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Abstract

We show that the toroidal Lie group G = C?/A, where A is the lattice generated by
(1,0), (0,1) and (7,7), T ¢ R, is isomorphic to the generalized Jacobian Jr, of the complex
elliptic curve C with modulus 7, defined by any divisor class L = (M) + (N) of C fulfilling
M — N = [p(7) : ¢(7) : 1] € C. This follows from an apparently new relation between the
Weierstrass sigma and elliptic functions.

1 Introduction

In order to determine the periods of the generalized Jacobian Jj, of a complex elliptic curve C with
modulus L, we consider complex functions of two variables with three R-independent periods.
These functions were studied for the first time by Cousin in 1910 [3] and are at the origin of the
theory of generalized Jacobians. After having been explicitly mentioned by Severi in 1947 [10] in
the case of the field C of complex numbers, generalized Jacobians were introduced by Rosenlicht
in 1954 [8] in the general context of algebraic groups over an arbitrary field. The representation
of the generalized Jacobian of a curve as an extension of a linear group by the ordinary Jacobian
has been widely investigated in [9], and since then. More recently a growing interest on the
computational aspects of generalized Jacobians over finite fields arose from [5].

When one considers an n-dimensional toroidal group G = C™/A (sometimes called quasi-torus)
of real rank » = n + 1 (see, e.g., [1]), it is easy to see that the toroidal group is an extension of
a (n — 1)-dimensional maximal linear sub-torus by an elliptic curve C with period matrix (1,7),
with 7 ¢ R, (cf. [4], Prop. 2.2.3, p. 26) and, because the functor Ext(C, (C*)"~!) is additive, one
can restrict to the case where n = 2 and G is defined by the lattice A generated by (1,0), (0,1)
and (7,7), for a given 7 € C such that the only pair (a,b) € Z? such that a7 + b7 is an integer is
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the pair (0,0). As such, it is also an example of a complex commutative theta group (see [7] §23,
cf. [2] §6.1). In this paper we consider the generalized Jacobian J, corresponding to G and we
bridge these two representations by finding of the modulus L = (M) + (N) which gives in turn
the period lattice A of G with a purely geometric description.

Roughly speaking, the generalized Jacobian Jy, of a curve C relative to the module (effective
divisor) L = > np(P), P € C, is obtained when two divisors of C are identified if they differ for
a principal divisor (g) of a function g such that vp(1 — g) > np for any P € C, where vp is the
discrete valuation of the local ring Op of the rational functions of C that are regular in P.

Fixing a point 2 € C, given a divisor D we denote simply by P the point of C and by f € C(C)
the function such that D = (P) — (1 — deg(D))(Q) + (f). Thus, in the case where the module is
L=>3",(Qi), two divisors Dy and Dy are equivalent when Dy = (P) — (1 —deg(D1))() + (f1),
Dy = (P) — (1 — deg(D2))(2) + (f2) and ﬁgg;% = J{jgg;g, foranyi=1,...,n.

Clearly, the function Lp, p, such that the sum of the two divisors (P;) — () and (P2) — (2)
is equal to (P + P2) — (Q) + (Lp, p,) is proportional to %, where 4 5(X) = 0 is the

line through A and B, or the tangent in A to C, if A = B. Thus,

Dy + Dy = (Pr+ Py) — (1 — deg(D1) — deg(D2)) () + (frfoLp,.py). (1)

For the ordinary Jacobian of C we do not keep track of the fact that f3 = f1foLp, p,. But now,

for any L = Y7 (Q;), the n—tuple ¢ (P, Py) = (iii:gg;; ey 222((%3))) keeps record of the

cosets modulo the principal divisors (g) such that vg,(1 —g¢) > 1 for any i = 0,...,n and clearly
from (1) it follows that ¢y, is a (non—regular) factor system. It must be noticed that the partial
operation (Pp, k1) + (P2, ko) = (P1 + Py, ky - ko e (P, Pg)) cannot be continuously extended to
X x C* and gives therefore only a birationally isomorphic image 2, of Jy, (in the sense of [11]).

The non-regular factor system ¢y, : C x C — C* corresponding to J;, induces a non-regular
factor system ¢ P : Cx C — C*, (z1,22) — cr(P(x1), P(w2)), with P(z) = [p(z) : ¢/(z) : 1] € C.
Since every commutative Lie group extension of C* by C is splitting, we expect to unveil ¢y, P as
a co-boundary 6*(g) : C x C — C*, for some g : C — C*.

