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Abstract

We investigate the evolution equation for the average vortex length per unit volume
L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L
and in counterflow velocity V may contribute to vortex diffusion, vortex formation and
vortex destruction. We explore two different families of contributions: those arising from
a second order expansion of the Vinen equation itself, and those which are not related
to the original Vinen equation but must be stated by adding to it second-order terms
obtained from dimensional analysis or other physical arguments.
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inhomogeneous vortex tangle, vortex diffusion.
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1. Introduction

Liquid 4He has been extensively studied both from a theoretical and
an experimental point of view, because of its unique properties, due to
its quantum nature. An example of these peculiar features refers to heat
transfer in counterflow experiments, characterized by no net matter flow,
but only heat transport. If the heat flux is lower than a critical value qc, the
temperature gradient is so small that it is inappreciable to measurement,
so indicating that the liquid has an extremely high thermal conductivity.
This effect explains the remarkable ability of helium II to remove heat and
makes it important in engineering applications: in fact, liquid helium is
often used in the aerospace industry as refrigerant or for the refrigeration
of large magnets [1].
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Inhomogeneous quantum vortex tangles

A first important issue to be addressed in the problems of cryogenic
refrigeration is the onset of turbulence. The superfluid turbulence can be
generated thermally, applying a heat flux as in counterflow situation, or me-
chanically. As proved by [2,3] in the turbulence generated mechanically, the
energy spectrum is like the Kolmogorov spectrum, while in thermal coun-
terflow is not so. In [4] some difference between the two kinds of turbulence
are pointed out. Here we will consider thermally generated superfluid tur-
bulence. Indeed, the presence of a sufficiently high heat flow causes the
formation of a tangle of quantized vortex lines, which form, move, collide,
and rearrange inside the superfluid [5–9]. The quantum of circulation is κ,
given by κ = h/m4, with h the Planck constant, and m4 the mass of 4He
atom. The tangle is usually assumed to be homogeneous and isotropic. This
simplifies the mathematical analysis, as it makes possible to describe it in
terms of a single scalar quantity L, the “vortex line density,” i.e. the length
of vortex lines per unit volume, having units of (length)−2. The evolution
equation for L under constant values of the average counterflow velocity
V = |V|, with V =< vn − vs >, (being vn and vs the velocities of the
normal and superfluid components), in the simplest case (absence of in-
homogeneities and of rotation), was proposed by Vinen [10] by combining
dimensional analysis and physical arguments. It is:

(1)
dL

dt
= αV V L

3
2 − βV κL2,

with αV and βV dimensionless coefficients.
However, experiments [11–15], and numerical results [9,16–18] lead to

consider inhomogeneous and anisotropic tangles, with special emphasis on
the role of vortex diffusion. Here we will consider inhomogeneous situations,
where the heat flux q (and consequently L) is inhomogeneous. In particular
we explore the influence of ∇q and ∇L on the evolution equation for L.

The results may be especially relevant in studies of strongly inhomoge-
neous flows, as for instance radial flows, flows in convergent or divergent
channels [11–14], in the diffusion contribution to the decay of vortex tangles
in narrow channels [18], or in entrance regions in channels. The results will
be useful also in the study of mechanically generated turbulence. Indeed
in [4] the authors observe that the vortex configuration is rather homoge-
neous for thermally driven turbulence and inhomogeneous for mechanically
driven turbulence because of the spatial distribution.

In this paper we consider inhomogeneous situations, where the tangle
may still be described by L, but L may change from point to point in the
volume of the tangle and an evolution equation for it must be written, tak-
ing explicitly into account the contributions of inhomogeneity, either as a
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diffusion flux of vortices [7–9,18], or as an additional contribution to vortex
formation or destruction, which could arise in convergent or divergent chan-
nels, as it was observed in some early pioneering but relatively forgotten
experiments some years ago [11–15].

Indeed, much of the research on superfluid counterflow has been car-
ried out along homogeneous channels, having the same cross section area
along the whole channel. In this case, the inhomogeneities are radial, re-
lated to the presence of the walls, but they are very difficult to consider in
narrow channels. Instead, convergent or divergent channels, or radial heat
flux between concentric cylinders, offer a good opportunity to experimental
research.

