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Abstract

We show that symmetric block designs D = (P,B) can be embedded in a suitable commutative group GD in
such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this
property are the point-line designs of PG(d, 2) and AG(d, 3). In both cases, the blocks can be characterized
as the only k-subsets of P whose elements sum to zero. It follows that the group of automorphisms of any
such design D is the group of automorphisms of GD that leave P invariant.

In some special cases, the group GD can be determined uniquely by the parameters of D. For instance,
if D is a 2− (v, k, λ) symmetric design of prime order p not dividing k, then GD is (essentially) isomorphic

to (Z/pZ)
v−1

2 , and the embedding of the design in the group can be described explicitly. Moreover, in this
case, the blocks of B can be characterized also as the v intersections of P with v suitable hyperplanes of

(Z/pZ)
v−1

2 .

1 Introduction

Many classical examples in Design Theory lead to the following question: what block designs
can be seen as subsets of a commutative group in such a way that the sum of the elements in
every block is zero?

For some geometric designs, such as any point-flat 2−(v, k, λ) design D = (P ,B) of an affine
geometry AG(d, q) over the Galois field GF(q), such a group is somehow intrinsic, as P can be
seen as the set of elements of the group GF(q)d, and, for k > 2, any block of B has this property.
However, for designs that are defined in a purely combinatorial way, it is not obvious that they
should have an algebraic representation of this sort. Moreover, whenever such a group exists,
another natural question is whether the blocks of the design D = (P ,B) are the only k-subsets
of P whose elements add up to zero in the group.

For a t − (v, k, λt) design D = (P ,B), there is an essentially unique way to define such
a commutative group: let GD be the finitely presented commutative group whose generators
are the points of P and whose relations are simply the equalities X1 + · · · + Xk = 0, as

1This research was supported by Università di Palermo (2012-ATE-0446)
2AMS MSC 05B05, 05B25, 05B07.
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b = {X1, . . . , Xk} ranges over the blocks in B. We say that D is additive if distinct points of P
are still distinct in the group GD.

As we show here, symmetric 2-designs and, more generally, linked 1-designs are among
these. On the contrary, Steiner triple systems very often are not: the only additive Steiner
triple systems are the point-line designs of PG(d, 2) and AG(d, 3).

For additive Steiner triple systems, as the third point of a block is the opposite of the sum
of the other two points, it is trivial that the blocks can be characterized as the only 3-subsets
of P whose elements sum to zero in GD. We show that also for linked designs D the blocks
are the only k-subsets of P whose elements sum to zero in GD. As a consequence of this
characterization of the blocks, the group of automorphisms of a linked design D is the group
of automorphisms of GD that leave P invariant.

The additivity property, and the same intrinsic characterizations for the blocks and for the
automorphism group, can be proved also for affine 2-designs (see [3]).

The group GD can be determined by the parameters of D only in special cases (see, for
instance, the introduction of section 3, Remark 3.8 (b), and Theorem 4.8), corresponding to
the computation of the p-ranks of an incidence matrix of D. In Remark 4.12, moreover, we
stress the meaning of the p-rank in relation to the number of blocks necessary to determine all
the other blocks. We take the occasion to point out the strong connection with questions on
the p-rank in Coding Theory (see Remarks 4.7 and 4.10).

The 2 − (11, 5, 2) Hadamard design served us as a model throughout the paper: in the
Examples 2.3 and 4.11 we represent its set of elements P as a set of eleven points in (Z/3Z)5,
and describe the eleven blocks both as the only 11-tuples of points of P whose sum is zero
and as the intersections of P with eleven suitable hyperplanes. According to Theorem 4.8,
this general description holds at least for any symmetric design whose order is a prime number
p, not dividing k. Accordingly, in Remark 4.13 we represent the automorphism group of the
2 − (11, 5, 2) Hadamard design as a subgroup of GL5(3) and verify that it is isomorphic to
PSL2(11) and acts 2-transitively on P .

2 Additive designs

Throughout the paper, we denote by D = (P ,B) a t− (v, k, λt) design, hence an s− (v, k, λs)
design for any s ≤ t, with λs

(
k−s

t−s

)
= λt

(
v−s

t−s

)
. As usual, we shorten λ1, λ2, and |B|, by r (the

replication number), λ, and b, respectively (hence r = λ(v−1)
k−1

; also, b = vr
k
), and we call the

integer r − λ the order of D. Also, we denote by I and J , respectively, the identity matrix
and the (not always necessarily square) matrix all the entries of which are equal to 1. Hence a
b× v matrix A is an incidence matrix of a 2− (v, k, λ) design if and only if each row of A has
k entries equal to 1 and v − k entries equal to 0, and A′A = (r − λ)I + λJ .

As mentioned earlier, in order to find a commutative group where P can be embedded in
such a way that the sum of the elements in any block is zero, let G be the free commutative
group generated by the v points of P and let R be the subgroup of G generated by the b

elements of the form
∑

X∈b

X, where b is a block of B. Fixing an incidence matrix A of D and,

consequently, identifying G with Zv, the subgroup R is generated by the b rows of A. Finally,
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define the group GD = G/R and consider the map χ : P −→ GD, χ(X) = X +R. Hereby, χ

is a map from P into the commutative group GD and
∑

X∈b

χ(X) = 0 for any block b in B.

If the map χ is injective, then we may identify the points of the design with the corresponding
elements of the group. But the map χ is not always injective. For instance, for any design for
which there exist k − 1 points lying in more than one block, the map χ cannot be injective, as
(the image of) any point in a block is necessarily the opposite of the sum of the other k − 1
points.

This happens, for instance, in three of the four non-isomorphic 2 − (8, 4, 3) designs. It
turns out that χ is injective only for the (affine) point-plane design of AG(3, 2), whereas the
other three designs collapse respectively to one, two, four elements of GD, thereby confirming,
incidentally, that the four designs are mutually non-isomorphic.

It must be said, in this respect, that in general it is not true that GD1
and GD2

are non-
isomorphic groups whenever D1 and D2 are non-isomorphic designs. For instance, as we will
show in the introduction of section 3, for any Steiner triple system D of order v ≡ 1 (12), the
group GD is always isomorphic to Z/3Z, and, furthermore, all the points of D are mapped by
χ onto the same generator of GD.

Therefore it makes sense to give the following

2.1 Definition: If the map χ is injective, then we say that D is an additive design.

For a 1-design, the group GD can be infinite (for instance, if P = {a, b, c, d} and B =
{{a, b}, {c, d}}, then GD is isomorphic to Z2; see, more generally, Remark 2.4 (ii)), but the
following theorem shows that this is never the case for a 2-design (except in the trivial case
where the order r − λ is zero, that is, equivalently, k = v).

2.2 Theorem: Let D = (P ,B) be a 2 − (v, k, λ) design with k < v, let χ : P −→ GD be

as above and let Ω =
∑

Y ∈P

χ(Y ) ∈ GD. Then the group GD is finite and, for any X ∈ P, the

following hold:

(i) (r − λ)χ(X) = −λΩ;
(ii) (r − λ)χ(X) = 0, if P has a partition in blocks;
(iii) k(r − λ)χ(X) = 0;
(iv) r(r − λ)χ(X) = 0;
(v) more generally, if c = gcd(r, λ) and d = gcd(k, r

c
), then d (r − λ)χ(X) = 0.

Proof. If we let X = (χ(P1), χ(P2), . . . , χ(Pv)), then

AX′ =

(
∑

P∈b1

χ(P ) , . . . ,
∑

P∈bb

χ(P )

)′

= (0, . . . , 0)′,

hence A′(AX′) = (0, . . . , 0)′. On the other hand, (A′A)X′ =
(
(r − λ)I + λJ

)
X′, that is, (i).

The assertion (ii) follows directly, because Ω = 0 if P has a partition in blocks. The assertion
(iii) follows from (i) and from the fact that, for any block b = {X1, . . . , Xk} ∈ B,

− k λΩ = (r − λ)
k∑

i=1

χ(Xi) = 0.

