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Abstract 

 

Conservation biological control (CBC) aims to improve conditions for natural enemies 

in agricultural landscapes and has the goal of reducing pest species below threshold 

level to avoid the need for synthetic chemicals. Conservation biological control in 

agroecosystems requires a landscape management perspective, using non crop plants 

within the crop. The plant species pool in the surrounding landscape and the distance 

of crop from natural habitat are important for the conservation of enemy diversity, 

indeed, structurally complex landscapes with high habitat connectivity may enhance 

the probability of pest regulation. Within-crop habitat manipulations have the 

potential to increase the biological control of pests. Wildflower strips are an 

important tool in habitat management and have been shown to increase the 

abundance of natural enemies. However, this enhancement might be achieved by 

providing the “right” diversity. The ultimate goal of the use of wildflowers is to 

provide shelter for the natural enemies to enhance their persistence in perennial and 

annual crops and to represent a good nectar sources, to yield longevity and fecundiy 

to the natural enemies. Moreover, food sources from plants that are highly attractive 

to parasitoids are more likely to be visited than food sources that are poorly 

detectable. Finally, it turn obvious that include biodiversity may dial with some issues 

such as the possibility that the food sources could benefit the pest itself or the 

antagonists of the natural enemies. 

 

Keyword: Conservation biological control, Habitat management, wildflowers strip.  
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Riassunto 

 

Conservation biological control (CBC) si pone l’obiettivo di migliorare le condizioni per 

i nemici naturali nei paesaggi agricoli e ridurre il numero di specie fitofaghe per 

evitare la  di sostanze chimiche di sintesi. Conservation biological control negli 

agroecosistemi richiede una prospettiva di “Habitat managment”, utilizzando specie 

spontanee all’interno degli impianti colturali. Infatti, paesaggi strutturalmente più 

complessi possono migliorare il controllo dei nocivi da parte dei parassitoidi. Di 

conseguenza, all'interno dei sistemi colturali, l’Habitat managment ha il potenziale di 

favorire ed aumentare l’efficienza dei prarassitoidi per il controllo biologico. Le strisce 

fiorali (wildflower strips) sono uno strumento importante nell’Habitat managment e 

favoriscono la persistenza e l'abbondanza dei nemici naturali. Questo miglioramento 

può essere ottenuto fornendo la "giusta" biodiversità. L'obiettivo finale dell'utilizzo 

delle strisce fiorali è (i) fornire un riparo per i nemici naturali per migliorare la loro 

persistenza in colture sia perenni che annuali e (ii) rappresentare una fonte di cibo 

(es. il nettare fiorale), incrementando così la longevità e fertilità dei nemici naturali. 

Inoltre, selezionare piante che sono attrattive per parassitoidi incrementa la 

possibilità di localizzazione di tali risorse fiorali da parte dei parassitoidi. Infine, risulta 

anche importante considerare che, aumentando la biodiversità, fonti di cibo utili per i 

nemici naturali, potrebbero anche beneficiare il fitofago stesso o gli antagonisti dei 

nemici naturali. 

 

Parole chiave: Conservation biological control, Habitat management, strisce fiorali. 
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Introduction 

 

The term biological control was coined in 1919 by Smith defining it as the 

control or regulation of a pest population by natural enemies. The concept of this 

approach is the use of living organisms such as predators, parasites and other 

antagonists to suppress the population of specific pest organisms or making them less 

damaging (Eilenberg et al., 2001). Biological control strategies deal with issues related 

to the fact that chemical pesticides can cause negative side-effects, e.g. on human 

health and on the conservation of the complexity of the environment. The biological 

control approach includes a variety of strategies that are used in different contexts.  

One of these strategies is called “Classical biological control” which involves the 

intentional introduction of exotic natural enemies. Generally, these are host specific 

and respond in a density-dependent way, meaning that the natural enemy population 

increases with the host population. The ultimate purpose is to establish the natural 

enemy, i.e. to have a permanent occurrence of an imported predator or parasitoid in 

a new environment, which ideally results in the complete control of the pest 

organism. If successful, no other control methods are required due to the 

effectiveness of the biological control agent. Classical biological programs have been 

criticized because their success rate is often low. Indeed, Greathead and Greathead in 

1992 and Gurr and Wratten in 2000 concluded in their analyses of the success rates of 

predator and parasitoid introductions to control insect pests that only 33.5% of 

predators and parasitoids released have become established and only 11.2% resulted 

in complete control of the insect pests.  Classical biological control programs are more 

successful in relatively stable habitats, orchards and forests but less so in simpler 

systems which lack complex food webs (Gurr and Wratten 2000). Bianchi et al., (2006) 

reviewed various studies and concluded that the density of the natural enemies tends 

to be higher in more complex agroecosystems. Moreover, Gurr and Wratten in 1999 

suggested that low availability of key resources for natural enemies such as 
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alternative food and overwintering sites in many agroecosystems is one of the 

reasons that limits biological control effectiveness. It is therefore evident that 

landscape structure affects biodiversity and natural pest control effectiveness. Several 

reviews, such as Barbosa in 1998, Pickett and Bugg in 1998, Landis et al. in 2000 and 

Gurr et al. in 2000, underline the upsurges of “actions that preserve and protect the 

natural enemies”. These actions characterize a biological control strategy called 

Conservation Biological Control (CBC) (Wratten et al., 2000). While classical biological 

control is considered a “stand alone” strategy, CBC is part of an integrated pest 

management (IPM) approach based on modifications of the environment to protect 

and enhance natural enemies and thus increase their impact on the agroecosystem 

(DeBach 1964; Barbosa 1998; Coll 2009). Conservation biocontrol practices involve 

the provision of supplementary resources for parasitoids through habitat 

management (Landis 2000), which can reduce their mortality and enhance permanent 

establishment (Rahat et al., 2005). Habitat management may be applied at the within-

crop, within-farm, or landscape level. Many of the proximate factors, e.g., lack of 

adult food, alternative hosts, shelter, overwinter sites, are identified as limiting the 

effectiveness of the natural enemies in the biological control. In general the diversity 

in the agroecosystems may favour the reduction of the pest pressure by enhancing 

the activity of natural enemies.  In this context, it begin first necessary identify the 

important elements of diversity to provide in the agroecosystem. (van Emden 1990; 

Wratten and van Emden 1995; Gurr et al. 1998; Barbosa 1998). The following 

paragraph will address this topic. 

Some parasitoids are able to obtain resources from hosts, others require access to 

non-host foods. For example, floral nectar is taken by many species, and can yield in 

increased rates of parasitism, and thus parasitoid’s fecundity, due to the suitable 

sugar sources effects the longevity of the natural enemies (Schmale et al., 2001; 

Wäckers 2001 and 2003).  
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Therefore, CBC thought the environment manipulation may influence the parasitoid’s 

nutritional state and their behaviour (e.g., searching efficiency), increasing their 

effectiveness and impact on target pests (Landis et al., 2000; Wratten et al., 2003; 

Jervis et al., 2004). 

 

Mechanism for Habitat Management: ecological value of non-crop habitats  

 

Habitat manipulation approaches seek to identify the potential mechanisms 

to conserve natural enemies such as provision of shelter, alternative hosts or prey, 

overwintering sites and food plants from which nectar and pollen may be obtained 

(Landis et al., 2000; Gurr et al., 2004; Jonsons et al., 2010).  

Manipulating crop and non-crop plant species within an agroecosystem can play a key 

role in pest control (Hickman and Wratten 1996; Baggen and Gurr 1998). Unlike in 

non-agriculture system, in cropping system interactions between natural enemies and 

herbivores are more limited and this is even more the case for annual monocultural 

cropping systems where non-crop vegetation is reduced or removed (Landis 2000; 

Balmer 2014). A specific tool in habitat management is the addition of non-crop 

plants to a crop area in form of companion plants or wildflower strips. Companion 

plants are expected to have repelling and/or intercepting effects on pests and 

pathogens and to attract natural enemies by providing them with food (Gurr and 

Wratten 1999; Parolin 2012) such as nectar in the case of adult parasitoids (Jervis et 

al., 1992; Heimpel and Jervis 2005). Food provision may enhance the abundance and 

diversity of natural enemy species (Bianchi 2006). Wildflower strips are defined by 

Nentwig et al., (2000), as ecological compensation areas giving for many species 

attractive biodiversity and nutritional resources. The intentional provision of 

flowering plants and plant communities in managed landscapes to enhance natural 

enemies is a growing aspect of CBC (Gurr et al., 2004). This is accomplished by 
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selecting and establishing plants within the managed system in order to provide a 

limited resource such as floral nectar but also additional ecosystem services as e.g. 

regulating the microclimate, affecting hydrological and biochemical cycles and a 

variety of biological processes. Landscape complexity favourably enhances the 

establishment of natural enemies and their success in controlling the target pest 

(Landis 2000). The food webs offer ecosystem services (Farber et al., 2002), increasing 

the effect of natural enemies on pest populations, potentially mitigating harmful 

conditions (such as the use of pesticides) or enhancing favourable influences on the 

natural enemies. This enhancement might be achieved by providing the “right” 

diversity of alternative food sources, (Landis et al., 2000). Several authors emphasized 

the need to identify the most important resources for the natural enemy (e.g., 

shelter, accessibility and quality of the nectar resources) to optimize habitat 

manipulation (Wratten and van Emden, 1995; Jonsson, 2010).  

Shelter is important to enhance the persistence of natural enemies in perennial and 

annual crops. The presence of a diverse vegetation throughout the year, including 

winter, warrants a high abundance of the natural enemies. In the late season suitable 

overwintering sites are rare (particularly in agricultural fields) and non-crop habitats 

thus become very attractive (Barbosa 1998 and Bianchi et al., 2006). Non-crop 

habitats in rural landscapes are often associated with beneficial organisms supporting 

alternative hosts and prey for parasitoids and predators, such as carabid beetles 

(Varchola and Dunn 2001), spiders (Schmidt and Tscharntke 2005), coccinellids 

(Honek 1989), syrphids (Cowgill et al., 1993) and parasitoids (Kruess and Tscharntke 

1994).  

Laboratory experiments have been used to identify which flowering plants may 

represent good nectar sources for parasitoids. Significant differences exist in the 

accessibility of nectaries as a result of floral architecture (Vattala et al., 2006). Plant 

morphology traits such as surface area, foliar pubescence or waxy leaf surface can 

also influence nectar accessibility (Vinson 1976). For example, a negative effect of 
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plant pubescence on the level of parasitism has been shown in the whitefly parasitoid 

Encarsia formosa Gahan (Van Lanteren et al., 1977). Patt et al. in 1999 showed that 

floral architecture influenced the suitability of flowering plants for two parasitoids of 

the Colorado potato beetle (Leptinotarsa decemlineata Say). They determined that 

Edovum puttleri Grissell fed effectively only on flowers with exposed nectaries, while 

Pediobius foveolatus Crawford could also utilize flowers with partially concealed 

nectaries. Furthermore, the suitability of a flower species for providing nectar to a 

parasitoid is also dependent on the quality of the nectar. As a consequence, 

accessible nectars need to be analyzed for sugar composition and for the effect of the 

sucrose/(glucose + fructose) ratio. Longevity studies indicate that distinct differences 

exist between insects in their ability to utilize particular sugars (Ferreira et al., 1998).  

Vattala et al., in 2006, for example, investigated the effects of seven flower species on 

the longevity of Microctonus hyperodae Loan, a parasitoid of the Argentine stem 

weevil, Listronotus bonariensis (Kuschel). They found that M. hyperodae was unable 

to access nectar of red clover, white clover, alyssum and phacelia flowering plants, 

but was able to gain access to the nectar of buckwheat, coriander and white mustard. 

However, only buckwheat and coriander increased its longevity.  Analysis of the sugar 

composition showed that buckwheat nectar was characterized by a higher 

sucrose/(glucose+fructose) ratio than the nectar from coriander and white mustard. 

Based on the nectars’ sucrose/hexose (mainly glucose and fructose) ratios, Baker and 

Baker (1983), classified floral nectar in four ratio classes: hexose-dominant (<0.1), 

hexose-rich (0.1–0.499), sucrose-rich (0.5–0.99) and sucrose-dominant (>0.99). Many 

examples are reported about parasitoid preference to sucrose-dominant floral 

nectars (Watt et al., 1974; Baker and Baker, 1983; Patt et al., 1999 and Wäckers et al., 

1996).  

The olfactory attractiveness and plant-associated visual cues play an essential role for 

foraging parasitoids (Belz et at 2013; Barbosa 1998). Food sources that are highly 

attractive are thus more likely to be visited than food sources that are poorly 
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detectable (Wäckers 2004). Experiments in a Y-tube olfactometer to the parasitoid 

Microplitis mediator (Haliday) (Hymenoptera: Braconidae) to test the attractiveness 

of bishop’s weed, cornflower, buckwheat, candytuft, and oregano flowers showed 

that cornflower and candytuft were equally attractive and more attractive than 

buckwheat (Belz et al., 2013). 

Similarly, some studies have shown that parasitoids respond to colour and other 

visual cues (Wäckers and Lewis, 1994). Way and Murdie in 1965, found that Brussels 

sprout cultivars with light green glossy leaves were more attractive to parasitoids 

than the darker green, waxy-leaf cultivars. In contrast, other parasitoids do not 

appear to respond to colour. For example, the number of visits by Diadegma insulare 

(Cresson) (a parasitoid of the diamondback moth) to yellow and white flowers of 

several crucifer species did not differ (Idris and Grafius, 1997). 