Some of the observations in convergent channels were described in terms
of Geurst hydrodynamic model with an evolution equation for L [19–21],
given by:

(2)
∂L

∂t
+∇ · [LVL] + κ

γ1
γ

[
2

L
|∇L|2 −∇2L

]
=

β

2γ
L

3
2 |VL − V | −

βs
γ
L2,

with γ1, γ, β and βs dimensionless parameters.
The right-hand side of this equation corresponds to the classical Vinen’s

creation and destruction terms. In the left-hand side of Eq. (2), the second
term corresponds to the convective term of the tangle moving at the local
tangle velocity VL, and the second contribution of the last term corresponds
to the vortex diffusion, with κγ1γ being the diffusion coefficient; the first
contribution to the last term indicates a non-local contribution to the vortex
destruction, independent of the direction of the flow.

Along the present paper we will consider several equations incorporating
diffusion and other non local effects. Instead of sticking only with Eq. (2)
we will also study other possibilities.

In Section 2 we introduce a new term accounting for the role of the
gradient of V (or of the heat flux q) in vortex production, and we explore
on the influence of it and of vortex diffusion in radial heat flows and in the
entrance region. In Section 3, a nonlocal formulation of vortex line density
evolution equation will be obtained adding to Vinen equation two kinds
of new non-local terms: the firsts are obtained from a second-order Taylor
expansion, in terms of the average vortex separation, given by L−1/2; other
second-order terms are added by using a dimensional analysis.

In Section 4, the concrete form of such equations for convergent (or
divergent) channels will be specified and a set of physical conclusions will
be driven. Final remarks are made in the concluding section.
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Inhomogeneous quantum vortex tangles

2. Analysis of radial flow.

Along the paper we explore evolution equations for L in inhomogeneous
situations. We concentrate our attention on dynamical effects, whereas in
[22,23] we considered this problem from a thermodynamic point of view,
but with less diversity of dynamical equations than in the present paper.
In this section we consider the following evolution equation instead of (2):

(3)
∂L

∂t
+∇ · [LVL] = γ′qL

3
2 − γ′′L2 +D∇2L+ α′F(∇q)L+ α′′q · ∇L,

where γ′, γ′′, D, α′ and α′′ are coefficients with suitable dimensions (in par-
ticular γ′ = αV /(ρsTs) and γ′′ = βV κ), while F(∇q) is a scalar functional

of ∇q, as for instance [(∇q) : (∇q)]
1
2 or û · (∇q) · û, with û the unit vector

in a given direction, i.e. that of the heat flux q or that of the Schwarz vector
I, a characteristic vector introduced by Schwarz [24], defined as

(4) I ≡
∫

s′ × s′′dξ∫
|s′′|dξ

,

where s′ is the unit vector tangent to the vortex line described by s(ξ), with
ξ the arc-length, and s′′ the curvature of the vortex line. As it is known, in
Schwarz derivation of Vinen equation, the first term in the right hand size
of equation (3) is substituted with γq · IL

3
2 = γI0qL

3
2 [24].

The diffusion term in D and the term in α′′ were considered by us
in [22,23,25] from a thermodynamic point of view. The original proposal of
this section is the term in α′, that describes the role of the heat gradient
as vortex source. Other terms will be considered in the next section. In the
well known Vinen equation, the vortex source is considered to be related
to heat flux modulus |q| = q, but independent of heat gradients (which in
the two fluid model are related to gradients of the counterflow velocity V).
However the heat flux gradients are expected to act as natural source of
vorticity, and therefore of vortex lines, in addition to the usual term in γ′.

We will separately consider the effect of the diffusion term in D (which
were already studied in [23]), the term in α′′, that is considered here from
a new perspective and α′, which is considered here for the first time. To
this purpose we apply equations (3) to a steady–state counterflow of He
II between two concentric cylindrical walls at different temperatures as
studied in [26], where the author analyzes a rotating annulus driven by
radial counterflow in a two dimensional setting.

