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Purpose of review

Subclinical gut inflammation has been described in a significant proportion of patients with ankylosing
spondylitis (AS), up to 10% of them developing it during the time of clinically overt inflammatory bowel
disease. Histologic, immunologic, and intestinal microbiota alterations characterize the AS gut.

Recent findings

Microbial dysbiosis as well as alterations of innate immune responses have been demonstrated in the gut of
AS. Furthermore, a growing body of evidence suggests that the gut of AS patients may be actively involved
in the pathogenesis of AS through the production of proinflammatory cytokines, such as IL-23p19, and the
differentiation of potentially pathogenic innate lymphoid cells producing IL-22 and IL-17. Finally, a strong
correlation between the presence of subclinical gut inflammation and the degree of spine inflammation
have been also proved in AS.

Summary

Subclinical gut inflammation and innate immune responses in AS may be considered a possible consequence
of microbial dysbiosis. Relationships between cause and effect remain, however, to be answered.
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Subclinical gut inflammation has been described in
up to60% of patientswithspondyloarthritis (SpA) [1],
with up to 10% of those with more pronounced gut
inflammation evolving in a clinically overt Crohn’s
disease [2]. On the basis of these epidemiologic find-
ings, SpA-associated gut inflammation has been
initially thought as a preclinical model of Crohn’s
disease where to study early immunological altera-
tions related to Crohn’s disease. This point of view,
however, seems to be too simplistic since a growing
body of recent evidence suggest that gut inflam-
mation, at least in ankylosing spondylitis (AS)
patients, is not an epiphenomenon of the ongoing
systemic inflammatory process but rather an import-
ant etiological event that may actively participate in
the pathogenesis of AS. This article will focus on
recent studies regarding the innate and adaptive
immune responses occurring in the inflamed gut of
AS patients.

TEXT OF REVIEW

Histology

Two main types of gut inflammation have been
described in AS patients: acute inflammation,
rs Kluwer Health, Inc. All rights rese
and chronic inflammation, displaying altered intes-
tinal architecture with strong infiltration of mono-
nuclear cells eventually aggregated in lymphoid
follicles, resembling the ileocolitis seen in Crohn’s
disease [1]. Behind the architectural alterations
described in AS gut, other histologic findings seem
to characterize the inflamed ileum of AS. Relevant
epithelial alterations are in fact present in AS gut,
mainly characterized by goblet cells hyperplasia
(with increased mucins production) [3] and acti-
vation of paneth cells, producing high levels of
antimicrobial peptides [4] and proinflammatory
cytokines such as IL-23 [5]. Other histologic alter-
ations include the presence of detachment of epi-
thelial cells from the basal membrane and the
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KEY POINTS

� Intestinal dysbiosis occurs in AS.

� The inflamed gut of AS is the main site of production of
IL-23.

� Activation and expansion of ILCs occur in the gut
of AS.

� Gut-derived ILCs accumulate in the site of inflammation
in AS.

Medical physiology and rheumatic diseases
occurrence of vasculitic lesion, mainly represented
by intense hemorrhagic extravasation in the context
of lamina propria (Fig. 1) [6]. Although we cannot
(a)

(c)

(e)

FIGURE 1. Subclinical gut inflammation in AS patients. (a and
intestinal inflammation in AS patients with histologic findings of C
AS gut, as a marker of paneth cells activation. (f) Detachment of
gut. (a–d) Original magnification 100�. (e and f) Original magn

90 www.co-rheumatology.com
exclude that genetic factors may be responsible for
these alterations, similar epithelial damages have
been described as a consequence of the response
of epithelial cells to bacterial toxins [7,8].
Intestinal dysbiosis in ankylosing spondylitis

Crohn’s disease is one of the major inflammatory
bowel diseases. Genetic studies have demonstrated
that several genes, most of which were involved in
immune responses, appear to predispose for Crohn’s
disease [9]. However, genes alone cannot explain the
pathogenesis of Crohn’s disease. Increasing evi-
dence suggests that the intestinal microbiota may
play a role in initiating and maintaining the phe-
notype of Crohn’s disease. A number of studies have
(b)

