conduction equation with some specific

fractional operators [38–41]. Results have been found in agreement with non-classical thermodynamic behavior observed, for

instance, in micro- and nano-devices [42–44].

This paper presents a pertinent finite element (FE) approach to solve the fractional-order heat conduction equation proposed

by the authors in ref. [38–41]. Homogeneous and non-homogeneous rigid bodies are considered. Numerical results are presented

for 1D and 2D rigid bodies, for different values of the fractional differentiation order. The proposed FE solution is validated by

comparison with a standard finite difference (FD) solution.

2. Problem formulation

Consider an isotropic rigid body at rest and define u = u(x, t) as the specific internal energy, ρ = ρ(x) as the mass density,

being x = (x, y, z) and t location and time, respectively. The mass density is not time dependent as a closed thermodynamic

system is assumed. The absolute temperature of the body is denoted as T(x, t), Cv is the constant volume specific heat.

The proposed non-local model of thermodynamics [38–41] relies on the assumption that the internal energy density of the

body, ρ(x)u(x, t), comprises two contributions so that:

∂ρ(x)u(x, t)

∂t
= ∂ρ(x)ul(x, t)

∂t
+ ∂ρ(x)unl(x, t)

∂t
(1)

In Eq. (1), ρ(x)ul(x,t) and ρ(x)unl(x,t) denote the local and long-range contributions to the total internal energy at location x,

related to: (a) the local flux energy vector q(x,t); for instance, it can be provided by the Fourier law; (b) a long-range residual

contribution that can be expressed using fractional derivative operators [38–41].

In view of Eq. (1), the balance law of energy in presence of an energy source ρ(x)r(x,t) is given by [38–41]:

∂ρ(x)u(x, t)

∂t
= −∇q(x, t)+ ρ(x)

∫
Vy

χnl(x, y, t)ρ(y)dVy + ρ(x)r(x, t) (2)

where the integral on the R.H.S. is the long-range contribution due to the interactions among the elementary volume located at

x and all other elementary volumes of the body [1–2]. In Eq. (2), χnl(x,y,t) is assumed as dependent on the difference between

the temperatures at locations x and y, in the following form:

χnl(x, y, t) = κα

dn,l̄(ᾱ)

T(y, t)− T(x, t)

‖x − y‖n+α (3)

where α є R, n є N represents the dimension of the topological space of the body (for instance, n = 2 for 2D bodies), and κα is a

material-dependent coefficient weighing the amount of non-local heat transfer; also,

dn,l̄(ᾱ) = βn(ᾱ)
Al̄(ᾱ)

sin(ᾱπ/2)
(4a)

βn(ᾱ) = π1+n/2

2ᾱ	(1 + ᾱ/2)	(n + ᾱ/2)
(4b)

Al̄(ᾱ) =
l̄∑

k=0

(−1)k−1

(
l̄
k

)
kᾱ (4c)

where l = {α} + 1, ᾱ = (n − 1)+ α, l̄ = (n − 1)+ l, being {α} the integer part of α; obviously, Eq. (4a) holds for ᾱ �= 0, 2, 4 . . . ., i.e.

for ᾱ not equal to even integers. From Eq. (2), the following fractional-order equation ruling the temperature distribution can be

obtained:

ρ (x)Cv
∂T (x, t)

∂t
= ∇(λ (x)∇T (x, t))+ ρ (x)

κα

dn,l̄(ᾱ)

∫
Vy

T (y, t)− T (x, t)

‖x − y‖n+α ρ (y)dVy + ρ (x)r (x, t) (5)
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where �u(x,t)/�t = Cv�T(x,t)/�t, Eq. (3) has been replaced for χnl(x,y,t) and the following Fourier linear force-flux relation has

been considered for q(x,t)

q (x, t) = −λ (x) · ∇T (x, t) (6)

being λ(x) the spatially-varying local conductivity coefficient. In ref. [38–41], it has been demonstrated that no non-local terms

are involved in the Neumann boundary conditions that, therefore, coincide with those of classical local thermodynamics. This is

a significant advantage when numerical solutions of Eq. (5) are constructed.