The situation considered here has a relative mathematical simplicity
as compared with the more usual counterflow along a cylindrical container
studied in [27–29] (see Figure 1-left). The inner cylinder (the hotter one) is
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at fixed temperature T0, the temperature profile T (r) between both cylin-
ders will depend on the heat flux, the thermal conductivity, and the vortex
line density profile L(r). Since in this situation the heat flow has only a ra-
dial component, which depends only on the radial coordinate, namely q(r),
this situation is the simplest one with a heat gradient.

T0

T

q

T0

T

Figure 1. Left: Heat flows axially from the inner cylinder (the hotter one), at fixed
temperature T0, to the outer colder one. The radial temperature profile T (r) depends on
the heat flow and the vortex density radial distribution (from [23]). Right: Example of
vortex diffusion. When the diffusion plays a role one can observe simultaneously several
regimes of turbulence, in the same experiment (close to the inner cylinder the vortex
production is higher, then one can observe a diffusive flow of vortices).

2.1. Diffusion contribution.

The steady–state situation requires ∇ · q = 0 according to the energy
balance equation. We can consider axial symmetry for the problem, hence,
the heat flux has only the radial component qr (which will be called here
as q). This implies that q = Γ/r, with Γ being the heat supplied per unit
time and unit length of the cylinder and r the distance with respect to the
axis of the cylinders.

Here we briefly recall our results for the behavior of L(r) [23], which
could be obtained experimentally from the attenuation coefficient of second
sound. Introduction of q = Γ/r in (3), and ignoring, for the moment, the
terms in α′ and in α′′ (which will be considered in Section 2.2), allows us
to obtain L(r) from:

(5) γ′
Γ

r
L

3
2 − γ′′L2 +D∇2L = 0.

If the temperature gradients are small, γ′, γ′′ and D (which in principle
depend on temperature) may be taken as constant. Equation (5) admits
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the solution:

(6) L(r) = α2Γ2

r2
,

with

(7) α =
γ′

2γ′′

(
1 +

√
1 +

16Dγ′′

γ′2Γ2

)
.

If D = 0 one recovers the result α = γ′/γ′′, and according to the usual
Vinen equation:

(8) L(r) =
γ′2

γ′′2
Γ2

r2
.

Instead, when the diffusion effects become dominating, L(r) takes the
form:

(9) L(r) =
4D

γ′′r2
.

In this regime, L is independent of the heat flux, but it keeps the same
dependence 1/r2 on the radius than in (6) for D = 0. Thus, the influence
of the vortex diffusion is focused on the local values of L(r) rather than on
the form of the spatial steady distribution.

It is seen in (7) that the diffusion increases the local values of L as
compared with the situation with D = 0, especially at relatively low values
of the heat flux. This increase may be intuitively understood as the result
of a diffusive flow of vortices from the hotter cylinder (where q is higher
and therefore the vortex production is higher) to the colder cylinder, where
they will disappear when colliding against the external wall (see Figure 1-
right). Thus, the term in γ′Γ accounts for the vortices produced in the same
point being considered, in contrast with the term in D, which accounts for
the “migrating” vortices in that point. For small heat flux or high diffu-
sion, the “migrating” vortex population is higher than the “native” vortex
population.

The result (6) of the different values of L in the presence or absence of
diffusion suggests the possibility of hysteresis when the heat flux is increased
from zero to some maximum value, at a rate sufficiently higher than the
diffusion rate, and is subsequently lowered to zero, at a rate sufficiently
lower than the diffusion rate. In the first case, diffusion will not have time
to act during the process, so that L will be given by (6)–(7) with D = 0
(the “native” population will predominate), i.e. L(r) given by equation (8).

135

Brought to you by | Universitat Autònoma de Barcelona
Authenticated

Download Date | 6/8/16 1:49 PM



L. Saluto, M.S. Mongiovı̀

In contrast, in the slow process, diffusion will always act and L will be
described by (6)–(7) with D 6= 0. We have commented this aspect with
detail in [23] and we summarize it in Figure 2, where we have plotted the
dimensionless quantity Lr2 in terms of the dimensionless heat flux α0Γ,
with α0 ≡ γ′

2γ′′ .