(d)

(f)

b): Acute intestinal inflammation in AS. (c and d) Chronic
rohn’s disease (c). (e) Increased expression of a-defensin 5 in
epithelium from basal membrane and hemorrhages in AS
ification 400�. AS, ankylosing spondylitis.
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in fact demonstrated the presence of significant
alteration in Crohn’s disease gut microbiome
mainly characterized by the occurrence of oppor-
tunistic pathogens, the presence of dysbiosis, the
presence of functional alterations in the commensal
bacteria, and the host inability in containing com-
mensal microorganisms probably because of genetic
factors (reviewed in [10]). The resulting continuous
antigenic stimulation may activate pathogenic T
effector cells that may be in turn responsible of
the chronic intestinal inflammation.

Human leukocyte antigen B27 (HLA-B27) is a
major risk factor for AS [11]. The role of HLA-B27 in
shaping the gut microbiome has been studied by the
Rosenbaum’s group demonstrating, by using biome
representational in-situ karyotyping and 16S ribo-
somal ribonucleic acid gene sequencing, that Lewis
rats transgenic for HLA-B27 and human b2-micro-
globulin, had significant differences in the cecal
microbiota compared with wild-type Lewis rats
[12]. The role of gut microbiome in AS pathogenesis
is also suggested by many studies [13–15] that
demonstrate, in patients and first-degree relatives,
an increased intestinal permeability. In this
regard, it is probable that AS may be triggered by
common environmental (microbial) agents in
genetically susceptible individuals. Costello et al.
[16

&&

] recently performed culture-independent
microbial community profiling of terminal ileum
biopsy specimens from AS patients and healthy
controls to characterize and investigate any differ-
ences in the gut microbiome. Terminal ileal biopsies
obtained from AS patients were analyzed for
their microbial profiles. Ileal microbial communities
of patients with AS differed significantly from
healthy controls, being characterized by higher
abundance of five bacteria families: Lachnospiraceae,
Veillonellaceae, Prevotellaceae, Porphyromonadaceae,
and Bacteroidaceae.

The evidence of altered microbiome in other
SpA phenotypes reinforces the role of intestinal
dysbiosis in this group of related disorders. Altered
microbiota, characterized by reduced Faecalibacte-
rium prausnitzii and Lachnospiraceae families and an
increase in Bifidobacterium, has been recently dem-
onstrated in enthesitis-related arthritis associated
with an abnormal humoral immune response
[17]. Furthermore, patients with psoriatic arthritis
had a lower relative abundance of multiple intesti-
nal bacteria displaying a microbiota profile similar
to that previously described in patients with inflam-
matory bowel disease and associated with changes
in specific inflammatory proteins [18]. Although the
findings coming from these works, are interesting
studies are needed to specifically address the effect
of intestinal dysbiosis on innate immune responses
1040-8711 Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
and tissue inflammation and to value if the changes
in intestinal microbial composition are because of
host genetics.
Macrophage signature in ankylosing
spondylitis gut

As the dysbiosis observed in AS, it is likely that host
factors, such as cells of the innate immune system,
may predispose for the establishment of an altered
intestinal microbiome. Intestinal macrophages are
important components of intestinal immunity and
essential for the maintenance of mucosal homeo-
stasis [19]. Intestinal macrophages are unresponsive
to bacterial stimuli, displaying a reduced expression
of Toll-like receptors (TLRs) and other functional
receptors necessary for macrophage activation
(i.e. CD14) [20]. In Crohn’s disease, this anergic
phenotype is lost and CD14-expressing macro-
phages accumulate in the inflamed lamina propria
where they release proinflammatory mediators and
are involved in the induction of Th1 and Th17
responses [21,22].