It is interesting to point out that, for homogeneous bodies, the fractional-order heat conduction Eq. (5) involves well-known

fractional operators. In fact, for λ(x) = λ and ρ(x) = ρ(y) = ρ over the whole domain, it can readily be seen that Eq. (5) takes the

form

ρCv
∂T (x, t)

∂t
= λ∇2T (x, t)+ ρ2κα

(
D̂α

X T
)
(x, t)+ ρr (x, t) (7)

where (D̂α
X T) is the integral part of the H-Riesz fractional derivative of order α [34,35,40]:

(
D̂α

X T
)
(x, t) = 1

dn,l̄

(
ᾱ

)
∫

Vy

T (y, t)− T (x, t)

‖x − y‖n+α dVy (8)

In particular, for a 1D homogeneous body of uniform cross section, Eq. (7) reverts to

ρCv
∂T (x, t)

∂t
= λ

∂2T (x, t)

∂x2
− ρ2Aκα(D̂αT)x (x, t)+ ρr (x, t) (9)

where A is the area of the cross section,(D̂αT)x(x, t) = (D̂α
0+T)x(x, t)+ (D̂α

L−T)x(x, t) is the sum of left and right integral parts of the

Marchaud-type fractional derivatives, i.e.

(
D̂α

0+T
)

x
(x, t) = α

	(1 − α)

∫ x

0

T (x, t)− T (y, t)

(x − y)1+α
dy (10a)

(
D̂α

L−T
)

x
(x, t) = α

	(1 − α)

∫ L

x

T (x, t)− T (y, t)

(y − x)1+α
dy (10b)

being L the body length.

3. Finite element method

The fractional-order heat conduction Eq. (5) can be solved by standard numerical methods as the FE method. For this purpose,

consider a mesh with Ne elements over the body domain. The temperature field within the ith element is given the following

form

Ti (x, t) = Ni (x)Ti (t) i = 1, 2, . . . , Ne (11)

where Ti(x,t) is the temperature within the ith element, Ti(t) is the vector of the unknown nodal temperatures of the ith element,

Ni(x) is the matrix collecting the shape functions. Upon introducing the connectivity matrix Ci, such that

Ti (t) = CiT (t) (12)

where T(t) is the vector that collects the temperatures at all nodes, replacing Eq. (11) for the temperature function in Eq. (5) and

using the standard Galerkin approach along with the weak formulation [45] lead to the following equation

MṪ (t)+ (K(l) + K(nl))T (t) = F (t) (13)

In Eq. (13), K( l) is the local matrix

K(l) =
Ne∑

i=1

K
(l)
i

for (14)

K
(l)
i

=
∫

Vi

∑
s=x,y,z

(
B(s)

i
(x)Ci

)T
λ (x)B(s)

i
(x)CidVi (15)

where Vi is the volume of the ith element, and Bi
(s)(x), for s = x, y, z, is the matrix obtained by differentiating the matrix Ni(x)

collecting the shape functions

B(s)
i

(x) = ∂Ni (x)/∂s s = x,y,z (16)

Further, in Eq. (13) K(nl) is the non-local matrix

K(nl) =
Ne∑

i=1

K
(nl)
i

=
Ne∑

i=1

Ne∑
j=1

K
(nl)
ij

for (17)
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K
(nl)
ij

=
∫

Vi

∫
Vj

(
Nj (y)Cj − Ni (x)Ci

)T
G (x, y)

(
Nj (y)Cj − Ni (x)Ci

)
dVidVj (18)

where Kij
(nl) is the non-local matrix associated with the long-range thermal energy exchange between the elementary volumes

dVi inside the ith element and those, denoted by dVj, inside the jth element, while G(x,y) is given by

G (x, y) = κα

dn,l̄(ᾱ)

ρ (x)ρ (y)

‖x − y‖n+α (19)

Notice that the local matrix K( l) in Eq. (14) coincides with the classical matrix of Fourier transport, built by assembling matrices

Ki
( l), for i = 1, . . . Ne. The non-local matrix K(nl) in Eq. (17) is fully populated, since the terms of the non-local matrix K(nl)

i
=∑Ne

j=1
K(nl)

ij
, associated with the ith element, will appear in all columns of the global matrix K(nl), as can readily be seen from Eq.

