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Abstract

We show that the toroidal Lie group G = C2/Λ, where Λ is the lattice generated by
(1, 0), (0, 1) and (τ̂ , τ̃), τ̂ /∈ R, is isomorphic to the generalized Jacobian JL of the complex
elliptic curve C with modulus τ̂ , defined by any divisor class L ≡ (M) + (N) of C fulfilling
M − N = [℘(τ̃) : ℘′(τ̃) : 1] ∈ C. This follows from an apparently new relation between the
Weierstrass sigma and elliptic functions.

1 Introduction

In order to determine the periods of the generalized Jacobian JL of a complex elliptic curve C with
modulus L, we consider complex functions of two variables with three R-independent periods.
These functions were studied for the first time by Cousin in 1910 [3] and are at the origin of the
theory of generalized Jacobians. After having been explicitly mentioned by Severi in 1947 [10] in
the case of the field C of complex numbers, generalized Jacobians were introduced by Rosenlicht
in 1954 [8] in the general context of algebraic groups over an arbitrary field. The representation
of the generalized Jacobian of a curve as an extension of a linear group by the ordinary Jacobian
has been widely investigated in [9], and since then. More recently a growing interest on the
computational aspects of generalized Jacobians over finite fields arose from [5].

When one considers an n-dimensional toroidal group G = Cn/Λ (sometimes called quasi-torus)
of real rank r = n + 1 (see, e.g., [1]), it is easy to see that the toroidal group is an extension of
a (n− 1)-dimensional maximal linear sub-torus by an elliptic curve C with period matrix (1, τ̂),
with τ̂ /∈ R, (cf. [4], Prop. 2.2.3, p. 26) and, because the functor Ext(C, (C∗)n−1) is additive, one
can restrict to the case where n = 2 and G is defined by the lattice Λ generated by (1, 0), (0, 1)
and (τ̂ , τ̃), for a given τ̃ ∈ C such that the only pair (a, b) ∈ Z2 such that aτ̂ + bτ̃ is an integer is
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the pair (0, 0). As such, it is also an example of a complex commutative theta group (see [7] §23,
cf. [2] §6.1). In this paper we consider the generalized Jacobian JL corresponding to G and we
bridge these two representations by finding of the modulus L = (M) + (N) which gives in turn
the period lattice Λ of G with a purely geometric description.

Roughly speaking, the generalized Jacobian JL of a curve C relative to the module (effective
divisor) L =

∑
nP (P ), P ∈ C, is obtained when two divisors of C are identified if they differ for

a principal divisor (g) of a function g such that vP (1 − g) ≥ nP for any P ∈ C, where vP is the
discrete valuation of the local ring OP of the rational functions of C that are regular in P .

Fixing a point Ω ∈ C, given a divisor D we denote simply by P the point of C and by f ∈ C(C)
the function such that D = (P )− (1− deg(D))(Ω) + (f). Thus, in the case where the module is
L =

∑n
i=0(Qi), two divisors D1 and D2 are equivalent when D1 = (P )− (1−deg(D1))(Ω) + (f1),

D2 = (P )− (1− deg(D2))(Ω) + (f2) and f1(Qi)
f1(Q0)

= f2(Qi)
f2(Q0)

, for any i = 1, . . . , n.

Clearly, the function LP1,P2
such that the sum of the two divisors (P1)− (Ω) and (P2)− (Ω)

is equal to (P1 + P2) − (Ω) + (LP1,P2
) is proportional to

`P1,P2
(X)

`P1+P2,Ω
(X) , where `A,B(X) = 0 is the

line through A and B, or the tangent in A to C, if A = B. Thus,

D1 +D2 = (P1 + P2)−
(
1− deg(D1)− deg(D2)

)
(Ω) + (f1f2LP1,P2

). (1)

For the ordinary Jacobian of C we do not keep track of the fact that f3 = f1f2LP1,P2
. But now,

for any L =
∑n
i=0(Qi), the n–tuple cL(P1, P2) =

(
LP1,P2

(Q1)

LP1,P2
(Q0)

, . . . ,
LP1,P2

(Qn)

LP1,P2
(Q0)

)
keeps record of the

cosets modulo the principal divisors (g) such that vQi(1− g) ≥ 1 for any i = 0, . . . , n and clearly
from (1) it follows that cL is a (non–regular) factor system. It must be noticed that the partial
operation (P1, k1) + (P2, k2) =

(
P1 + P2, k1 · k2 · cL(P1, P2)

)
cannot be continuously extended to

X × C∗ and gives therefore only a birationally isomorphic image ΞL of JL (in the sense of [11]).