Macrophages are not a homogeneous popu-
lation and, according to their phenotype and func-
tion, different pathways of macrophage activation
have been described in humans. Following the Th1/
Th2 nomenclature, macrophages are subdivided in
prevalent M1 (classical/proinflammatory) or M2
(alternative/antiinflammatory) types, representing,
however, the extremes of a continuum of activation
states [23]. Another subset of macrophages, possess-
ing aspects of both definitions consistent with an
immune regulatory phenotype, the so-called resolu-
tion phase macrophages (rMs) has been recently
described [24]. Impairment of M1-derived mediators
and expansion of M2 macrophages have been dem-
onstrated in the colon and synovial fluid of AS
patients [25,26]. Interestingly, in the AS facet joints
IL-23 seems to be predominantly produced by M2
but not M1 macrophages [27]. In the ileum of AS
patients, balanced macrophage activation seems to
be present with CD14þmacrophages being virtually
absent and classically activated M1 macrophages
(iNOSþIL-10-CXCL-9þ) expanded. Furthermore, a
significant increase of iNOSþIL-10þ cells (defined
as rMs) and CD163þ ileal macrophages (M2 macro-
phages), strictly correlated with the expression of IL-
33, a Th2 cytokine involved in M2 polarization, is
also present in AS gut [28]. Expansion of rMs and of
M2 macrophages, incompetent to eradicate intesti-
nal bacteria, may be responsible for the persistence
of intestinal dysbiosis and for lack of excessive local
inflammation observed in the ileum of AS patients.
The aberrant production of IL-23 by M2 macro-
phages, described in the spine of AS patients, and
rved. www.co-rheumatology.com 91
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their specific role in modulating innate and adaptive
immune responses need to be better investigated.
Immunologic signature of ankylosing
spondylitis gut

According to M1 deficient polarization, an impaired
Th1 profile with a possible Th2 polarization has
been reported in gut lamina propria lymphocytes
from patients with AS [5,29]. Immunologically,
however, the gut of AS seems to be more complexly
signed. IL-23 in particular has recently emerged as a
key cytokine involved in the regulation of innate
and adaptive immune responses in AS [30]. IL-23
mainly acts as a regulator of the maturation of
autoreactive T cells producing IL-17 (Th17), and
promotes chronic inflammation dominated by
IL-17, IL-6, IL-8, and TNF-a, as well as by neutrophils
and macrophages [31].

Although in Crohn’s disease patients, the IL-17/
IL-23 axis has been proved to be particularly acti-
vated, targeting Th17 responses via secukinumab
(anti-IL-17A) resulted in worse outcomes [32]. The
apparently paradoxical effect of IL-17 blocking
agents may suggest critical differences between
IL-17 itself (mainly produced by cells of the innate
immune system), possibly involved in tissue protec-
tive responses, and the highly pathogenic Th17
cells. However, we cannot exclude that activation
of different immune pathways following IL-17 inhi-
bition, such as Th1 or Th22 cells, and/or modifi-
cations in the intestinal microbiome induced by loss
of control by IL-17, may also be responsible for the
failure of anti-IL-17 therapy.

Behind the role of IL-23 in the modulation of
the Th17 pathway, recent reports identify an
important role for IL-23 in directly modulating
the innate intestinal immune system by activating
and expanding the so-called innate lymphoid cells
(ILCs) of type 3 [33

&&

,34]. IL-23 upregulation is
present in the terminal ileum of AS patients, mainly
in the context of paneth cells, and is not accom-
panied by a clear Th17 polarization [5] indicating a
role of this proinflammatory cytokine in directly
driving intestinal immune responses.

