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1. ABSTRACT 

 
The Hsp90 molecule, one of the most abundant 

heat shock proteins in mammalian cells, maintains 
homeostasis and prevents stress-induced cellular damage. 
Hsp90 is expressed under normal conditions at a level  of 
about 1-2% of total proteins, while its expression increases 
2-10 fold in cancer cells. The two main constitutively 
expressed isoforms of Hsp90 are known as Hsp90-alpha 
and Hsp90-beta, and their upregulation is associated with 
tumor progression, invasion and formation of metastases, 
as well as development of drug resistance. The Hsp90 is a 
key target for many newly established, potent anticancer 
agents containing Hsp90 N-terminal ATP binding 
inhibitors, such as geldanamycin, and its analogues 17AAG 
and 17DMAG. The therapeutic usage of geldanamycin has 
been limited due to its poor water solubility and severe 
hepatotoxicity. Therefore, its analogues, including  17AAG, 
17DMAG, Tanespimycin and Retaspimycin hydrochloride, 
with improved pharmacokinetic profiles, have been 
developed.  

 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Heat shock proteins (Hsps) belong to chaperones 

that are responsible for maintaining homeostasis of the 
organisms and promoting cell survival induced by 
increased temperature as well as various chemical and 
physical factors. One of the most abundant eukaryotic 
HSPs is Hsp90, ubiquitously expressed protein of a 
molecular weight of 90kDa, whose expression level is 
estimated at 1-2% of total proteins under normal conditions 
(1, 2).  

 
In humans, there have been identified two 

cytoplasmic isoforms of Hsp90 - Hsp90-alpha and Hsp90-
beta, the endoplasmic reticulum homolog Glucose-
regulated Protein 94 (GRP94), mitochondrial matrix 
TRAP1 and Hsp90N while in mice Hsp84 and Hsp86 are 
found. Although both Hsp90-alpha and Hsp90-beta are 
constitutively expressed isoforms, the first one seems to be 
more inducible (3). Researches typically associate Hsp90-
alpha expression with tumor progression and sustained 
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Figure 1. Chemical structures of Hsp90 inhibitors, a. Geldanamycin, b. 17AAG, c. 17-DMAG, d. Novobiocin, e. Radicicol. 
 

proliferation of cancer cells (4-6) while the Hsp90-beta 
isoform seems to be responsible for development of drug 
resistance (7, 8). Hsp90 exists as dimer, whereas 
homodimers of Hsp90 are more common than 
heterodimers. In stressed or injured cells, the Hsp90 
protein accumulates in the nucleus and  is involved in 
guarding the so called cytosolic molecular chaperone 
complex (9, 10). The molecule  maintains solubility, 
stability, intracellular location and function of Hsp90 
client proteins involved, among others, in promoting cell 
proliferation and survival. Amongst the Hsp90 client 
proteins there can be distinguished factors such as a 
mutated form of p53 (11), tyrosine kinases Src kinase 
family (12), Wee1 kinase (13), serine/threonine kinases 
like Raf1 (14), and enzymes including nitric oxide 
synthases involved in oxidative and nitrative stress (15, 
16). Hanahan and Weinberg have characterized some 
typical capabilities shared by almost all cancer types. 
Fascinatingly, Hsp90 and its client proteins take part in 
maintaining six of these capabilities mentioned in the 
article by influencing the regulation of key factors and 
proteins:  

 
1. Self-suffciency in growth signaling (Human Epidermal 
Growth Factor Receptor- HER2 also known as ErbB2) 
 
2. Insensitivity to anti-growth signaling (Cyclin 
dependent kinases Cdc4, Cdc6, Cyclin D)  
 
3. Capacity to avoid programmed cell death like 
apoptosis (AKT kinase)  
 
4. Chronic aniogenesis (Hypoxia-induced factor1alpha 
HIF1-alpha, Vascular Endothelial Growth Factor VEGF)  
 
5. Metastasis (metalloproteases MMP2, urokinase)  
 
6. Infinite proliferative potential (telomerase) (17) 

Interestingly, the Hsp90 protein is expressed at a 
level 2-10 fold higher in cancer cells compared to 
unstressed, healthy ones, suggesting that the protein is one 
of the major components involved in cancer cell survival 
and/or in tumor growth (18).  

