
Laser driven structured quantum rings

Giuseppe Castiglia1, Pietro Paolo Corso1, Umberto De
Giovannini2, Emilio Fiordilino∗1, and Biagio Frusteri1

1Dipartimento di Fisica e Chimica, Università degli Studi Palermo,
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Abstract

In this work we study harmonic emission from structured quantum
rings (SQRs). In SQRs, electrons trapped in two-dimensional structures
are further confined by an external potential composed of N scattering
centers arranged on a circle. We build a suitable one-dimensional model
Hamiltonian describing this class of systems and analytically solve the as-
sociated Schödinger equation. We find that the solution can be expressed
in terms of Mathieu functions and focus on the specific case of N = 6. By
exactly solving the time-dependent Schödinger equation, we then show
how the harmonic response to linearly polarized lasers strongly depends
on the ring physical parameters. The results illustrate how the additional
degrees of freedom introduced by these parameters, provide important
handles to control the emitted spectrum that in some cases extends into
the XUV region.

1 Introduction

High harmonic generation (HHG) is the phenomenon occurring when matter,
irradiated by strong lasers, emits light at multiple frequencies of that of the
incident pulse. It is a strongly non-linear process that has been extensively
studied both experimentally and theoretically. Using HHG as an efficient source
of high-frequency coherent radiation is one of the main goals of the research in
the field. For this reason, efforts have been made in order to understand, control
and manipulate the physical properties (shape, strength, extension, etc.) of the
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emitted spectrum. While most of the studies in this direction have been focused
on gas-phase atomic targets with optimization techniques based on multicolor
pulse shaping and/or phase matching [1], much less has been done towards the
controls offered by changing the physical properties of each single emitter.

Atomic systems, which are by far the most studied emitters, offer little space
for optimization. Molecular systems with complex electronic structures, on the
other hand, provide a lager space to maneuver. As a matter of fact, many works
focused on the investigation of HHG from molecules with a wide range of cases
spanning from benzene [2, 3] and atomic clusters [4] to fullerenes [5, 6, 7, 8, 9, 10]
and carbon nanotubes [11]. These works indeed proved molecules to be rich and
interesting sources of harmonics. However, applications have been, so far, quite
limited. One of the main reasons being that, compared to atomic systems, they
present several experimental challenges that need to be overcame in order to
become usable sources of radiation.

Artificial atoms and molecules [12, 13, 14, 15, 16, 17], realized with meso-
scopic devices, offer a promising alternative ground of research. Compared
to natural molecules these devices present greater flexibility provided by the
technological advances in fabrication of low dimensional systems such as two-
dimensional electron gases, quantum rings and quantum dots. Besides offering
the possibility to tailor the physical properties of each single emitter, these tech-
nologies allow for the production of multiple devices ordered in spatial arrays
thus extending the range of possibilities to engineered phase matching.

To date, research in this direction has been mostly carried out from the
theoretical standpoint. Harmonic emission from quantum rings have been in-
vestigated in combination with linearly [18] and circularly polarized [19] laser
fields. In spite of their simplicity, even in these seemingly simple systems, HHG
from circular fields has been predicted to present non-trivial selection rules [19].
Yet, more articulated rules have been demonstrated for benzene model sys-
tems [20, 21] and rings composed of silver quantum dots [22]. Compared to
real benzene, the artificial molecule has been shown to present characteristic
double plateaus in the spectrum [22]. Finally, HHG in the THz range has been
studied in mesoscopic rings with a localized impurity [23], and even harmonics
production have been investigated in coupled quantum dots [24, 25].

In the present work, we study the harmonic response of rings composed
of planar quantum dots to linearly polarized laser fields. Compared to other
works in the field we here differentiate by presenting a systematic study of the
harmonic spectrum as a function of the ring characteristic parameters: radius,
electron effective mass, and angular structure. Flexibility in the change of these
variables reflect one of the most important features of these artificial systems
that has been so far very little explored. The results obtained from such ex-
ploration directly illustrate to which extent it is possible to control features of
the harmonic spectrum by engineering the properties of the emitting rings and
indicate them as possible sources of XUV radiation.
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(a) (b)

Figure 1: Scheme illustrating the derivation of the model Hamiltonian employed in the preset
work. (a) The full potential landscape for a structured two-dimensional quantum ring with N = 6
centers is approximated with (b) an oscillating potential in one-dimension.