(18) for Kij
(nl).

In Eq. (13), vector F(t) is given as

F (t) =
Ne∑

i=1

Fi (t) for (20)

Fi (t) =
∫

Vi

(Ni (x)Ci)
Tρ (x)r (x, t)dVi (21)

where r(x,t) is the vector describing internal heat sources. Eq. (20) may also contain contributions from heat flux through the

boundary. In this case, vector Fi(t) associated with the ith element along the boundary shall include an additional contribution

given as∫
	i

(Ni (x)Ci)
Tq̄d	i (22)

where q̄ is the flux through the boundary 	i, positive outward. Also, in Eq. (13) matrix M is given as

M =
Ne∑

i=1

Mi for (23)

Mi =
∫

Vi

(Ni (x)Ci)
Tρ(x)Cv(Ni (x)Ci)dVi (24)

Typical FEs for 2D heat transfer problems are either triangular or rectangular. For linear triangular elements, the matrix

collecting the shape functions Ni(x,y) is a 1 × 3 matrix with elements given as

Ni1 (x, y) = 1

2A
[(xi2yi3 − xi3yi2) + (yi2 − yi3)x + (xi3 − xi2)y] (25a)

Ni2 (x, y) = 1

2A
[(xi3yi1 − xi1yi3) + (yi3 − yi1)x + (xi1 − xi3)y] (25b)

Ni3 (x, y) = 1

2A
[(xi1yi2 − xi2yi1) + (yi1 − yi2)x + (xi2 − xi1)y] (25c)

where (xi1,yi1), (xi2,yi2) and (xi3,yi3) are the nodal coordinates and A is the area of the triangular element, i.e.

A = 1

2
det

⎡
⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦ (26)

For bilinear rectangular elements, Ni(x,y) is a 1 × 4 matrix with elements given as

Ni1 (x, y) = 1

4bc
(b − x)(c − y) (27a)

Ni2 (x, y) = 1

4bc
(b + x)(c − y) (27b)

Ni3 (x, y) = 1

4bc
(b + x)(c + y) (27c)

Ni4 (x, y) = 1

4bc
(b − x)(c + y) (27d)
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where 2b and 2c are the lengths of the x- and y- sides of the element (in this case, x and y in Eq. (27) denote local axes with origin

at the center of the rectangular element).

It is worth remarking that, for 1D linear FEs, closed-form expressions can readily be derived for the integrals involved in the

non-local matrices Kij
(nl), Eq. (18). Although in a different context, similar closed-form expressions have been provided by the

authors in ref. [46].

4. Numerical examples

In this Section, the proposed fractional-order heat conduction Eq. (5) is solved for 1D and 2D rigid bodies, in presence of a

prescribed thermal energy source r(x,t). Numerical solutions are built by the FE method formulated in Section 3 and compared

with corresponding FD solutions.

4.1. Temperature distribution in a 1D body

Consider the non-homogeneous rigid bar of length L, shown in Fig. 1.