3



It follows, in particular, that the commutative, finitely generated group GD is finite. The
assertion (iv) follows from (i) and from a double-counting argument, as

0 =
∑

b∈B

∑

X∈b

χ(X) = r
∑

X∈P

χ(X) = rΩ. (1)

Finally, by (i) and (1),

r

c
(r − λ)χ(X) = −r

c
λΩ = −λ

c
rΩ = 0,

whence the last assertion follows manifestly because of (iii). 2

2.3 Example: LetD = (P ,B) be the 2−(11, 5, 2) Hadamard design and let A be the incidence
matrix for D given below. By combining the Gaussian and the Euclidean algorithms, one can
reduce A by elementary integer row operations to its unique Hermite normal form, that is,
to an echelon matrix where every pivot is a positive integer, above which one finds smaller
non-negative integers:

A =





































1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0
1 0 1 0 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1 1
0 1 0 1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 0 1 0 1
0 0 1 1 0 1 0 1 0 0 1
0 0 1 0 1 0 1 1 1 0 0
0 0 0 1 1 1 1 0 0 1 0





































 H ·A =





































1 0 0 0 0 0 2 1 1 2 3
0 1 0 0 0 0 1 2 1 0 5
0 0 1 0 0 0 0 1 2 1 5
0 0 0 1 0 0 2 2 0 1 4
0 0 0 0 1 0 1 0 2 2 4
0 0 0 0 0 1 1 1 1 1 10

0 0 0 0 0 0 3 0 0 0 12
0 0 0 0 0 0 0 3 0 0 12
0 0 0 0 0 0 0 0 3 0 12
0 0 0 0 0 0 0 0 0 3 12
0 0 0 0 0 0 0 0 0 0 15





































.

From the last five rows it follows that 15χ(P11) = 0 and 3χ(Pi) = 3χ(P11) for all i =
7, 8, 9, 10, whereas from the first six rows it follows that, for all j = 1, . . . , 6, χ(Pj) depends
on χ(P7), . . . , χ(P11). Hence GD is isomorphic to Z/5Z ⊕ (Z/3Z)5, and we can assume, up to
isomorphism, that

χ(P7) = (1; 1, 0, 0, 0, 0) χ(P8) = (1; 0, 1, 0, 0, 0) χ(P9) = (1; 0, 0, 1, 0, 0)
χ(P10) = (1; 0, 0, 0, 1, 0) χ(P11) = (1; 0, 0, 0, 0, 1).

From the first row it now follows that

χ(P1) = −
(
2χ(P7) + χ(P8) + χ(P9) + 2χ(P10) + 3χ(P11)

)
= −(4; 2, 1, 1, 2, 3) = (1; 1, 2, 2, 1, 0).

Similar equalities can be obtained for χ(P2), . . . , χ(P6) from the corresponding rows of the
matrix. As a result, the points of P can be finally represented in Z/5Z⊕ (Z/3Z)5 as follows:

P1 ≡ (1; 1, 2, 2, 1, 0) P2 ≡ (1; 2, 1, 2, 0, 1) P3 ≡ (1; 0, 2, 1, 2, 1)
P4 ≡ (1; 1, 1, 0, 2, 2) P5 ≡ (1; 2, 0, 1, 1, 2) P6 ≡ (1; 2, 2, 2, 2, 2)
P7 ≡ (1; 1, 0, 0, 0, 0) P8 ≡ (1; 0, 1, 0, 0, 0) P9 ≡ (1; 0, 0, 1, 0, 0)
P10 ≡ (1; 0, 0, 0, 1, 0) P11 ≡ (1; 0, 0, 0, 0, 1).

Hence D is an additive design. Note that, in accordance with the following Remark 2.4 (i), the
first coordinate, constantly equal to 1 ∈ Z/5Z, can be disregarded.
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2.4 Remark: (i) As illustrated in the above example, the Sylow p-subgroups of the commu-
tative group GD can be related to the p-rank of the incidence matrix A of D. The proof of
Theorem 2.2 can be compared with that of Theorem 2.1 in [7], where it is stated that, for a
prime p not dividing r− λ: (a) if p does not divide r, then the p-rank of A is v; (b) if p divides
r, then the p-rank of A is either v or v − 1; (c) if p divides r and k, then the p-rank of A is
v − 1; conversely, if the p-rank of A is v − 1, then p divides r and k (cf. [1, Theorem 2.4.1]).
In passing, note that Theorem 2.2 (v) proves that p must also divide the coefficient d defined
therein. Moreover, in case (c), as the p-rank of A is v−1, one finds that, by reducing A modulo
p, the Sylow p-subgroup Sp of GD is non-trivial (and cyclic). But, since (r − λ)χ(X) = −λΩ
by Theorem 2.2 (i), and since r − λ is invertible modulo any p-power, the component of χ(X)
in Sp is constant and thus may be disregarded, as in Example 2.3.

(ii) As illustrated in Example 2.3, the fact that the group GD is finite for any 2 − (v, k, λ)
design D = (P ,B) can also be seen as a direct consequence of standard results on subgroups of
finitely generated free commutative groups, because |A′A| = rk(r − λ)v−1 (cf. [2, Lemma 2.3,
p. 65]), hence the v columns of the incidence matrix A are linearly independent over Q (except
in the trivial case where k = v, that is, equivalently, the order r − λ is zero).

Conversely, the same arguments yield that GD is infinite for any 1-design having more points
than blocks. For the sake of completeness, we note that GD can be finite also in the case of a
1-design (which is not a 2-design): for instance, if D = (P ,B), where P = Z/8Z and B consists
of all pairs of elements in P of the form {i, i+1} and {i, i+4}, then GD is isomorphic to Z/2Z.

The following proposition gives a condition for the injectivity of χ which will be used in
proving that symmetric designs are additive.

2.5 Proposition: A t− (v, k, λt) design D is additive if and only if, for any v ∈ Zb and for
any v × v permutation matrix Q,

vA 6= (1,−1, 0, . . . , 0)Q,

where A is an incidence matrix of D. In particular, if vAA′v′ 6= 2 for any vector v ∈ Zb, then
D is additive.

Proof. The map χ is injective if and only if Pi −Pj /∈ R whenever i 6= j, which is equivalent to
the fact that, for any v × v permutation matrix Q, the row (1,−1, 0, . . . , 0)Q is not an integer
combination of the rows of A. The latter claim follows because QQ′ = I for any permutation
matrix Q. 2

We take note here of the following result, which, for linked designs, will be completed
in Corollary 4.3, where we will prove that every automorphism of D is induced by a group
automorphism of GD.

2.6 Proposition: Let D = (P ,B) be an additive design and let f be an automorphism of D.

Then f can be extended to a group automorphism f̃ of GD such that f̃χ = χf .

Proof. Extend f to an automorphism f of the free commutative group G generated by the

points of P . Since the subgroup R of G generated by the b elements of the form
∑

X∈b

X (with
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b ∈ B) is invariant under f, the automorphism f induces an automorphism f̃ of GD = G/R.

Finally, f̃(χ(X)) = f(X) +R = f(X) +R = χ(f(X)) for all X in P . 2

As we mentioned earlier, the definition of additivity given above is, in an appropriate sense,
the only possible one, as the following proposition ultimately shows.

2.7 Proposition: A design D is additive if and only if it can be embedded in a commutative
group in such a way that the sum of the points in any given block is zero. Moreover, any minimal
commutative group in which D can be embedded in such a way is a homomorphic image of GD.

