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Forward logistic regression for earth-flow landslide
susceptibility assessment in the Platani river basin
(southern Sicily, Italy)

Abstract Forward logistic regression has allowed us to derive an
earth-flow susceptibility model for the Tumarrano river basin,
which was defined by modeling the statistical relationships be-
tween an archive of 760 events and a set of 20 predictors. For each
landslide in the inventory, a landslide identification point (LIP)
was automatically produced as corresponding to the highest point
along the boundary of the landslide polygons, and unstable con-
ditions were assigned to cells at a distance up to 8m. An equal
number of stable cells (out of landslides) was then randomly
extracted and appended to the LIPs to prepare the dataset for
logistic regression. A model building strategy was applied to en-
large the area included in training the model and to verify the
sensitivity of the regressed models with respect to the locations of
the selected stable cells. A suite of 16 models was prepared by
randomly extracting different unoverlapping stable cell subsets
that have been appended to the unstable ones. Models were finally
submitted to forward logistic regression and validated. The results
showed satisfying and stable error rates (0.236 on average, with a
standard deviation of 0.007) and areas under the receiver operat-
ing characteristic (ROC) curve (AUCs) (0.839 for training and
0.817 for test datasets) as well as factor selections (ranks and
coefficients). As regards the predictors, steepness and large-profile
and local-plan topographic curvatures were systematically select-
ed. Clayey outcropping lithology, midslope drainage, local and
midslope ridges, and canyon landforms were also very frequently
(from eight to 15 times) included in the models by the forward
selection procedures. The model-building strategy allowed us to
produce a performing earth-flow susceptibility model, whose model
fitting, prediction skill, and robustness were estimated on the basis of
validation procedures, demonstrating the independence of the
regressed model on the specific selection of the stable cells.

Keywords Landslide susceptibility assessment . Forward logistic
regression . Diagnostic area . Model validation . Platani river
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Introduction
Landslide susceptibility assessment is undoubtedly one of the most
debated subjects in recent decades. Many papers are published
annually by international journals, which highlight the great interest
in the matter for scientific, land management, and civil protection
aims (e.g., Aleotti and Chowdhury 1999; Brenning 2005; Chacón and
Corominas 2003; Chacón et al. 2006; Guzzetti et al. 1999; Guzzetti et
al. 2005). Among the methods that can be followed in assessing the
landslide susceptibility, those based on stochastic approaches are
gaining increasing importance and number of applications, particu-
larly for basin-scale studies. Stochastic models are based on the
definition of statistical relationships which quantitatively and objec-
tively link the spatial distribution of past landslide events to that of a
set of geoenvironmental variables. Under the assumption that new

landslides will be conditioned by the same factors that caused those
in the past, the statistical relationships that links factors to past
landslides allow us to produce a prediction image, which spatially
depicts the probability for future phenomena: a susceptibility map.
This can be, finally, submitted to validation procedures in order to
estimate model fitting and adequacy as well as, if a test event
inventory (i.e., landslides not used in training the model) is available,
prediction skill and robustness. Table 1 gives a summary of the most
used statistical techniques together with several associated references
for previous applications.

Among the statistical techniques and also in comparative
studies (Akgün 2012; Felicísimo et al. 2012; Guzzetti et al.
2005; Mathew et al. 2009; Rossi et al. 2010; Vorpahl et al.
2012), logistic regression (Hosmer and Lemeshow 2000) has
proved to be one of the most suitable and performing methods
for assessment of landslide susceptibility on basin scale. The
wide use of this multivariate technique for landslide suscepti-
bility modeling is mainly due to its capacity to work on any
type of independent variable (either ratio, interval, and ordinal
or nominal scale), regardless of the deviance of the considered
predictors and residuals from a normal distribution. This al-
lows the analyst to manage the model with a more direct and
geomorphologically sound approach, without needing to define
normally distributed transformed variables. All the discrete
independent variables are binarized and transformed into di-
chotomous or polychotomous variables. The dependent variable
is defined as a binary variable in terms of the stable/unstable
status of the mapping unit we want to classify.

One of the main problems concerned with using logistic
regression is the requirement of balanced dataset, in which
the number of stable and unstable cases would be the same.
This is obviously rarely verified in real nature (the cumulative
extension of the recognized landslides is typically a small
fraction of the whole investigated areas), so that typically,
together with all the unstable cells, only an equal number of
stable cells is randomly singled out from the investigated area;
the logistic regression is then run on this very limited subset, often
neglecting the larger whole remaining area and assuming the regres-
sion equation as representative of it as well.