The non–regular factor system cL : C × C → C∗ corresponding to JL induces a non–regular
factor system cLP : C×C→ C∗, (x1, x2) 7→ cL

(
P (x1), P (x2)

)
, with P (x) = [℘(x) : ℘′(x) : 1] ∈ C.

Since every commutative Lie group extension of C∗ by C is splitting, we expect to unveil cLP as
a co-boundary δ1(g) : C× C→ C∗, for some g : C→ C∗.

2 Triply periodic functions

About the geometric description we are looking for, it is worth noticing that, as we expect
that cLP = δ1(g), it will not be possible to express g(x) in function of P (x) = [℘(x) : ℘′(x) :
1] ∈ C, even if the factor system cL = δ1(g) in C is given in terms of the points P (x) and
P (y). Nevertheless, g can be expressed as a function of the Weierstrass sigma function σ(x)
corresponding to ℘(x), as we have:

Theorem. With the above notations, let M = P (vM ) and N = P (vN ) be two different points
of C such that P (τ̃) = M −N . The function G(x, y) = exp(2πiy)g(x), where

g(x) = exp
(

2η1(vN − vM )x
)σ(vM )

σ(vN )

σ(x− vN )

σ(x− vM )
,

(with the constant η1 defined, e.g., in [6], p. 150) is triply periodic with period lattice Λ.
The generalized Jacobian JL of C defined by the modulus L = (M) + (N) is isomorphic to

C2/Λ, and we find that δ1(g) = cLP is the rational non-regular factor system of the extension
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corresponding to L and the map (x, y) + Λ 7→
(
P (x), G(x, y)

)
is an isomorphism from C2/Λ onto

a birationally isomorphic image of JL.

Proof. The first part of the claim could be verified a posteriori, but we want to give a constructive
proof, which better explains the link between the quotient Lie group C2/Λ and the generalized
Jacobian JL.

Let the 2–dimensional toroidal group G be defined by the lattice Λ generated by (1, 0), (0, 1)

and (τ̂ , τ̃), with τ̂ /∈ R. Let σ(x), ζ(x) = σ′(x)
σ(x) and ℘(x) = −ζ ′(x) be the Weierstrass sigma func-

tion, zeta function and elliptic function, respectively, corresponding to the lattice in C generated
by 1 and τ̂ . Fix the epimorphism

z 7→ P (z) := [z3℘(z) : z3℘′(z) : z3]

from C onto the corresponding elliptic curve C = C(τ̂) of the projective plane of coordinates
[X : Y : T ], having O = [0 : 1 : 0] as the zero element.

Let M = [XM : YM : TM ] and N = [XN : YN : TN ] be two distinct non-zero points of C, let

L = (M) + (N) and let cL(P1, P2) :=
`P1,P2

(M)

`P1+P2,O(M)

`P1+P2,O(N)

`P1,P2
(N) be the non–regular factor system

which defines on C ×C∗ a birational group ΞL, birationally isomorphic to JL, where `A,B(X) = 0
is the line through A and B, or the tangent in A to C, if A = B (cf. [9], §7 n. 16).

We look for a homomorphism C2 −→ ΞL with Λ as the kernel. We can assume (0, y) 7→
(O, e2πiy). Let ε be a complex multiplication such that (x, 0) 7→ (P (εx), g(x)), for a suitable
g : C −→ C∗ such that δ1(g) = cLPε, that is, g(x1 + x2) = g(x1)g(x2)cL(P (εx1), P (εx2)).