2 Model

In this work we focus on SQRs composed of N = 6 planar quantum dots evenly
spaced around a circle. In order to highlight the specific features deriving from
the single particle properties of these systems we restrict ourselves to the case of
rings containing a single electron only. This situation can be easily achieved un-
der experimental conditions where the charge status of each dot can be precisely
tuned, for instance, by electrostatic gating.

In these structures, an electron is effectively constrained in two-dimensions
and subject to a multi-center electrostatic potential as depicted in Fig. 1 (a).
Instead of addressing the problem containing the full potential we here derive a
simplified model still containing the essential physical properties of the original
one.

In polar coordinates (r, ϕ), the static Coulomb potential felt by the electron
can be written as

Vs(r, ϕ) = −
6∑

n=1

eQ√
r2 +R2 + ε− 2Rr cos(ϕ− ϕn)

(1)

where ε is a soft-core smoothing constant accounting for the effective charge
densities representing each dot. Such densities are normalized to Q and placed
at ϕn (with angular spacing π/3).

In a first approximation, an electron subject to the potential of Eq. (1) is
constrained in the radial direction and mainly localized around the ring radius.
We thus fix r = R, and highlight the 6-fold periodic symmetry expanding in
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Fourier components along the angular coordinate ϕ

Vs(r = R,ϕ) = − eQ√
2R

∞∑
k=0

Ak cos(6kϕ) . (2)

The two-dimensional problem is thus reduced to a one-dimensional one as illus-
trated in Fig. 1. The one-electron effective Hamiltonian therefore becomes

Hs =
L2
z

2µR2
− eQ√

2R

∞∑
k=1

Ak cos(6kϕ) (3)

with Lz = −i~∂/∂ϕ being the angular momentum operator along z, the axis
perpendicular to the ring plane, and µ the effective mass of the charge carrier.
Due to the presence of the angular structure, Lz is not a conserved quantity and
the Schrödinger equation assumes the form of an Hill’s differential equation [26].

The periodic potential of Eq. (2) can be further truncated at the first order
and the constant term for k = 0, representing a mere shift of the total energy,
can be safely dropped. With this truncated potential, the Hamiltonian finally
becomes

H0 =
L2
z

2µR2
+ ~Ω0 cos(6ϕ) , (4)

thus equivalent to the one of a single electron in 1D with periodic boundary
conditions and subject to an oscillating potential that parametrically depends
on Ω0.

The stationary Schrödinger equation associated with this Hamiltonian can
be recast in the form of a Mathieu’s equation

d2un
dx2

+
[
a(n)
q − 2q cos(2x)

]
un(x) = 0 (5)

with a simple change of variable x = 3ϕ (x ∈ [0, 6π]) together with the condition
un(0) = un(6π), and by defining the auxiliary parameters

q =
µR2Ω0

62~
, a(n)

q =
2µR2En

62~2
. (6)

Here n is an integer (n ≥ 0) that serves as principal quantum number and

that identifies a Mathieu eigenvalue a
(n)
q which, in turn, is connected with each

eigenvalue En of the Schrödinger equation.
Solutions of Eq. (5) have to be searched in the class of functions having

period 6π. While Mathieu’s equation with π and 2π periodicities has been
extensively studied in the literature [27, 28, 29, 30, 31, 32], very little or no
information can be found for the 6π case. For this reason, solving Eq. (5) goes
beyond the simple characterization of our specific physical model and assumes a
more general scope. In what follows we thus briefly discuss the salient features
of the resulting solutions.
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Figure 2: Mathieu equation eigenvalue spectrum a(n)
q as a function of q as defined in Eq. (6).

Lower panels zoom into different regions of the upper one. Red lines represent non-degenerate
eigenvalues while black lines correspond to two-fold degenerate eigenvalues.