A test was carried out in a basin of central Sicily to adopt an
approach for estimating possible lack in robustness of the suscepti-
bility model due to the limited spatial extension of the actual
processed area. The procedure is based on the preparation of a suite
of balanced datasets, each including the same unstable cells but
different randomly selected stable ones. The forward logistic regres-
sion technique is then applied to derive different models, whose
performances and structure (type, number, and ranking of predic-
tors) are compared to estimate the robustness of the whole proce-
dure and the results.
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Study area

Regional setting
The Tumarrano river basin extends in central-southern Sicily for
approximately 80 km2 (Fig. 1), having a geological setting which is
marked by tectonic contacts between brittle (limestones and quartz
arenites) and ductile (clays and silty clays) lithologic complexes, in
the northwestern sector; elsewhere, where clays and marls outcrop,
smoothed long slopes characterize the landscape. The clayey lithol-
ogy can be referred to the following lithostratigraphic terms: Numid-
ian Flysch (Upper Oligocene–Lower Miocene), Terravecchia Fm.
(Tortonian), and the Castellana Fm. (Serravallian).

The climate of the area is of mild Mediterranean (Csa) type,
with mean annual rainfall of 577 mm, which are concentrated in a
wet period, between October and April. The soil use in the area is
mainly (80 %) characterized by arable lands (corn) and, subordi-
nately, in the extreme northwestern sector, by a dense forest
coverage. A very small southern sector is dedicated to pasture.

Landslides
The landslide inventory was prepared (Costanzo et al. 2012a) by a
remote Google Earth™-aided recognition survey, exploiting high-
resolution images of the area (catalog ID: 1010010008265000, date:
Jun. 11, 2008, sensor: QB02, band info: Pan_MS1; catalog ID:
10100100071CDC00, date: Aug. 28, 2007, sensor: QB02, band info:
Pan_MS1). Field surveys were also carried out to perform a field
check on randomly selected sectors of the studied area. The landslide
archive consists of 760 earth flows, mainly involving the clayey and
sandy clayey terrains which largely outcrop in the area (Fig. 2).

Earth flow is a very diffused landslide type in Sicily, as large areas
are characterized by the outcropping over long, steep slopes of clayey
terrains, which can be easily saturated depending on their high sand
and/or silt content (>30 %). This condition is responsible for the
wide activation of earth flows in the autumn and winter seasons.
Landslides in the area have typically shallow failure zones (a few
meters maximum, but only 1 m, on average), with a very variable
extension: more than 300 cases having an area less than 5,000 m2,
about 200 in the range 5,000–13,000 m2, and 125 in the range 13,000–
26,000 m2. Earth-flow activation is mainly controlled by soil satura-
tion which results in a lowering of cohesion (for the clayey fraction)
and in an increase of neutral pressure inside the saturated voids. The

phenomena involve earth or debris type materials taking the form of
both open slope and long runout phenomena (Fig. 3).

As regards the status of activity and time recurrence, the slopes
affected by landslides have typically seasonal reactivation cycles,
characterized, on average, by a maximum of 1- to 2-year dormant
stages (Figs. 3 and 4). Therefore, almost all the landslides are to be
considered in an active or dormant status; some new activation is
subordinately recognized.

Few other types of movement were recognized, which are
mainly classifiable as slides or falls. These landslides are not
considered in the following section, as this study focuses on flow
landslides; besides, the susceptibility assessment of the other types
of movement would have required the selection of a different set
of controlling factors.

Materials and methods

Model building strategy
Logistic regression aims at modeling a linear relationship between
the logit (or log odds) of the outcome and a set of p independent
variables or covariates (Hosmer and Lemeshow 2000):

g xð Þ ¼ In
π xð Þ
1−π xð Þ

� �
¼ αþ β1x1 þ β2x2 þ ⋯þ βpxp;

where π(x) is the conditional mean of the outcome (i.e. the event
occurs or unstable slope conditions are found) given the condition
x, α is the constant term, the x’s are the input predictor variables
and the β’s are their coefficients. The fitting of the logistic regres-
sion model, which is performed by adopting maximum likelihood
estimators, allows us to estimate the coefficients βp. In this way, it
is possible to predict the outcome from the input predictors and
their coefficients.