As P (0) = O, the derivative at x2 = 0 of the last equation must be performed in the chart

Y 6= 0 containing O and, deriving with respect to x2 in the chart
[
℘(z)
℘′(z) : 1 : 1

℘′(z)

]
we find

g′(x1 + x2) = g(x1)(g′(x2)cL(P (εx1), P (εx2)))+

g(x1)g(x2)
(
ε
(
1−℘(εx2)℘′′(εx2)

℘′(εx2)2
) ∂

∂XP (εx2)
cL(P (εx1), P (εx2))−ε ℘

′′(εx2)

℘′(εx2)2
∂

∂TP (εx2)
cL(P (εx1), P (εx2))

)
.

Putting x2 = 0, since
(
1− ℘(0)℘′′(0)

℘′(0)2

)
= − 1

2 , ℘′′(0)
℘′(0)2 = 0, and cL(P (εx1),O) = 1, we find

g′(x1)

g(x1)
= g′(0)− 1

2
ε
( ∂

∂XP (εx2)
cL(P (εx1),O)

)
.

Since cL(P1, P2) =
`P1,P2

(M)

`P1+P2,O(M)

`P1+P2,O(N)

`P1,P2
(N) , the computation of ∂

∂XP (εx2)
cL(P (εx1), P (εx2)) is in-

convenient, whereas a direct computation shows that

lim
δ→0

1

δ

(
cL
(
[X : 1 : T ], [δ : 1 : 0]

)
− 1
)

=

−YMT (−TNX +XNT )− TM (XNT + YNXT ) +XM (TNT + YNT
2)

(−TMX +XMT )(−TNX +XNT )
.

Hence we have

g′(x1)

g(x1)
= g′(0)− XMYN − YMXN + (YMTN − TMYN )℘(εx1) + (XMTN − TMXN )℘′(εx1)

2(XM − TM℘(εx1))(XN − TN℘(εx1))
.
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Thus we have to solve the separable differential equation

g′(x)

g(x)
= g′(0) +

YM
2(XM − TM℘(εx))

− YN
2(XN − TN℘(εx))

− (XMTN − TMXN )℘′(εx)

2(XM − TM℘(εx))(XN − TN℘(εx))
.

Let log z be the principal value of the logarithm. Integrating by substitution, the last summand
gives, up to an additive constant, the primitive integral∫

(XMTN − TMXN )℘′(εx)

(XM − TM℘(εx))(XN − TN℘(εx))
dx =

1

ε
log

TM℘(εx)−XM

TN℘(εx)−XN
.

For the second and the third primitive integral, let vM , vN ∈ C be such that M = [℘(vM ) :
℘′(vM ) : 1] and N = [℘(vN ) : ℘′(vN ) : 1], that is XM = TM℘(vM ), YM = TM℘

′(vM ) and
XN = TN℘(vN ), YN = TN℘

′(vN ).

Since ζ(x) = σ′(x)
σ(x) and ℘(x) = −ζ ′(x), applying the addition formula for ζ (see, e. g., [6],

(6.8.4), p. 161), we find, up to an additive constant,∫
YM

XM − TM℘(εx)
dx =

1

ε
log

σ(εx+ vM )

σ(εx− vM )
− 2xζ(vM ),

and the same for the second summand. Thus, up to a constant α of integration, we have

log g(x) = α+Hx+
1

2ε
log

(
TN℘(εx)−XN

TM℘(εx)−XM

σ(εx+ vM )

σ(εx− vM )

σ(εx− vN )

σ(εx+ vN )

)
, (2)

where we have put g′(0)− ζ(vM ) + ζ(vN ) = H.
In order to simplify log g(x), we write

σ(εx+ vM )

σ(εx− vM )

σ(εx− vN )

σ(εx+ vN )
=
σ(εx+ vM )σ(εx− vM )

σ(εx− vM )2
σ(εx− vN )2

σ(εx+ vN )σ(εx− vN )
,

and we apply the addition formula for σ (see, e. g., [6], (6.7.5), p. 158), obtaining that the last
is equal to (

℘(vM )− ℘(εx)
)
σ(εx)2σ(vM )2

σ(εx− vM )2
σ(εx− vN )2(

℘(vN )− ℘(εx)
)
σ(εx)2σ(vN )2

.