 
The mammalian isoforms of Hsp90 have a 

conserved structure containing: a C-terminal domain (11-15 
kDa), that provides constitutive dimerization of protein, a 
Hsp90 client protein binding domain (38-44 kDa), and an 
N-terminal ATP binding site (24-28 kDa), responsible for 
impermanent dimerization. ATP binding is essential for 
forming a  mature dimer of the Hsp90 capable to bind, 
chaperone and leave its client proteins. Primarily, a 
Hsp90 client protein is bound to a Hsp40/Hsp70 
chaperone complex, that subsequently binds to the 
Hsp90 thanks to HOP (Hsp90/Hsp70 Organizing 
Protein). Finally, the Hsp90 binds ATP molecule thus 
resulting in a dissociation of the HOP and Hsp40/Hsp70 
complex, and in an  association of Hsp90 with its co-
chaperones and client protein. Co-chaperones e.g. 
Hsp70, Hsp40, p23 and CHIP accompany Hsp90 in 
nucleotide exchange, ATP hydrolysis, chaperoning and 
degradation of its client proteins. Non-chaperoned 
Hsp90 client proteins undergo proteasomal degradation 
by E3 ubiquitin ligases, such as CHIP (Carboxy-
terminus of Hsp70 Interacting Protein) (19-21). 

 
3. HSP90 INHIBITORS 

 
3.1. Geldanamycin and its derivatives 

Geldanamycin (GA) and its derivatives (Figure 1) 
have been reported to possess multiple pharmacological 
properties- antitumoral properties, inhibition of 
angiogenesis and metastasis of diseases such as multiple 
myeloma (22), as well as breast (23) or prostate cancer (24). 
GA have been identified from Streptomyces hygrocopicus 
in 1970 as tyrosine kinase inhibitor (25, 26). Nowadays it is 
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Figure 2. Geldanamycin as depletor of Hsp90. Primarily Hsp90 client protein binds to Hsp40/Hsp70 early chaperone complex, 
subsequently undergoes Hsp90 dimer- binding thanks to HOP- Hsp90/Hsp70 Organizing Protein forming intermediate complex. 
ATP molecule hydrolysis results in dissociation of HOP and Hsp40/Hsp70, and successively in association of Hsp90 with its co-
chaperones, client protein. Geldanamycin binds to N-terminal ATP-binding site of Hsp90, perturbs formation of mature complex 
and leads to proteasomal degradation by E3 ubiquitin ligase like CHIP (Carboxy-terminus of Hsp70 Interacting Protein) (based 
on 76).  
 
known as potent small molecule inhibitor of Hsp90. GA 
binds to Hsp90 N-terminal ATP binding site, similarly to 
radicicol, another Hsp90 inhibitor (27). GA inhibits Hsp90 
ATPase activity, affecting  the dissociation of mature 
chaperone Hsp90 complex and the degradation of Hsp90 
client proteins in proteasomes by E3 ligase (28) (Figure 2). 
The mechanisms involved in proteasomal degradation of 
Hsp90 client proteins and destabilization of Hsp90 
complexes are relatively well understood, but little is 
known about effects of GA on the modulation of Hsp90 
genes at the transcriptional level. Expression of Hsps is 
regulated by the heat-shock transcription factors (HSFs), 
that bind to HSE after activation and conduce to the 
transactivation of heat shock genes. In mammalian cells, 
three isoforms of HSFs can be distinguished: stress-
activated HSF1, developmentally regulated HSF2, tissue-
specifically regulated HSF4 (29, 30). Interestingly, it has 
been revealed that HSF1 is a client protein of Hsp90 and 
that GA leads to transactivation of the heat-shock genes 
involving the Hsp90 gene. GA acts as an inhibitor of the 
Hsp90 function, but also as an inducer of heat-shock genes, 
including the Hsp90 gene. Moreover, GA can induce 
expression of many stress proteins, such as GRPs and 
Hsp90s, in a concentration-dependent and cell-specific 
manner (31, 32). Despite its influence on the Hsp90 
function and expression of heat-shock genes and proteins, 

the distinct mechanism of action of GA is associated with 
the induction of oxidative stress and production of reactive 
oxygen species (ROS) related to its quinone group (33). For 
that reason GA provokes not only TNF-alpha-mediated or 
intrinsic apoptotic pathways, but also oxidative-stress 
induced apoptosis (34). Unfortunately, the stress response 
induced by treatment with this compound can also be cause 
resistance to therapy with GA, and seems to be associated 
not only with P-glycoprotein expression but, predominantly, 
with the stress-induced expression of Hsp70 and Hsp27 
proteins. Andrea K. McCollum, Cynthia J. TenEyck and 
colleagues have stated that a knockdown of Hsp27 or 
Hsp70 is sufficient to reverse resistance to 17-AAG and 
EC78 (analogues of GA) in a A549 cell line (selected for 
GA resistance), while inhibition of P-glycoprotein by 
verapamile is ineffective (35). 