Therefore, the attractiveness of flowers is a key aspect for parasitoid population 

dynamics and that should be taken into account in selecting flowering plants used for 

habitat management in CBC (Bianchi and Wäckers 2008). 

 

Negative aspects of added Habitat Diversity 

 

Probably the most obvious potential disadvantages of increasing habitat diversity are 

that some land may be taken out of production and that the provision of resources 

can provide benefit to the pest itself or to antagonists of natural enemies (Araj et al., 

2008, 2009). The former may be a major concern for high-value crops where the 

economic benefit is predominant. The latter may occur if the resources also benefit 

the pest. Bagged et al., (1999) showed that care must be taken to select the 

appropriate pollen and nectar source. For example, flowering buckwheat and dill 

benefitted both Copidosoma koehleri Blanchard and its host the potato pest 
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Phthorimaea operculella Zeller. In contrast, other plants such as phacelia and 

nasturtium benefited only the parasitoid. 

Understanding the ecological mechanisms underlying CBC by knowing the effects of 

non-crop plant addition to agroecosystems is one of the first issues that need to be 

addressed in order to maximize control efficiency while avoiding unwanted side-

effects.  
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Abstract 

 

Trissolcus basalis (Wollaston) is a solitary egg parasitoid of several pentatomid bugs. 

In particular, it is the most important biological control agent of the green vegetable 

bug Nezara viridula (L.), a pest of a wide variety of economically important crops. 

During the host location process T. basalis females explore a great variety of volatile 

and contact semiochemicals from the host-plant complex. Indeed, wasps are able to 

exploit volatile oviposition-induced synomones, volatile cues from virgin males and 

preovipositing females, and, when they land on a plant, chemical footprints left by 

bugs walking over the leaves. In particular, chemical footprints represent a set of 

indirect host-related contact kairomones that induce arrestment and motivated 

searching behaviour, that allow wasps to optimize energy and time by restraining 

their search to areas where there is a high probability of finding newly laid host eggs. 

Wasp females have an innate response to host chemical residues, with a strong 

preference for N. viridula female footprints; however, this response can be modified 

by the experience.  

Keyword: Trissolcus basalis, footprints, host-indirect related cues. 

 

Riassunto 

 

Trissolcus basalis è un sparassitoide oofago olitario di diversi pentatomidi e il più 

importante agente di controllo biologico della cimice verde Nezara viridula, fitofago di 

numerose colture economicamente importanti. Durante il processo di localizzazione 

dell’ospite, femmine di T. basalis esplorano una grande varietà di volatili e 

semiochimici di contatto originati dal sistema ospite-pianta. Infatti, le femmine di T. 
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basalis sono in grado di esplorare sinomoni indotti dall’ovideposizione, segnali 

provenienti da maschi vergini e da femmine in stato pre-ovideponente e, una volta 

raggiunta la pianta, dalle tracce chimiche lasciate dall’ospite sulle foglie. In 

particolare, le tracce rappresentano un insieme di cairomoni di contatto indiretti 

indotti all’ospite che inducono arresto e un comportamento di ricerca motivato che 

permette alle femmine di ottimizzare tempo ed energia restringendo l’area di ricerca 

dove c’è una più alta probabilità di trovare ovature appena deposte. Femmine di T. 

basalis mostrano una risposta innata ai residui chimici lasciati dall’ospite con una più 

accentuata preferenza per le tracce lasciate da femmine di N. viridula, sebbene 

questa risposta possa essere modificata dall’esperienza. 

Parole chiave: Trissolcus basalis, trace chimiche, segnali indiretti indotti dall’ospite. 
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Introduction 

 

The host finding behaviour of parasitoids consists of steps known as host 

habitat location, host location, host recognition, and host acceptance (Vinson 1998). 

At distance, parasitoids of herbivorous insects use visual signals and volatile chemicals 

emitted by the infested plant (Vet and Dicke 1992; Turlings and Wäckers 2004) and by 

the surrounding vegetation. Parasitoids of herbivorous insects need to cope with this 

complexity to locate their suitable hosts in this such complex chemical environments, 

while searching on one hand for hosts and on the other hand for food. During the 

host location process, females encounter and explore a great variety of stimuli 

termed semiochemicals (Vet and Dicke 1992; Godfray 1994; Vinson 1998). 

Semiochemicals are chemicals mediating the interactions among organisms on 

different trophic levels, either within the same species (pheromones) or from 

different species (allelochemicals). Allelochemicals are involved in interspecific 

interaction and have been subdivided into allomones, when the communication 

favors the emitter, kairomones, when the receivers keep vantage from the 

information, synomones, when both emitter and receiver are favorite.  

To get through this variety of stimuli, the parasitoid can adopt different strategies 

based on the stimuli exploitation (Vet and Dicke 1992). One of these strategies is the 

use of the cues originated from stages different from the one attacked (infochemical 

detour). In the specific case of egg parasitoids to find their hosts, they can use stimuli 

originated from the host eggs or not and termed “direct host-related cues” and 

“indirect host-related cues” respectively.  

Contact and volatile kairomones from eggs and synomones induced by egg deposition 

are “direct host -related cues”. Host scales, host traces and synomones induced by 

the feeding activity of the larvae or adults are “indirect host-related cues”. The 

indirect host-related cues do not provide information on egg location, but they lead 

females into the close vicinity of their potential host egg. Indeed, once the parasitoids 
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landed on a plant will search the habitat for chemical cues that are indicative of host 

presence (Wajnberg 2006). Furthermore, host eggs are generally suitable for the egg 

parasitoids during a short time due to their rapid development (Vinson 1998). 

Therefore, the efficiency of the natural enemies to locate their host into the crops is 

important for reducing the interval between pest build up and the control by the 

natural enemies due to the host signals interact with the complex odorous 

environment. One kind of indirect host-related cues is the kairomone from the traces 

left behind by adult hosts while moving on the plant. Indeed, the insects that move 

over a plant cuticle leave footprints, hydrocarbon compounds from the surface of 

host insects remaining on the surface of plants (Rostás and Wölfling 2009), that can 

be detected by other insects, showing to regulate intraspecific interactions. 

Parasitoids and predators have evolved the capability to exploit and use footprints in 

the processes of host location. Footprints are produced by the directed attacked host 

stage, or by previous stages, such as host adult for the location of host eggs, or 

caterpillar footprints for cocoon location. For example, Rostás et al., in 2008 found 

that naïve, i.e. no previous contact with the chemical cues, Cotesia marginiventris 

Cresson can recognize chemical cues on the wax surface of leaves produced by its 

host by walking second-instar caterpillars of Spodoptera frugiperda Smith. Similarly, 

parasitoids exploit the footprints as kairomones to track their hosts as stimuli 

indirectly associated with the presence of the host. The examples of host searching by 

exploiting host footprints are characterized by two different search strategies: 

systematic or random search (Godfray 1994). Parasitoids might use a systematic 

search when the cues are guiding them directionally to the host. One example is the 

system Poecilostictus cothurnatus Gravenhorst, a larval parasitoid, and the pine 

looper moth, Bupalus pinarius L. In this system the parasitoid follows the chemical 

trails left by the host larvae to locate its target (Klomp 1981). Parasitoids might use a 

random search when the cues are indirectly associated with the hosts and induce 

them to increase the host searching behaviour in the area where hosts are more likely 
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to be found. This strategy is reported for example for platygastrid egg parasitoids 

(Colazza et al., 2010). Often, such behaviour is expressed at short range of the host 

target with peculiar searching patterns. 

In the following paragraph will be detailed the host finding behaviour of the egg 

parasitoid Trissolcus basalis (Wollaston) once in contact with the traces left by its 

adult host Nezara viridula (L.). 

 

The system Nezara viridula – Trissolcus basalis 

 

The green vegetable bug (GVB) (Fig. 1) Nezara viridula (L.) (Heteroptera: 

Pentatomidae), probably originated in the Ethiopian region of eastern Africa, is a 

widely distributed agricultural pest throughout the world (Todd, 1989). 

 

 

Fig. 1 Nezara viridula adult 
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It is found throughout the tropical and subtropical regions of the world including the 

Americas, Asia, Australasia, and Europe (Waterhouse 1998). Both authors suggest 

that human activity spread the pest from Africa. However, N. viridula is a strong flier 

and may have expanded its range due to weather systems as well as human systems 

transport (Knight and Gurr 2006). The bug is highly polyphagous feeder, attacking 

many important food crops (Panizzi 2000). Its host range includes over 30 families of 

dicotyledonous plants and a number of monocots (Todd 1989) including weeds and 

non-cultivated plants, although it has strong preference for leguminoseae and 

solanaceae such as soybean, beans, tomato, etc. Worldwide, there have been many 

attempts to develop sustainable practices to control N. viridula as an alternative to 

the traditional chemical control with non-selective insecticides such as deltamethrin. 

Example of biological control of N. viridula is the use of sterile-insect technique that 

might have application to prevent reproduction, however, the high cost of the 

technique and the lack of the efficacy in the case of N. viridula, where adults as well 

as nymphal stages can cause crop damage, preclude use of this method (Knight and 

Gurr 2006). The entomopathogenic fungi have greater potential as biopesticides for 

sucking pests such as N. viridula. The time to death is however the crucial point. 

Metarhizium anisopliae takes approximately 14 days to kill adult N. viridula, with 

infection incidence in the pest population increasing for up to 20 days after treatment 

(Sosa-Gómez and Moscardi 1998), reducing the efficiency of this method where the 

bugs are present in low tolerance crops. Trap crops are used to prevent the pest from 

reaching the crop and to concentrate it in a certain part of the field where it can be 

strategically destroyed (Knight and Gurr 2006). A border planting of white mustard 

(Sinapsis albus) was used as a trap crop with organic sweet corn (Zea mays) in New 

Zealand. N. viridula numbers were much higher in the mustard plots (8–12/m2) than 

in the sweet corn (<1/m2) (Rea et al., 2002). These data show that the trap crops are 

a potentially useful tactic for an integrated management of N. viridula but only if is 

controlled in the trap crop to prevent its spreading into adjacent or main crops 
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(McPherson and Newsom, 1984). Indeed, adult of N. viridula will quickly move out of 

trap crops into adjacent crops if they are at a more attractive stage. 

Trissolcus basalis (Wollaston) (Hymenoptera: Platygastridae) (Fig.2), a solitary egg 

parasitoid, is the most important biological control agent of N. viridula around the 

world (Jones 1966) even though it is a parasitoid of other heteropteran species (Lock 

and Walter 2000).  

 

 

Fig. 2 Trissolcus basalis adult female on Nezara viridula egg mass 

 

The parasitoid is widely distributed over North and South America, in the 

Mediterranean area, in the Middle East and in Australia (Jones 1988). Johnson in 1988 

hypothesized the origin of the parasitoid in Africa where other close species have also 

been found.  
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To locate N. viridula eggs, T. basalis exploits cues from its host and from host–

associated plants. It is generally accepted that allomones and synomones play the 

main role in host habitat and community location (Weseloh, 1981). 

The behaviour of the egg parasitoid T. basalis to plants damaged by feeding activity of 

N. viridula and to volatile and contact chemicals from its host N. viridula was deeply 

investigated (Bin et al., 1993; Mattiacci et al., 1993; Colazza and Bin, 1995; Clemente 

and Colazza, 1997; Colazza et al., 1999; Colazza et al., 2010; Salerno, 2000; Peri et al., 

2013). Colazza et al., showed that bean plants damaged by N. viridula feeding activity 

and onto which an egg mass had been laid, produce volatiles that attract the egg 

parasitoid (Colazza et al., 2004a) and, specifically, they found that T. basalis is 

attracted by the (E)-ß-caryophyllene, a volatile compound produced by bean plants 

when N. viridula feed and lay upon them (Colazza et al., 2004b). Trissolcus basalis 

orientation within the host community is led by N. viridula adult odours and traces. 

Indeed, the volatile and contact chemicals from N. viridula were studied in a Y-tube 

olfactometer and under open arena conditions respectively (Colazza et al., 2010). The 

Y-tube olfactometer is a device made in transparent Plexiglas where humidified and 

compressed air flow through the arms allowing the insects tested to perceive the 

different odour sources. The “open arena” consists on a filter paper, which served as 

an area where the insects tested can move in an unconstrained field. It was 

demonstrated that females of T. basalis react to cues emitted by N. viridula adults. 

The responses observed were a more frequent preference for the Y-tube 

olfactometer arm containing adult host. Particularly the wasps were attracted by 

volatile cues released by N. viridula virgin males and mated females in 

preovipositional state but were not attracted by those released by N. viridula virgin 

females. In open arena bioassays when a T. basalis female encounters a patch 

contaminated by chemicals deposited by walking of the adults of N. viridula, varies its 

locomotory path showing an arrestment response, characterized by a flight delay and 

an intensive antennal drumming of the substrate (Colazza et al., 2010). 
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The arrestment response of wasps to residue of host adults is a host location strategy 

commonly observed in Platygastridae egg parasitoids of pentatomid bugs. The 

presence of arresting kairomones has been observed for example in the host–egg 

parasitoid associations: Murgantia histrionica Hahn – Trissolcus brochymenae 

(Ashmead) (Conti et al., 2003), Eurydema ventrale Klt. – Trissolcus simoni (Mayr) 

(Conti et al., 2004) and Euschistus heros (F.) – Telenomus podisi (Ashmead) (Borges et 

al., 2003). Those chemicals deposited by walking activity of the insects are indirect 

host-derived cues and can be used to evaluate their hierarchical value on the 

behavior of T. basalis females. For example naïve T. basalis females discriminate 

between areas contaminated by chemical residues left by a host female or host male, 

with a clear preference for the former (Peri et al., 2006). Moreover, the same authors 

found that the oviposition experience enhanced the arrestment responses of the 

wasps when they were associated with host female residues. The effect of chemical 

residues left by adults of N. viridula on T. basalis females play an essential role on its 

host finding behavior and the use of this “footprints” begin a tool for enhancing 

parasitoids efficiency. 
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Abstract 

 

In the last years an increasing attention has received the idea of habitat manipulation. 