Now equation (2) becomes

log g(x) = α+Hx+
1

2ε
log

(
TN℘(εx)−XN

TM℘(εx)−XM

℘(vM )− ℘(εx)

℘(vN )− ℘(εx)

σ(εx− vN )2

σ(εx− vM )2
σ(vM )2

σ(vN )2

)
(3)

and, substituing XM = TM℘(vM ) and XN = TN℘(vN ), we get

log g(x) = α+Hx+
1

2ε
log

(
TN
TM

σ(εx− vN )2

σ(εx− vM )2
σ(vM )2

σ(vN )2

)
. (4)

From the membership of (0, 1) in the lattice, it follows that g(0) = 1, that is,

log g(x) = Hx+
1

2ε
log

(
σ(εx− vN )2

σ(εx− vM )2
σ(vM )2

σ(vN )2

)
. (5)
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Now, since

log
(
cL(P (εx1), P (εx2))

)
= log

(
δ1(g) (x1, x2)

)
=

1

ε
log δ1

(
σ(εx− vN )

σ(εx− vM )

σ(vM )

σ(vN )

)
and since the first terms of the MacLaurin series for cL

(
P (εx1), P (εx2)

)
are the same of the ones

for δ1
(
σ(εx−vN )
σ(εx−vM )

σ(vM )
σ(vN )

)
, that is,

1 + ε2(℘(vM )− ℘(vN ))x1x2 +
ε3

2
(℘′(vN )− ℘′(vM ))(x21x2 + x1x

2
2),

it follows that ε = 1. From (5) we get now g(x) = exp(Hx)σ(vM )
σ(vN )

σ(x−vN )
σ(x−vM ) .

From the quasi-periodicity of σ:

σ(z + nτ̂ +m) = (−1)(n+m) exp
(

2η3(n2τ̂ /2 + nz) + 2η1(m2/2 +m(z + nτ̂))
)
σ(z),

(where η1 and η3 = η1τ̂−iπ are constants, for details see [6] §6.2, p. 150) and from the membership
of (1, 0) in the lattice, it follows g(1) = 1, hence we have:

1 = exp(H)
σ(vM )

σ(vN )

exp
(

2η1(1/2− vN )
)
σ(−vN )

exp
(

2η1(1/2− vM )
)
σ(−vM )

= exp
(
H + 2η1(vM − vN )

)
,

that is, for some h1 ∈ Z we obtain

2h1πi = H + 2η1(vM − vN ). (6)

Finally, from the membership of (τ̂ , τ̃) in the lattice, it follows g(τ̂) exp(2πiτ̃) = 1, hence we
have:

1 = exp(Hτ̂)
σ(vM )

σ(vN )
exp(2πiτ̃)

σ(τ̂ − vN )

σ(τ̂ − vM )
= exp(Hτ̂)

σ(vM )

σ(vN )
exp(2πiτ̃ + 2η3(vM − vN ))

σ(vN )

σ(vM )
,

that is,
exp(Hτ̂ + 2πiτ̃ + 2η3(vM − vN )) = 1.

Thus, for some h2 ∈ Z, we get

Hτ̂ + 2πiτ̃ + 2η3(vM − vN ) = 2h2πi. (7)

Recalling that η1τ̂ = η3 + iπ, from (7) and (6) it follows that

2h1πiτ̂ = 2h2πi− 2πiτ̃ + 2πi(vM − vN ),

hence the point P (τ̃) = [℘(τ̃) : ℘′(τ̃) : 1] is equal to M −N .

Remark : The relationship δ1(g) = cLP gives now

σ(vN )

σ(vM )

σ(x1 + x2 − vN )σ(x1 − vM )σ(x2 − vM )

σ(x1 + x2 − vM )σ(x1 − vN )σ(x2 − vN )
=
`P (x1),P (x2)(M)

`P (x1+x2),O(M)

`P (x1+x2),O(N)

`P (x1),P (x2)(N)
,

an apparently new relationship between the Weierstrass sigma and elliptic functions.
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