Proof. Let ψ : P −→ G be an embedding such that
∑

P∈b

ψ(P ) = 0 for any block b ∈ B, and

assume that G is generated by ψ(P). Since we can extend by additivity the map ψ to a
surjective homomorphism from G to G by putting

ψ

(
v∑

i=1

aiPi

)
=

v∑

i=1

aiψ(Pi),

and since R ⊆ K, where K is the kernel of ψ, we conclude that G is a homomorphic image
of GD = G/R. Finally, χ is injective, because if χ(P ) = χ(Q), then P − Q ∈ R ⊆ K. Thus
ψ(P ) = ψ(Q) and we get the assertion, ψ being injective on the points of P . 2

3 Steiner triple systems

As mentioned in the previous section, for any design for which there exist k− 1 points lying in
more than one block, the map χ cannot be injective. Thus, it is apparent that a 2 − (v, k, λ)
design with k = 2 < v cannot be additive. For the same reason, for k = 3, the search for
additive 2−designs must be restricted to the class of Steiner triple systems, that is, the class
of 2− (v, 3, 1) designs, where necessarily v ≡ 1, 3 (6). Indeed, in this case the third point of the
block through P and Q is necessarily −(P +Q), hence λ = 1.

In the case where D is a Steiner triple system of order v ≡ 1 (12), we can directly say that
the map χ is not injective. In fact, as a consequence of [5] and [7], for v ≡ 1 (12), the b × v
incidence matrix A of D has rank v over any field of characteristic p 6= 3 and rank v − 1 over
a field of characteristic p = 3. Therefore, up to a permutations of the columns, we can assume
that in the Hermite normal form of A all the pivots are equal to 1, except the last one, which
must be a 3-power. This forces GD to be a cyclic group of order 3d for some d. On the other
hand, for v ≡ 1 (12), we have that k(r − λ) = 3(6s− 1) for some s, whence the g.c.d. between
3d and k(r − λ) is equal to 3. It follows, by the above Theorem 2.2 (iii), that GD is a cyclic
group of order 3 (independently of D). Since P has more than three elements, we can now
conclude that χ is not injective.

Furthermore, the reduction to the Hermite normal form leaves the sum of the entries in any
row congruent to zero modulo 3, thus in each row (but the last non-zero row, where the pivot
is equal to 3) the only non-zero entries are the pivot, which is equal to 1, and the last entry,
which is equal to 2. This shows that all the points collapse onto the same element.

Note that, for p > 3, the p-rank of any Steiner triple system with v > 3 is always equal to
v (see [5, p. 252]). But the case v ≡ 1 (12) is the only one where, for p = 2, 3, the p-rank is

6



certainly at least v − 1, in view of the sufficient conditions given in [5] and [7], which, in the
cases v ≡ 3 (6) and v ≡ 7 (12), might not be satisfied.

In this section we show that the only additive Steiner triple systems are the point-line designs
of either a projective space PG(d, 2) over GF(2) or an affine space AG(d, 3) over GF(3).3

Throughout this section, D = (P ,B) will be a Steiner triple system (STS, for short) with
v > 3 points (the case v = 3 being trivial).

Whenever X and Y are distinct points in P , there exist three distinct triples
{X,A,B}, {X,C,D}, and {Y,A,C} in B. Indeed, since v = |P| > 3, there exists at least
a block {X,A,B} not containing Y ; it then suffices to take the unique block {Y,A,C} through
A and Y, and the unique block {X,C,D} through X and C. This simple fact, which will be
used several times in this section, is also the premise of the following basic definitions.

3.1 Definition: (see [4, p. 211]) Let {X, A, B}, {X, C, D}, {Y, A, C}, {Z, B, D} be a
configuration of four distinct blocks in B.
(i) If Z = Y , then the four-block configuration is called a Pasch configuration or quadrilateral.

(ii) If Z 6= Y and {X, Y, Z} is a block in B, then the five-block configuration is called a mitre.

3.2 Definition: (cf. [4, pp. 147, 149, 213]) Let again D be an STS.

(i) Let X be a point in P . If for any pair of distinct points A, Y in P , with X,A, Y not in the
same block, there exists a Pasch configuration {X,A,B}, {X,C,D}, {Y,A,C}, {Y,B,D},
then X is called a Veblen point.

(ii) If every three points not lying in a common block generate an STS with 9 elements, then
D is called a Hall triple system (HTS, for short).

(iii) If D contains no Pasch configurations, then it is called anti-Pasch or quadrilateral-free.

3.3 Lemma: Let (G,+) be a commutative group such that P ⊆ G and X + Y + Z = 0 for
any block {X, Y, Z} in B.
(a) If X, Y are points in P and 2X + Y = 0, then X = Y.

(b) If {X,A,B}, {X,C,D}, {Y,A,C}, {Y,B,D} is a Pasch configuration, then 2X = 2Y,
3X 6= 0, and 3Y 6= 0.

(c) If {X,A,B}, {X,C,D}, {Y,A,C}, {Z,B,D} are blocks in B, with Y 6= Z, then {X, Y, Z}
is a block (hence the five blocks form a mitre) and 3X = 0.

Proof. Suppose that X, Y are points in P and 2X + Y = 0, that is, X + Y +X = 0. If X 6= Y,
then there exists Z in P such that {X, Y, Z} is a block. Thus X + Y + Z = 0, which implies
that X = Z. This contradiction shows that X = Y.

Now let {X,A,B}, {X,C,D}, {Y,A,C}, {Z,B,D} be four distinct blocks in B (where Y
and Z are not necessarily distinct; see Figure 1). Then (X +A+B) + (X +C +D) = 0, that
is, 2X + (A+ C) + (B +D) = 0, whence

2X − Y − Z = 0. (2)

3For the sake of reference, we note that this result had already been announced in [6, p. 892] in a citation to the present paper.
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In case (b), Y = Z, thus 2X = 2Y. Also, suppose that 3X = 0. Then 2Y +X = 2X+X = 0,
hence X = Y by (a), against the hypothesis that {X,A,B} and {Y,A,C} were distinct triples.
This contradiction shows that 3X 6= 0. Similarly (or by symmetry), 3Y 6= 0.

In case (c), Y 6= Z, thus there exists W in P such that {W,Y, Z} is a block. Therefore
2X+W = 0 by (2), hence X = W by (a), whence {X, Y, Z} is a block and 3X = 0, as claimed.
2

r r rr

r

r

r

HHHHHHH

A
A
A

A
A

A
A

X A B

D

C

Y

r r rr

r

r

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

r

r

@
@

@
@

@
@

@

@
@

@@
Y

X A B

C

D

Z

Figure 1: A Pasch configuration (left) and a mitre (right)

3.4 Corollary: If the Steiner triple system D = (P ,B) is additive, then either D is an HTS
(in particular, D is anti-Pasch and there exist no Veblen points in P), or all points in P are
Veblen points.

Proof. Let D be an additive STS. By definition, we may assume that P ⊆ GD andX+Y +Z = 0
for any block {X, Y, Z} in B.

Let us now assume that there exists at least one Pasch configuration. Then, by Lemma 3.3
(b), there exists X in P such that

3X 6= 0.

We claim that all points in P are Veblen points. Let us suppose, by a contradiction, that
there exists a point X ′ in P that is not a Veblen point. Then

3X ′ = 0

by definition of Veblen point and Lemma 3.3 (c). It follows, in particular, that X 6= X ′. Then
there exist three distinct blocks {X,A,B}, {X,C,D}, and {X ′, A, C} in B. Let Z in P be such
that {Z,B,D} is a block. If Z = X ′, then 3X ′ 6= 0 by Lemma 3.3 (b), whereas, if Z 6= X ′, then
3X = 0 by Lemma 3.3 (c). In any case we get a contradiction, which shows that all points in
P are Veblen points, as claimed.

This shows that either D is anti-Pasch or all points in P are Veblen points. We are now left
to show that, in the former case, D is an HTS.