This approach aims to enhance the impact of biological control in agricultural 

systems, by creating suitable ecological infrastructures to recruit and to conserve 

natural enemies populations. The increasing of the vegetational diversity can offer 

several benefits for arthropod predators and parasitoids as, for example, shelter or  

alternative food sources such as floral and extrafloral nectar, pollen, alternative prey 

or hosts. In particular, flowering plants, with volatile odours and nectar resources, can 

increase the recruitment and fitness of parasitoids. Here, it is investigated the 

suitability of four flowering plants, alyssum, buckwheat, French marigold and sweet 

basil, for enhancing and the fitness of Trissolcus basalis. In laboratory were 

conducted: (i) bioassays to test the effect of flowering plants on parasitoid fecundity; 

(ii) four-chambers olfactometer bioassays to test the attractiveness of the flowers for 

wasps; (iii) GC-MS analysis to  chemically describe organic volatile compounds 

collected from flowering plant headspaces; (iv) GC–EAD analysis to evaluate the 

neural activity of antennal olfactory receptors of T. basalis in response to volatile 

extracts from buckwheat flowering plants. Results of experiments on the effect of 

flowering plants on parasitoid fecundity show that the food type provided to T. 

basalis significantly affected its total fecundity; indeed, only females fed on 

buckwheat flowers were able to lay eggs during the whole observed period. Four-

chambers olfactometer bioassays show that wasp females spend significantly more 

time in the sectors of the olfactometer with the flowers over the stems only when the 

odour sources were from buckwheat. Analysis of the odour bouquets emitted from 

the flowering plants are considerably different in their compositions and quantities of 

volatile emissions. The preference of T. basalis females for the buckwheat flowers is 

strengthened by the GC-EAD results. Indeed, the results showed consistent GC-EAD 



36 

 

responses in correspondence of two carboxylic acids, i.e. isovaleric acid and butanoic 

acid, 2 methyl, present on the chemical profile of volatiles collected from only 

buckwheat flowers. In conclusion, the experiments evidence a positive effect of 

buckwheat plants on T. basalis fitness, in terms of longevity, fertility and flower 

attractiveness, suggesting a possible role of buckwheat as suitable flowering plants 

for conservation biological control programmes. 

 

 

Keywords: Trissolcus basalis, Conservation biological control, flowering strip, 

fecundity, Electrophysiological and olfactometric responses.  

 

Riassunto 

 

Negli ultimi anni l’ Habitat managment ha ricevuto crescente attenzione. Questo 

approccio si pome l’obiettivo di migliorare l’efficienza del controllo biologico nei 

sistemi agricoli, mediante la creazione di infrastrutture ecologiche idonee a reclutare 

e conservare le popolazioni dei nemici naturali. L’aumento della diversità 

vegetazionale è in grado di offrire numerosi vantaggi per i predatori e parassitoidi, 

come per esempio, riparo o cibo alternativo, quale il nettare floreale e extra-fiorale o 

il polline, prede oppure ospiti alternativi. In particolare, le piante, con gli odori che 

emettono e risorse alimentari, possono aumentare il reclutamento e la fitness dei 

parassitoidi. In questo capitolo sono dettagliate gli esperimenti condotti con 

l’obiettivo di studiare quale risorsa fiorale tra quattro selezionate, quali l’alisso, il 

grano saraceno, la calendula francese e il basilico, migliora la fitness di Trissolcus 

basalis. In laboratorio sono stati condotti: (i) biosaggi per verificare l'effetto delle 

piante a fiore sulla fertilità del parassitoide; (ii) biosaggi usando un olfattometro a 

quattro camere per verificare l'attrattiva dei fiori per il parassitoide; (iii) analisi GC-MS 
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per descrivere i profili chimici dei composti volatili raccolti dalle piante a fiore; (iv) 

l'analisi GC-EAD per valutare l'attività neurale dei recettori olfattivi antennali di T. 

basalis in risposta agli estratti volatili dalle piante di grano saraceno. I risultati degli 

esperimenti dimostrano che il tipo di cibo fornito al parassitoide influenza 

significativamente la sua fertilità. Inoltre, i biosaggi usando l’olfattometro a quattro 

camere mostrano che le femmine di T. basalis spendono molto più tempo nei settori 

del olfattometro in cui sono presenti i fiori rispetto ai settori in cui sono presenti solo 

foglie, solo quando le sorgenti di odore sono di grano saraceno. L’analisi GC-MS dei 

volatili emessi dalle piante a fiore evidenzia che il bouquet di odori emessi dalle 

quattro piante a fiore sono molto diversi tra loro nella qualità e quantità dei volatili 

emessi. La preferenza di T. basalis per i fiori di grano saraceno è rafforzata dai risultati 

ottenuti negli esperimenti di elettroantennografia. Infatti, i risultati hanno mostrato 

risposte GC-EAD in corrispondenza di due acidi carbossilici, quali l’acido isovalerico e 

l’acido butirrico, 2 metile, presente sul profilo chimico di volatili raccolti dai soli fiori di 

grano saraceno. In conclusione, gli esperimenti evidenziano un effetto positivo di 

piante di grano saraceno sul parassitoide T. basalis, in termini di fertilità e attrattività, 

suggerendo un possibile interessante ruolo del grano saraceno nei programmi di 

conservazione del controllo biologico. 

 

Parole chiave: Trissolcus basalis, Conservazione del controllo biologico, strisce fiorali, 

fertilità, risposte elettrofisiologiche e olfattive. 
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Introduction 

 

Conservation biological control aims to increase the impact of local 

populations of native or introduced natural enemies on pest insects within a given 

habitat (Barbosa 1998; Rahat 2007). This is put into effect by manipulating plant-

based resources in the landscape (Bugg and Pickett, 1998 - Fiedler 2008). This is 

accomplished by selecting plants that provide a limiting resource such as floral nectar, 

establishing these plants, or plant communities, within the managed system and 

providing the provision of many additional ecosystem services (Gurr 2004). The 

intentional provision of flowering plants and plant communities in managed 

landscapes to enhance natural enemies is called “habitat management” and is a 

growing aspect of conservation biological control. The floral nectar can be considered 

an additional food and in many case become the primary reward (Wäckers 2005). 

Nectar-producing plants can improve biological control of pests by supplying 

parasitoids with sugar, which is often limited in monocultures (Heimpel and Jervis 

2005). Moreover, asking which are the more effective plant species in order to be 

included in conservation biological control programs, begin essential take into 

account also the role of the attractiveness of the flowering plants for foraging 

parasitoids (Belz et al., 2012).  

The green vegetable bug (GVB) Nezara viridula (L.) (Heteroptera: Pentatomidae) is a 

widely distributed agricultural pest (Todd 1989). It is found throughout the tropical 

and subtropical regions of the world including the Americas, Asia, Australasia, and 

Europe (Waterhouse 1998). The bug is a highly polyphagous sap feeder, attacking 

many important food crops. Its host range includes over 30 families of dicotyledonous 

and a number of monocotyledonous plants (Todd 1989). The green vegetable bug was 

first recorded in New Zealand in 1944 and quickly established to become a common 

pest in the North Island (Cameron, 1989). The adult overwinters in areas of weeds 
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and rank growth where populations increase in spring and subsequently invade crops 

during summer. In New Zealand this pest has caused economic damage to process 

sweet corn crops in the East Cape region (Rea et al., 2002).  

There have been many attempts to develop sustainable practices to control N. 

viridula as an alternative to the traditional chemical control with non-selective 

insecticides such as deltamethrin. Chemical control has been shown to have negative 

effects on the bug’s most important biological control agent Trissolcus basalis 

(Wollaston) (Hymenoptera: Platygastridae) by altering the parasitoid’s behaviour and 

influencing its foraging ability (Salerno 2002). Examples of biological control of N. 

viridula are the use of sterile-insect technique that might have application to prevent 

reproduction (Knight and Gurr 2007) and the entomopathogenic fungi, such as 

Metarhizium anisopliae (Metschnikoff) Sorokin and Beauveria bassiana (Balsamo) 

Vuillemin (Sosa-Gómez and Moscardi, 1998). While these methods are attractive 

because they can minimise the adverse effects on natural enemies that result from 

the use of conventional insecticides, they have rarely succeeded in providing 

acceptable control of N. viridula. Another example of sustainable practices to control 

N. viridula is the use of trap crops. This practice is used to prevent the pest from 

reaching the crop. For example, a border planting of white mustard (Sinapsis albus) 

was used as a trap crop with organic sweet corn (Zea mays) in New Zealand. Nezara 

viridula infestation was much higher in the mustard plots (8–12 bugs/m2) than in the 

sweet corn (<1/m2) (Rea et al., 2002).  

On a global scale there are many examples of biological control agents that have been 

used to control N. viridula. The majority of these natural enemies are hymenopterous 

egg parasitoids, including T. basalis, and tachinid parasitoids such as Trichopoda 

giacomellii (Blanchard) (Waterhouse 1998) that attack adults or the late nymphal 

stages. Trissolcus basalis, a solitary and generalist egg parasitoid, was introduced into 

New Zealand from Australia during the summer 1948-49 (Cumber, 1952) in an 

attempt to control GVB. After this initial introduction T. basalis was released again 
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during the summer 1996-97. Before these releases the parasitoid was absent or rare; 

subsequently the last inoculative release the presence of the parasitoid has been 

reported only after the first week but not one month later. The variability in 

parasitism suggested that the lack of suitable plant shelter and nectar sources 

rendered some release sites unsuitable for parasitoid reproduction (Cameron, 1998).  

The target of several biological control strategies is to re-establish the level of self-

sustained natural control through introducing a natural enemy for permanent 

establishment and non-crop plants in form of companion plants or flowering strips to 

enhance the natural enemies activity. 

The flowering strip to provide in cropping system must yield the optimal interactions 

with the natural enemies, increasing their longevity, fecundity and motivation to seek 

hosts and decreasing the lack of effectiveness of some biological control programs 

(Gurr et al., 1998; Landis et al., 2000). Broadly, the flower shape (Vattala et al., 2006; 

Nicolson and Thornburg, 2007), flower colour (Kugimiya et al., 2010) and the amount 

and quality of nectar (Johanowicz and Mitchell, 2000) can affect the extent to which 

natural enemies benefit. Moreover, an additional complication is that some flowering 

plants are unattractive to natural enemies whilst some of those that are attractive 

have nectaries (a nectar-secreting glandular organ in a flower) inaccessible (Wäckers 

and van Rijn, 2012). 

One example of how conservation biological control was studied for enhancing 

effectiveness of parasitoid, was carried out by Coombs, 1997 using T. giacomellii. 

Fecundity and longevity of T. giacomellii was reduced when only fed water. Indeed, 

females fed only water had significantly reduced ovarioles and were unable to mature 

any eggs other than those that were present in the abdomen at the time of 

emergence (Coombs, 1997). It is obvious then that the availability of food (nectar and 

other sugar sources) has a significant influence on the effectiveness of T. giacomellii 

as a biological control agent. Equivalent work on the effects of food sources on adult 

T. basalis is not represented in the literature. Recently there is only one investigation 
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on the longevity of T. basalis fed on different floral nectars. Indeed, Rahat et al., in 

2005 conducted laboratory studies showing that adult female longevity is increased 

several-fold by access to flowers of species such as French marigold, basil and 

buckwheat compared to others flowering plants. 