A

B

C

D

10 000 20 000 30 000 40 000

Α0 G

50

100

150

200

L r
2

Figure 2. Hysteresis cycle. The value of Lr2 (vertical axis) as a function of the di-

mensionless expression for the heat flux α0Γ, with α0 ≡ γ′

2γ′′ . The value of L for fastly

increasing heat flux (A to B), corresponding to eq. (8), is different from that for slowly
decreasing heat flux (C to D), corresponding to eq. (6)-(7) with D 6= 0. The values of
α0 = 1.28∗10−4 s3/(cm*g) for T = 1.5 K and D = 2.2κ cm2/s have been taken from [16]
for D, from [30] for γ′′, and from [31] for the ratio γ′/γ′′.

2.2. Heat gradient contribution.

In the radial heat flow, the only non-vanishing term of the heat flux
gradient is dq/dr. In this case if one chooses the expression [(∇q) : (∇q)]

1
2

for F(∇q), we get α′F(∇q) = α′|dq/dr|, while if one chooses for F(∇q)
the form r̂ · (∇q) · r̂, with r̂ the unit vector in the radial direction, we get
α′F(∇q) = α′∇q · r̂ = ±α′|dq/dr|. In the first case the contribution of
this term has constant sign, in the second its contribute depends on the
direction of the radial heat flux.

If the radial gradient of q, i.e. the term in α′ in (3), contributes as an
additional positive source of vortices (α′ > 0), but the effects of D are
neglected, we have for the steady–state vortex length:

(10) γ′′L− γ′qL
1
2 − α′

∣∣∣∣dqdr
∣∣∣∣ = 0.

Since q = Γ/r, |dq/dr| = Γ/r2, and L(r) is given by (6), with α given
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by:

(11) α =
γ′

2γ′′

[
1 +

√
1 +

4γ′′α′

γ′2Γ

]
,

instead of (7). Thus, the dependence of L with the radius would be the
same as for α′ 6= 0, but the coefficient would be different, implying a higher
value of L, because the gradient of q acts as an additional source of vortices.
Note that the extra term under the square root in (11) is proportional to
α′/Γ whereas it is proportional to D/Γ2 in (7), with Γ related to q(r) as
q(r) = Γ/r, as it has just been said. Thus, a possible way of comparing
whether the increase in L(r) in axial flow is due to |dq/dr| as a source,
or if it is due to the diffusion term D∇2L, is to see the dependence of
the coefficient α in (11) by Γ (as Γ−1 or as Γ−2 respectively) whereas the
influence on 1/r2 is the same one for both.

2.3. Heat gradient and entrance region.

Another way to deal with the relative directionality of the heat flux on
the vortex productions is through the term α′′q · ∇L in (3). Since in a first
approximation L is proportional to q2, the term α′′q ·∇L will have different
sign if q points to region with increasing values of q or with decreasing
values of q. Since in axial flows |q| is higher in central regions, and also L,
one has q ·∇L > 0 for q going toward the center and q ·∇L < 0 for q going
away from the center (see Figure 3).

Figure 3. Longitudinal section of a channel with heat flow going from wide to narrow
regions (a), and opposite (b). In (a) q · ∇L > 0; in (b) q · ∇L < 0. In the classical local
form of Vinen equation, this difference in q · ∇L does not influence the local value of the
vortex length density L; in contrast, equation (10) in our model leads to different values
for the local values of L in both situations.
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This means that if the left wall is at temperature TH (hotter temperature)
and the right one at TC (colder temperature), the direction of the heat flux
is opposite with respect to the reverse situation, in which the left wall is
at temperature TC and the other at TH . Thus this would contribute in a
natural way to heat rectification, but with quantitative effects depending
on the value of α′′. Thermal rectification is an interesting phenomenon
in nanotechnologies, in which thermal transport along a specific axis is
dependent on the sign of the temperature gradient, and in superfluid helium
it can be important in refrigeration problems.