Let D be anti-Pasch, and let X, Y, and A be points in P not in a common block. Let
{X,A,B}, {X,C,D}, and {Y,A,C} be blocks. Then the block {B,D,Z} is such that Z 6= Y
and, by Lemma 3.3 (c), {X, Y, Z} is a block. By applying the same argument to the three blocks
{Z,B,D}, {Z,X, Y }, and {A,B,X}, we find a new point E and two new blocks {D, Y,E} and
{Z,A,E}. By applying again the same argument to the three blocks {A,B,X}, {A,Z,E}, and
{D,B,Z}, we find a new point F and two new blocks {X,E, F} and {A,D, F}. Considering
the four blocks {Z,A,E}, {Z, Y,X}, {C,A, Y }, and {F,E,X}, by Lemma 3.3 (c) the triple
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{Z,C, F} is a block. Similarly the triples {B,F, Y } and {B,C,E} are blocks. Therefore these
nine points, together with these twelve blocks, form an STS. 2

The previous result, which is stated in purely combinatorial terms, provides a necessary
condition for an STS to be additive. It is natural to ask whether the condition is also suf-
ficient. If this were the case, then such a condition would provide an intrinsic combinatorial
characterization of the additivity of a Steiner triple system. However, this is not the case, since
all non-affine HTSs (cf. [4, Theorem 8.17]) provide examples of anti-Pasch STSs that are not
additive.

In the following example, we apply the corollary above to the case where the order v is
equal to 15. In light of the final theorem of this section, it might appear pleonastic. Still it
provides, in our opinion, a better insight into the inner structure of additive STSs in terms of
their admissible configurations.

3.5 Example: Among the 80 STSs with 15 elements, one and only one is additive, that is,
the point-line design of PG(3, 2). Indeed, if every point is a Veblen point, then it is easy to
show that any three points, not in a block, generate an STS with 7 elements, and hence are
contained in precisely four Pasch configurations. Thus one can compute the exact number of
Pasch configurations as follows.

The total number of non-collinear triples is equal to
(
15
3

)
− 1

3

(
15
2

)
, whereas the number of

non-collinear triples in a Pasch configuration is
(
6
3

)
− 4, for 6 is the number of points and 4 is

the number of collinear triples (i.e., blocks) in the configuration. Therefore the total number
of Pasch configurations is

4
((

15
3

)
− 1

3

(
15
2

))
(
6
3

)
− 4

= 105.

As shown in [4, Tables 5.8–5.12], this happens only in the case labelled as #1 (that is, PG(3, 2)).
The same Tables show that the only anti-Pasch STS with 15 elements is that labelled as #80.
Since here the triples {0, 2, 1}, {0, 3, 4}, {9, 2, 3}, and {7, 1, 4} are blocks, if the STS were
additive, the triple {0, 7, 9} would be a block completing a mitre, by Lemma 3.3 (c), which is
not the case, as the Tables show.

We now need to state a final preliminary result in order to prove the main theorem of this
section.

3.6 Corollary: Let (G,+) be a commutative group such that P ⊆ G and X +Y +Z = 0 for
any block {X, Y, Z} in B. Then D satisfies one and only one of the two following conditions.

(i) 3X = 0 for all X in P .
(ii) 2X = 2Y for all X, Y in P .
In either case, 6X = 0 for all X in P .

Proof. By Corollary 3.4, either D is anti-Pasch or all points in P are Veblen points. In
the former case, given any X in P , there exist four blocks {X,A,B}, {X,C,D}, {Y,A,C},
{Z,B,D}, with Y 6= Z, whence 3X = 0 (and also 6X = 0) by Lemma 3.3 (c).
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If all points in P are Veblen points, then let X, Y be two distinct points in P . Then there
exists a Pasch configuration {X,A,B}, {X,C,D}, {Y,A,C}, {Y,B,D}, and

2X = 2Y

by Lemma 3.3 (b). Finally, given any X in P , and any block {X,A,B} containing X, 6X =
2X + 2A+ 2B = 2(X + A+B) = 0. 2

We may now finally state the main result of this section.

3.7 Theorem: A Steiner triple system is additive if and only if it is isomorphic to the
point-line design of either PG(d, 2) or AG(d, 3) for some integer d ≥ 1.

Proof. Any STS that is isomorphic to the point-line design of either AG(d, 3) or PG(d, 2) is
clearly additive by Proposition 2.7.

Assume, conversely, that a Steiner triple system D = (P ,B) of order v > 3 is additive (the
case v = 3 being trivial). Thus, by Corollary 3.4, either D is anti-Pasch, or all points in P
are Veblen points. In the latter case, D is isomorphic to PG(d, 2) for some integer d > 1, by
a well-known combinatorial characterization of finite projective geometries in terms of Veblen
points (see, for instance, [4, Theorem 8.15]). Here, however, we wish to give an alternative and
self-contained proof of the present characterization of additive STSs, based entirely on some
necessary algebraic conditions for the additivity.

Since D is additive, we may assume, by definition, that D satisfies the hypotheses of Corol-
lary 3.6, where G = GD. Hence D satisfies one (and only one) of the conditions (i) and (ii) of
Corollary 3.6 and, in either case,

6X = 0

for all X in P .
Given a point X0 in P , we define a map ψ : P −→ G by letting

ψ(X) = X + 2X0

for all X in P . Then ψ is injective and, for any block {X, Y, Z},

ψ(X) + ψ(Y ) + ψ(Z) = X + Y + Z + 6X0

= X + Y + Z
= 0.

(3)

Conversely, let X, Y, Z be three distinct points in P such that ψ(X) + ψ(Y ) + ψ(Z) = 0.
Then {X, Y, Z} is in B. Indeed, if {X, Y, Z ′} is a block, then ψ(X) + ψ(Y ) + ψ(Z ′) = 0 by (3),
hence ψ(Z ′) = ψ(Z), whence Z ′ = Z by the injectivity of ψ.

First let us suppose that D satisfies condition (i) of Corollary 3.6, that is, 3X = 0 for all X
in P , corresponding to the case where D is anti-Pasch. Then

3ψ(X) = 0 (4)

for all X in P , as 3ψ(X) = 3X + 6X0 = 0.

We claim that ψ(P) is a subgroup of G. Indeed, ψ(X0) = X0 + 2X0 = 3X0 = 0, whence 0 ∈
ψ(P). Let now X be a point in P . If X = X0, then −ψ(X) = −ψ(X0) = 0 ∈ ψ(P). If X 6= X0,
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then let {X,X0, Y } be the unique block through X and X0. Then ψ(X) + ψ(X0) + ψ(Y ) = 0
by (3), hence −ψ(X) = ψ(Y ) ∈ ψ(P).

Finally, let X, Y be points in P . If X = Y, then, by (4), ψ(X)+ψ(Y ) = 2ψ(X) = −ψ(X) ∈
ψ(P). If X 6= Y, then, by (3), ψ(X) + ψ(Y ) = −ψ(Z) ∈ ψ(P), where {X, Y, Z} is the unique
block through X and Y, and our claim is proved.

By condition (4), we may conclude that ψ(P) is an elementary abelian 3-group. This fact,
together with the injectivity of ψ and the one-to-one correspondence between B and the triples
of points summing to zero in ψ(P), shows that D is isomorphic to the point-line design of
AG(d, 3) for some integer d > 1.

We are now left with the case where D satisfies condition (ii) of Corollary 3.6, that is,
2X = 2Y for all X, Y in P , corresponding to the case where all points in P are Veblen points.
In this case

2ψ(X) = 0 (5)

for all X in P , as 2ψ(X) = 2X + 4X0 = 6X0 = 0. Moreover,

0 6∈ ψ(P).

Indeed, given any X in P , let Y be a point in P different from X. Then ψ(X) 6= 0, as
ψ(X) = X + 2X0 = X + 2Y 6= 0 by Lemma 3.3 (a).

Let us now define
H = ψ(P) ∪ {0}.

We claim that H is a subgroup of G. By condition (5), −ψ(X) = ψ(X) ∈ H for all X in
P , so we only need to show that ψ(X) + ψ(Y ) lies in H for any pair of points X, Y in P . If
X = Y, this follows immediately from (5); if X 6= Y, then, by (3), ψ(X)+ψ(Y ) = −ψ(Z) ∈ H,
where {X, Y, Z} is the unique block through X and Y, and our claim is proved.