In this scenario this research aims to improve the understanding of the biological 

control system and, in a more focused target, the management of N. viridula in 

organic and conventional crops. The investigations started asking whether the floral 

resources increase the fitness of the egg parasitoid T. basalis in term of progeny, 

whether the floral scent attract T. basalis and which of the volatiles emitted by the 

flowering plants perceived by the antennae of female wasps elicit a positive 

electrophysiological response. To address these questions, it was assessed the 

suitability of four flowering plants, alyssum, buckwheat, French marigold and sweet 

basil, for enhancing the fecundity and the fitness of T. basalis. To test the 

attractiveness of the flowers behavioural observations were conducted using a four-

chambers olfactometer. The organic volatile compounds collected from all flowering 

plant headspaces where analysed in GC-MS to describe their chemical profiles. In 

addition, the volatile extracts from buckwheat flowering plants were used to evaluate 

the neural activity of antennal olfactory receptors of T. basalis using the GC–EAD 

technique. The ecological implications of the obtained results are discussed with a 

conservation biological control perspective.  
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Materials and methods 

Insects 

A colony of Nezara viridula was established with about 30 male and female adults 

collected during October 2013 from fields located in Maraetai, Auckland, New 

Zealand. The N. viridula colony was kept in insect rearing cages (47.5 x 47.5 x 47.5 cm) 

(BugDorm-44545, Mega View Science Co., Ltd. Taichung, Taiwan) and fed with organic 

cabbage, silver beet, beans and sunflower seeds. Food was exchanged every 2 days 

and water was provided through soaked cotton wool in small containers. Paper 

towels were placed inside each adult cage as an ovipositional substrate. Egg masses 

were collected daily and used to maintain cultures of both N. viridula and T. basalis. A 

colony of T. basalis was established from about 180 females that had emerged from 

four parasitized sentinel egg masses of N. viridula.  The sentinel egg masses had been 

attached to crop plants in organic gardens in Karaka, Auckland and Gisborne, New 

Zealand during February 2014. The wasps were reared in 16 mL glass tubes, fed with 

drops of honey-water solution (80:20 v/v). Single N. viridula egg masses were 

removed from the original oviposition substrate, glued (Elmer’s glue) onto a strip of 

filter paper (Whatman quantitative ashless filter paper- Grade No. 40) and exposed to 

three female wasps in a 16 ml glass tube. Both colonies were reared in an 

environmental room at 25±1°C, 50±10% R.H. and 16L:8D. In the bioassay experiments 

female wasps were 1 day old, mated and unfed; for the GC-EAD experiments females 

were 3 days old, mated and fed with the honey-water solution. Voucher specimens of 

the insects used in the experiments are deposited in the Entomology Research 

Collection (LUNZ), Lincoln University, New Zealand. 
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Flowering plants 

Seeds of alyssum (Lobularia maritima L.) cv carpet of snow, buckwheat (Fagopyrum 

esculentum Moench) cv kaitowase, French marigold (Tagetes patula L.) cv crackerjack 

and sweet basil (Ocimum basilicum L.) were grown in 10-cell plug trays filled with 

standard potting mix containing slow-release fertilizer. The selection of plant species 

was based on a previous study showing that the maximum longevity of adult T. 

basalis females was on flowers of French marigold, basil and buckwheat and low on 

alyssum (Rahat et al., 2007). After germination, one week old seedlings were 

transplanted into 1 L plastic pots, filled with the same soil used for sowing and 

watered three times weekly or more often as deemed necessary. New plants were 

sown weekly. All plants were covered by 30-mesh anti-insect net and grown in a 

greenhouse.  Mean heating set point was 19.8°C. In all experiments plants were used 

when in full bloom (6-8 weeks) (Figg. 3 and 4). 
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a b
 

Fig. 3 Alyssum (Lobularia maritima L.); b: Sweet basil (Ocimum basilicum L.). 

 

a b
 

Fig. 4 a: French marigold (Tagetes patula L.); b: Buckwheat (Fagopyrum esculentum Moench) 
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Volatile organic compounds collection 

Volatile organic compounds were collected from flowering plants using stems, leaves 

and flowers. In addition, volatile organic compounds were collected separately from 

buckwheat flowers and leaves. For both volatile collections, the biomass was placed 

in glass vessels of the volatile collection system (Fig. 5) and the cut end placed in 25 

mL of water to prevent drying during the volatile collection.  

 

Fig. 5 Volatile collection system. Example of volatile organic compounds collection from 

buckwheat flowers. 

 

This system consists of a chamber (35 cm long and 6.8 cm outside diameter) that has 

a sintered glass frit at the upwind end and a joint outlet with a single-port collector 

base. Filtered air (activated charcoal filter, 400 cc, Alltech, Deerfield, IL, USA) 
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originating from a compressed air cylinder was pushed into the vessel through a 

teflon tubes at a rate of 300 ml min-1. With a vacuum pump (ILMVAC GmbH, 

Germany) 300 ml min-1 of air was pulled out through a trapping filter containing 30 

mg SuperQ (ARS Inc., Gainesville, FL, USA). Before each experiment, the traps were 

cleaned by rinsing with 1 ml methylene chloride. Each collection lasted 2 h for French 

marigold’s sample, 3 h for buckwheat, sweet basil and alyssum’s samples. Empty 

odour source vessels and vessels filled with 25 mL of water were also sampled to 

check for background contaminations. The adsorbed compounds were eluted from 

the trapping filter with 150 µl of methylene chloride and 200 ng tetralin (Sigma-

Aldrich, Australia) was added as an internal standard. All the extract were stored at 

−80°C until used for the following experiments. 

Cage bioassays 

In order to evaluate the effect of the flowering plants on the fitness of T. basalis in 

terms of number of progeny and sex ratio cage bioassays were developed. The 

bioassays were conducted using cages (6 x 6 x 11 cm) made from clear rigid plastic of 

2 mm thick. Top side of the cage was made with synthetic mesh screen. Two holes 

were cut at the bottom and in one of the lateral side of the cage, 5 cm and 3 cm 

diameter respectively. The bottom hole was used to insert the plant and then was 

closed by cotton wool wrapped around the stem. The lateral hole was used to 

introduce a single T. basalis females subsequently closed by cotton wool. Twenty-four 

hours later one fresh (24-48 hours old) N. viridula egg mass (92.5 ± 1.1 eggs/mass) 

was introduced through the lateral hole and removed the day after. (Fig. 6)  
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Fig. 6 Cage bioassay 

Egg mass replacement was extended over five days. Each exposed egg mass was held 

individually in glass tubes in the environmental room, until parasitoid emergence. The 

adults emerging from each egg mass were counted and sexed to determine number 

of the progeny and the sex ratio respectively. Sex ratio was expressed as the 

proportion of males on the total of the progeny. The experiments have been set in a 

repeated block designs. Each block consisted of five cages for the five treatments 

started on the same day. Throughout the experiments and in any block, cages were 

checked between 09:30 and 10:30. Fifteen replicates of each block were set up in a 

controlled environmental room (25±1°C, 50±10% R.H and 16L:8D). Potted plants and 

cages were replaced per each block.  
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4-chambers olfactometer bioassays 

The attraction to odour resources for T. basalis was tested in the 4-chamber 

olfactometer (Fig. 7).  

 

Fig. 7 4-chamber olfactometer . “gp”: glass plate; “wa”: walking arena with gauze; “cy”: 

cylinder with the four chambers;  “pd”: samples and control. 

 

The device was made in acrylic glass, consisting in a cylinder (4,5 cm high and 20 cm 

diameter) divided by vertical plates made in acrylic glass into for chambers. No airflow 

was generated. On the top of cylinder was placed a removable walking arena (1,5 cm 

high and 20 cm diameter) made in a plastic gauze. The walking arena was covered 

with a glass plate to avoid escape of parasitoid. The samples were placed in two 

opposite chambers. Any odour sample was covered by mesh to avoid colour 

influences. The position of the samples was changed after every test to avoid 

influenced results due to the side preference by the parasitoids. The device was clean 

after every bioassay. The odour sources and wasp females were used only once and 
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discarded after the behavioural test. A single adult female was isolated in 2 mL glass 

vials and tested within 12 hours. All the females used for the experiments were food 

deprived and naïve, i.e. no contact with the tested odour sources previous to the 

experiments. For the bioassays the parasitoids were released in the centre of the 

walking arena that was covered by glass plate. The time spent by each wasp in each 

chamber (residence time) was recorded for 5 minutes using the computer software 

The Observer XT 7.0 (Noldus, Information Technology, Wageningen, Netherlands). 

Each treatment was replicated twenty times. The experiments were carried out in a 

dark room to avoid directional light and the olfactometer was situated inside a white 

cardboard basket and illuminated from above by two cool white fluorescent tubes. 

The temperature in the bioassay room was continuously maintained at 24 ± 1 °C. 

Wasps were allowed to acclimatise for at least 1 h in the room before experiments. 

The following odour sources were tested:  

(1) Inflorescence vs leaves: for each plant inflorescence and leaves were cut and the 

stems wrapped in a wet piece of cotton and sealed with parafilm in order to prevent 

wilting and minimise odours from damaged tissue. The amount of inflorescences used 

as odour source was visually quantified to match approximately throughout the 

treatments. The inflorescences and leaves were used within half an hour after cutting 

and once per wasp tested. 

(2) Buckwheat extract vs solvent (methylene chloride). Extracts of buckwheat plants 

(see “Volatile organic compounds collection”) and the solvent were tested by 

pipetting 80 μl of solution onto a circle (13 cm diameter) of filter paper. The solution 

was allowed to dry for at least two minutes and then the circles were put in the 

chambers of the olfactometer.  

(3) Buckwheat synthetic blends vs solvent (methylene chloride). Two buckwheat 

synthetic blends were prepared as methylene chloride solutions. The first synthetic 
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blend, “Stock solution”, contained (in mg/ml) butanoic acid (0.4), isovaleric acid (1.3), 

2-methyl butanoic acid (1.1), hexanoic acid (0.1), 3-hexen-1-ol,acetate (Z) (0.8), α-

farnesene (0.8). This composition was defined on the calculated amounts from 

buckwheat extract analysed by GS-MS. The second synthetic blend,  “1/10 dilution” 

was prepared as the 1/10 dilution of the “Stock solution” and in details contained (in 

mg/ml) butanoic acid (0.04), isovaleric acid (0.13), 2-methyl butanoic acid (0.11), 

hexanoic acid (0.01), 3-hexen-1-ol,acetate (Z) (0.08), α-farnesene (0.08). All chemicals 

were from Sigma-Aldrich (Australia). The synthetic blends were stored at −80°C until 

bioassayed. The odour sources were prepared as described for the buckwheat extract 

using circles of filter paper and by pipetting 40 µl. The solution was allowed to dry for 

at least two minutes and then the circles were put in the chambers of the 

olfactometer. 

Gas Chromatography-Mass Spectrometry (GC-MS) Analyses 

The flowering plant extracts were separated using a Shimadzu GCMS-QP2010 

(Shimadzu Corporation, Japan) gas chromatograph - mass spectrometer fitted with a 

Restek Rxi-1ms fused silica capillary column (30.0 m x 0.25 mm i.d. x 0.25 μm, 

Bellefonte, PA, USA). Of each sample, 1 µl was injected in pulsed splitless mode at a 

temperature of 220 °C and with a pulse of 168 kPa for 40 s. Oven temperature was 

held at 50 °C for 3 min and then raised to 320 °C at 8 °C/min and held at this 

temperature for 8 min. Helium was used as carrier gas at a constant flux of 1.5 

ml/min. Compounds were identified using GCMS solution v. 2.72 (Shimadzu 

Corporation, Japan) software with NIST 11 and Wiley 10 mass spectrum libraries and 

by using the software MassFinder4/Terpenoids library (Hochmuth Scientific Software, 

Hamburg, Germany). Standards were used to confirm identities of compounds that 

were commercially available (Sigma-Aldrich, Germany; Treatt Ltd., UK). Quantification 

was obtained by comparing the area of the compounds to the area of the internal 

standard. 
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Electrophysiology experiments 

Female wasps were anaesthetized by CO2, and the head was cut. Glass capillaries 

grounding electrode in contact with a silver wire were filled with conductivity gel. The 

reference electrode was connected to the neck of the isolated head, while the 

recording electrode was connected to the antenna tip (with half of the last 

antennomere severed) (Fig. 8) using a micromanipulator (Leitz, Leica, Germany and P-

225, Sutter Instruments, USA).  

 

Head of the insect connected 
to the reference electrode

Antenna tip  connected to the 
recording electrode

 

Fig. 8 Antenna preparation for electrophysiology experiments 

 

The capillary glasses to use for the recording electrode were drawn to a fine point 

using a microelectrode puller to get an inner diameter wide enough to enable contact 

of the antenna tip. Antennal responses, for all the electrophysiology experiments, 

were monitored using a high input-impedance AC/DC probe, a data acquisition 

controller (Type IDAC-4) and software (Autospike 32) (Syntech, Hilversum, The 

Netherlands). 
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Trissolcus basalis antenna response to buckwheat plant extracts was performed using 

coupled GC-EAD (Gas Chromatography-Electroantennogram Detection) analysis to 

determine what compounds could elicit electrophysiological activity.  

One µl of the buckwheat extract was injected into the GC Agilent 7890A (Agilent, USA) 

with a flame ionization detector (FID) and a split/splitless injector. A 30 m x 0.25 mm 

i.d. x 0.25 μm DB-5 capillary column (Agilent Technologies, USA) was used for the 

analyses. The oven temperature was programmed from 60°C (held for 1 min) to 240°C 

at 10°C min-1. Helium was used as the carrier gas. The column effluent was split 1:1 

with one part going to the flame ionization detector (FID) of the GC and the other 

through a heated transfer line into a humidified and charcoal-filtered airstream 

directed at the antennal preparation. Based on the GC-EAD results 2 series of EAG 

experiments were performed. In the first experiment, T. basalis antenna response to 

the main 5 identified compounds of buckwheat extract, i.e. isovaleric acid, 2-methyl 

butanoic acid, 3-hexen-1-ol, acetate (Z), α-farnesene, and butanoic acid, and to 2 

general plant volatiles, i.e. linalool and geraniol, was evaluated. EAG responses were 

recorded from 5 wasps using one antenna per individual. In the second one, wasp 

antenna responses to carboxylic acids, i.e. propanoic acid, butanoic acid, pentanoic 

acid, hexanoic acid, heptanoic acid and octanoic acid, were evaluated. EAG responses 

were recorded from 7 wasps using one antenna per individual. For odour 

presentation in EAG experiments, each chemical was dissolved in hexane to yield 100 

mg/ml solutions. In both experiments the control was the solvent and caryophyllene 

was used as standard to normalize the antenna response. In both experiments, i.e. 

response to main compounds of buckwheat extract or to carboxylic acids, for each 

tested antenna the first stimulus was the solvent and then the sequence of stimuli 

presentation was randomized. The responses to solvent control were deduced from 

all responses and mV responses to all stimuli were converted to percentage values of 

the mean responses to the standard.  
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In addition, a series of EAG tests was conducted to produce dose – response curves 

with the 3 major buckwheat compounds, i.e., isovaleric acid, 2-methyl butanoic acid 

and 3-hexen-1-ol,acetate (Z).  