Another situation where the influence of heat gradients may be relevant
could be the region of entrance flows in cylindrical or flat channels.

The entrance region is that region from the origin of the channel (x = 0,
with x the direction of the axis of the channel), where the heat flux may
be given with an arbitrary form (usually considered as a flat profile), to
the positions where the heat flux distribution has become independent of
x. This region is a classical but very difficult topic of fluid mechanics heat
transport.

Figure 4. Developing velocity profile in the entrance of a duct flow. One can see the
entrance region, where the velocity profile evolves from flat to parabolic.

In the fully developed region along a right cylindrical channel, the heat
flux will have only the longitudinal component qx = q(r). However, in the
entrance region, where qx = q(x, r) depends on x, one will have ∂qx/∂x 6= 0.
Furthermore, because of the steady–state condition ∇ · q = 0, which leads
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to:

(12)
1

r

∂

∂r
(rqr) +

∂qx
∂x

= 0.

The fact that ∂qx/∂x 6= 0 does in turn imply that ∂(rqr)/∂r 6= 0, i.e.
that the radial component qr(x, r) cannot be ignored. We will further have
∂qr/∂x 6= 0. Thus, if the term in α′′ in (3) is positive, it would follow
that this term would strongly contribute to vortex formation already at the
origin of the entrance regions.

3. Non-local extensions of Vinen equation.

In this section we consider several different ways of generalizing Schwarz-
Vinen equation with diffusion effects, namely

(13)
dL

dt
= α̃V · IL

3
2 − βV κL2 +D∇2L

in the presence of ∇V and ∇L. Here we use the counterflow velocity V
rather than q (that has been used in (3)) because it is more well known, in
the context of two-fluid model of turbulence. In the one-fluid model, using
q instead of V seems more natural and more closely related to observa-
tional quantities. Anyway, since in counterflow q = ρssTV, going from one
formalism to the other is not difficult.

Diffusion effects are the most direct and intuitive non-local contribution
to the dynamics of the vortices, but other non-local effects may appear,
related to the production or destruction of vortices, as seen in (3). We
will proceed our exploration in a systematic way. First, we will expand up
to second order in L−1/2 (the average distance among vortex lines) the
production and destruction terms in Schwarz-Vinen equation. Second, we
will incorporate other possible terms following from dimensional analysis.

We assume, for the sake of simplicity, that the effects of the temperature
gradient are much less than the effects of the gradients of V and L, so that
they can be neglected.

3.1. Series expansion of the production and destruction terms.

Taking into account that the average separation δ between vortex lines
in the tangle is of the order of L−

1
2 , it may be expected that the creation

and destruction processes will be affected by inhomogeneities of V and L,
because vortices from x − δ and from x + δ will collide with vortices at
x, and, therefore, their effects should be considered, instead of considering
only the interactions of vortices already at x. The non-local contributions
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will be specially relevant for small values of L, where the mean free path
δ = L−

1
2 is long.

The expansion up to second order in dx = L−1/2û (with û an arbitrary
unit vector) of the creation term is given by:

[
∂L

∂t

]
prod

= α̃
{

V · IL
3
2 + Lû · [(∇V) · I + V · (∇I)](14)

+
1

2
L

1
2 û · [(∇(∇V)) · I + 2∇V : ∇I + V · (∇(∇I))] · û

+(V · I)

[
3

2
û · ∇L+

3

8
L−

3
2 |∇L|2 +

3

4
L−

1
2∇2L

]
+

3

2
L−

1
2 [I · (∇V) · ∇L+ V · (∇I) · ∇L]

}
.

On the other side the destruction term is approximated by:

(15)

[
∂L

∂t

]
destr

= βV κ
{
L2 + 2L

1
2 û · ∇L+ L−1|∇L|2 +∇2L

}
.

Thus, a non local extension of (13) is obtained substituting to Schwarz-
Vinen original production and destruction terms the expressions (14) and
(15).