By condition (5), H is an elementary abelian 2-group. Moreover, ψ(P) consists precisely of
the set of all non-zero elements of H. These two facts, together with the injectivity of ψ and
the one-to-one correspondence between B and the triples of non-zero points summing to zero
in H, show that D is isomorphic to the point-line design of PG(d, 2) for some integer d > 1.
This completes the proof of the theorem. 2

3.8 Final remarks: (a) The existence of non-affine anti-Pasch HTSs (cf. [4, Theorem 8.17])
makes the proof of Theorem 3.7 non-trivial, since if all anti-Pasch STSs were affine (that is,
isomorphic to AG(d, 3) for some integer d > 1), then Theorem 3.7 would be an immediate
consequence of Corollary 3.4, as D is isomorphic to PG(d, 2) for some integer d > 1 if and only
if all points in P are Veblen points (see, for instance, [4, Theorem 8.15]).

(b) The proof of Theorem 3.7 tells us also something more precise about the embedding of an
additive STS in a minimal commutative group (which, by Proposition 2.7, is a quotient group
of GD). Indeed, the proof shows that whenever ϕ : P −→ G is an additive embedding of an
STS D = (P ,B) in a commutative group (G,+), then, up to translating ϕ(P) in G by a suitable
element of G, either ϕ(P) is an elementary abelian 3-group, or 0 6∈ ϕ(P) and ϕ(P) ∪ {0} is an
elementary abelian 2-group.

More precisely, since the automorphism group of AG(d, 3) is transitive, and the automor-
phism group of PG(d, 2) is primitive, Propositions 4 and 5 in [5] guarantee that the 2-rank of
AG(d, 3) is v = 3d, and that the 3-rank of PG(d, 2) is v−1 = 2(2d−1). On the other hand, the
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3-rank of AG(d, 3) is 3d − (d+ 1), the 2-rank of PG(d, 2) is 2d+1 − (d+ 2), and, in both cases,
the p-rank is v for any other p 6= 2, 3 (see [5], [7]). With this information, we conclude that:

if D is the point-line design of AG(d, 3), then GD is isomorphic to (Z/3Z)d+1. Since the sum
of the entries of each row of the Hermite normal form of an incidence matrix of D remains a
multiple of k = 3, the sum of the entries of the image χ(P ) of a point is always 1 (mod 3).
Thus, by a cardinality argument, χ(P) coincides with the hyperplane of (Z/3Z)d+1 defined by
the equation x1 + x2 + · · ·+ xd+1 = 1;

if D is the point-line design of PG(d, 2), then GD is isomorphic to Z/3Z⊕ (Z/2Z)d+1. Since
there exists an element χ(P ) with an entry equal to 1 in Z/3Z, it follows that all the elements
must have the entry 1 in Z/3Z, because each of them belongs to a suitable block through P .

Thus, χ(P) coincides with the punctured coset
(
1⊕ (Z/2Z)d+1

)
\ {(1; 0, . . . , 0)}.

4 Symmetric 2–designs

In this section we prove the additivity of linked designs, that is, t − (v, k, λt) designs D such
that two distinct blocks meet in a constant number µ of points. By two celebrated results of
Ryser [11] and Röhmel [10], the class of linked 2− (v, k, λ) designs coincides exactly with that
of symmetric 2 − (v, k, λ) designs (that is, those where the number of blocks is equal to the
number of points, or, equivalently, those where r = k), and µ = λ.

Note, moreover, that the class of all the linked 1 − (b, r, k) designs D′ = (B,P) coincides
exactly with the class of the dual designs of all the 2 − (v, k, λ) designs D = (P ,B), that is,
the class of the 1 − (b, r, k) designs obtained by interchanging the rôles of points and blocks
(equivalently, A is an incidence matrix for D if and only if A′ is an incidence matrix for D′),
and again µ = λ.

Hence any 2− (v, k, λ) design D, even not additive, is the dual of a linked (hence additive)
1− (b, r, k) design D′. In the case where D is not additive, however, the group GD′ is infinite,
because D′ has more points than blocks, by Fisher’s inequality (see Remark 2.4 (ii)).

Prominent examples of families of symmetric designs are given by the Hadamard designs
(such as that in Example 2.3) and by the point-line designs of finite projective planes.

Given a linked design, the condition µ < k − 1 is necessary for the additivity of the design,
since, as we noted in section 2, if there exist k−1 points lying in more than one block, then the
map χ cannot be injective. The following result shows that the condition µ < k− 1 is actually
also sufficient for the additivity of a linked design. Note that, for a linked 2− (v, k, λ) design,
the condition µ = k− 1 is possible only for the trivial 2− (v, v− 1, v− 2) design, and that, for
a linked 1 − (b, r, k) design, dual of a given 2 − (v, k, λ) design, the condition µ = r − 1 (that
is, λ = r − 1) would also give v = b, k = r = v − 1 and λ = µ = v − 2.

4.1 Theorem: Let D = (P ,B) be a linked t − (v, k, λt) design, not isomorphic to the trivial
2− (v, v−1, v−2) design, and let µ be the intersection number of any two distinct blocks. Then
the following hold:

(i) D is additive;

(ii) a k-subset s = {X1, . . . , Xk} of P is a block of B if and only if χ(X1) + . . . + χ(Xk) = 0
in the group GD.
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Proof. We assume that µ > 0, the case µ = 0 being trivial. Also, as we noticed earlier,
µ < k − 1. For a linked design with incidence matrix A, where any two distinct blocks meet
in µ points, AA′ = (k − µ)I + µJ (let us recall that I and J denote, respectively, the identity
matrix and the not-necessarily-square all-1 matrix). Hence, for any non-zero integer b-tuple
v = (v1, . . . , vb),

vAA′v′ = (k − µ)
b∑

i=1

v2i + µ

(
b∑

i=1

vi

)2
> 2,

as k − µ ≥ 2, and the assertion (i) follows from Proposition 2.5.

For the second assertion, let s be a k-subset of P = {P1, . . . , Pv} such that the sum of (the
images of) its elements is zero and let w = (w1, . . . , wv) ∈ Zv = G be defined by wi = 1, if
Pi ∈ s, and wi = 0, elsewhere. It suffices to prove that w is a row of A.

As the sum of the elements in s is zero in GD = G/R, we deduce that w ∈ R, hence there
exists u = (u1, . . . , ub) ∈ Zb such that w = uA. It follows that

k(u1 + . . .+ ub) = uk( 1, 1, . . . , 1︸ ︷︷ ︸
b

)′ = uA( 1, 1, . . . , 1︸ ︷︷ ︸
v

)′ = w( 1, 1, . . . , 1︸ ︷︷ ︸
v

)′ = w1 + . . .+ wv = k,

whence u1 + . . .+ ub = 1. Finally,

k = ww′ = uAA′u′ = (k − µ)
b∑

i=1

u2i + µ

(
b∑

i=1

ui

)2
= (k − µ)

b∑

i=1

u2i + µ,

which forces u21 + · · ·+ u2b = 1, hence u is a vector of the canonical basis and w is a row of A,
that is, s is a block of B. 2

4.2 Corollary: With the only exception of the trivial 2−(v, v−1, v−2) design, each symmetric
2− (v, k, λ) design D = (P ,B) is additive, and its blocks are characterized as the only k-subsets
of elements of P, whose images add up to zero in GD.

4.3 Corollary: The group of automorphisms of a linked design D = (P ,B), not isomorphic
to the trivial 2− (v, v − 1, v − 2) design, is the stabilizer of P in Aut(GD).

Proof. By Proposition 2.6, any automorphism f of an additive design D can be extended to

a group automorphism f̃ of GD. Conversely, let f̃ be a group automorphism of GD such that

f̃(χ(X)) = χ(f(X)) for all X in P , where f is a permutation of P . In particular, f̃ induces a
permutation of the set of k-tuples of χ(P) summing to zero. According to the above Theorem
4.1 (ii), if D is linked, then f is actually an automorphism of D. 2

4.4 Remark: Note that the property (ii) in Theorem 4.1 fails to hold when the Hadamard
design considered in Example 2.3 is embedded in (Z/3Z)4, via the homomorphism defined by

(x1, x2, x3, x4, x5) 7→ (x1, x2, x3 − x4, x5),

or in (Z/3Z)3, via
(x1, x2, x3, x4, x5) 7→ (x1, x2, x3 − x4).