These compounds were serially diluted in hexane (purity 99%) to obtain the following 

concentrations (µg/ml): 100, 10 and 1. 

The same antenna was used to test all of the concentrations of a single compound. 

Each compound was tested on 4 antennae, using one antenna per wasp. The 

sequence of the tested compounds was provided starting from the weakest 

concentration and followed by increasing concentrations. 

For all EAG experiments the stimulus applicators were prepared by pipetting 10 μl of 

hexane solution onto a 6×0.5 cm strip of Whatman no. 1 filter paper, then the solvent 

was allowed to evaporate for 10s and the filter paper was placed inside a 14.5-cm 

long glass Pasteur pipette. The tip of the glass pipette was placed about 3 mm into a 

small hole in the wall of a L-shaped glass tube (130 mm long, 12 mm i.d.) oriented 

towards the antennal preparation (around 5 mm away from the preparation). The 

stimuli were provided as 1s puffs of charcoal-filtered air into a continuous humidified 

main air stream, at 2100 ml min-1 continuous flow, that was flowing over the antennal 

preparation and generated by an air stimulus controller (CS-55, Syntech, Kirchzarten, 

Germany). The stimulus controller was configured to compensate for pulse flow (550 

ml/min) during stimulus delivery. In order to recover and to prevent adaptation for 

the antenna the stimuli were presented at 1 min intervals. EAG responses were 

measured by using a measurement marker tool available with the GC-EAD software as 

maximum amplitude of depolarization (mV). All chemicals used were purchased from 

Sigma-Aldrich (Australia).  
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Statistical analysis 

 

Means of the total number of emerged adults and sex ratio (males proportion on the 

total of the progeny) were analysed using One-way ANOVA and multiple comparisons 

were performed using Tukey's HSD test. Prior to the ANOVA data set were tested for 

homogeneity of variances (Levene’s test).  

Wilcoxon Matched Pairs Test was used to analyse the bioassays performed using the 

4-chambers olfactometer. 

The composition of the volatile organic compounds from the headspace samples was 

decrypted by the mean±SE of the amounts identified over the 4 replicates for each 

flower plant. Principal components method of factor analysis (PCA) was used to 

examine the covariance relationships among the volatiles present in the headspace of 

any flower. 

In EAG experiments, to obtain the dose–response curves, the data expressed as 

means of relative responses were analysed by repeated-measures ANOVA, followed 

by Fisher’s LSD test.  

EAG responses to main compounds of buckwheat extract or to carboxylic acids were 

control-adjusted with the hexane only control and expressed as proportional 

responses relative to the caryophyllene standard. ANOVA single factor was used to 

analyse the EAG experiments and Fisher’s LSD post hoc test for multiple comparisons 

was performed to compare differences between the means of the EAG amplitudes.  

Statistical analysis was conducted by using Statistica 7 software. 
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Results 

Cage bioassys 

The results show that the food type provided to T. basalis significantly affected its 

total fecundity. Significantly more adults emerged from egg masses parasitized by 

females provided with buckwheat (Mean ± SE; 152.93 ± 5.06) and basil (Mean ± SE; 

128.33 ± 8) flowers than from egg masses parasitized by females fed on alyssum 

(Mean ± SE; 105.67 ± 5.59), French marigold (Mean ± SE; 104.33 ± 7.32) or provided 

with water alone (Mean ± SE; 88.60 ± 5.42) (Fig. 9). Within the treatments there was a 

highly significant difference in mean of the adults emerged between the feeding 

treatments “buckwheat” and “alyssum” (P<0.001), “French marigold” (P<0.001) and 

“water” (P<0.001), while marginal difference was found between “buckwheat” and 

“basil” (P=0,060). No significant difference was found among the three feeding 

treatments “basil”, “alyssum” and “French marigold”. The mean fertility trend was 

similar in each treatment with the peak of oviposition period on the first experimental 

day (Fig. 10). Only females fed on buckwheat flowers were able to lay eggs during the 

whole observed period. Longevity of T. basalis caged without flowers but with access 

to water was 2 days. 
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Fig. 9 Cage bioassays: Mean number of emerged adults of T. basalis during the observation 

period. Error bars show ± SE and letters indicate where differences among treatments are 

significant (Tukey's HSD test with P < 0.05). 
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Fig. 10 Cage bioassays: Mean number of emerged adults of T. basalis per day. 



57 

 

The food provided to T. basalis adults did not affect the sex ratio of their progeny (Fig. 

11). Sex ratio (MM/total progeny) of T. basalis was 0.15 ± 0.01 (Mean ± SE) for the 

buckwheat treatment, 0.14 ± 0.01 for the basil treatment, 0.13 ± 0.02 for the alyssum 

treatment, 0.11 ± 0.01 for the French marigold treatment and 0.12 ± 0.01 for the 

water treatment. 
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Fig. 11 Cage bioassays: sex ratio average (MM/total progeny). Error bars show ± SE and 

letters indicate where differences between treatments are significant (Tukey's HSD test with 

P < 0.05) 
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4-chambers olfactometer bioassays 

(1) Flowers vs leaves (Fig. 12) 

The parasitoids showed to spend significantly more time in the sectors of the 

olfactometer with the flowers over the stems when the odour sources were from 

buckwheat (Mean (sec) ± SE; 185.5 ± 6.27 vs 116.35 ± 6.64; n=20; P<0.001). On the 

contrary, T. basalis spent more residence time on the leaves over the flowers when 

the odour sources were from alyssum plants (Mean (s) ± SE; 171.40 ± 6.42 vs 128.45 ± 

6.38; n=20; P=0.004).  

**

0

20

40

60

80

100

120

140

160

180

200

Buckwheat Basil French marigold Alyssum

R
e

si
d

e
n

ce
 ti

m
e

 (
se

c)

Flowers Leaves

 

Fig. 12. 4-chambers olfactometer bioassays: flowers vs leaves. Grey and white bars indicate 

the duration (means ± SE) of the residence time (sec) of wasp females on the chambers with 

flowers and leaves respectively. Asterisks (*) indicate p < 0.05 by Wilcoxon Matched Pairs 

Test. 

Not significant differences in residence time were found when the odour sources 

present on the chambers of the olfactometer contained the flowers over the stems 
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for basil (Mean (s) ± SE; 157.35 ± 5.90 vs 142.70 ± 5.99; n=20; P>0.05) and French 

marigold (Mean (s) ± SE; 148.10 ± 7.35 vs 151.20 ± 7.31; n=20; P>0.05). 

(2)  Buckwheat extract vs solvent (Fig. 13) 

Trissolcus basalis showed to spend significantly more time in the chambers of the 

olfactometer with the buckwheat extracts over the solvent (Mean (sec) ± SE; 160,75 ± 

4.07 vs 140.75 ± 4.40; n=20; P=0.028). 
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Fig. 13 4-chambers olfactometer bioassays: Buckwheat extract vs solvent. Bars indicate the 

duration (means ± SE) of the residence time (sec) of wasp females on the chambers with 

“buckwheat extract” and “solvent”. Asterisks (*) indicate p < 0.05 by Wilcoxon Matched 

Pairs Test. 

(3)  Synthetic solutions of the major indentified buckwheat volatiles vs solvent 

(Fig. 14 and 15) 

Trissolcus basalis showed to spend significantly more time in the chambers of the 

olfactometer with the “1/10 dilution” over the control (Mean (s) ± SE; 174.95 ± 7.28 
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vs 125.05 ± 7.28; n=20; P=0.008). Conversely, the wasps showed to spend significantly 

more time in the chambers with the control when was tested the “Stock solution” 

(Mean (sec) ± SE; 178.75 ± 9.32 vs 121.25 ± 9.32; n=20; P=0.011). 
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Fig. 14. 4-chambers olfactometer bioassays: Synthetic solutions of the major indentified 

buckwheat volatiles vs solvent. Bars indicate the duration (means ± SE) of the residence 

time (sec) of wasp females on the chambers with “Stock solution” and “solvent”. 
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Fig. 15. 4-chambers olfactometer bioassays: Buckwheat extract vs solvent. Bars indicate the 

duration (means ± SE) of the residence time (sec) of wasp females on the chambers with 

“1/10 dilution” and “solvent”. Asterisks (*) indicate p < 0.05 by Wilcoxon Matched Pairs 

Test. 

 

Gas Chromatography-Mass Spectrometry (GC-MS) Analyses 

The odour bouquets emitted from the flowering plants are considerably different in 

their compositions and quantities as showed in Fig. 16 and in Tabs. 1-4. Indeed, there 

were 4 compounds overlapping between the 52 compounds that were identified from 

the GC-MS chromatograms (Figg. 17-20). The volatiles collected separately from 

flowers and leaves of buckwheat plants showed different chemical profiles (Fig. 21 

and Tab. 5). The chromatograms show that the carboxylic acids identified from 

buckwheat plants are present only on the chemical profiles from the flower volatiles.  
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Fig. 16 Principal component analysis (PCA) of volatile organic compound (VOCs) emitted by 

flowering plants of alyssum (Lobularia maritima L.), buckwheat (Fagopyrum esculentum 

Moench), French marigold (Tagetes patula L.) and basil (Ocimum basilicum L.).  
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Fig. 17. Representative gas chromatogram of volatile organic compounds collected from alyssum (Lobularia marittima L.) plants. See Table 1 

for peak identities and “Materials and Methods” for analysis conditions. 
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Fig. 18. Representative gas chromatogram of volatile organic compounds collected from sweet basil (Ocimum basilicum L.) plants. See Table 2 

for peak identities and “Materials and Methods” for analysis conditions. 
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Fig. 19 Representative gas chromatogram of volatile organic compounds collected from buckwheat (Fagopyrum esculentum Moench) plants. 

See Table 3 for peak identities and “Materials and Methods” for analysis conditions. 
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Fig. 20 Representative gas chromatogram of volatile organic compounds collected from French marigold (Tagetes patula L.) plants. See Table 4 

for peak identities and “Materials and Methods” for analysis conditions. 
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Fig. 21 Representative gas chromatograms of volatile organic compounds collected from flowers (black line) and leaves (red line) buckwheat 

(Fagopyrum esculentum Moench) plants. Green line represents the control. See Table 5 for peak identities and “Materials and Methods” for 

analysis conditions. 
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Tab. 1 Alyssum, (Lobularia maritima L.) volatile organic compounds identified and measured 

by gas chromatography–mass spectrometry. Average (±SE) amounts are reported as ng µl
-1

 

of volatile organic compounds in methylene cloride solution; n = 4; RI Exp: experimentally 

determined retention index, RI Lit.: retention index in data bank. Peak numbers correspond 

to Fig. 17. 

Peak  RT (min) Compound  RI Exp. RI Lit. Amount (ng ± SE) 

1  5.668  2-Pentanone  850 875 17.52 ± 3.01 

2  8.215  Benzaldehyde  963 969 388.37 ± 20.79 

3  10.029  Benzaldehyde, 2-
hydroxy  

1044 1049 95.17 ± 15.41 

4  10.439  Acetophenone  1067 1065 2101.55 ± 360.53 

5  11.485  Furan  1119 1090 47.13 ± 26.55 

6  12.056  2,6,6-Trimethyl-2-
cyclohexene-1,4-

dione 

1149 1141 25.86 ± 5.76 

7  18.260  α-Farnesene  1512 1506 24.84 ± 10.56 
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Tab. 2 Sweet basil (Ocimum basilicum L.) volatile organic compounds identified and 

measured by gas chromatography–mass spectrometry. Average (±SE) amounts are reported 

as ng µl
-1

 of volatile organic compounds in methylene cloride solution; n = 4; RI Exp: 

experimentally determined retention index, RI Lit.: retention index in data bank. Peak 

numbers correspond to Fig 18. 