As the fitting of the model is based on maximizing the value of
the likelihood, comparing the likelihood itself allows us to estimate
the goodness of different regression models. In particular, by
multiplying by −2 the log-likelihood ratio, the negative log-likeli-
hood (−2LL) statistic is obtained, which has an approximate chi
square (x2) distribution, so that the significance of a difference
between the fitting of different models can be estimated in terms
of probability of occurrence by chance. The −2LL statistic can be

Table 1 Resume of the most -adopted statistical techniques for stochastic landslide susceptibility assessment, with some of the previous application cases

Statistical technique Examples of previous studies

Conditional analysis (CA) Clerici et al. (2010, Conoscenti et al. (2008, Costanzo et al.
(2012a, 2012b), Irigaray et al. (2007), Jiménez-Peralvárez et al.
(2009), Rotigliano et al. (2011, 2012), Vergari et al. (2011)

Discriminant analysis (DA) Baeza and Corominas (2001), Carrara (1983), Carrara et al. (2008),
Guzzetti et al. (2006), Rossi et al. (2010.)

Binary logistic regression (BLR) Atkinson and Massari (1998), Ayalew and Yamagishi (2005),
Bai et al. (2010), Can et al. (2005), Carrara et al. (2008),
Chauan et al. (2010), Conforti et al. (2012), Dai and Lee (2002),
Davis and Ohlmacher (2002), Erener and Düzgün (2010), Mathew et al.
(2009), Nandi and Shakoor (2009), Nefeslioglu et al. (2008),
Ohlmacher and Davis (2003), Van den Eckhaut et al. (2006, 2009, 2011)

Classification and regression trees (CART) Felicísimo et al. (2012), Vorpahl et al. (2012)

Artificial neuronal networks (ANN) Aleotti and Chowdhury (1999), Ermini et al. (2005), Lee et al. (2004),
Pradhan and Lee (2010)
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Fig. 1 Location of the Tumarrano river basin (top) and lithological map (bottom)
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exploited to compare the fitting of the model having only the
constant term (all the βp are set to 0) with the fitting of the model
that includes all the considered predictors with their estimated
non-null coefficients so as to verify if the increase in likelihood is
significant; in this case, at least one of the p coefficients is to be
expected as different from zero (Hosmer and Lemeshow 2000).

By exponentiating the β’s, odds ratios (OR) for the independent
variables are derived: these are measures of association between the
independent variables and the outcome of the dependent, and di-
rectly express how much more likely (or unlikely) it is for the
outcome to be positive (unstable cell) for unit changing of the

considered independent variable. Unit changings in the case of
continuous or dichotomous discrete variables are straightforward
while, in the case of polychotomous discrete variables, are intended
in relative terms with respect to a common reference group or class.
Negatively correlated variables will produce negative β’s and OR
limited between 0 and 1; positively correlated variables will result in
positive β’s and OR greater than 1.

At the same time, the −2LL allows us to comparemodels obtained
by considering different sets of predictors, so that, for example, the
significance of the increase in the model fitting produced by includ-
ing each single landslide factor can be quantitatively assessed. Based

Fig. 2 Earth-flow landslide map (a); zoomed detail of landslide identification point (LIP) positioning (b)

Fig. 3 Remote (left: Google Earth) and field (right) views of earth-flow landslides in the Tumarrano river basin
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on this approach, logistic regression can be performed following
stepwise procedures, which enable us to quantify the importance of
a single predictor or combination and select, among a large set of
variables, a restricted group made up of only those that significantly
increase the performance of the multivariate model. At any step, the
most important variable is the one that produces the greatest change
in the log-likelihood relative of the model that does not contain it.
This procedure describes the forward selection scheme in applying
multiple logistic regression adopted in this study.

At step 0, the fitting of each of the p possible univariate logistic
regression models, Lp

(0) is compared with the fitting of the “intercept
only model,” L0. The first entry, xe1, in the model will be the xj
variable producing the smallest p value for the x2- test on Gj

(0)=

−2(L0−Lj(0)). At step 1, the fitting for the model including the
intercept and the first entry, xe1 is then Le1

(1). p−1 models, each
including the first entry and one of the other remaining predictors,
are then prepared and their log-likelihood, Le1j

(1), estimated. Again, the
variable that minimizes more the p value for the log-likelihood chi-
square test on Gj

(1)=−2(Le1(1)−Le1j(1)) is selected as second entry in the
model. The procedure follows in the same manner the final step (m),
for which including a jth entry will result in a p value for the log-
likelihood chi-square test larger than a threshold significance value,
pE (probability for entry). This threshold, pE, was set in the following
analysis at 0.01. In this research, to perform the forward stepwise
logistic regression, an open source software for datamining was used
(TANAGRA: Rakotomalala 2005).