In fact, distinct points of P are still mapped onto distinct points, and clearly blocks are again
mapped onto 5-tuples of points summing to 0, but the 5-set {P5, P7, P9, P10, P11}, which is not
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a block, is mapped in both cases onto a 5-set summing to 0 (even if, only in the first case, it
happens to be the only such 5-set!).

This fact enlightens the distinguished rôle of the embedding χ.

The proof of the above Theorem 4.1 can be adapted in many ad hoc ways. Here we just show
that, in the case of a symmetric design with gcd(r, λ) = 1, one can consider the embeddings
into the Sylow subgroups of GD.

4.5 Proposition: Let D be a symmetric 2− (v, k, λ) design, let r and λ be relatively prime,
and let r − λ = st, with 1 < s < t. Then X 7→ sχ(X) is injective, and, if gcd(s, t) = 1 and t is
square-free, then also X 7→ tχ(X) is injective.

Proof. If the map X 7→ sχ(X) were not injective, then, arguing as in the proof of Proposition
2.5, there would exist a (non-zero) vector v = (v1, . . . , vb) ∈ Zb such that

vAA′v′ = 2s2,

whence
2s2 = (r − λ)

∑
v2i + λ

(∑
vi
)2

= st
∑
v2i + λ

(∑
vi
)2

> s2
∑
v2i ,

since 1 < s < t. Therefore
∑
v2i = 1, hence

(∑
vi
)2

= 1 and 2s2 = st+ λ. Thus s would divide
both λ and r = λ+ st, against the hypothesis that gcd(r, λ) = 1.

Now, assume that gcd(s, t) = 1 and t is square-free. If the map X 7→ tχ(X) were not
injective, then, as above, there would exist a (non-zero) vector v = (v1, . . . , vb) ∈ Zb such that

vAA′v′ = 2t2,

that is, 2t2 = (r − λ)
∑
v2i + λ

(∑
vi
)2

= st
∑
v2i + λ

(∑
vi
)2
. Since no prime divisor of t can

divide λ, we conclude that t divides
(∑

vi
)2
. As t is square-free, it divides

∑
vi. Moreover, t

divides
∑
v2i as well, because gcd(s, t) = 1, hence

2 = s

∑
v2i
t

+ λ

(∑
vi
t

)2

,

which forces s = 2, t =
∑
v2i , and

∑
vi = 0. Therefore t ≡ ∑

vi = 0 (mod 2), thereby
contradicting the hypotesis that t and s are relatively prime. 2

In the next theorem, we consider the case where the order r − λ of a symmetric 2-design D
is a prime p not dividing k, as it happens in Example 2.3. For an incidence matrix A of D,
it follows from the equality A′A = (r − λ)I + λJ that det(A)2 = det

(
(r − λ)I + λJ

)
. By the

Laplace expansion and by the basic equality λ(v − 1) = r(k − 1), one finds, being r = k, that

det(A)2 = k2(k−λ)v−1 = k2pv−1, whence v is necessarily odd and det(A) = ±kp v−1

2 . Moreover,
as we show independently in the following lemma, the p-rank of A is v+1

2
(see [8]), and, as we

prove in the subsequent theorem, the group GD can be determined by the parameters of the
design.
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4.6 Lemma: Let D = (P ,B) be a symmetric 2− (v, k, λ) design of prime order p = k−λ not
dividing k, and let A be an incidence matrix for D. Then the p-rank of D is equal to v+1

2
and,

if the first v+1
2

columns of A are taken to be linearly independent (mod p), the Hermite normal
form of A is

N =

(
I −CP

0 B

)
, where B =




p 0 0 . . . 0 kp− p
0 p 0 . . . 0 kp− p

...
0 0 . . . 0 p kp− p
0 0 . . . 0 0 kp




(6)

is a v−1
2

× v−1
2

matrix and CP is a v+1
2

× v−1
2

matrix whose coefficients are non-positive integers.
The matrix CP , reduced modulo p, can be found, alternatively, as the unique solution of the

equation

A

(
CP

I

)
≡ 0 (mod p). (7)

Furthermore,
C ′

PCP ≡ −I (mod p). (8)

Proof. Let A be an incidence matrix for D, and let n be the p-rank of A. As we recalled earlier,
det(A) = ±kp v−1

2 ≡ 0 (mod p), hence n < v.

Assume that the the first n columns of A are linearly independent modulo p, and reduce the
matrix A by elementary integer row operations to its unique Hermite normal form N . Note
that, since det(A) 6= 0, there exist precisely v (non-zero) pivots, all on the main diagonal of the
square matrix N. Since in the Hermite normal form the sum of the entries in any row remains
a multiple of k, which is not a multiple of p, and since det(A) = ±kp v−1

2 , the last pivot must be
kpm, for some exponent m ≥ 0. On the other hand, kpχ(X) = 0 for any X in P , by Theorem
2.2 (iii), thus the last pivot is equal to either k or kp, and all the other ones are p-powers.
Also, the upper-left n×n minor of N has p-rank equal to n (all the entries below such a minor
being zero), thus it contains n pivots all equal to p0 = 1. By definition of Hermite normal form,
it follows that the left v × n minor N1 of N is of the form

(
I
0

)
, where I is the n × n identity

matrix. Moreover, since the p-rank of N is equal to n, there are no other pivots equal to 1 in
N, thus all the remaining pivots, but the last one, are a power of p with positive exponent.

We now claim that the last pivot in N is equal to kp. Indeed, if the last pivot were equal
to k and the second to last pivot were equal to ps, s ≥ 1, then, since p does not divide k, a
standard argument, together with a permutation of the last two columns and, possibly, of the
last two rows (which would not alter N1), would reduce the last and second to last pivots to
kps and 1, respectively, thereby exceeding the number of possible pivots equal to 1. Therefore
the last pivot in N is equal to kp.

The same kind of argument shows that all the pivots bigger than 1, but the last one, are
equal to p. Indeed, if one of the pivots were equal to ps, s ≥ 2, then, up to a permutation of
the last v − n columns and a permutation of the last v − n rows, one could reduce the last
pivot to kpt, for some t ≥ 2, which would contradict the fact that kpχ(X) = 0 for any X in P ,
by Theorem 2.2 (iii). Since det(A) = ±kp v−1

2 , we may now conclude that, the last pivot being
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equal to kp, there are precisely v−3
2

pivots equal to p, whence there are n = v+1
2

pivots equal to

1 (that is, the p-rank of A is equal to v+1
2
).

By the same kind of standard arguments, and since the sum of the entries in any row of N
is a multiple of k, one can show that the lower right v−1

2
× v−1

2
minor of N has the form B

described in the statement of the lemma. Hence, by definition of Hermite normal form, there
exists a v+1

2
× v−1

2
matrix CP , whose coefficients are non-positive integers, such that N has the

described form.

Let H ∈ Zv×v be the unimodular matrix of the reduction of A to its Hermite normal form,

that is, HA = N. Since det(H) = ±1, from HA
(
CP

I

)
=

(
I −CP

0 B

)(
CP

I

)
≡ 0 (mod p) it

follows that A
(
CP

I

)
≡ 0 (mod p).

Let M = (M1|M2) be a v+1
2

× v minor of A such that M1 has v+1
2

columns and
is invertible (mod p). It follows from (7) that M1CP +M2 ≡ 0 (mod p) and, finally,
CP ≡ −M−1

1 M2 (mod p). This shows that the matrix CP , reduced modulo p, is the unique
solution of the equation (7), as claimed.

Let K ∈ Z
v+1

2
×v be the minor consisting of the first v+1

2
rows of H, that is, KA = (I|−CP).