For any given eigenvalue a
(n)
q , Eq. (5) may admits two linearly independent

eigenstates [31] with the following properties: (i) all solutions have a well defined
parity; (ii) if one of the solutions does not have period equal to π or to 2π both
are then degenerate and periodic with opposite parity; (iii) if one of the two
solutions has period equal to π or to 2π the other one cannot be periodic. This
last solution can then be discarded as nonphysical since it does not satisfy the 6π
periodicity condition. On the other hand, solutions with periodicity 6π admit
simultaneous periods π or 2π.

Owing to (i), for a given n, we may have an even and/or an odd solution
indicated with eun(x) and oun(x) respectively. These eigenfunctions can be
arranged into groups pertaining to four sequential values of n. Solutions with
n = 4j and n = 4j − 1 (j = 0, 1, . . . ) are non-degenerate and with opposite
parity: eu4j(x) and ou4j−1(x). Solutions with n = 4j + 1 and n = 4j + 2 (j =
0, 1, . . . ) are two-fold degenerate with opposite parity: ou4j+1(x), eu4j+1(x) and
ou4j+2(x),eu4j+2(x). The lowest eigenstate has even symmetry eu0(x). These
considerations allow to order each group into six eigenstates with the following
properties: the first and the last members of the group are non-degenerate
with opposite parity (according to the previous discussion with period π or 2π
and respective submultiples), while second with third, and fourth with fifth are
degenerate with opposite parity.
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Further degeneracies can be induced by changing q as shown in Fig. 2, where

we plot the eigenvalue spectrum a
(n)
q as a function of this parameter. For small

values of q (lower right panel) the spectrum presents an alternating pattern of
two-fold degenerate (black) and non-degenerate (red) levels. In the limit q → 0,
Eq. (5) describes a ring with no angular potential. All the non-degenerate
levels except the lowest one (n = 0) becomes thus degenerate and reproduce the
spectrum of a plain ring [18]. In the opposite limit (upper panel in the figure),
we observe the formation of degenerate branches composed by levels belonging
to the same six element group counting two two-fold degenerate states and two
non-degenerate ones.

In order to study the harmonic response of our system we introduce an
external laser field linearly polarized along the x axis as in Fig. 1 (b). In dipole
approximation the Hamiltonian becomes

H(t) = H0 +RE0f(t) cos(ϕ) sin(ωLt) (7)

where ωL and f(t) represent the laser carrier frequency and pulse shape re-
spectively. The time-evolution from the initial ground-state wavefunction can
be obtained by numerical integration of the the time dependent Schrödinger
equation (TDSE). From the evolving wavefunction it is straightforward to cal-
culate the time-dependent dipole moment d(t) coupling with an external fields.
The harmonic response, is directly connected to the dipole acceleration a(t) =
∂2d(t)/∂t2 as its Fourier transform: I(ω) ∝ |ã(ω)|2.

3 Results and comments

Besides the variables pertaining to the external field, the Hamiltonian governing
the dynamics of a SQR given by Eq. (7) depends on several geometric param-
eters. The ability to tune such parameters at will is a fundamental feature of
these systems that have a strong impact on the harmonic response. Below we
present a detailed study of this dependence.

To this end we discretize the space and time coordinates and numerically
propagate the TDSE with a split-step time evolution operator. To better focus
on the degrees of freedom offered by the ring, unless otherwise indicated, we fix
the external field to be a 32 cycles (2 cycles ramp) trapezoidal shape laser pulse
with λ = 1064 nm (ωL=1.17 eV) and intensity I = 4× 1014 W/cm−2.

We begin studying the dependency of the harmonic spectrum I(ω) as a
function of the angular potential strength Ω0 in Fig. 3; the ring has µ = me

and radius R = 5 a0, where a0 is the Bohr radius, and me the electron mass.
Compared with a plain ring (i.e. without angular structure) ~Ω = 0 e2/a0 the
presence of a weak potential such as ~Ω = 0.33 e2/a0 results in an increase of
the harmonic yield and an extension of the maximum emitted frequency. This
enhancement, is not homogeneous and, if Ω0 is further increased, the resulting
yield decreases while the highest harmonics keep increasing. A similar behavior
can be observed for a different ring with R = 10 a0 as shown in Fig. 4. We
chose here an effective mass of µ = 0.067 me which is compatible with the
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Figure 3: Harmonic spectra I(ω/ωL) (arbitrary units) emitted by a one-electron SQR with µ = me

and R = 5 a0 for increasing values of the angular potential strength: (a) ~Ω = 0 e2/a0, (b)
~Ω = 0.33 e2/a0, (c) ~Ω = 0, 67 e2/a0, (d) ~Ω = 1 e2/a0. The ring is irradiated by a 32 cycles,