Although the regulation of IL-23 in AS gut is
not completely understood, a pathway of innate
immune system (the so-called macroautophagy or
autophagy) may be implicated in IL-23 modulation
[35]. Autophagy is a basic cellular machinery
responsible in eukaryotic cells for bulk degradation
of cellular constituents to provide energy resources
to the cells, also acting by directly eliminating intra-
cellular microbes or their products [36]. Another
function of autophagy is connected to its ability
to target improperly folded proteins for degradation
92 www.co-rheumatology.com
in close connection with the endoplasmic reticulum
(ER) stress response known as the unfolded protein
response (UPR) [37]. Autophagy seems to be
differentially regulated in the gut of AS patients
where a strong and significant upregulation of
autophagy-related 16-like 1 (ATG16L1), immun-
ity-related GTPase family M protein (IRGM), and
microtubule-associated proteins 1A/1B light chain
3A (MAP1LC3A) together with a decreased expres-
sion of genes involved in the so-called chaperone-
mediated autophagy occur. In particular, expression
levels of ATG16L1, IRGM, and MAP1LC3A seem to
be correlated with IL-23p19 in AS patients with
chronic gut inflammation and inhibition of autoph-
agy and chaperone-mediated autophagy appears
sufficient, in the presence of lipopolysaccharide,
to reduce the percentage of IL-23 expressing cells
at the same time increasing the mRNA levels for IL-
23p19 in the lamina propria mononuclear cells
(LPMCs) [38

&&

]. Although activation of autophagy
has not been demonstrated in the peripheral blood
and synovial tissues of AS [39], our findings seem to
indicate this pathway as one of the potential
immunological factors regulating the production
and secretion of IL-23 in AS in the gut.

Although these findings are of interest, linking
bacterial innate immune responses to IL-23 pro-
duction, other pathways might be implicated in
the production of IL-23. In this regard, UPR as a
consequence of HLA-B27 misfolding has been pro-
posed, in murine models of AS, as a main pathway
involved in IL-23 production [40]. This model, how-
ever, has not been confirmed in humans where UPR
seems to be not significantly modulated [41]. Inter-
estingly, free heavy chain misfolding occurs in the
gut of AS patients without any increased expression
levels of UPR genes, indicating that probably UPR in
human gut is strictly modulated by other immuno-
logical pathways [38

&&

]. In this regard, our data
indicate that inhibition of autophagy and chaper-
one-mediated autophagy increases in AS LPMCs the
levels of misfolded heavy chains and a clear upre-
gulation of UPR genes [42]. As our results support
the presence of HLA-B27 misfolding, we cannot
obviously exclude that ER stress caused by HLA-
B27 in the gut of AS patients may contribute to
the intense activation of autophagy, which in turn
may further limit the full UPR activation by enhanc-
ing the removal of misfolded protein.
Innate immune responses in ankylosing
spondylitis gut

The role of IL-23p19 in driving AS pathogenesis
seems to be linked to its ability in modulating
IL-17 and IL-22 production, two cytokines actually
Volume 28 � Number 1 � January 2016
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considered important actors in driving spinal
inflammation and osteoproliferation [43]. IL-23-
responsive entheseal resident T cells producing
IL-17 and IL-22 have been observed in a murine
model of AS and correlated to AS pathogenesis
[43]. The exact nature of these cells and their devel-
opmental origin remain elusive, also sharing
immunological similarities with specific subsets
of ILCs.

ILC populations are specialized effector cells
involved in the regulation of innate immunity
and inflammation through the secretion of specific
cytokines and chemokines. ILCs are characterized
by the absence of recombined antigen-specific
receptors, the absence of specific markers associated
with other immune cell lineages and a lymphoid
morphology [44]. Based on their cytokine reper-
toire, ILCs are classified into three groups (ILC1,
ILC2, and ILC3): ILC1s express the transcription
factor T-bet, produce IFN-g, and mediate immunity
against intracellular pathogens and tumors; ILC2s
produce IL-5 and IL-13; ILC3s are an important
source of IL-22 and IL-17, in response to IL-23,
express the retinoic acid, ROR-g, and are required
for mediating immunity to extracellular bacterial
infections, also providing help to marginal zone B
cells, and may also play a proinflammatory role
[45,46]. ILC3s seem to be essentially mucosal-
restricted cells, developmentally related to lym-
phoid tissue-induced cells (LTi) and dependent on
IL-7 for their differentiation [40]. These ROR-gþ cells
are essentially involved in protective response by
negatively regulating Th17 cells through the modu-
lation of intestinal microflora [47,48