Assuming V and I collinear and I constant, a non-local hydrodynamical
extension of equation (13) would be:

∂L

∂t
= α̃I

[
V L

3
2 + Lû · (∇V) · û +

1

2
L

1
2 û · [∇(∇V)] · û(16)

+
3

2
V û · ∇L+ V

(
3

8
L−

3
2 |∇L|2 +

3

4
L−

1
2∇2L

)
+

3

2
L−

1
2 û · ∇V · ∇L

]
− βV κ

[
L2 + 2L

1
2 û · ∇L+ L−1|∇L|2

]
+ (D − βV κ)∇2L.

Here, we want to consider situations where the heat flux has approxi-
mately only one component and depends only on one coordinate. This is
the case of radial flows, in an exact sense, and of convergent channels in an
approximate sense. In this simplified situation it is V = V x̂, I = Ix̂, and
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the previous equation becomes:

∂L

∂t
= α̃I

{
V L

3
2 +

∂V

∂x
L+

1

2
L

1
2
∂2V

∂x2
+

3

2
L−

1
2
∂V

∂x

∂L

∂x
(17)

+ V

[
3

2

∂L

∂x
+

3

8
L−

3
2

(
∂L

∂x

)2

+
3

4
L−

1
2
∂2L

∂x2

]}

− βV κ

[
L2 + 2L1/2∂L

∂x
+ L−1

(
∂L

∂x

)2
]

+ (D − βV κ)
∂2L

∂x2
.

Note that this equation contains two non-local terms formally similar
to those which are present in Geurst model (2), but many other additional
terms too.

Thus, equation (17) is a simple and direct implementation of an evolu-
tion of L starting from Vinen equation, but other kinds of term not coming
from such a non-local extension may also contribute, in principle, to such
non-local extension.

3.2. Dimensional analysis and additional non-local terms.

On dimensional grounds one may directly incorporate to (13) terms
depending on ∇L and on ∇V, and requiring that they have the correct
physical dimensions. Later on, one must consider their physical meaning,
their compatibility with the second law of thermodynamics, their agreement
or lack of agreement with experimental observations, and their microscopic
bases. Up to second order, a simple generalization is:

dL

dt
= αV V L

3
2 − βV κL2 +D∇2L− γ1V · ∇L(18)

− γ2
V 2

κL
|∇L|2 − γ3L [(∇V) : (∇V)]

1
2 ,

where we have put αV = α̃I, and where we have chosen the expression

γ3L [(∇V) : (∇V)]
1
2 for the functional F(∇V). This term will be a pro-

duction term (if γ3 < 0) or a destruction term (if γ3 > 0) and it is due to
the inhomogeneity in V. When it is expressed in terms of q, it plays a role
analogous to the term in α′ in (3). The term in V · ∇L, when expressed
in terms of q, plays a role analogous to the term in α′′ in (3). The term
in V 2|∇L|2 is new, indeed it does not appear in the extension (17) nor in
the equation (3). Thus, taking in mind (16) and (18), a possible generalized
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non-local equation should be:

∂L

∂t
= αV V L

3
2 − βV κL2 − 2βV κL

1
2 û · ∇L(19)

+

(
D − βV κ+

3

4
αV V L

− 1
2

)
∇2L

−
(
βV κ

1

L
− γ2

V 2

κL
+

3

8
αV V L

− 3
2

)
|∇L|2

+

(
3

2
αV V û− γ1V

)
· ∇L+

3

2
L−

1
2 û · ∇V · ∇L

− γ3 [(∇V) : (∇V)]
1
2 L+ αV Lû · (∇V) · û

+
1

2
αV L

1
2 û · [∇(∇V)] · û.

4. Application to averaged one-dimensional description of con-
vergent channels.

The situation that we are considering here, is represented in Figure 5.
A constant heat flow Q̇ is imposed in the direction of x-axis, r indicates the
width of the channel and it depends on the position x, while the length h
of the channel is considered constant.

xQ

Θ

Figure 5. A constant heat Q̇ is imposed in the x-direction. The channel has a constant
length h, and a variable width r(x) = θx, where θ is the slope of the walls with respect
to the axis of the channel.