 
Regardless of the pleiotropic activities of GA 

involving its potent anticancer properties, this compound 
cannot be evaluated in clinical trials because of its 
hepatotoxicity, poor water solubility and limited oral 
bioavailability. Thankfully, modified GA derivatives have 
been developed as potential drug candidates. 17AAG (17- 
(Allylamino)-17-demethoxygeldanamycin, NSC 330507, 
KOS 953, Tanespimycin), a geldanamycin analogue has 
been evaluated in Phase II/III clinical trials, and has been 
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found to possess a lower toxicity, a better stability than GA 
and to retain a potent anticancer activity even at nanomolar 
concentrations, although its binding to Hsp90 has resulted 
weak. It has been evaluated in phase II/ III clinical trials for 
treatment of multiple myeloma, metastatic melanoma and 
breast cancer. (36-39). There is evidence of its high activity 
toward cancers cells both in monotherapy and in 
combination of therapies with drugs such as bortezomib, 
sorafenib or trastuzumab (40-42). Due to the fact that 
tansepimycin is water insoluble, the most appropriate drug 
formulations for this compound are still being researched. 
In the “Phase II trial of the Hsp90 inhibitor tanespimycin 
(Tan) + trastuzumab (T) in patients (pts) with HER2-
positive metastatic breast cancer (MBC)” the patients were 
given cremophor-based 17AAG combined with 
antihistamine/steroid premeds and tanespimycin in form of 
a suspension without premeds. The toxicity after drug 
administration was found to be very controllable; the main 
side effects were fatigue (39%), diarrhea (33%), dizziness 
(24%) and headache (19%). Both used forms of 17AAG 
have been shown to have similar safety profiles, and trial 
outcomes have been encouraging as well:  among others, a 
75% decrease in liver metastases, a 57% decrease in lymph 
node, liver, and  breast lesions were reported (43). 

 
Subsequently a second-generation GA analogue 

has been developed: 17-dimethylaminoethylamino-17-
demethoxygeldanamycin (17-DMAG, Alvespimycin, KOS-
1022, Kosan), characterized by improved properties. 
Studies in vitro have revealed 17-DMAG is more specific 
for Hsp90 complexes in cancer cells compared with healthy 
cells. In addition, it is water-soluble, and it has been 
reported to have a better oral bioavailability or even a 
marginally superior activity comparing to 17AAG. 
Moreover, 17-DMAG has been conveyed to be widely 
distributed to tissues, and quantitatively much less 
metabolized than 17-AAG (44-46). Another GA analogue, 
IPI-504 (Retaspimycin hydrochloride, 18, 21-Didehydro-
17-demethoxy-18,21-dideoxo-18,21-dihydroxy-17- (2-
propenylamino)geldanamycin) is a novel potent water-
soluble Hsp90 inhibitor . It has been reported that it IPI-504 
is an active form of 17AAG, as tanespimycin is 
metabolized to retaspimycin. IPI-504 is especially effective 
in the treatment of Non-Small Cell Lung Cancer (NSCLC), 
Gastrointestinal Stromal tumors (GIST) and Soft Tissue 
Sarcomas (STS) (47-49); moreover, it is also effective both 
as a single agent as well as acting synergistically with 
bortezomib and docetaxel (Taxotere) in solid tumors (41, 
50).  

 
Since Hsp90 acts as a dimer, Hong Zhang and 

colleagues compared the pharmacological properties of 
17AAG and dimer ansamycins with prolonged inhibitory 
activity CF237 and CF483. The dimers were characterized 
by extremely high Hsp90 binding affinity, forming 
extraordinary stable complexes with the target protein, thus 
resulting in improved activity and in an increased efficacy 
and period of action of the dimers in comparison to 
monomer 17AAG. There are also disadvantages of dimer 
ansamycin use in therapy, firstly owing to their high 
reactivity with water: they are in fact poorly water-soluble, 
due to their high affinity to target proteins and irreversible 

inhibition (their action cannot be reversed by ceasing their 
administration);  moreover, they can cause tolerability 
issues as a result of forming complexes also with non-target 
proteins (51).  
 