&&

]. ILC3 may be
further subdivided according to whether they
express natural cytotoxicity receptors, such as the
NKp44 receptor. Although the ligand for NKp44 in
normal tissues has not yet been identified, it seems
to bind to an unusual isoform of the mixed lineage
leukemia 5 protein [49] and the continued engage-
ment of NKp44 and cytokine receptors may induce a
potent proinflammatory program in NKp44þILC3
cells [50]. Specifically in the gut of patients with AS,
ILC3 expressing the natural cytotoxicity receptor
NKp44 are significantly expanded and possibly
involved in tissue protective mechanisms [3].

ILC populations were recently studied in the gut
of AS patients [51

&&

]. No significant expansion of
ILC1 and/or ILC2 was observed. Conversely, a con-
sistent expansion of NKp44þILC3 (Lyn�IL-
23RþNKp44þTbetþRORc�) was demonstrated in
patients with AS with acute and chronic gut inflam-
mation significantly correlated with the disease
activity as assessed by the Bath Ankylosing Spondy-
litis Disease Activity Index. Type 3 ILCs were also
expanded in the gut, in the peripheral blood, in the
1040-8711 Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
synovial fluid and in the bone marrow of patients
with AS and express the homing integrin a4b7. In
addition, mucosal vascular addressin cell adhesion
molecule 1, the a4b7 ligand, was found to be highly
represented in the high endothelial venules of the gut
and in the inflamed bone marrow of AS, suggesting a
role for this receptor in chemoattracting ILC3 at the
site of active AS inflammation and a recirculation of
ILC3 between the gut and the bone marrow (Fig. 2).
In this regard, a better definition of the role of M2
macrophages in regulating ILC3 (for example,
through the production of IL-23) needs to be defined.

ILC3s are developmentally related to LTi cells
[47]. Aggregates of LTi in the small intestine of
patients with AS were observed in close proximity
to intestinal crypts [51

&&

]. These structures, highly
suggestive for cryptopatches, have been hypothes-
ized to be sites of active postnatal extrathymic T cell
development (as a consequence of intestinal bac-
teria colonization) and demonstrated only in the
colon in humans [52,53]. Aggregates of c-kitþThy-
1þCD3- cells were, however, demonstrated in the
ileum of AS patients, in close proximity to intestinal
crypts. In the gut of AS, paneth cells express IL-7 and
coculture of LTi with epithelial cells isolated from
patients with AS strongly induces the differentiation
of ILC3, also increasing the expression of IL-17 and
IL-22 [51

&&

]. These results suggest a pivotal role of
paneth cells in activating and amplifying intestinal
innate immune responses in the gut of patients with
AS resulting in active ILC3 differentiation (Fig. 2).
Clinical associations between axial and
subclinical gut inflammation in ankylosing
spondylitis

Bone marrow edema (BME) of the sacroiliac joints
(SIJs) is actually considered to be a hallmark of axial
SpA. A recently published study [54