Let F be the splitting field of x2+λ over GF(p) (hence either a trivial or a quadratic extension

of GF(p)), and let u =
√
−λ (1, 1, . . . , 1)K ′ ∈ F

v+1

2 , where the coefficients of K, reduced modulo
p, are taken in GF(p) ⊆ F. Since AA′ = (k − λ)I + λJ,

I + CPC
′

P = KAA′K ′ = K((k − λ)I + λJ)K ′ ≡ λKJK ′ ≡ −u′u (mod p),

and, if one sets R = (CP |u′) ∈ F
v+1

2
×

v+1

2 (where the coefficients of CP , reduced modulo p, are
taken in GF(p) ⊆ F), then RR′ = CPC

′
P + u′u ≡ −I (mod p). Hence the matrix R′ is the

inverse of the opposite of R in F
v+1

2
×

v+1

2 , thus, R′R = −I in F
v+1

2
×

v+1

2 as well, and, in particular,
C ′

PCP ≡ −I (mod p), so the last assertion is proved. 2

4.7 Remark: It will be shown in Theorem 4.8 that the columns of the v−1
2

× v matrix (C ′
P |I)

are the coordinates of the points P1, . . . , Pv in GD. It is worth stressing here that the equality
(7) also means that (C ′

P |I), which has maximal rank, is the parity-check matrix of the code CA
generated over GF(p) by the rows of A (whose dimension is the p-rank of A, i.e., v+1

2
), as well

as, by (6), by the rows of KA = (I| − CP). Thus, the matrix CP , which, together with the
identity matrix, gives the coordinates of the points of P , appears, for the code CA, both in its
parity-check matrix and in its generator matrix! Furthermore, the equality (8) means that the
dual code C⊥

A of CA (that is, the code generated by the rows of (C ′
P |I)) is self-orthogonal.

In the case of the 2 − (11, 5, 2) Hadamard design in Example 2.3, the matrix (C ′
P |I) is the

5× 11 matrix whose columns are the coordinates of P1, . . . , P11, which happens to be precisely
the parity-check matrix of the ternary Golay code (see [9], where the matrix S5, modified by
cancelling the column (0, 1, 1, 1, 1, 1)′ and permuting rows and columns, gives the 6× 5 matrix
whose rows are the coordinates of our points P1, . . . , P6). The ternary Golay code, on the other
hand, may be defined as the subspace generated by the rows of A over the field with 3 elements,
and the matrix KA = (I| − CP) over GF(3) is a generator matrix for the code.

4.8 Theorem: If D = (P ,B) is a symmetric 2 − (v, k, λ) design of prime order p = k − λ
not dividing k, then (the p-rank of D is equal to v+1

2
and) the group GD is isomorphic to

Z/kZ⊕ (Z/pZ)
v−1

2 .
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Moreover, for any incidence matrix A for D, whose first v+1
2

columns are taken to be linearly
independent (mod p), and disregarding the first component, constantly equal to 1 ∈ Z/kZ:

(i) the last v−1
2

points of P are mapped by χ onto

P v+3

2

= (1, . . . , 0, 0), . . . , Pv−1 = (0, . . . , 1, 0), Pv = (0, . . . , 0, 1) ∈ (Z/pZ)
v−1

2 ,

and the first v+1
2

points are mapped onto the rows (mod p) P1, . . . , P v+1

2

of the v+1
2

× v−1
2

matrix CP such that −CP is precisely the upper-right v+1
2

× v−1
2

minor of the Hermite
normal form of A.

(ii) if J − A = (Ξ1|Ξ2), where J is the all-1 matrix, and Ξ1 and Ξ2 are, respectively, the
minors consisting of the first v+1

2
and the last v−1

2
columns, then the blocks of B can

be characterized as the v intersections of χ(P) = {P1, . . . , P v+1

2

, P v+3

2

, . . . , Pv} with the v

hyperplanes of (Z/pZ)
v−1

2 defined by the v equations of the linear system

Ξ2(x1, . . . , x v−1

2

)′ ≡ 0 (mod p).

Proof. Let A be an incidence matrix for D, whose first v+1
2

columns are taken to be linearly
independent (mod p). Reduce A by elementary integer row operations to its unique Hermite
normal form N, as in the above Lemma 4.6. One sees from the matrix B defined in (6)

that the group GD is isomorphic to Z/kZ ⊕ (Z/pZ)
v−1

2 , and, denoting by P v+3

2

, . . . , Pv−1, Pv

the images under χ of the last v−1
2

points of P , that kpPv = 0 and pPi = pPv, for any
i = v+3

2
, . . . , v − 1. Since p is invertible modulo k, the first entry of Pi, lying in Z/kZ, is

constant for all i = v+3
2
, . . . , v. Hence one can assume that the last v−1

2
points of P are mapped

onto
P v+3

2

= (1; 1, . . . , 0, 0), . . . , Pv−1 = (1; 0, . . . , 1, 0), Pv = (1; 0, . . . , 0, 1).

The first entry, lying in Z/kZ, is constant and will not be considered here, hence we take

P v+3

2

, . . . , Pv in (Z/pZ)
v−1

2 . Similarly, again by (6), the first v+1
2

points of P are mapped onto

the v+1
2

rows of CP (reduced modulo p).

Finally, let J − A = (Ξ1|Ξ2), as in the claim (ii). Let H ∈ Zv×v be the unimodular matrix

of the reduction of A to its Hermite normal form, that is, HA = N, and let K ∈ Z
v+1

2
×v be the

minor consisting of the first v+1
2

rows of H, hence KA = (I| −CP). Notice that AJ = kJ, thus,
since AA′ = (k − λ)I + λJ,

−KA
(
Ξ′
1

Ξ′
2

)
= KA(A′ − J) = K

(
(k − λ)I + λJ − kJ

)
= K(k − λ)(I − J) ≡ 0 (mod p).

On the other hand, KA = (I| − CP), hence Ξ′
1 − CPΞ

′
2 ≡ 0 (mod p), thus

Ξ2(C
′

P |I) ≡ (Ξ1|Ξ2) = J − A (mod p), (9)

that is, if ri is the i-th row of Ξ2, for 1 ≤ i ≤ v, then the products ri(x1, . . . , x v−1

2

)′, as

P = (x1, . . . , x v−1

2

) ranges in χ(P), give the i-th row of J−A (mod p), hence ri(x1, . . . , x v−1

2

)′ ≡
0 (mod p) if and only if (x1, . . . , x v−1

2

) belongs to the i-th block of D, as claimed. 2
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4.9 Remark: The v columns of the matrix (C ′
P |I), or equivalently the rows of

(
CP

I

)
, taken

modulo p, are the elements of the set χ(P) = {P1, . . . , Pv}. Since, by (9), the v columns of
(C ′

P |I) are all distinct (mod p), the proof of the theorem above also confirms that D is an
additive design (see Corollary 4.2). Moreover, the equality A

(
CP

I

)
≡ 0 (mod p) in (7) is

precisely equivalent to the fact that
∑

X∈b

χ(X) = 0 in GD for any block b in B.

4.10 Remark: The modular equality (9) shows that the p-rank of J−A is at most the p-rank
of (C ′

P |I), that is, v−1
2
. On the other hand, it is easy to see that K(J−A) = KJ−(I|−CP) has

rank at least v−1
2
, because KJ has rank equal to 1, hence the elementary row operations that

reduce KJ to a matrix with a unique non-zero row change the first v+1
2

columns of (I| − CP)
in such a way that KJ − (I| −CP) is transformed in a matrix that still has a v−1

2
× v−1

2
minor

equal to the identity matrix. Thus, the p-rank of J − A is v−1
2
, and we can complete Remark

4.7 by claiming that (J − A)′ is also a parity-check matrix for the code generated over GF(p)
by the rows of A, since A(J − A)′ = kJ − (k − λ)I − λJ ≡ 0 (mod p).

Throughout the rest of the paper we illustrate the main results of this section by applying
them to our example of the 2− (11, 5, 2) Hadamard design.