In this situation, one has from the energy balance equation:

(20) q(x)hr(x) = AQ̇,

with A constant, and therefore:

(21) q(x) =
AQ̇

hr(x)
=

B′

r(x)
,
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where B′ = AQ̇
h is constant. Because in counterflow it is q = ρsTsV we

obtain also:

(22) V (x) =
B

r(x)
,

where B = B′/(ρsTs).
In this case it is û = x̂ and, assuming that ∇V is collinear with x̂,

equation (19) is written:

∂L

∂t
= αV V L

3
2 − βV κL2 +

(
αV

∂V

∂x
− γ3

∣∣∣∣∂V∂x
∣∣∣∣)L(23)

+

[(
3

2
αV − γ1

)
V − 2βV κL

1
2 +

3

2
L−

1
2
∂V

∂x

]
∂L

∂x

−
(
βV κ

1

L
− γ2

V 2

κL
+

3

8
αV V L

− 3
2

) ∣∣∣∣∂L∂x
∣∣∣∣2

+

(
D − βV κ+

3

4
αV V L

− 1
2

)
∂2L

∂x2
+

1

2
αV L

1
2
∂2V

∂x2
.

Since in (23) there are many terms, in the following subsections we
consider some of these additional terms one by one independently and then
we propose the general expression for a local perturbation L′ containing
all the terms, in order to understand their physical consequences in a given
physical situation, which is a necessary step to propose suitable experiments
to check the equations. According with Vinen equation, the vortex line
density L, at each point x, should be given by:

(24) L(x) =

(
αV
βV κ

)2

V 2(x),

with the local counterflow velocity V (x) dependent on x as in (22). Local
perturbations, due to the presence of these terms, with respect to Vinen’s
prediction shall be analyzed in detail. In particular, we will assume that
the opening angle θ is relatively small, so that tan θ can be approximated
by θ, and determine the several terms that must be added to the classical
expression (24) for L, in terms of θ and x (or θ and r).

4.1. Only a term in ∂L/∂x.

We will start with a term in ∂L
∂x (ignoring all the other terms), as in the

following expression:

(25)
∂L

∂t
= αV V L

3
2 − βV κL2 − γ1V

∂L

∂x
.
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In the steady–state, if one considers a perturbation L′ of the homo-
geneous solution of (25), Lh given by Lh = (αV /βV κ)2V 2(x), namely
L = Lh(x) + L′, one would have, from the linearized version of (25):

(26)
3

2
αV V L

1
2
h L
′ − 2βV κLh L

′ = γ1V
∂Lh
∂x

,

where for the sake of simplicity we have assumed L′ independent of x, and
then, one obtains for L′:

(27) L′ = −2
βV κ

αV 2V 2
γ1V

∂

∂x

[(
αV
βV κ

)2

V 2

]
= −4

γ1
βV κ

∂V

∂x
= 4

γ1
βV κ

Bθ

r2
.

4.2. Only a term in
∣∣∂L
∂x

∣∣2.

A second contribution in order to modify Vinen equation can be the
following:

(28)
∂L

∂t
= αV V L

3
2 − βV κL2 + γ2

V 2

κL

∣∣∣∣∂L∂x
∣∣∣∣2 .

In this case, one obtains:

(29) L′ = 8
γ2
βV κ2

(
∂V

∂x

)2

= 8
γ2
βV κ2

B2θ2

r4
.

4.3. Only a term in ∂2L
∂x2

.

Adding only a term proportional to ∂2L
∂x2

, one recovers:

(30)
∂L

∂t
= αV V L

3
2 − βV κL2 +D

∂2L

∂x2
.

In this case, one obtains:

(31) L′ = 4
D

βV κ

1

V 2

[(
∂V

∂x

)2

+ V
∂2V

∂x2

]
= 12

D

βV κ

θ2

r2
.