 

Peak  RT (min)  Compound RI Exp. RI Lit. Amount (ng)  ± SE 

1  4.679  4-pentanal, 2-methyl  807 798 192.92 ± 122.36 

2  5.871  2-hexanal  847 827 41.46 ± 14.61 

3  5.930  3-hexen-1-ol (Z)  861 851 178.11 ± 147.43 

4  7.557  α-pinene  934 936 31.46 ± 14.62 

5  8.508  β-pinene  976 978 75.93 ± 41.40 

6  9.274  3-hexen-1-ol, acetate 

(Z) 

1011 1002 218,97 ± 43.65 

7  9.733  1,8-cineol 1033 1024 633.42 ± 263.93 

8  10.513  cis-sabinene hydrate 1071 1082 14.09 ± 4.55 

9  10.943  cis-Linalool oxide 1092 1072 35.71 ± 8.22 

10  11.162  Linalool 1102 1100 5924.64 ± 2236.30 

11  11.482  4,8-Dimethylnona-

1,3,7-triene  

1117 1115 245.32 ± 128.16 

12  12.691  (-)-Terpinen-4-ol 1182 1182 21.46 ± 14.62 

13  13.080  Estragole  1203 1201 6183.47 ± 4088.75 

14  16.214  α-copaene  1383 1379 32.71 ± 9.22 

15  16.474  β-elemene  1398 1389 253.39 ± 50.51 

16  17.162  Trans α-

bergamottene  

1442 1434 919.13 ± 442.33 

17  17.228  α-guaiene  1445 1440 126.56 ± 39.27 

18  17.496  α-humulene  1463 1452 95.01 ± 33.62 

19  17.646  ɣ-muurolene  1473 1474 91.34 ± 38.96 
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20  17.931  ɣ-amorphene  1490 1492 735.43 ± 234.20 

21  18.306  Guaia-9,11-diene 1515 1521 408.34 ± 104.38 

22  18.433  β-copaene  1523 1565 402.47 ± 138.86 

23  19.954  Cubenol  1627 1642 37.52 ± 10.56 

24  20.312  Eudesm-3-en-7-ol 1651 1650 182.76 ± 59.62 

 

 

Tab. 3 Buckwheat (Fagopyrum esculentum Moench) volatile organic compounds identified 

and measured by gas chromatography–mass spectrometry. Average (±SE) amounts are 

reported as ng µl
-1

 volatile organic compounds in methylene cloride solution; n = 4; RI Exp: 

experimentally determined retention index, RI Lit.: retention index in data bank. Peak 

numbers correspond to Fig. 19. 

Peak  RT (min) Compound  RI Exp. RI Lit. Amount (ng ± SE) 

1  4.647  Butanoic acid  805 790 37.34 ± 14.72 

2  5.913  Isovaleric acid  851 870 128.68 ± 30.24 

3  6.144  2-methyl butanoic 
acid 

871 854 114.34 ± 28.45 

4  6.756  Hexanoic acid  898 951 14.42 ± 8.08 

5  7.319  p-benzoquinone  923 905 19.89 ± 11.54 

6  9.264  3-hexen-1-ol, 
acetate (Z) 

1008 1002 79.28 ± 47.41 

7  18.260  α-farnesene  1511 1506 81.46 ± 25.96 
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Tab. 4 French marigold (Tagetes patula L.) volatile organic compounds identified and 

measured by gas chromatography–mass spectrometry. Average (±SE) amounts are reported 

as ng µl
-1

 of volatile organic compounds in methylene cloride solution; n = 4; RI Exp: 

experimentally determined retention index, RI Lit.: retention index in data bank. Peak 

numbers correspond to Fig. 20. 

Peak  RT (min)  Compound  RI Exp. RI Lit. Amount (ng) ± SE 

1  5.916  3-hexen-1-ol (Z)  861 851 708.64 ± 368.84 

2  7.563  α-pinene  934 936 29.21 ± 5.96 

3  8.252  Benzaldehyde  963 970 233.19 ± 131.92 

4  8.465  Sabinene  974 973 115.17 ± 32.11 

5  8.895  β-myrcene  993 987 54.91 ± 14.76 

6  9.141  α-phellandrene  1004 1002 62.88 ± 20.48 

7  9.252  3-hexen-1-ol, acetate (Z) 1007 1002 1426.26 ± 537.06 

8  9.663  Limonene 1029 1025 731.54 ± 148.80 

9  9.887  (E)-β-ocimene  1041 1041 367.43 ± 243.40 

10  10.052  Benzeneacetaldehyde  1043 1050 874.45 ± 476.23 

11  10.200  Dihydrotagetone  1055 1047 230.14 ± 177.42 

12  10.916  Terpinolene  1087 1082 1614.82 ± 582.93 

13  12.049  (Z)-tagetone  1132 1134 55.91 ± 12.76 

14  12.220  (E)-tagetone  1157 1152 249.11 ± 190.76 

15  12.681  1,8-menthadien-4-ol 1174 1175 27.39 ± 10.73 

16  12.849  p-cymen-8-ol 1190 1169 18.86 ± 7.79 

17  13.728  n-valeric acid cis-3-

hexenyl ester 

1236 1239 232.91 ± 131.18 

18  13.837  Verbenone  1245 1183 36.20 ± 28.64 
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19  15.348  7aH-silphiperfol-5-ene 1331 1329 45.72 ± 8.37 

20  15.468  p-menthe-1,8-dien-4-
hydroperoxide 

1319 1333 29.39 ± 11.73 

21  16.974  (E) β-Caryophyllene  1428 1421 324.96 ± 120.45 

22  17.927  ɣ-amorphene  1490 1492 101.98 ± 23.75 

23  18.172  Isogermacrene A 1506 1502 38.12 ± 9.48 

24  18.258  α-farnesene  1512 1506 16.69 ± 7.86 

 

 

 

Tab. 5. Buckwheat (Fagopyrum esculentum Moench) Main volatile organic compounds 

identified by gas chromatography–mass spectrometry from leaves and flowers. Peak 

numbers correspond to Fig. 19. 

Peak  Compound  

1 Butanoic acid  

2  2-Pentanone 4 hydroxy 4 methyl  

3  Isovaleric acid  

4  2-methyl butanoic acid 

5  Pentanoic acid  

6  3-Hexen-1-ol, acetate (Z)  

7  Internal standard  
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Electrophysiology experiments 

Gas Chromatography-Electroantennogram Detection responses to buckwheat plant 

extracts are shown in Fig. 22. Among the identified compounds, GC-EAD analysis 

suggested that two EAD- active peaks, isovaleric acid and butanoic acid, 2 methyl, 

elicited consistent responses of T. basalis antennae. 

EAG responses to the main compounds of buckwheat extract and to the carboxylic 

acids are shown in Fig. 23. Among the main compounds of buckwheat extract tested, 

butanoic acid, isovaleric acid, 3-hexen-1-ol,acetate (Z) and linalool elicited an antenna 

response significantly higher than the hexane. Moreover, 3-hexen-1-ol,acetate (Z) and 

linalool elicited the higher antenna response compared the other compounds. Among 

the carboxylic acids, butanoic acid, pentanoic acid, elicited a significantly higher 

response with respect to hexane. Neither of the tested compounds elicited an 

antenna response significantly different than caryophyllene, the standard used to 

normalize the antenna response. 

Females of T. basalis adults showed dose-dependent EAG responses, with increasing 

responses to increase in doses of the 3 identified major buckwheat compounds, i.e., 

isovaleric acid, 2-methyl butanoic acid and 3-hexen-1-ol,acetate (Z) (Fig. 24, Tab. 6). 

The dose of 1 μg elicited the weakest response for all the treatments. Significant 

statistical differences in the EAG responses were observed among the tested 

compounds. At the dose of 1 μg and 10 μg not significant difference was found among 
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the tested compounds (p > 0.05 Fisher’s LSD test). At the dose of 100 μg the greater 

response was elicited by 3-hexen-1-ol, acetate (Z) (p < 0.05 Fisher’s LSD test) whilst no 

significant difference was found between the response elicited by isovaleric acid and 

2-methyl butanoic acid (p > 0.05 Fisher’s LSD test). 

 

Fig. 22. Flame ionization detector (FID) and electroantennographic detector (EAD; Trissolcus 

basalis antenna) responses to headspace volatiles from buckwheat plants. 2–3, EAD-active 

compounds. Peaks are identified in table.  
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Fig. 23. EAG response of Trissolcus basalis to six carboxylic acids (above) and to the main 5 

identified compounds of buckwheat extract, i.e. isovaleric acid, 2-methyl butanoic acid, 3-

hexen-1-ol, acetate (Z), α-farnesene, and butanoic acid, and to 2 general plant volatiles, i.e. 

linalool and geraniol, (below). EAG amplitudes are control-adjusted and presented as 

proportional responses (mean±SE) to the standard caryophyllene. 
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Fig. 24 EAG concentration–response curves of Trissolcus basalis to 3 major buckwheat volatile organic compounds. EAG amplitudes are control-

adjusted and presented as proportional responses (mean±SE) to the standard caryophyllene. Error bars show the standard error of the mean. 

Significant differences are showed in Tab.6. 
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Tab. 6 Repeated-measures ANOVA of the EAG response of Trissolcus basalis females (SS = 

sum of squares; df = degree of freedom; MS = mean squares; F = F-test; asterisks indicate 

that values differ statistically for P < 0.05). 

Effect  SS Df MS F P 

Compound 14600 2 7300 6.96 0.01* 

Dose 69066 2 34533 139.16 <0.01* 

Dose*Compound 12333 4 3083 12.43 <0.01* 
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Discussion 

 

This study shows the great importance of the flower nectar as nutritional 

resource for the parasitoid T. basalis since individuals with access to buckwheat and 

basil flowering plants significantly increased the number of their progeny.  

On the total number of the emerged adults, no significant difference was found 

between buckwheat and basil, while a significant difference was found between 

buckwheat and alyssum, French marigold and water. The significant increase on the 

number on emerged adults was also found between basil and water while no statistic 

differences were found between basil, alyssum and French marigold. No difference 

was found comparing the data recorded for the treatments French marigold and 

alyssum comparing with water.  

The importance of the nutrients for T. basalis was previously studied comparing two 

different diets: honeydew (from Aphis fabae reared on Vicia fabae), Safavi diet 

(Safavi, 1968) and water as control. Mattiacci et al., 1991 showed that the fecundity 

was significantly increased by Safavi diet, while no significant difference was found 

comparing the number of progenies from females provided with honeydew or water. 

The total number of the adult emerged by parasitized eggs by female with only water 

available was 88.60 ± 5.42 (mean ± SE). This number could represent the amount of 

mature eggs of emerged female wasps. In fact, T. basalis is classified as proovigenic 

(i.e., females parasitoids complete oogenesis prior to eclosion and generally are able 

of lay their eggs soon after emergence) and its potential fecundity was registered as 

61.55 ± 17.33 ovarian eggs (Mattiacci et al., 1991). Several are the authors that 

showed how the floral nectar type enhances parasitoid fecundity, increasing the 

reproductive lifespan and/or accelerating the rate of egg maturation (Baggen and 

Gurr, 1998; Schmale et al., 2001; Berndt and Wratten 2005; Winkler et al., 2006; 

Aduba et al., 2013). As well for proovigenic species, the food resources were found to 

increases the number of progeny by increasing oviposition rates. For example, 
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Wäckers in 2000 and Guren et al., 2004 showed respectively that Heterospilus 

prosopidis (Viereck) and Trichogramma brassicae Bezdenko benefited from the floral 

resources. Rahat et al., 2005 conducted laboratory studies and showed that T. basalis 

longevity was increased by access to flowers of the species French marigold, basil and 

buckwheat compared to others flowering plants, such as alyssum. The same authors 

identified the reason of this lack of performance on the architecture of the alyssum 

flower and the relatively large size of T. basalis adults so that the wasp may be 

prevented from reaching the nectaries within the small inflorescences of alyssum.  

Conversely, the provided food type did not affect the sex ratio of T. basalis 

throughout all treatments. It was found that the sex ratio is influenced by other 

factors. The wasp T. basalis is haplodiploid and arrhenotokous (haploid males develop 

from unfertilized eggs and diploid females from fertilized ones), and thus, in direct 

control of their sex ratio by control of fertilization. Hence, mated females have a 

precise control over the sex of each offspring by choosing whether they fertilize an 

egg or not (Steiner and Ruther, 2009). Moreover, the number of host eggs per patch 

encountered elicits changes in sex ratio (Colazza et at, 1991). Mattiacci et aI. in 1991 

from laboratory observations of life time fecundity of females reared on a honey-

water solution show that toward the end of the oviposition period, female wasps 

start to lay an increasing proportion of unfertilised eggs (and thus male progeny), 

suggesting that they did not receive a sufficient amount of sperm to fertilize all of 

their progeny (i.e., sperm depletion). The availability of food was found to affect the 

offspring sex ratio of some parasitoid species (Leatemia et al., 1995; Khafagi, 1998). 

Berndt and Wratten in 2005 conducted laboratory experiment assessing the effect of 

floral food resources on the sex ratio of the Braconidae Dolichogenidea tasmanica 

(Cameron), a parasitoid of leafrollers (Lepidoptera: Tortricidae). The sex ratio of D. 

tasmanica was male-biased when parent female parasitoids had access to alyssum 

plants with flowers comparing with plants without flowers.  
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In the large view of the use of the flowering plants in conservation biological control 

prospective, the olfactory attraction turns certainly important to identify flowers that 

are attractive to the parasitoids. More detailed, the importance of the selection of the 

“right” flower resource is underlined by the results of the olfactometer bioassays that 

showed positive preference for flowers over the leaves only when buckwheat was the 

odour sources. Kugimiya et al., (2010) found a similar specific response to odours of 

mustard flowers Brassica rapa L. in the parasitoid Cotesia vestalis (Haliday). Indeed, C. 

vestalis showed a significant preference for the inflorescence over the inflorescence 

stem with flowers removed.  