2 Triply periodic functions

About the geometric description we are looking for, it is worth noticing that, as we expect
that ¢, P = 6(g), it will not be possible to express g(x) in function of P(x) = [p(x) : ¢/(x) :
1] € C, even if the factor system c; = §'(g) in C is given in terms of the points P(z) and
P(y). Nevertheless, g can be expressed as a function of the Weierstrass sigma function o(z)
corresponding to p(x), as we have:

Theorem. With the above notations, let M = P(vps) and N = P(vy) be two different points
of C such that P(T) = M — N. The function G(x,y) = exp(2miy)g(x), where

o(vy) o(x —vn)

g(x) =exp (2771(1}]\/ - vM)x) (o) 7@ —var)’

(with the constant 1 defined, e.g., in [6], p. 150) is triply periodic with period lattice A.
The generalized Jacobian Jy, of C defined by the modulus L = (M) 4+ (N) is isomorphic to
C2%/A, and we find that 6*(g) = cp P is the rational non-reqular factor system of the extension



corresponding to L and the map (z,y)+ A — (P(z),G(x,y)) is an isomorphism from C? /A onto
a birationally isomorphic image of Jy,.

Proof. The first part of the claim could be verified a posteriori, but we want to give a constructive
proof, which better explains the link between the quotient Lie group C2/A and the generalized
Jacobian Jy,.

Let the 2-dimensional toroidal group G be defined by the lattice A generated by (1,0), (0,1)

and (7,7), with 7 ¢ R. Let o(z), {(z) = c;,((;)) and p(z) = —¢’(z) be the Weierstrass sigma func-
tion, zeta function and elliptic function, respectively, corresponding to the lattice in C generated

by 1 and 7. Fix the epimorphism

2z P(2) = [23p(2) : 229/ (2) : 2°]
from C onto the corresponding elliptic curve C = C(7) of the projective plane of coordinates
[X :Y : T], having O = [0: 1 : 0] as the zero element.

Let M = [Xp: Yy : Tyl and N = [Xpy : Yy : Ty] be two distinct non-zero points of C, let

L = (M) + (N) and let CL(Pl, Pg) = e}ffi;?g‘(/[]\)/[) z}le,tE;aS’v])V) be the non-regular factor system

which defines on C x C* a birational group Zj,, birationally isomorphic to Jg,, where £4 p(X) =0
is the line through A and B, or the tangent in A to C, if A= B (cf. [9], §7 n. 16).

We look for a homomorphism C? — =7 with A as the kernel. We can assume (0,7y)
(0,e?™). Let € be a complex multiplication such that (x,0) — (P(ex),g(x)), for a suitable
g : C — C* such that §'(g) = cr Pe, that is, g(z1 + x2) = g(x1)g(x2)cr(P(exy), P(exs)).

As P(0) = O, the derivative at xo = 0 of the last equation must be performed in the chart

Y # 0 containing O and, deriving with respect to z2 in the chart [S,((ZZ)) o ﬁ} we find

g' (1 + 22) = g(x1)(¢' (z2)cr (P(ex1), P(exa)))+

plers)p”(ex)y 0 p"(ex2) 0
alag(e) ((1- ) e —en(Plemn), Plena)) e e 2% o —cu (Plean), Pleaa))).

%(;;2(0)) =-1 g,,;(()())% =0, and ¢ (P(ex1),O) = 1, we find

Putting x5 = 0, since (1 —

e =10~ e o)

. _ éplypz(]\/f) €p1+p2)o(N)
Since cr,(Py, P2) = Trirn o0 o m(N)

convenient, whereas a direct computation shows that

the computation of 1 (P(ex1), P(ex)) is in-

el
av———C
OXp(exy)

;i_r%%(c};([)(:1:T],[5:1:0])—1> =

7YMT(7TNX + XNT) — TM(XNT + YNXT) + XM(TNT + YNTQ)
(=T X + XuT)(—TnX + XNT) '

Hence we have

g’(xl) _ ,(0) _ XYy —YuXy + (YMTN - TMYN)p(GCL'l) + (XMTN — TMXN)p/(ESL'l)
g9(z1) 2(Xn — Tup(exr))(Xn — Tnplerr)) .




Thus we have to solve the separable differential equation

g/(l‘) _ ,( ) + YM _ YN _ (XMTN — TMXN)p’(ex)
g(x) 2(Xn —Tuplex))  2(Xn —Tnp(er))  2(Xar — Tup(ex))(Xy — Tnp(ex))

Let log z be the principal value of the logarithm. Integrating by substitution, the last summand
gives, up to an additive constant, the primitive integral

/ (XMTN — TMXN)p/(El‘) 1 TMp(e:r) — XM
(

de = - log ——F———F—.
XM - TMp(EI'))(XN - TNp(E.T)) € & TN@(E!E) - XN

For the second and the third primitive integral, let vyr,vny € C be such that M = [p(var) :
o' (vpm) @ 1] and N = [p(vn) @ @' (vn) @ 1], that is Xy = Tup(om), Y = Tue'(vam) and
XN = TNp(’UN) YN = TNp/(’UN).