It is assumed that ρ(x) = ρ , while the local conductivity coefficient is given by

λ (x) =

⎧⎪⎨
⎪⎩

λ1 −L/2 ≤ x < −εL

λ1 εL ≤ x < L/2

λ2 −εL ≤ x < εL

(28)

In this case, the fractional-order heat conduction Eq. (5) takes the form (for ρ = cost, see also Eq. (9)):

ρCv
∂T (x, t)

∂t
= ∂

∂x

(
λ (x)

∂T (x, t)

∂x

)
+ ρ2Aκα

α

	
(
1 − α

)
∫ L

0

T(y, t)− T(x, t)

‖x − y‖1+α
dy + ρr(x, t) (29)

The following analytical form is assumed for the thermal energy source r(x,t):

r(x, t) = r0

(
〈εL + x〉0 − 〈εL − x〉0

)
·
(
〈1 − t/τ1〉1 + 〈t/τ1 − 1〉0 +

(
e(1−t/τ2) − 1

)
〈t/τ2 − 1〉0

)
(30)

where < � >0 and < � >1 denote the singularity functions of order zero and one, respectively, τ 1 and τ 2 are reference times.

That is, r(x,t) in Eq. (30) spans the inner region [−εL, εL] and exhibits a linear growth until t = τ 1, a constant value between τ 1

and τ 2, and an exponential decay after t = τ 2. A zero initial temperature is assumed over the whole bar, T(x, 0) = 0, and zero

temperatures are assumed at the boundaries for all t:

T
(−L/2, t

) = T2 = 0; T
(
L/2, t

) = T1 = 0 (31)

To solve the fractional-order heat conduction Eq. (29), the FE approach formulated in Section 3 is applied using two-node

linear elements. For comparison, a standard FD solution is built, assuming a central difference approximation for the second-

order differential operator, and a trapezoidal discretization of the integral on the R.H.S. of Eq. (29). Continuity of the heat flux is

enforced at the boundaries between the inner part (with conductivity λ2) and the outer parts (with conductivity λ1). Considering

a discrete grid of abscissas xj = (j − 1)
x, with step 
x = L/N, the FD solution of Eq. (29) will be obtained at the grid points xj

(j = 1,2, . . . , N + 1) from the following set of ordinary differential equations in time domain:

˙̂T (t) = [K̂(l) + K̂(nl)]T̂ (t)+ r̄ (t) (32)

where T̂(t) = [ T̂1(t) T̂2(t) . . . . T̂N+1(t) ]T and r̄(t) = 1/Cv[ r(x1, t) r(x2, t) . . . r(xN+1, t) ]T are (N + 1)-vectors, K̂(l) and K̂(nl) are local

and non-local (N + 1) × (N + 1)-matrices; symbol (^) is introduced to distinguish the FD solving equations from the FE ones in

Eq. (13).

Solutions are sought for the following theoretical parameters: L = 10−1, ρ = 1.0, Cv = 10−2, κα = 102, λ1 = 10−2, λ2 = 5 × 10−2,

2ε = 10−1, r0 = 2.5 × 106 × (2/π )1/2, τ 1 = 10−4, τ 2 = 4τ 1, and different values of the fractional differentiation order α.

The FE solution obtained with Ne = 50 elements is reported in Fig. 2. It can be noted that, as the long-range thermal energy

transfer is introduced, the temperature distribution becomes more uniform over the bar domain and drops faster with time, with
Fig. 1. 1D non-homogeneous domain.
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Fig. 2. Temperature field in the non-homogeneous bar (Fig. 1), for different fractional differentiation orders α of the long-range thermal energy transfer.
deviations from the classical local solution that vary depending on the fractional differentiation order α. No significant changes

are encountered when Ne > 50 elements are used, and results are omitted for brevity.

Fig. 3 illustrates the temperature distribution across the bar at various time instants t, as given by the FE method with

Ne = 50 elements (continuous lines) and the FD method with N = 300 intervals (symbol “•”), for different values of the fractional

differentiation order α. The two solutions are in a very good agreement, at all considered time instants.

