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ABSTRACT. The paper focuses on a Dirichlet problem driven by the (p,q)-
Laplacian containing a parameter p > 0 in the principal part of the elliptic
equation and a (convection) term fully depending on the solution and its gra-
dient. Existence of solutions, uniqueness, a priori estimates, and asymptotic
properties as i — 0 and g — oo are established under suitable conditions.

1. INTRODUCTION

In this paper we focus on the following nonlinear Dirichlet problem driven the
(p, q)-Laplacian operator

{—Apu — uAgu = f(z,u,Vu) inQQ,
(Py)
u=0 on 0f).

Here © C RY is a nonempty bounded open set with the boundary 99, and u is
a positive real parameter. In the statement of problem (P,), with given numbers
1 < g <p, Apand A, stand for the p-Laplacian and g-Laplacian, respectively, that
is Apu = div(|Vu[P~?Vu) and Aju = div(]Vu|9=2Vu). The right-hand side of the
equation in (P,) is expressed through f : @ x RxRY — R, which is a Carathéodory
function, i.e f(-, s, &) is measurable for all (s,£) € RxRY and f(z, -, -) is continuous
for a.e. x € Q.

We also examine the limiting case of problem (P,), namely if 1 = 0. In this case
(P,.) becomes the problem driven by the p-Laplacian operator

(Py) —Apu = f(z,u,Vu) inQ,
u=20 on Jf).

The main point in our study is the fact that the right-hand side of problems
(P,) and (Pp) depends on the solution v and on its gradient Vu. The expression
f(z,u, Vu) is often called convection term. Due to the presence of the gradient Vu
in the term f(z,u, Vu), problems (P,) and (Py) do not have generally variational
structure, so the variational methods are not applicable. In view of this difficulty,
problem (P,) in its general form is rarely studied in the literature. It is more
investigated problem (Fp) (see [2], [3], [4], [5], [10], [11], and the references therein)
and the variational case in problem (P,) where the right-hand side does not depend
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on the gradient Vu, i.e., f(z,s,&) = f(x,s) (see [6], [7], [9], and the references
therein).

Under only two hypotheses on the function f(z, s, ), we show that we have exis-
tence of solutions for all problems (P,), with > 0, and (Fy). Our approach relies
on the theory of pseudomonotone operators for which we refer to the monographs
[1], [7], [12]. Adding a further condition, a uniqueness result is also produced. Un-
der the same hypotheses as for the existence part, we establish a priori estimates
for the solutions of (P,). Based on them, we look at asymptotic properties of the
solution sets of (P,) regarding ;1 as parameter. In this respect, a principal objective
of the present paper is to show that in the limit as 4 — 0 we obtain a solution of
(Py) that is approached in the space VVO1 P(Q) through a sequence of solutions of
problems (P,), whereas letting ;1 — 400 along the solutions of problems (P,) we
reach zero in the space W,™(Q2).

The rest of the paper is organized as follows. Section 2 deals with existence and
uniqueness of solution to problem (P,). Section 3 is devoted to the asymptotic
properties related to problem (P,) when y — 0 and p — +o0.

2. EXISTENCE AND UNIQUENESS OF SOLUTION TO PROBLEM (P,)

In the sequel, for every r € [1,+o00] we denote by ' its Holder conjugate, i.e.,
r’ satisfies % + % = 1. In particular, this applies to the Sobolev critical exponent
p* with its conjugate (p*)’. Recall that p* = ]f,’—j_vp if N > pand p* = oo if
N < p. The strong convergence and the weak convergence are denoted by — and
—, respectively.

Consider the Sobolev space W, *(2) endowed with the norm ||ul| := IVull Le ()
for all u € W, *(Q). In studying problem (P,) we rely on the negative p-Laplacian
—A,  WP(Q) = (WyP()* = WL (Q). Tt is well known that the opera-
tor —A,, is continuous, bounded, pseudomonotone and has the Si-property (see

(1], [7]). We denote by A;, the first eigenvalue of —A, on WyP(€). It has the

variational characterization

HVUH’EP(Q)
Al,p = 1l BT
ueW, P (Q), u#0 HuHLp(m

Throughout the paper we assume that the nonlinearity f(x,s,§) satisfies the
hypotheses:

(H1) There exist constants a1 > 0, az > 0, a € [0,p" = 1], B € [0, %y [ and a
function o € L' (), with v € [1,p*[, such that

|f(z,5,6)] < o(2) +arls|® + a2l ae. z €9, V(s,6) € R x RY;

(H2) there exist constants d; > 0, do > 0 with Af,;dl + dy < 1, and a function
w € LY(Q) such that

f(z,5,6)s < w(x) + di|s|P + dolé|P ae. z € Q, V(s,6) € R x RY.