3.2. Influence of geldanamycin on the major Hsp90 
client proteins- possible anti-cancer targets 
3.2.1. Src family kinases 

P60v-src  is the transforming protein of Rous 
sarcoma virus and client protein of Hsp90, complexed with 
the p50Cdc37 protein (52, 53). One of the major target 
proteins of p60v-src is Focal Adhesion Kinase (FAK), a 
nonreceptor protein-tyrosine kinase. P60v-src 
phosphorylates FAK, but, moreover, induces 
autophosphorylation and protects against the action of 
tyrosine phosphatases (54). High levels of both p60v-rsc 
and FAK protein conduce to a disregulation of the 
transmission of cell growth signaling and anchor-
independent proliferation of the cells. Researches 
uncovered the presence of diminished levels of p60v-src 
and tyrosine phosphorylated proteins in mutant yeast with a 
lowered Hsp90 expression, with the consequent restoration 
of a normal cell cycle. GA and other ansamycin antibiotics 
were originally discovered as p60v-src inhibitors, while 
today it is known that this inhibition is indirect and affected 
by the destabilization of the Hsp90-p60v-src complex, 
leading to diminished levels of the tyrosine kinase (55, 56). 

 
Conversely, the association between Hsp90 and 

cellular c-Src still seems to be unclear. Experiments have 
failed to detect Hsp90-c-Src complexes, in contrast to 
Hsp90-p60v-src, which are very stable and abundant (57). 
In yeast with a lowered Hsp90 level no differences were 
found in c-Src levels. Interestingly, GA leads to disruption 
of Hsp90-c-Src complexes and other Hsp90 complexes 
with Src kinases sharing homology in their C-termini with 
c-Src like Lck and Fgr kinases (58).  

 
3.2.2. Raf1 kinase 

Raf 1 protooncogene belongs to the 
serine/threonine kinases responsible for the regulation of 
cell proliferation, differentiation and apoptosis. It is a 
component of the MAPK (Mitogen-activated Protein 
Kinases)/ERK (Extracellular Signal-regulated Protein 
Kinases) signaling transduction pathway recruited by the 
activated Ras protein, a membrane-associated GTPase, 
after activation Raf1 induces phophorylation of kinases 
such as ERK1, ERK2 or MAP kinase kinase MEK1 and 
MEK2 (59). Relatively to p60v-src, Raf1 forms complexes 
with Hsp90 and p50Cdc37. MEK1 kinase has likewise 
been found to associate with both Hsp90 and Raf1 (60, 61). 

 
3.2.3. Cyclin-dependent kinases Cdk4, Cdk6 

Cyclin-dependent kinases take part in the 
regulation of cell cycle in eukaryotic cells; one of the 
mechanisms of their action is 
phosphorylation/dephosphorylation. Cdc4 is the kinase 
responsible for triggering mitosis and the factor stimulating 
cells to transition from G2 to M phase by phosphorylation 
of the retinoblastoma protein. Cdc4 that is regulated partly 
by its association with cyclin B, forms complexes with 
cyclinD, active in the nucleus. Cdc4 also forms complexes 
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with Hsp90/p50Cdc37 in primed conformation, and after 
dissociation from the chaperone complex, it connects with 
cyclin D (53, 62). Through inhibition of the Hsp90 function, 
GA decreases the level of Cdc4 by post-translational 
destabilization similarly to Raf1 kinase. Cdk6, comparably 
to Cdk4, induces transition of cells through the G1 phase of 
cell cycle, being activated by interaction with cyclin D 
protein, and forms complexes with Hsp90/p50Cdc37 (53). 
It has been revealed that GA lowers the expression of Cdk4, 
Cdk6 and cyclin B, as well as inducing mostly G2 or M 
arrest in cancer cells like the glioblastoma U87MG cell line 
with the consequence of inhibiting cell cycle progression.  
 
3.2.4. Transforming growth factor TGF-beta 

TGF-beta, a member of the polypeptide growth 
factor family, is a cytokine involved in the regulation of 
cell proliferation, differentiation and survival. It is known 
well dichotomy of TGF-beta, which in normal epithelial 
cells acts as tumor suppressor and inducer of apoptosis, 
while in malignant cells, it works as a tumor promoter, 
stimulating proliferation, angiogenesis and metastases 
(63).There are different isoforms of TGF-beta, with a 70-
80% homology in amino acids. One can distinguish two 
transmembrane protein receptors for TGF-beta with 
serine/threonine activity- TGF-beta type 1 receptor (TGF-
betaRI) and TGF-beta type 2 receptor (TGF-beta RII); 
downstream effectors of TGF-beta are the Smads proteins 
that regulate the expression of target genes. GA has been 
reported to inhibit TGF-beta signaling through increased 
receptor ubiquitination, partly by increasing expression of 
inducible Hsp70, co-chaperone of Hsp90 expressed in the 
majority of cancer cells (64). 