4.4. Only a term in ∂V
∂x .

Choosing in equation only the term in [∇V : ∇V]
1
2 (the term in x̂ ·

(∇V) · x̂ leads to a opposite result), one has:

(32)
∂L

∂t
= αV V L

3
2 − βV κL2 − γ3L

∣∣∣∣∂V∂x
∣∣∣∣ ,

and then:

(33) L′ = −2
γ3
βV κ

∣∣∣∣∂V∂x
∣∣∣∣ = −2

γ3
βV κ

Bθ

r2
.
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4.5. Only the term in ∂V
∂x

∂L
∂x .

In this case equation (23) becomes:

(34)
∂L

∂t
= αV V L

3
2 − βV κL2 +

3

2
L−

1
2
∂V

∂x

∂L

∂x
,

and one obtains:

(35) L′ =
6

αV V 2

(
∂V

∂x

)2

= 6
θ2

αV r2
.

4.6. Only the term in ∂2V
∂x2

.

In this case, one has:

(36)
∂L

∂t
= αV V L

3
2 − βV κL2 +

1

2
αV L

1
2
∂2V

∂x2
,

obtaining:

(37) L′ =
1

V

∂

∂x

(
∂V

∂x

)
= 2

θ2

r2
.

The final result of the complete analysis of each term would be that the
perturbation with respect to Vinen’s solution would have the form:

(38) L′ =
2

βV κ
(2αV + 2γ1 − γ3)

Bθ

r2
+ 8

γ2
βV κ2

B2θ2

r4
+ 12

(
D

βV κ
− 1

)
θ2

r2
.

The parameters αV and βV are known from steady–state homogeneous sit-
uations. Coefficients γ1, γ2 and γ3 may be obtained and checked sperimen-
tally as well as their thermodynamic consistency, which will be examined
in future works.

5. Conclusions.

In this paper we have examined how inhomogeneities in V or q and
L may contribute to the dynamics of L in inhomogeneous vortex tangles.
This situation is found in radial flows, flows in convergent channel, or flows
in entrance regions. In the previous paper [22,23,25] we studied some as-
pects of this problem from a thermodynamic perspective, to examine the
restrictions on the sign of some coefficients imposed by the second law of
thermodynamics. Essentially, the terms in D and α′′ in equation (3), plus
other terms depending on temperature gradient that we have not considered
here. In the present paper we have taken a different perspective, focused
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on the dynamical possibilities, rather than on their thermodynamic consis-
tency, which could be examined in future works.

In this paper our strategy has been to start from Vinen equation with
diffusion terms and adding to it two kinds of new non-local terms:

a) those coming from a second-order Taylor expansion of the vortex
creation and destruction terms, in terms of the average vortex sep-
aration, given by L−

1
2 ;

b) other kinds of second-order terms with suitable dimensionality and
satisfying tensorial requirements.

First, as a motivation to our analysis, we have considered the possible role
of the heat flux gradient as additional sources of vortices, not considered in
Vinen equation, and we have applied it to radial heat flow. Successively, we
have made a systematic analysis of the physical consequences of the several
non-local terms on the vortex line distribution in convergent (or divergent)
channels.

The final result of this analysis is the perturbation L′ of the Vinen’s
solution, which is obtained from equation (19) considering V and û collinear
and having same direction, as in Figure 5. However in expression (19) some
terms, i.e. those arising from scalar products between V (or q) and ∇L,
could have different sign, because of the direction of the heat flux with
respect to the gradient of L and they will depend on whether heat flux goes
to the right of Figure 6 or it goes to the left. This lead heat rectification in
convergent or divergent channels.

q

Figure 6. Heat flux along x-axis in a channel with varying transversal section. In steady–
states, the change in the transversal area implies a corresponding change of the average
heat flux across the section.

In particular, we can observe in Figure 3 or Figure 6 (where we have
represented the longitudinal section of a channel) that the heat flux den-
sity q will be higher in the narrow transversal section than in the wide
transversal section, since the total heat flow in the steady–state must be
homogeneous.
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Finally, note that the results of this paper generalize those predicted by
Vinen equation, according to which L at a given point should depend only
on the heat flux at that point, but not on the gradient nor the direction of
the heat flux. A detailed comparison of the predicted perturbations with
experimental results in convergent (or divergent) channel would allow us to
check the theory.
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