The preference of T. basalis females for the buckwheat flowers is strengthened by the 

GC-EAD results. Indeed, the results showed consistent GC-EAD responses in 

correspondence of two carboxylic acids, i.e. isovaleric acid and butanoic acid, 2 

methyl, present on the chemical profile of volatiles collected from only buckwheat 

flowers. It is difficult to distinguish any specific pattern of response and the strength 

of perception from the parasitoids due to the not clear differences in sharpness of the 

GC peaks and the number of molecules that hit the antennae at the same time. The 

GC-EAD results were followed by olfactometer bioassays in order to assess the 

attractiveness of the buckwheat compounds using a synthetic blend based on the 

calculated amounts from buckwheat extract analysed by GS-MS. The bioassay showed 

attractive behaviour indicating that wasps are able to detect some of the compounds 

released by the buckwheat flowers. In this view, a more thorough identification of the 

GC peaks in the buckwheat extracts may reveal interesting prospects for application 

and should improve the understanding of the recognition by female parasitoids. The 

attractive behaviour of the wasps showed the innate preferences for the buckwheat 

flowers odours and it seems that T. basalis evolved mechanisms to respond to distinct 

plant volatiles and use these olfactory cues to locate available food sources 

efficiently. More detailed study should be done at the single sensillum level in order 

to determine the specificity of olfactory cells to the different compounds present in 



81 

 

buckwheat flowers. Moreover, the results show that T. basalis have a wide olfactory 

capability on detecting isovaleric acid and butanoic acid; further studies to 

understand the mechanisms mediating host finding by parasitic wasps may help in 

developing methods to optimize the efficiency of natural enemies as biological 

control agents. In conclusion, buckwheat plants, that have previously showed to be 

efficient for T. basalis in term of longevity (Rahat et al., 2005), show to increase also 

its fecundity. Moreover, T. basalis shows an interesting attractive behaviour for the 

buckwheat flowers. This highlights the importance of taking longevity, fertility and 

flower attractiveness into account in the choice of suitable flowering plants for 

conservation biological control.  
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Abstract 

 

The potential for parasitoids to regulate host population depends on many factors 

such as reproductive potential, age, host-finding ability, temporal and spatial 

synchronism and environmental parameters. Several studies have carefully focused 

the interest on the effects of the endogenous and exogenous factors on the 

reproductive potential of the parasitoids as well as their life expectancy, focusing 

mainly on biological and physiological parameters. Here, it is investigated the effects 

of four factors, age (3days-old vs 20days-old), conspecific crowding (isolated or not 

for 20 days), the feeding status (feeding or not for 2 days) of wasps and 

environmental temperature (4°C vs 25°C) on the host location behaviour of an egg 

parasitoid, using the model of Trissolcus basalis (Wollaston) (Hymenoptera: 

Platygastridae) exploiting the footprints left by ith host Nezara viridula (L.) 

(Heteroptera: Pentatomidae).These cues represent a set of indirect host-related 

contact kairomones that induce arrestment and motivated searching behaviour, as 

they drive wasps in an area where there is a high probability of finding hosts but are 

not able to “promise” the presence of the suitable host stage. Bioassays were 

conducted on an open arena made by a filter paper sheet; in the middle, a circular 

area (4 cm diameter) was defined and exposed for 30 min to a single adult of N. 

viridula, while the surrounding area was left untreated. The results showed that the 

host location behaviour is influenced by age and feeding status of the wasps, whilst it 

did not affect by environmental temperature and wasps density. The potential 

significance of these results in the host location behaviour of T. basalis is discussed. 

 

Keywords: Trissolcus basalis, Nezara viridula, host location, endogenous and 

exogenous factors. 
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Riassunto 

 

L’efficienza dei parassitoidi nel regolare le popolazioni dei loro ospiti dipende da molti 

fattori, quali ad esempio il potenziale riproduttivo, l’età, l’abilità nella ricerca 

dell’ospite, il sincronismo spazio-temporale e i parametri ambientali. Molti studi 

hanno focalizzato la loro attenzione sugli effetti che i fattori endogeni ed esogeni 

possono avere sul potenziale riproduttivo del parassitoidi, come ad esempio la 

longevità, focalizzandosi, dunque, principalmente sui parametri biologici e fisiologici. 

In questo lavoro vengono studiati gli effetti di 4 fattori, età (3 giorni contro 20), 

densità d’allevamento (parassitoidi isolati singolarmente o non per 20 giorni), lo stato 

nutrizionale del parassitoide (alimentato o non per 2 giorni) e la temperatura 

ambientale (4°C o 25°C) sulle comportamento di ricerca dell’ospite da parte di un 

ooparassitoide, usando come strumento le tracce lasciate dall’ospite e come modello 

il sistema Trissolcus basalis (Wollaston) (Hymenoptera: Platygastridae)- Nezara 

viridula. (L.) (Heteroptera: Pentatomidae).  Questi segnali, funzionando come 

cairomoni di contatto e segnali indiretti, guidano il parassitoide, inducendo una 

ricerca “motivata”, verso un’area dove c’è una più alta possibilità di trovare il proprio 

target. Bioasaggi sono stati condotti su un'arena aperta costituita da un foglio di carta 

da filtro nel mezzo della quale è stata definita una superficie circolare (4 cm di 

diametro) ed esposta per 30 minuti ad un adulto di N. viridula; l'area circostante è 

stata lasciata non trattata. I risultati hanno mostrato che la ricerca dell’ospite da parte 

di T. basalis è influenzata dai fattori endogeni, quali età e stato nutrizionale, mentre i 

fattori esogeni, quali temperatura ambientale e la densità di allevamento, non hanno 

influenzato il comportamento del parassitoide. Il potenziale significato di questi 

risultati nel comportamento di ricerca dell’ospite da parte di T. basalis è discusso. 

Parole chiave: Trissolcus basalis, Nezara viridula, localizzazione dell’ospite, fattori 

endogeni ed esogeni.  
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Introduction 

 

Several studies have carefully focused the interest on the effects of the 

endogenous and exogenous factors on the reproductive potential of the parasitoids 

as well as their life expectancy. The age of the parasitoids and the nutritional sources 

are factors well known influencing their biology and fitness, such as the parasitism 

rate. For example, the egg parasitism by female Ceratogramma etiennei Delvare 

(Hymenoptera: Trichogrammatidae) is affected by its age, indeed the optimal age for 

successful parasitism by this parasitoid range from 1 to 2-d old (Amalin et al., 2005). 

Moreover, the age influences the flight activity of Microplitis mediator (Haliday) 

(Hymenoptera: Braconidae) females. Yu et al., in 2009 showed variability in flight 

capability at different ages: the mean flight distance gradually increased with age 

between 1 and 7 days. Many parasitoids require non-host food resources, for 

example floral nectar, honeydew or other sugar diets, such as honey-water solution, 

used often in laboratory conditions, to achieve maximum longevity and reproductive 

capability (Wäckers 2003). The survivorship of Macrocentrus grandii (Goidanich) 

(Hymenoptera: Braconidae) individuals, that were provided with sucrose-water, was 

found be higher than the individuals with only water available (Olson et al., 2000). 

Studies on insect cold-hardiness have been investigated in many insect species 

(Sømme, 1999) and are generally achieved by measuring the capacity to survive at 

constant (Bale 2002 and Renault et al., 2002) and/or fluctuating (Colinet 2006) low 

temperatures for extended periods. Experiments dealing with storage of Telenomus 

busseole Gahan (Hymenoptera: Scelionidae) adults indicated significant effect on its 

survival. At 8°C, the percentage of survival adults decreased sharply, while the ideal 

storage temperature is 12 ± 1°C (Bayram et al., 2005). Since the physiologic and 

biologic effects of the endogenous and exogenous factors are very well documented, 

less are the investigations on parasitoid behaviour impact. The environmental and 
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physiological conditions of the parasitoids may influence their host searching 

behaviour and, as a consequence, their efficiency as a biological control agent. The 

environmental factors include the leading stimuli from the host and/or the host 

habitat as well as abiotic factors, mainly climatic conditions (Harvey 2005). Moreover, 

the physiological state of the parasitoids influence their foraging motivation; age, egg 

load, hunger and mating status are among the parameters known to influence host 

selection behavior (Vinson 1998). The nutrient limitation might indirectly affect 

fitness traits such as host finding and dispersal efficiency (Bezemer et al., 2005). The 

flight activity of Fopius arisanus (Sonan) (Hymenoptera: Braconidae), an egg-pupal 

parasitoid of many Tephritidae species, is strongly influenced by feeding status 

showing that the flight decreases after 48 h of starvation (Rousse et al., 2009). 

Parasitoid's performance is influenced by endogenous and exogenous factors in terms 

of parasitism ability, fecundity and host selection process. The study of these aspects 

has been evaluated using the generalist egg parasitoid Trissolcus basalis (Wollaston) 

(Hymenoptera: Platygastridae) that is commonly used as biological agent of the green 

vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae). The potential effects 

of the age and of stress such as cold storage, hunger status and wasps density, so far, 

have not been considered on the walking behaviour of T. basalis. Its foraging behavior 

is mediated by semiochemicals associated with its hosts. The most reliable signal for 

egg parasitoids to optimize the host location is the footprints, chemicals remaining on 

the substrate where the host has walked (Vinson 1998). In response to these chemical 

signals, female of T. basalis displays a well known arrestment behaviour and a 

prolonged period of walking on contaminated areas with systematic return to the 

stimulus and characteristic sequences of walking changing in speed and in frequency 

of turning (Colazza et al., 1999; Peri et al., 2006; Rostàs et al., 2008). This behaviour 

has been remarkably studied. Naïve T. basalis females are able to discriminate 

between areas contaminated by chemical residues left by a host female or host male, 

with a clear preference for the first (Colazza et al., 1999). Furthermore, wasps’ 
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arrestment response to chemical residues of host females became weaker when 

wasps were not rewarded by an oviposition experience, and stronger following 

successful oviposition (Peri et al., 2006). The contact kairomone that elicits foraging 

by T. basalis females is present in the cuticular lipids of N. viridula, and that the 

presence or absence of nC19 allows T. basalis females to distinguish between residues 

left by male or female hosts (Colazza et al., 2007). Moreover, studies demonstrated 

that T. basalis has some learning-forgetting capacities as far as the response to host 

footprints is concerned (Dauphin et al., 2009). In details, this study, using the host 

footprint exploitation as a tool, focus to the understanding how the endogenous and 

exogenous factors, such as (1) Wasp age, (2) Wasp density, (3) Environmental 

temperature, and (4) Feeding status, may influence the host searching ability of T. 

basalis.  
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Materials and methods 

Insects  

Nezara viridula and Trissolcus basalis colonies were started from materials collected 

during summer 2013 from fields located around Palermo, Italy. The N. viridula colony 

was reared in an environmental room (25±1°C, 50±10% relative humidity and L16:D8), 

inside wooden cages (50 x 30 x 35·cm) ventilated with mesh. Paper towels were 

placed inside each adult cage as an ovipositional substrate. All stages were fed with 

fresh cabbage, cauliflower, beens and sunflower seeds. Food was changed every 2 

days and water was provided through cotton wool soaked in small containers.  

 

Bugs used for bioassay preparation were females, mated, in pre-ovipositional 

physiological state (i.e., with enlarged and slightly bloated abdomens) and 

approximately 10–14 days post-emergence. They were separated from males after 

mating and isolated individually for 24 h before the experiment.   

 

The colony of T. basalis, established from around 140 wasp females emerged from N. 

viridula sentinel egg masses placed in cultivated fields nearby Palermo, was reared in 

an environmental room (25±1°C, 50±10% relative humidity and L16:D8), inside 85 ml 

glass tubes and fed with drops of honey-water solution (80:20 v/v). Three times per 

week, 1-2-day-old egg masse of N. viridula were removed from the oviposition 

substrate, glued on a strip of filter paper and singly exposed to 3 female wasps for 3 

days in a 85 ml glass tube. The parasitized egg masses were held in the same 

environmental conditions until adult emergence. After emergence, males and females 

were kept together to allow mating and 24h later were differently reared according to 

experiments.  
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Effect of wasp age - wasps were individually isolated in 2-ml glass vials, fed with a 

drop of honey-water solution (80:20 v/v) and stored at 25° C for 3 (Young) or 25 days 

(Old). Each treatment was replicated 45 times.  

Effect of wasp density - wasps were placed individually (Isolated) or in group of 40 

(Crowded) inside a 85 ml glass tube provided of a drop of honey-water solution (80:20 

v/v) for 20 days at 25° C. One hour before bioassay, wasps were isolated in 2-ml glass 

vial. Each treatment was replicated 25 times.  

Effect of environmental temperature – wasps were individually isolated in 2-ml glass 

vials, provided of a drop of honey-water solution (80:20 v/v) and a piece of paper as 

provision of shelter. Vials were stored in climatic chamber in dark conditions for 5 

days at 4°C (Cold) or 25°C (NoCold). Each treatment was replicated 45 times. 

Effect of feeding status – wasps were individually isolated in 2-ml glass vials, and 

provided (Fed) or not (Unfed) of a drop of honey-water solution (80:20 v/v). Vials 

were stored at 25° C for 2 days. Each treatment was replicated 45 times. 