 
3.2.5. Mutated p53 

Wild type p53 is a well known tumor suppressor 
protein that is involved in the adjustment of cell cycle 
progression, apoptosis. It is referred to as ”the guardian of 
the genome”, and characterized by very short half-life, with 
its mutated form being fairly stable; the latter interferes in 
the activity of wild type p53 by perturbing its activity and 
increasing drug resistance according to cells with mutations 
of p53 protein (65). Blagosklonny, Toretsky and Neckers 
(66) exposed the potential of GA to decrease mutated p53 
level and half-life, in contrast to the wild type protein that 
is unaffected by drug therapy. 

 
3.3. Another Hsp90 inhibitors 
3.3.1. Radicicol 

Radicicol is a macrocyclic lactone antibiotic 
possessing epoxy α, β, γ- unsaturated carbonyl groups; it 
was isolated from the fungus Monosporium bonorden (67). 
Radiciol is a potent Hsp90 inhibitor that acts by interacting 
with its N-terminal binding domain and triggering Hsp90 
client proteins proteasomal degradation, similarly to GA 
and its analogues (27). Radicicol has been found to induce 
apoptosis even in 17AAG-resistant cancer cells. Possibly 
because of its unstable epoxy group, radicicol has failed to 
be effective in animal models, although it has been found to 
possess strong anti-cancer properties in vitro (68). Oxime 
derivatives of radicicol with enhanced stability, synthetized 
by Kyowa Hakko Kirin, are known as KF55823 and 
KF58333. Interestingly, despite of these two derivates 

achieving the same level of plasma concentrations, 
KF58333 showed significant antiproliferative and 
antitumor properties through depletion of Hsp90 in KPL-4 
human breast cancer xenografts, unlike its stereoisomer 
KF58332; this finding suggests that oxime derivatives of 
radicicol may possess stereospecific antitumor properties 
(69). 

 
3.3.2.  Novobiocin 

Novobiocin (Albamycin, Cathomycin) is an 
aminocoumarin antibiotic produced by Actinobacteria 
Streptomyces niveus (Streptomyces spheroids). In contrast 
with geldanamycin and radicicol, novobiocin binds to the 
C-terminal ATP binding site of Hsp90 (70); moreover, it 
also acts as an inhibitor of bacterial DNA gyrase (71). 
Similarly to ansamycin antibiotics, novobiocin affects the 
destabilization and degradation of Hsp90 client proteins 
involving Raf1, p60v-src, mutated p53 protein or AKT 
kinase (72, 73). An analogue of novobiocin, F-4, has been 
found to be more potent and efficient in comparison with 
its parental compound and even with the N terminal 
inhibitor 17AAG in prostate cancer cells (74).  

 
3.3.3. STA-9090 and STA-1474 

Novel Hsp90 inhibitors have been developed, that 
are not related to geldanamycin- derivatives of resorcinol, 
containing triazol ring in chain. STA-9090 and its pro-drug 
STA-1474 seem to be effective in vitro, at nanomolar 
concentrations, against multiple tumor cell lines including 
osteosarcoma. Both drugs bind to the ATP-binding domain 
at the N-terminus of Hsp90 and induce a degradation of 
Hsp90 client proteins (75).  

 
4.  SUMMARY AND PERSPECTIVE 

 
Due to the fact that isoforms of HSP90 are 

implicated in cancer development, progression and 
formation of metastases, Hsp90 inhibitors are at the center 
of interest of oncologists and researches. One type of 
Hsp90 inhibitors are the benzoquinone ansamycin 
antibiotics, including herbimycin A, geldanamycin and its 
derivatives with enhanced pharmacokinetics and 
pharmacodynamics profile, while another one, dissimilar to 
benzoquinone antibiotics, is the Hsp90-binding small 
molecule-natural product, radicicol, and newly analogues 
of resorcinol with triazol ring in chain- STA-9090 and 
STA-1474. All of the aforementioned inhibitors possess a 
high affinity to binding to the N-terminal ATP binding site 
of Hsp90 and affect its function. Novobiocin is an 
antibiotic and a potent Hsp90 inhibitor that, in contrast to 
the abovementioned chemicals, interacts with the C-
terminal ATP binding pocket. These anti-cancer agents or 
their derivatives have been developed in preclinical studies 
or already evaluated in clinical trials involving different 
kinds of malignancies such as multiple myeloma, breast or 
prostate cancer.  
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