λ = 1064 nm (ωL=1.17 eV), laser pulse of intensity I = 4 × 1014 W/cm−2 and trapezoidal shape
(2 ramp cycles).
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Figure 4: Same as in Fig. 3 but for a ring with R = 10 a0 and GaAs electron’s effective mass
µ = 0.067 me.
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Figure 5: Harmonic spectra (log scale) generated by a SQR as a function of the radius R. The
effective mass is varied from (a) µ = 1 me to (b) µ = 0.067 me, while the angular structure
paremeter is kept fixed at ~Ω0 = 0.33 e2/a0. White lines indicate the cutoff formulae of Eq. (11)
with A = 3.6 (dashed) and Eq. (10) (solid). The laser parameters are the same as in Fig. 3.

charge carriers in GaAs. Even tough in a less marked way, also in this case the
dependency of the emission is not homogeneously increasing with Ω0. Insight
on this behavior can be obtained resorting to a classical model of the dynamics.

By solving the canonical equations associated with the classical counterpart
of the Hamiltonian in Eq. (7) it is easy to derive the equations of motion gov-
erning the electronic coordinate ϕ(t) as a function of time

µR2 d
2ϕ(t)

dt2
= Ω0 cos[6ϕ(t)] + E0R sin[ϕ(t)] sin[ωLt] . (8)

This equation is nonlinear at all orders in ϕ(t) and belongs to a class of equations
known to give rise to classical chaos [33]. This means that small variations on
the initial conditions can lead to dramatic differences in the final trajectories.
The observed non homogeneous behavior of the harmonic yield upon changes
on Ω0 may be reminiscent of this chaotic influence. Such influence can survive
in the quantum realm with small variations of the physical parameters being
reflected in very different dynamical regimes.

Interesting features in the harmonic emission can be observed in the depen-
dency on radius and effective mass. In Fig. 5 we show the power spectra as a
function of R and µ = me in panel (a) and µ = 0.067me in panel (b), while the
angular potential is kept fixed at ~Ω0 = 0.33 e2/a0.

Changing the size of the ring has considerable effects on the harmonic yield.
For rings having R . 1 a0 the response is practically negligible. The emission
then linearly increases with R reaching a maximum extension at R = 6.7 a0 for
µ = me (R = 16.4 a0 for µ = 0.067me) and than decreases for larger values. This
can be understood by observing that, in the limit of R→∞, electrons no longer
feel neither the curvature nor the angular potential and can be regarded as free
particles. In this limit, the harmonic response is restricted to the fundamental
frequency ωL only, and the yield thus has to decrease.

Additional understanding can be, once again, obtained resorting to a clas-
sical model. Similarly to Eq. (8), from Hamilton’s equations it is possible to
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derive an equation governing the time evolution of the kinetic energy

K(t) = K(0)− Ω0 cos[6ϕ(t)]−RE0 sin[ωLt] cos[ϕ(t)]

+RE0ωL
∫ t

0

cos[ϕ(τ)] cos[ωLτ ]dτ . (9)

In analogy to the third step of the famous three-step model [34, 35], the classical
upper-bound for the maximum harmonic emitted can be estimated assuming
that the electron releases its entire energy as a single photon. The maximum
value of the average kinetic energy 〈K(t)〉 thus constitute an upper bound for
the highest harmonic emitted. It can be obtained estimating the maximum
value of the integral in Eq. (9) over a laser period TL for Ω0 = 0. Under the
assumption that for some laser cycle ϕ(t) is almost constant, it is easy to show
that this maximum value is 2/ωL. The classical upper bound for the highest
harmonic is

~ωC = 〈K(t)〉TL
= 2E0R , (10)

and only depends on the ring radius R and the peak value of the electric field
E0. The solid white lines in Fig. 5 depicting Eq. (10) indicate that the classical
limit is a good approximation for small values of R.