Since ((z) = U((;)) and p(z) = —('(z), applying the addition formula for ¢ (see, e. g., [6],
(6.8.4), p. 161), we find, up to an additive constant,
Y 1 O’(Ex + UM)
— —dzx=-log— L —2
Xy — Tarp(ex) TTE® o(ex — vpr) w((onr),

and the same for the second summand. Thus, up to a constant « of integration, we have

1 T — X —
logg(x) = a+ Hr + % log ( np(ex) N olez+ o) oler UN)) ,
€

Typlex) — Xy o(ex —vpr) o(ex + vn)

where we have put ¢'(0) — ((var) + ((vn) = H.
In order to simplify log g(x), we write

o(ex +uvy) o(ex —wvy)  olex +wvpr)o(ex —vpr) o(ex —vn)?

olex —vpr) o(ex + vy) olex —vpr)? olex +vy)o(ex —vy)’

and we apply the addition formula for o (see, e. g., [6], (6.7.5), p. 158), obtaining that the last
is equal to
(p(var) — plex))o(ex)?o(vnr)? ofex —on)?
ez — oa)? (o(ow) — plea)) (e Po(om)E

Now equation (2) becomes

Tnp(ex) — Xn p(vamr) — plex) o(ex —vy)? U(UM)Q) 3)

1
logg(z) =a+ Hx+ —lo
g9(2) 2¢ & (TMp(ex) — Xnm p(on) — plex) o(ex — vpr)? o(vy)?

and, substituing X = Tyrp(vy) and Xy = Tvp(vy), we get

Tn o(ex — oy

log g(x )—a+Hx+—lo ( QU(UMf). (4)

)
TM O'(EIC — UM)2 O’(UN)

From the membership of (0,1) in the lattice, it follows that g(0) = 1, that is,

) =
o(ex — vy)? a((uM) >

olex —vp)? o(vy)?

1
log g(x) = Hx+2 log (
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Now, since

log (CL(P(exl), P(€$2))> = log (51(9) (3317332)> - %10g 5t (a(ez —Un) U(UM)>

olex —vpr) o(vw)

and since the first terms of the MacLaurin series for ¢ (P(ex1), P(ex2)) are the same of the ones
for 61 (ma(vm), that is,

o(ex—vp) o(vN)

€3

L4 € (p(vam) = p(on))arze + 5 (¢ (on) = ¢/ (o)) (2122 + 2123),

J(vju) 0’(.’1)—1}1\])
o(vn) o(x—vm) "

it follows that e = 1. From (5) we get now g(x) = exp(Hx)
From the quasi-periodicity of o:

o(z4n7+m) = (—1)"™ exp (2773(7127’:/2 +nz) +2m(m?/2 +m(z + 717/:)))0(3)7

(where n; and n3 = 11 7—iw are constants, for details see [6] §6.2, p. 150) and from the membership
of (1,0) in the lattice, it follows g(1) = 1, hence we have:

o(vp) &P (2771(1/2 — vN))a(—vN)
o(vn) exp (27)1(1/2 - v]yj))(f(*UM)

1 =exp(H) = exp (H+2771(1)M va)),

that is, for some h; € Z we obtain
2hymi = H 4 211 (vpr — on). (6)

Finally, from the membership of (7,7) in the lattice, it follows ¢(7) exp(27iT) = 1, hence we
have:

=exp(HT G exp(2miT ot =vv) =exp(HT G exp(2miT UM — U o(vn)
t=exp(H )U(UN) p(2miT) o(T —vm) p(H )O'(UN) P(2miT + 2ng(var — ow)) a(var)’

that is,
exp(HT + 2miT + 2n3(vayr —on)) = 1.

Thus, for some hqy € Z, we get
HT + 2miT + 2n3(vy — vy ) = 2homi. (7
Recalling that 7,7 = n3 + 4, from (7) and (6) it follows that
2hymiT = 2homi — 2miT + 2mi(vpy — VN ),
hence the point P(7) = [p(7) : ¢'(T) : 1] is equal to M — N.
Remark: The relationship §'(g) = cp P gives now

o(vn) o(@1+ a2 —vn)o(z1 —vam)o(z2 —vu) _ L) Pas) (M) Lp(, 4ay),0(N)
o(om) o(z1+ 22 —va)o(r1 —vn)o(22 = VN) P ta),0(M) Lp(ay) Plas)(N)

an apparently new relationship between the Weierstrass sigma and elliptic functions.
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