In order to illustrate the effects of material inhomogeneity, the FE solution for the homogeneous bar, i.e. for λ2 = λ1, is

reported in Figs. 4 and 5. A comparison between the temperature fields in Figs. 2 and 3 (non-homogeneous bar) and in Figs. 4 and

5 (homogeneous bar) shows that, due to the higher diffusivity in the central core (λ2 > λ1), in the non-homogeneous case lower

temperatures are generally experienced in the core with respect to the homogeneous case, for a given value of the fractional

differentiation order α. As a result of the long-range thermal energy transfer, however, differences become less evident as α
increases.

4.2. Temperature distribution in a 2D homogeneous body

To gain a further insight into the proposed fractional-order heat conduction model, consider the 2D rigid body in Fig. 6, built

by an outer square plate with a hole, welded to an inner square plate along the hole boundary. It is supposed that outer and inner

plates are made of the same material, i.e. λ(x,y) = λ and ρ(x,y) = ρ .

In this case, the heat conduction equation is Eq. (7). It is assumed that, as a result of the welding process, a thermal energy

well r(x, y, t) = r0f(t) is uniformly distributed over a small strip of length 
L across the hole boundary (see gray strip in Fig. 6),

governed by a time-decaying function f(t):

f (t) = a1a2
e−a1t − e−a2t

a2 − a1
(33)

where a1 and a2 are real constants. A zero initial temperature is assumed over the whole domain, T(x,y,0) = 0, and a zero

temperature is assumed along the outer sides at all t: T(x,0,t) = T(x,L,t) = 0; T(0,y,t) = T(L,y,t) = 0.

To solve Eq. (7), the FE approach proposed in Section 3 is applied, with standard four-node bilinear rectangular elements.

Results are compared with those from a standard FD approach, assuming a central difference approximation for the Laplace

operator and a trapezoidal discretization of the integral in Eq. (7). Upon introducing a 2D node grid of (N + 1) × (M + 1) points

(corresponding to N and M discretization steps along the coordinate axes x and y, respectively), the FD solution is built from

a discrete equation formally identical to Eq. (32), where in this case T̂(t) and r̄(t) are (N + 1)(M + 1)-vectors, K̂(l) and K̂(nl) are

(N + 1)(M + 1) × (N + 1)(M + 1)-matrices.
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Fig. 3. Temperature distributions in the non-homogeneous bar (Fig. 1) at (a) t = 3 × 10−4 s and (b) t = 1 × 10−3 s: local solution (gray line), non-local solutions

for α = 0.2 (blue line), α = 0.5 (red line) and α = 0.8 (black line); FE solution (continuous lines), FD solution (symbol “•”). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Temperature field in the homogeneous bar (Fig. 1), for different fractional orders α of the long-range thermal energy transfer.
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Fig. 5(a and b). Temperature distributions in the homogeneous bar (Fig. 1) at (a) t = 3 × 10−4 s and (b) t = 1 × 10−3 s: local solution (gray line), non-local

solutions for α = 0.2 (blue line), α = 0.5 (red line) and α = 0.8 (black line); FE solution (continuous lines), FD solution (symbol “•”). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

eL

iL

x

L

L

y

Fig. 6. 2D squared domain uniformly heated along gray contour.
The following geometry and material theoretical parameters are considered: Le = 8, Li = 4; 
L = 1 and thickness s = 1;

ρ = 1.0, λ/Cv = 0.5, κα/d
n,l̄

(ᾱ) = 0.5, r0 = 104, a1 = 1.0 and a2 = 2.0 for f(t) given by Eq. (33); α = 0.1 and α = 0.7 are considered

as fractional differentiation orders.

Fig. 7 presents the FE solution when no long-range thermal energy exchange is considered, i.e. for the Fourier classical

diffusion, while Figs. 8 and 9 show the FE solution of the proposed fractional-order heat conduction equation, for α = 0.7 and

α = 0.1 respectively; to build the FE solutions Ne = 20 × 20 = 400 rectangular elements are used. It is evident that, as a result

of the long-range thermal energy transfer, the temperature distribution is more uniform throughout the whole domain with

respect to the case of local diffusion only, to a different degree depending on the fractional differentiation order α. No significant

changes are encountered when Ne > 400 elements are used, and again results are omitted for brevity.