&&

] specifically
assessed the link between BME of the SIJs and gut
inflammation and the correlation between BME and
establisheddiseaseactivityparameters.Thestudywas
performed on 68 patients with axial SpA from the
Gent Inflammatory Arthritis and spoNdylitis cohorT
underwent ileocolonoscopy and MRI of the SIJs.
Histopathological analysis and SPondyloArthritis
Research Consortium of Canada (SPARCC) scores
were performed. In this study, a significantly higher
SPARCC score was observed in axial SpA patients
showing chronic gut inflammation compared with
axial SpA patients showing normal gut histology.
By using a multiple linear regression model, the
authors identified chronic gut inflammation to be
independently associated with the extent of BME
indicating a link between mucosal inflammation
and axial disease in SpA.
rved. www.co-rheumatology.com 93
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FIGURE 2. Role of microbiome and innate immune system on pathogenesis of ankylosing spondylitis. Altered gut microbiome
may induce activation of paneth cells with the consequent release of proinflammatory cytokines such IL-23 and IL-7 that may
induce the organization of lymphoid tissue inducer cells in aggregates, called cryptopatches. In this context may occur the
differentiation of ILC3 producing IL-17 and IL-22. IL-22 alone may induce tissue protective responses on epithelial cells such as
goblet cells hyperplasia and mucins production. Together with IL-17, IL-22 may be also responsible for the induction of tissue
inflammation. ILC3 expressing a4b7 may migrate in the systemic circulation and, through the interaction with the specific
counter-receptor MADCAM1, accumulate in the site of active inflammation such as peripheral joints and peripheral tissues rich
in bone marrow such as entheses. By producing IL-22 and IL-17, ILC3 may be responsible for the induction of tissue
inflammation. Outside of the gut activation of ILC could be supported by M2 macrophages. ILC3, innate lymphoid cells
type 3; MAdCAM1, mucosal vascular addressin cell adhesion molecule 1.

Medical physiology and rheumatic diseases
Murine models of gut inflammation in
ankylosing spondylitis
To study how host genetics may influence gut
microbiota and the eventual relationship between
microbiota and organ inflammation in SpA,
Rehaume and coworkers [55] studied BALB/c ZAP-
70(W163C)-mutant (SKG) mice, TLR-4-deficient
SKG mice, and wild-type BALB/c mice maintained
under germ-free conditions, and recolonized with
altered Schaedler flora. The mice were injected
94 www.co-rheumatology.com
intraperitoneally with microbial b-1,3-glucan (cur-
dlan) and arthritis, spondylitis, and ileitis assessed
histologically. Microbiota content and response to
curdlan varied according to whether T cell receptor
signal strength was normal or was impaired because
of the ZAP-70(W163C) mutation. Curdlan triggered
acute inflammation regardless of the presence of the
SKG allele or microbiota. However, no or limited
microbiota content attenuated the severity of arthri-
tis. In contrast, ileal IL-23 expression, ER stress,
Volume 28 � Number 1 � January 2016
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lymph node IL-17A production, goblet cell loss, and
ileitis development were microbiota dependent.
Ileitis but not arthritis was suppressed by microbiota
transfer upon cohousing SKG mice with wild-type
BALB/c mice, as well as by TLR-4 deficiency. The
effects of IL-23 and IL-22 inhibition in IL-17A(�/�)
in curdlan-treated SKG or BALB/c mice were assessed
in another study [56]. In curdlan-treated SKG mice,
arthritis, enthesitis, and ileitis were IL-23 dependent
and enthesitis was specifically dependent on IL-17A
and IL-22. IL-23 was induced in the ileum, where it
amplified ER stress, goblet cell dysfunction, and
proinflammatory cytokine production. IL-17A was
pathogenic, whereas IL-22 was protective against
ileitis. IL-22þCD3- innate-like cells were increased
in LPMCs of ileitis-resistant BALB/c mice, which
developed ileitis after curdlan injection and anti-
IL-22.
CONCLUSION

Subclinical gut inflammation may be the hidden
place where, because of the continuous stimulation
of the immune system by an altered microbiome, a
chronic activation of the innate immune system
occurs. In particular, ILCs activated in the gut
may accumulate in the inflammatory lesions of
patients with AS, potentially being a relevant early
source of AS-associated effector cytokines and
important drivers of mucosal and systemic inflam-
mation. Insights into how modulation of ILCs for
therapeutic purposes might affect the clinical out-
come in AS patients are strongly awaited.
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