A (weak) solution of problem (P,) for y > 0 is any u € W, ?(Q) such that

(2.1) /|Vu|p_2Vqudx+,u/ \Vu\q_QVuVde:/f(nmu,Vu)vdx
Q Q Q
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for all v € WyP(Q). According to hypothesis (H1) and Hélder’s inequality, the
integrals exist in the definition of weak solution as given in (2.1). Indeed, let us
note that

(2.2) fz,u, Vu) € L7 (), Yu € WEP(Q),

with some r € [1,p*[, as can be easily checked by using the growth condition in
(H1) and Sobolev embedding theorem.

Theorem 1. Assume that conditions (H1) and (H2) hold. Then problem (P,),
with p > 0, admits at least one weak solution u, € WyP(Q).

Proof. We are going to prove the existence of weak solutions to problem (P,) by
means of the theory for pseudomonotone operators. Specifically, corresponding to
(P,) we introduce the nonlinear operator A : WP () — W12 (Q) defined by

(2.3) Alu) = =Apu — pAgu — N(u),

where N : Wy (Q) — W~2#'(Q) denotes the Nemytskii operator associated to f,
that is N(u) = f(x,u, Vu). It is known from (2.2), that N(u) € W~1?'(Q) for all
ue WyP(Q).

It is clear from the growth condition in (H1) that A : W, **(€) — W12 (Q) is
bounded, which means that it maps bounded sets onto bounded sets.

We claim that the operator A in (2.3) is pseudomonotone. To this end let {u,} C
Wy*(€) be such that u, — u and lim SUDP,, 4 o0 (Atlp, U — u) < 0. We provide
the proof in the case where N > p. The case N < p is easier and thus we omit

it. It is seen from hypothesis (H1) that -, pf’_a, # < p*. Then Rellich’s compact

embedding theorem implies that w, — u in L7(Q), L= (), and L7 7 (Q). This,
in conjunction with hypothesis (H1) and applying Holder inequality, leads to

(2.4) lim | f(x,upn, Vup)(u, —u)de =0.

n— oo Q
Taking into account (2.3) and (2.4), we infer that

lim sup(—Apupn, — pA g, Uy, — u) = limsup(Auy, u, —u) < 0.

n——+4oo n——+oo
At this point, the S -property of the operator —A, — A, on the space Wol’p(Q) can
be used (see, e.g., [7, Proposition 2.70]) to derive the strong convergence u,, — u in
WP (€). Now it is straightforward to get that A(u,) — A(u) in W~ (Q), which
ensures in particular that the operator A is pseudomonotone.

Let us prove that A is coercive, which means to have
(Au,u)

full—oo  |lull

On the basis of hypothesis (H2), it turns out that

(Au,u) = [Vull? g+l Vall )~ / f(,u, Vayude > (1-diA A=)l Vall2— @] 21 0.

It follows that A is coercive because p > 1 and >‘1_,119d1 +dy < 1.

Since A : Wy (Q) — W17/ (Q) is pseudomonotone, bounded and coercive, we
can apply the main theorem on pseudomonotone operators (see [1, Theorem 2.99],
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[7, Theorem 2.63]). Therefore there is at least one element u,, € WP () such that
Auy, =0, so u, is a weak solution of problem (P,), which completes the proof. O

The final part of the section deals with the uniqueness of solution to problem
(P,), which can hold only under strong hypotheses (see [8] for the case where f in
(P,) does not depend on the gradient Vu). We illustrate this topic by presenting
a uniqueness result in the case where p = 2 or ¢ = 2. Our assumption is as follows:

(U)(a) there exists a constant by > 0 such that
(f(z,5,6) — f(x,t,6))(s —t) < by|s —t|? a.e. z € Q, VE € RY, Vs,t € R;
(U)(b) there exist a function 7 € L(), with some § € [1,p*[, and a constant
by > 0 such that the function f(z,s,-) — 7(z) is linear and
If(2,5,8) — 7(x)| < b€ ace. z € Q, ¥(s,6) € R x RV,
Theorem 2. Assume that conditions (H1), (H2), (U)(a) and (U)(b) hold.

(i) Ifp=2>¢>1and bl)\l_é +b2)\;2% < 1, then the solution of problem (P,)
is unique for every p > 0.
(ii) If p > q = 2, then the solution of problem (P,) is unique for every p >

biATS 4+ bad 5.