A further insight into the results shown in Figs. 7–9 is provided in Figs. 10 and 11, which illustrate the temperature distribution

for given y = cost and at various time instants t (that is, lines in Figs. 10 and 11 correspond to cross sections of the temperature

fields in Figs. 7–9, obtained by vertical planes at y = cost). In particular, the FE solution with Ne = 400 elements (continuous

lines) is compared with the FD solution, obtained for N = M = 80, i.e. totaling 81 × 81 = 6561 points in the discretization grid.

The two solutions agree very well over the whole domain, at all the considered time instants.
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Fig. 7. Temperature field obtained with the classical Fourier transport equation (κα = 0.0), at different time instants.

Fig. 8. Temperature field obtained with the fractional-order heat conduction equation for α = 0.7, at different time instants.
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Fig. 9. Temperature field obtained with the fractional-order heat conduction equation for α = 0.1, at different time instants.

Fig. 10(a and b). Temperature distribution at y = Le/2 and varying x, for (a) t = 5.0 s and (b) t = 7.0 s: local solution (gray line), non-local solutions for α = 0.7

(blue line) and α = 0.1 (black line); FE solution (continuous lines), FD solution (symbol “•”). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 11(a and b). Temperature distribution at y = Le-
y = 10−1 and varying x, for (a) t = 5.0 s and (b) t = 7.0 s: local solution (gray line), non-local solutions for

α = 0.7 (blue line) and α = 0.1 (black line); FE solution (continuous lines), FD solution (symbol “•”). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
5. Conclusions

A recent non-local, thermal energy transfer model proposed by the authors [38–41] has been investigated for homogeneous

and non-homogeneous rigid bodies. The model is governed by a fractional-order heat conduction equation, which involves

specific fractional operators when homogeneous bodies are considered: examples are the integral terms of the Marchaud

fractional derivatives, and the integral part of the H-Riesz fractional derivatives, for 1D and 2D homogeneous bodies respectively.

For either homogeneous or non-homogeneous bodies, the Neumann boundary conditions coincide with those of classical local

energy transport, with significant advantages for a numerical solution of the proposed fractional-order heat conduction equation.

In particular, in this paper numerical solutions have been built by a pertinent FE method. Results have been compared with

results from a standard FD method. The FE method involves a local matrix and a non-local matrix, corresponding to local and

long-range thermal energy fluxes, which can readily be implemented in any numerical package. Also, closed-form solutions for

the terms in the non-local matrix can be found for 1D linear FEs [46]. The comparison with the FD solution proves that accurate

FE solutions can be obtained with a relatively low number of elements, and a significantly smaller size of the local and non-local

matrices involved in the discretized equations (e.g., Eq. (13) and Eq. (32)) for the FE and FD methods, respectively).

The numerical applications involve 1D and 2D temperature fields induced by a thermal energy source. As expected, they

show that a more uniform temperature distribution is obtained in the body domain as non-local energy transfer phenomena are

accounted for. The proposed fractional-order heat conduction equation proves potentially capable of representing a large variety

of non-local behaviors, depending on the parameters weighing the amount of non-local energy transfer, namely the fractional

differentiation order α and parameter κα pre-multiplying the fractional integrals (see Eq. (5) and Eq. (7)). For its versatility, the

proposed fractional model of non-local thermal energy transport may represent, in the authors’ opinion, a useful tool to capture

non-local deviations from the classical Fourier transport.

For completeness, the authors wish to point out that the proposed fractional-order heat conduction equation can be solved

also by alternative FD approaches, which are pertinent to fractional operators, as shown in previous publications [47]. At any

rate, for its simplicity and computational efficiency, the proposed FE solution appears as most suitable for a straightforward

implementation by any user.
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