 

Bioassay procedure 

Bioassays were conducted in an open arena consisting of a quadrate sheet of filter 

paper (20x20·cm; wasp/arena ratio 0.002%), In the middle of each arena, a circular 

area (6·cm diameter; 7.1 % of the total area; wasp/arena ratio: 0.07%) was defined by 

a cardboard mask put on the filter paper, and exposed for 30 min to a single adult 

female of N. viridula, leaving the surrounding area untreated. To ensure bug legs were 

in constant contact with the filter paper and, at the same time, to avoid surface 

contamination with bug volatiles, adults were constrained under a steel mesh cover 

(6 cm diameter, 1 cm high, 0.01 cm mesh) and forced to walk with a device made 

from a transparent polyethylene Petri dish cover connected to a table watch. Open 
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arenas contaminated by bug’s faeces were not used for bioassays. Sixty minutes prior 

to the experiments, female wasps were transferred to the bioassay room (25±1°C, 50 

± 10% RH) to acclimatize. After removing the bug, a female wasp was gently released 

in the middle of the circular area. All wasps used for the bioassays were naïve to 

oviposition experience, lacked previous contact with host chemical traces. The arena 

was illuminated from above by two 22-W cool white fluorescent tubes (Full spectrum 

5900 K, 11W; Lival, Italy). Wasps that immediately displayed the typical arrestment 

posture, i.e. motionless with the antennae in contact with the leaf surface were 

scored as ‘‘responding’’ (Fig. 25). Wasps that did not show the arrestment response 

were recaptured and retested approximately 1 min later. After three unsuccessful 

trials, wasps were considered ‘‘non-responding’’ and excluded from the data analysis. 

Responding female behaviour was recorded using a monochrome CCD video camera 

(Sony SSC M370 CE) fitted with a 12.5–75 mm/F 1.8 zoom lens, until wasp flew away 

from or walked off the whole arena. Analog video signals from the camera were 

digitized by a video frame grabber (Studio PCTV–Pinnacle Systems, Mountain View, 

CA). Digitalized data were processed by XBug, a video tracking and motion analysis 

software. Wasp and arena were discarded after each successful bioassay. The walking 

behaviour of female wasps were measured as (1) residence time in the entire arena, 

i.e. pooling time spent by wasps inside and outside the circular contaminated area 

(Fig. 26), (2) average linear speed (mm s–1) and (3) tortuosity index, i.e. a spatial index 

computed from the coordinates of the wasps (sample rate=15 points s–1) calculated as 

1–mp/tl where mp=maximum projection of the track in a general straight line of the 

plane, and tl=total length of the track. The value of this last parameter can range from 

0.0 to 1.0, with higher values corresponding to more tortuous walking paths (Colazza 

et al., 1999). All experiments were carried out from 09:00 h to 13:00 h. 
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Fig. 25 “Responding” Trissolcus basalis females in arrestment position with antennae kept in 

touch with the substrate. 

 

Fig. 26 Imagine taken by X-bug software. Red track represents walking path of Trissolcus 

basalis females on Nezara viridula females footprints. Inner circle was the treated area, 

remaining arena was untreated. 
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Statistical analysis 

All parameters evaluated were analyzed using Student’s t-test for independent 

samples. Statistical analyses were processed using Statistica7 software. 

 

 

 

Results 

 

Experiment 1: Effect of wasp age 

The host searching behaviour of T. basalis old females, showed longer arena 

residence time compared to young wasps (t-value= -2.5654, df=88, P=0.012) (Fig. 

27a). The mean linear speed of old wasps was lower (t-value= 2.4254, df=88, P=0.017) 

while no difference was found on the tortuosity index (t-value= -1.4460, df=88, 

P=0.1517) (Fig. 28a and 29a) 

Experiment 2: Effect of wasp density 

On the average, the arena residence time of responding wasps showed no statistical 

difference between isolated and crowded females (t-value= -0.6206, df=39, P=0.538) 

(Fig. 27b). In the same way, no statistical differences were found on linear speed (t-

value= -1.5843, df=39, P= 0.121) and on tortuosity index (t-value= -1.0827, df=39, P= 

0.285) (Fig. 28b and Fig. 29b). 

Experiment 3: Effect of environmental temperature 

Bioassays showed no statistic difference between cold and nocold wasps for all 

parameters taken into account (arena residence time: t-value= -0.2883, df=88, P= 
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0.774; linear speed: t-value= 0.9552, df=88, P= 0.3421; tortuosity index: t-value= -

0.1550, df=88, P= 0.877) (Fig.27c, Fig.28c and Fig. 29c). 

Experiment 4: Effect of feeding status 

Fed wasps showed significantly a longer arena residence time (t-value= -2.7487, 

df=84, P= 0.007) (Fig. 27d) and lower linear speed (t-value= -3.2803, df=84, P= 0.001) 

(Fig. 28d) then unfed wasps. No statistical differences were found on tortuosity index 

(t-value= -1.1441, df=84, P= 0.256) (Fig. 29d). 
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Fig. 27. Searching time expressed as Residence time (min) of females of Trissolcus basalis exploring an artificial substrate contaminated with 

footprints laid by adult female of the host Nezara viridula. Asterisks indicate values that differed significantly (p<0.05). 
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Fig. 28 Searching time expressed as men linear speed (mm sec
-1

) of females of Trissolcus basalis exploring an artificial substrate contaminated 

with footprints laid by adult female of the host Nezara viridula. Asterisks indicate values that differed significantly (p<0.05). 



99 

 

 

Fig. 29 Searching time expressed as Tortuosity index (see Bioassay procedure for definition) of females of Trissolcus basalis exploring an 

artificial substrate contaminated with footprints laid by adult female of the host Nezara viridula. 
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Discussion 

 

The results showed that the searching ability is influenced by the endogenous 

factors, wasp age and feeding status, whilst it did not effect by the exogenous factors, 

environmental temperature and wasps density.  

The process of host finding usually consists of some steps, e.g., host habitat location, 

host location, host recognition and host acceptance (Vinsons 1998). Parasitoids of 

herbivorous insects use visual signals and chemical cues emitted by the infested plant 

or originated from the hosts to distinguish infested from uninfested areas and to 

locate the appropriate host stages (Turlings and Wäckers 2004; Vet and Dicke 1992). 

In particular, for egg parasitoids, once landed on a plant, host chemical footprints 

represent indirect host related contact cues used by the wasps to restrict the host 

searching to an area where host eggs are more likely to be found (Colazza et al. 2010). 

In this way, once on infested plants, parasitoid host searching behaviour is showed by 

lowered flight propensity, prolonged stay on the plant, reduced movement, and 

increased klinokinesis (Colazza et al., 1999). For T. basalis, this innate response to host 

chemical footprints is influenced by the reproductive success accumulated while 

foraging on plant surfaces contaminated by host residues. Indeed, the decision to 

remain on the path to search for hosts was influenced by oviposition experience. The 

arrestment responses to chemical residues of host females of T. basalis females 

became stronger following successful oviposition (Peri et al., 2006). The efficacy of 

using natural enemies to control pests under field conditions largely depends on their 

fitness, in term of mobility and, more specifically, capacity to quickly locate pest 

infestation. The environmental and physiological condition might affect these 

capacities (Boller 1972). In this study, the role of the host chemical footprints focused 

to improve the understanding how the endogenous and exogenous factors influence 

the host location behaviour of T. basalis.   
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The results showed that the age of the parasitoid is an endogenous factor affecting 

the host location; indeed, T. basalis females 25 days old showed longer arena 

residence time compared to younger parasitoids. To date, the effect of age of the 

parasitoids on their fitness has been documented from a biological and physiological 

point of view, for example in terms of ability to parasitize the host. Indeed, the 

optimum age for Cotesia marginiventris (Cresson), to successfully parasitize larvae of 

Spodoptera frugiperda (J.E. Smith) ranges from 48 to 96 h. Cotesia marginiventris 

younger or older than the above age were not able to parasitize a host  (Rajapakse 

1992).  

Parasitoid survival and fecundity is generally enhanced with access to carbohydrate 

food sources. The feeding status is a crucial factor that affects the host location 

behaviour of parasitoids and not availability of food showed to change the fitness of 

unfed parasitoids. Lack of suitable food sources for adult wasps is recognized as 

primary cause of failure in biological control programs (McDougall and Mills 1997; 

Bautista et al., 2001). Indeed, the hunger status of the wasps might combine the food-

patches research with host-patch exploitation. In this sense, the reduction in arena 

residence time and the increased linear speed showed by T. basalis unfed females 

may be related to accessible food research.  

The tolerance to cold storage is another factor that might affect the host location 

ability of the biological control agents. The low temperature can strongly affect the 

insect locomotion (Kostál et al., 2006) or the flight capability (Luczynski 2007). The 

exposure time to cold treatment defined in this experimental protocol did not affect 

the post-storage ability of T. basalis, indeed no statistic difference was found on the 

host searching behaviour. Storage at low temperature may be a valuable method for 

increasing the shelf life of natural enemies such as insect eggs parasitoid (McDonald 

and Kok 1990 and Venkatesan et al. 2000). Although the outcome is influenced by a 

wide range of biotic and abiotic factors experienced before, or during, the cold 

exposure (Colinet and Boivin 2011), the development of cold storage techniques for T. 
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basalis may be considered of utmost importance to provide efficiency in mass 

production, as demonstrated by some studies focused on Trichogramma species. 

(Boivin, 1994; Li, 1994; Bayram et al., 2005).  

From a biological control perspective, knowing the influence of endogenous and 

exogenous factors on the parasitoid searching ability is a crucial element to enhance 

their efficiency.  Knowing the age of the parasitoids when they are “most efficient” 

might be very important in deciding the release in the field to obtain a meaningful 

level of parasitism.  
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Concluding remarks 
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In assessing successful biological control programs by parasitoids, the 

knowledge of important traits, such as the host finding capability, i.e. the ability to 

find host and food resources, play the key role. Moreover, parasitoids in their natural 

environment parasitoids deal with a variable mixtures of natural cues. Some chemical 

cues are used by the wasps to locate their hosts, some ones drive wasps to feeding 

resources. The parasitoid response to these cues can fluctuate according to biotic 

factors and abiotic condition. 

This dissertation focus in details on the role of two important tools, such as selective 

flowering plants as food resources to add within a crop area and the traces left 

behind by the hosts while moving on the plant used by parasitoids to locate their 

host. These tools are important in order to increase the natural enemy effectiveness 

and thus develop successful programmes of Conservation Biological Control. 

In detail, the results of this 3-year period of research reported in this thesis focus on 

understanding the role of the flowering plants as food resources and the influence of 

endogenous and exogenous factors on the host finding behaviour using the egg 

parasitoid Trissolcus basalis (Wollaston) (Hymenoptera: Platygastridae) as a model. 

On the first chapter is presented an overview on the Conservation Biological Control 

approch underlining the need to select the “right” diversity to add in agroecosystem. 

The second chapter starts with a general introduction on the strategy of host 

searching behaviour of parasitoids and using the footprints as “indirect host-related 

cues”. The chapter is complemented by an overview of the studies on the behaviour 

of the egg parasitoid Trissolcus basalis (Wollaston) once in contact with the traces left 

by its adult host Nezara viridula (L.) (Heteroptera: Pentatomidae). 

The third chapter tells the effect of different floral nectar diets on the fitness and on 

the attractiveness for the egg parasitoid T. basalis. The results showed that the floral 

resources of buckwheat plants (Fagopyrum esculentum Moench) were able to give 

the best performance in term of fitness in T. basalis. The attractiveness of buckwheat 

flowers for T. basalis females is demostrated by the olfactometer experiments, that 
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showed that the parasitoids spent significantly more time exploring the chambers 

connected to the flowers over the stems and leaves of the same plants only when the 

wasps are in contact with the buckwheat volatiles. Moreover, interesting results have 

arisen from electrophisiology experiments. Indeed, the attractiveness of some 

buckwheat compounds for T. basalis suggests a sort of peculiar ability to respond to 

distinct plant volatiles and use these olfactory cues to locate available food sources 

efficiently. 

In the fourth chapter the influence of endogenous and exogenous factors affecting T. 

basalis host location behaviour and thus its efficiency as a biological control agent is 

discussed. By using the parasitoid exploitation of the chemical footprints left by its 

host N. viridula as a tool, it was found that only the endogenous factors wasps age 

and feeding status affect T. basalis host searching behaviour . 

 

Further prospective 

 

For survival and reproduction, it is well known that parasitoids are not only 

dependent on volatiles from the host or from the host plant in order to locate their 

hosts but also on floral odours to find plant nectar. Thus, improving floral resources 

within the crop can enhance recruitment and residency of beneficial arthropods.  

Parasitic insects are known to rely on the detection of few specific volatile 

compounds to locate a resource successfully. The finding of the electrophisiology 

experiments, that is the consistent GC-EAD responses in correspondence of two 

carboxylic acids, i.e. isovaleric acid and butanoic acid, 2 methyl, present on the 

chemical profile of volatiles collected from only buckwheat flowers, may be an 

interesting scenario of T. basalis olfactory orientation to a resource by a match of 

resource-indicating key compounds.  
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Although positive results were obtained with buckwheat plants in the enclosed 

system used in this study, it is important to extend this findings to the field where the 

effects of the plant species on the wasps can be evaluated under natural conditions 

before they are deployed as farmscaping plants for management of N. viridula. Under 

field conditions the net benefit of these plants species for pest species can also be 

evaluated to ensure that the plants do not enhance pest risk. 

Moreover, the use the use of wildflower strips, companion planting, trap cropping 

and intercropping, may be non-exogenous methods that might be used in “Attract 

and Reward” approach for the development of effective Conservation Biological 

Control strategies. Indeed, if “Attract and Reward” approach is based on the 

application of exogenous semiochemicals (for example synthetic HI Vs) as “attract” 

and non crop plants or floral resources as a “reward”, may be intersting focus futher 

field experiments using buckwheat plants as rewarding elements. In this way may be 

possible to achieve the abundance and the establishment of T. basalis, with positive 

contribute to biological control of N. viridula.  

 