Changing the values of the effective mass has remarkable effects on the spec-
tra. This can be observed comparing Fig. 5 (a) and (b). From the comparison it
is apparent how reducing the mass results in larger harmonic plateau. This can
be understood observing that, a reduction of the effective mass is associated to
smaller inertial values and larger peak accelerations which, in turn, are directly
connected with field emission. Such dependence is even clearer in Fig. 6 where
we plot the dipole power spectra as a function of µ for a ring with R = 10 a0

and ~Ω0 = 0.33 e2/a0.
The dependence of the highest harmonic on µ can be estimated from Fig. 6

to be proportional to 1/
√
µ. In the same way, the decay of the cutoff frequency

for large R in Fig. 5 can be estimated proportional to 1/
√
R. Combining these

observations with the asymptotic condition imposing a response on the funda-
mental harmonic for R→∞, we can deduce a phenomenological formula

ωP =
A√
µR

+ ωL , (11)

where A is a free parameter. The white dashed lines in Fig. 6 and Fig. 5
represent Eq. (11) for A = 3.6. The formula thus well describes the main
features observed in the harmonic response. Furthermore, it also well suited to
reproduce the dependence on the laser wavelength in Fig. 7 for different effective
mass values.

For rings of radius R̄ such that the classical and phenomenological cutoff
lines of Eq. (10) and Eq. (11) cross each other we have maximum harmonic
emission. In those rings, the highest harmonic emitted can be estimated to be

ω̄ ≈
(

2E0A2

µ

) 1
3

, for R̄ ≈
(

A2

4E2
0µ

) 1
3

, (12)
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Figure 6: Harmonic power spectrum as a function of the electron effective mass µ (in units of me).
The ring has R = 10 a0 and ~Ω0 = 0.33 e2/a0, while the laser parameters are the same as in Fig. 5.
White lines indicate the cutoffs of Eq. (11) with A = 3.6 (dashed) and Eq. (10) (solid).

and depends on the laser strength and effective mass only. In GaAs the highest
emitted harmonic is ~ω̄ = 95 eV. and can be raised in InSb (µ = 0.013 me) up
to ~ω̄ = 163 eV. The optimal ring size in these cases would be of R̄ = 0.9 nm
for GaAs, and R̄ = 1.5 nm for InSb. This fact make SQRs interesting devices
for XUV generation.

4 Conclusions

In the present work we investigated the harmonic response to intense laser pulses
of structured quantum rings (SQRs) composed of six planar quantum dots.
We derived a one-dimensional model Hamiltonian describing these systems and
found that the associated stationary Schrödinger equation can be identified with
as a 6π periodicity Mathieu equation.

Compared to atomic and molecular systems SQRs offer additional param-
eters to control the electron dynamics driven by external fields. To illustrate
this feature we investigated the impact of these additional degrees of freedom
on HHG.

We showed that the highest harmonic frequency generated presents a max-
imum for a given radius that moves to higher values as the electron effective
mass is reduced. We derived a classical cutoff formula describing the small ra-
dius regime and a phenomenological law for larger radii. Finally, by combining
the two cutoff laws, we obtained a closed formula characterizing the the high-
est harmonic and showed that it falls well within the XUV range if the ring is
realized in GaAs or InSb.
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Figure 7: SQR harmonic spectra (log scale) as a function of the laser wavelength. The pulse has

peak intensity I = 4×1014 W/cm−2 and a 32 cycles trapezoidal envelope shape with 2 ramp cycles.
Effective mass and radius are varied from (a) µ = 1 me, R = 10 a0 to (b) µ = 0.067 me, R = 20 a0
while ~Ω0 = 0.33 e2/a0. Dashed white lines indicate the cutoff formula of Eq. (11) with A = 3.6.

The obtained results point out SQRs as interesting harmonic generation
devices that can be controlled by engineering their physical properties. In com-
bination with the ability to design their collective properties by creating arrays
of emitters would make SQRs attractive sources of XUV radiation. The work
presented here constitute a small, but fundamental, step towards the realization
of such sources that we hope will stimulate further theoretical and experimental
investigation.
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