Proof. Since conditions (H1) and (H2) are supposed to be fulfilled, we may apply
Theorem 1, which asserts that there exists a solution w, € W,yP(€2) of problem
(P,) for every p > 0. Suppose that v, € W,P(Q) is a second solution of (P,).
Acting with u, — v, on the equation in (P,) gives

(=Apuy + Apvps uy — vu) + p(=Aguy, + Agvy, uy — vp)
(2.5) = Jo(f (@, u, V) = f(@, 00, V) (uy — v,) do
+ Jo (f(z, 00, V) — f(2, v, Vo)) (uy — vy) de.
(i) For p = 2, hypotheses (U)(a) and (U)(b), in conjunction with (2.5), the
monotonicity of —A, and Hoélder inequality imply
IV (up — vu)”%%g) < by fluy — Uu”i%ﬂ) + fo(f(z, v, V(%(uu —vu)?)) = 7(2)) dzx
< (b1>‘1_.é + 020 3) |V (up — vu)“%Z(Q)'

1
Using that bl)\f’é + b2, 5 <1, the equality u, = v, follows.
(ii) For p > ¢ = 2, arguing as in the case of part (i), we find the estimate

plIV (up — Uu)”%%g) < (bl)‘l_,é + b2/\i2§) IV (up — U/t)||%2(9)-

_1

The conclusion that u, = v, ensues provided that bl)\fé + boA; 5 < p, which

completes the proof. O
3. ASYMPTOTIC PROPERTIES AS p — 0 AND p — 400

It is shown in Theorem 1 that problem (P,) possesses a solution u,, € Wy*(Q)
for every p > 0. We establish the following a priori estimate.

Lemma 1. Assume that conditions (H1) and (H2) hold. Then there exists a con-
stant b > 0 independent of p > 0 such that

(3.1) IVuullLe) < b, V> 0.
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Proof. Fix p > 0. Since u,, € Wy"*(2) is a solution of (P,), we can insert v = u =
uy, in (2.1). Thanks to assumption (H2), for every p > 0 we get the estimate

HVUHHZ]ip(Q) < /Qf(x,uu,Vu#)u#d:ﬂ < (dl)‘1_,11> + d2) [[Vup |} + llwll 1)
We have by hypothesis (H2) that Ai;dl + dy < 1. Consequently, (3.1) is obtained

1
by choosing b = Mellre ) * O
Y & l—diA,) —d2 )~

Next, taking advantage that u is a parameter, we consider the limit points of
the net (u,) as p — 0 and p — +oo. We start by letting y — 0 in problem (P,).

Theorem 3. For any sequence p, — 07, there exists a relabeled subsequence of
solutions (u,, ) of the corresponding problems (P, ) such that u,, — u in WeP(Q),
with w € Wy (Q) weak solution of problem (Py).

Proof. Set, for simplicity, u,, := w,,,. Since u, is a weak solution of problem (P, ),
we can apply Lemma 1 and deduce that the sequence (uy,) is bounded in W**(€2).
Then along a relabeled subsequence one has that w, — wu in WO1 P(Q) for some
ue WyP(Q).

Following the same reasoning based on hypothesis (H1) as in the proof of The-
orem 1, we can show the validity of relation (2.4). Through the equation in (P,,),
the fact that u,, — 07 and using (2.4) we are led to

ngrfoo<—Apun, up, —u) = 0.

Recalling that the operator —A,, : Wy * () — W17 (Q) satisfies the S, -property,
we conclude that u,, — u in VVO1 P(Q). As arrived at the strong convergence u, — u
in W, (), we can pass to the limit in the equation in problem (P, ) as n — oo.
Specifically, u,, — u in W, ?(Q) implies that Vu, — Vu in LP(Q)V, so the growth
condition in assumption (H1) and Krasnoselskii’s theorem ensure

(3.2) N(un) = f(;un(-), Vun()) = N(u) = f(-;ul-), Vu())
in L™ (Q) as n — oo, for some r € [1,p*[. Bearing in mind that —Apu, — —A,u

in W= (Q), g, — 0%, and (3.2), letting n — oo in the equation of (P,,) allows
us to see that u is a weak solution of problem (Fy), which completes the proof. O

We turn to the asymptotic property as u — +oc.

Theorem 4. For any sequence f,, — +00, the sequence of solutions (u,, ) of the
corresponding problems (P, ) satisfies u,, — 0 in Wy(9).

Proof. Proceeding as in the proof of Theorem 3, we set u,, := w,,, and apply Lemma
1 to derive that the sequence (u,) is bounded in Wy*(R2), so up to a relabeled
subsequence we have u,, — u in Wy (Q) for some u € W, ().

We note that u,, satisfies
—%Apun - Aguy, = u%f(x,un, Vu,) inQ,
Up, =0 on 0f).

If we act with u,, —u in (3.3), we find that

(3.3)

ngr}rloo(quun,un —u) = 0.
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This follows from (3.3) because p, — 400, the sequence (Apu,) is bounded in
W12 (Q), and the sequence (f(-,un(-), Vi (-))) is bounded in L™ (Q), for some
r € [1,p*[ (arguing as for (2.4) in the proof of Theorem 1). Then the S -property
of the operator —A, : Wy'?(2) — W14 () guarantees that u, — u in W,().
Letting n — oo in (3.3) entails Aju = 0, so v = 0. Taking into account that the
preceding argument applies for every convergent subsequence of (u, ), we conclude
that for the whole sequence we have that u, — 0 in WO1 1(Q). The proof is thus
complete. O
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