4.11 Example: Let D = (P ,B) be the 2− (11, 5, 2) Hadamard design considered in Example
2.3, which is the second smallest symmetric design. Hence D is additive by Corollary 4.2,
and, in fact, in Example 2.3 we found that the images under χ of the points of P in GD =
Z/5Z⊕ (Z/3Z)5 are:

P1 = (1; 1, 2, 2, 1, 0) P2 = (1; 2, 1, 2, 0, 1) P3 = (1; 0, 2, 1, 2, 1)
P4 = (1; 1, 1, 0, 2, 2) P5 = (1; 2, 0, 1, 1, 2) P6 = (1; 2, 2, 2, 2, 2)
P7 = (1; 1, 0, 0, 0, 0) P8 = (1; 0, 1, 0, 0, 0) P9 = (1; 0, 0, 1, 0, 0)
P10 = (1; 0, 0, 0, 1, 0) P11 = (1; 0, 0, 0, 0, 1).

Again by Corollary 4.2, the eleven blocks of B are the only 5-tuples of points in {P1, . . . , P11}
whose sum is zero. If A is the incidence matrix given in Example 2.3, then, by Theorem 4.8
(ii), the last 5 columns of J − A yield the following equations for the blocks, which consist of
the points (1; x1, x2, x3, x4, x5) of χ(P) in the following hyperplanes of (Z/3Z)5, taken in the
same ordering as the rows of J − A:

b1 : x1 + x2 + x3 + x4 + x5 = 0 b2 : x3 + x4 + x5 = 0 b3 : x1 + x2 + x5 = 0
b4 : x2 + x4 = 0 b5 : x1 + x3 = 0 b6 : x2 + x3 = 0
b7 : x1 + x5 = 0 b8 : x1 + x2 + x4 = 0 b9 : x1 + x3 + x4 = 0
b10 : x4 + x5 = 0 b11 : x2 + x3 + x5 = 0.

Finally, observe that χ(P) is not contained in any affine hyperplane of (Z/3Z)5. This makes
this case thoroughly different from that of additive Steiner triple systems (see Remark 3.8 (b)).

4.12 Remark: One of the consequences of Theorem 4.8 is that the number of blocks that
completely determine the design is equal at most to the p-rank of D (that is, v+1

2
). More

precisely, for a symmetric 2 − (v, k, λ) design D = (P ,B) of order k − λ = p (p a prime not
dividing k), any v+1

2
blocks, such that the corresponding v+1

2
× v minor of an incidence matrix

of D has p-rank equal to v+1
2
, are sufficient to uniquely determine D.
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We illustrate this by the following argument, which gives an alternative proof of the fact
that there exists only one 2− (11, 5, 2) Hadamard design. In fact, for any such a design we can
straightaway assume, by adopting the reverse lexicographical order, that the first 5 rows of the
incidence matrix are

1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0
1 0 1 0 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1 1

,

because the scalar product of any two different rows of an incidence matrix is equal to 2 and
any two points lie in precisely two blocks. The next row is also uniquely determined as

(
0 1 1 0 0 a b c d e f

)
,

where, forced again by the scalar product, there are two entries equal to 1 in {b, d, f}, two in
{c, e, f}, one in {a, b, c}, and one in {a, d, e}. This gives two possibilities: a = c = d = 0 and
b = e = f = 1, or a = b = e = 0 and c = d = f = 1, that is, the row is one of the following:

(
0 1 1 0 0 0 1 0 0 1 1

)
,

(
0 1 1 0 0 0 0 1 1 0 1

)
.

But the second choice can be reduced to the first one by interchanging P7 ↔ P8 and P9 ↔ P10

(and b4 ↔ b5 and P4 ↔ P5). Thus, with the reverse lexicographical order, the sixth row is(
0 1 1 0 0 0 1 0 0 1 1

)
. By equation (7) in Lemma 4.6, this choice of the first 6

rows of A =

(
A11 A12

A21 A22

)
gives

CP = −A−1
11 A12 = −




1 1 1 1 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
0 1 1 0 0 0




−1


0 0 0 0 0
1 1 0 0 0
0 0 1 1 0
1 0 1 0 1
0 1 0 1 1
1 0 0 1 1


 ≡




1 2 2 1 0
2 1 2 0 1
0 2 1 2 1
1 1 0 2 2
2 0 1 1 2
2 2 2 2 2


 (mod 3),

the rows of which, together with the 5 vectors of the canonical basis of (Z/3Z)5, are, according
to Theorem 4.8 (i), the points of a unique 2 − (11, 5, 2) Hadamard design, whose blocks are,
by Theorem 4.1 (ii), the eleven 5-subsets of points summing up to zero.

4.13 Remark: According to Corollary 4.3, the automorphism group of the Hadamard 2 −
(11, 5, 2) design D, represented in the Example 4.11, is isomorphic to the subgroup of GL5(3)
consisting of the matrices F that permute the eleven points P1, . . . , P11 in (Z/3Z)5.

Here we illustrate the usefulness of this characterization by giving an alternative proof that
this group is isomorphic to PSL2(11) and 2-transitive on P (cf. [2, Th. 7.10, p. 266; Th. 7.14,
p. 268]).

Every automorphism φ of D, as a linear map on (Z/3Z)5, is uniquely determined by the
values it takes on the five points P7, . . . , P11 of the canonical basis, but, as we will now show,
φ(P9) is already determined by the values φ takes on the other four points.

19



Indeed, let us set Y7 = φ(P7) and Y8 = φ(P8). Since P7 and P8 are incident with two blocks
(b2 and b10) that leave P4, P10, and P11 off, the triple {P4, P10, P11} is mapped by φ onto the
triple left off the two blocks through Y7 and Y8. In particular, the point Y4 = φ(P4) is uniquely
determined by the points Y10 = φ(P10) and Y11 = φ(P11). Finally, the point Y9 = φ(P9) is
determined, in turn, by Y4, as it is uniquely found by looking at the images of the blocks
b4 = {P1, P4, P7, P9, P11} and b7 = {P2, P4, P8, P9, P10}, which intersect in {P4, P9}, and this
proves our claim.

By construction, the ordered quadruple (Y7, Y8, Y10, Y11) can run through at most 11× 10×
3× 2 ordered quadruples. Thus there exist at most 660 automorphisms of D. We now want to
show that D has exactly 660 automorphisms.

By choosing (Y7, Y8, Y10, Y11) = (P4, P11, P2, P5) (and, consequently, Y4 = P10 and Y9 = P7),
the corresponding linear map φ1, represented by the matrix F1 below (where, as is customary, we
put the images Y7, . . . , Y11 in columns), can be checked to actually induce a cyclic permutation
of the eleven points P1, . . . , P11, hence φ1 is an automorphism of D of order 11. Similarly, the
choice (Y7, Y8, Y10, Y11) = (P3, P9, P2, P11) (and, consequently, Y4 = P4 and Y9 = P8) induces an
automorphism φ2 of order 2, represented by the matrix F2 below

F1 =




1 0 1 2 2
1 0 0 1 0
0 0 0 2 1
2 0 0 0 1
2 1 0 1 2



, F2 =




0 0 0 2 0
2 0 1 1 0
1 1 0 2 0
2 0 0 0 0
1 0 0 1 1




∈ GL5(3).

A direct computation shows that F 11
1 = F 2

2 = (F1F2)
3 = (F 6

1F2F
4
1F2)

2 = 1. Since

〈φ1, φ2 : φ
11
1 = φ2

2 = (φ1φ2)
3 = (φ6

1φ2φ
4
1φ2)

2 = 1〉

is a presentation of the (simple) group PSL2(11) (cf. [12]), which has cardinality 660, we deduce
that the group Aut(D) is isomorphic to PSL2(11), has 660 elements, is 2-transitive on P , and
operates on P as the group of matrices generated by F1 and F2.

Note, in passing, that by construction of the matrices F1 and F2, and by Theorem 4.1 (ii),
the eleven 5-tuples P1, . . . , P11 in (Z/3Z)5 ultimately describe the points, the blocks and the
automorphisms of the design!
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