Fig. 4 Example of seasonal
reactivation cycles of an earth-flow
landslide in the Tumarrano river basin:
a 2000 (Google Earth™), b 2005
(Google Earth™), c 2006 (Google
Earth™), d 2007(Google Earth™),
e 2009 (from field)
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Diagnostic areas and mapping units
Diagnostic areas are those sectors spatially or morphodynamically
connected to the observed landslides so that their conditions are
expected to be similar to those that had characterized the sites where
landslides occurred (Rotigliano et al. 2011). Their geoenvironmental
conditions are statistically supposed to be the causative factors for
landslide occurrence, so that landslide susceptibility can be esti-
mated in terms of similarity of the site conditions of each mapped
unit to those of the diagnostic areas. Diagnostic areas can be
defined geomorphologically, as pure landforms, or according to
morphodynamic and spatial criteria, as neighborhood areas
morphodynamically connected to the slopes or sites of past
landslides.

It must be mentioned that in a number of papers diagnostic areas
simply correspond to the whole landslide polygons, disregarding the
morphodynamic heterogeneity of these sectors with respect to past
phenomena (Chauan et al. 2010; Das et al. 2011; Felicísimo et al. 2012;
Mathew et al. 2009; Rossi et al. 2010). Some researches deal differ-
ently with this topic by adopting diagnostic areas that are defined on
an analytical basis (Carrara et al. 2008; Nefeslioglu et al. 2008;
Rotigliano et al. 2011; Van den Eeckhaut et al. 2009). The most
adopted diagnostic areas are selected based on landslide typology:
scarps, areas uphill from crowns, and landslide area for rotational
slides; source areas and landslide areas for flows; and scarps and
areas uphill from crowns for falls. However, a source of subjectivity
and ambiguity arises from mapping this kind of diagnostic areas.

In light of the type of landslides considered in this study, which
are not strictly dependent on general deep slope geometry but
rather on local and surficial hydromorphological features, it was
assumed that conditions for new activations could be detected in
the detachment areas of flows. Moreover, we decided to test a very
simple approach to automatically define these diagnostic areas
(Costanzo et al. 2012a, 2012b; Rotigliano et al. 2011): we first
generated a landslide identification point (LIP) for each landslide
by piking from the 2-m DEM the highest cells along the boundary
of the polygons delimiting the landslide area, so that LIPs are
positioned along the central sectors of the crown areas (Fig. 2b);
we then identify the diagnostic areas in a buffer area of 8 m around
the LIPs. This “smoothed buffered” solution exploits the high
morphodynamic specificity of the detachment landslide sector
(Carrara et al. 2008), which could enable a good discrimination
for prediction and allow for a fast extraction of the diagnostic
areas from the landslide archive.

In binary logistic regression, the dependent variable or outcome
to be predicted has a dichotomic behavior, morphodynamically
corresponding to stable or unstable status for a so-called mapping
unit: the reference spatial unit for which the model is able to produce
a prediction. A large set of mapping units is proposed in literature,
mainly subdivided in: grid cells, terrain units, unique condition
units, and hydromorphological units (Carrara et al. 1995; Das et al.
2011; Guzzetti et al. 1999; Rotigliano et al. 2011). As a consequence of
the criterion adopted in defining the diagnostic areas, the mapping
units that were used in this study are 8×8 m cells, whose status was
set to unstable or stable depending on the intersection with LIPs.

Controlling factors and independent variables
The first stage in model building was the production of a data
matrix, where each row corresponds to an individual case
(i.e., a single grid cell or mapping unit), while columnar data

show the values of the explanatory and response variables.
The data matrix, whose records are the observed cases (i.e.,
the mapping units or, in this case, grid cell) contain at least p+1
fields, which correspond to the information both on the p indepen-
dents values and on the dependent status. Actually, the number of
fields is typically larger due to the need to binarize all the discrete
(nominal- and ordinal-scale) variables.

To perform the GIS analysis, raster layers for the outcome (land-
slides) and all the considered predictor variables were prepared. The
selection of the controlling factors that are to be used as independent
variables in the logistic regression analysis is typically driven by the
following procedure: (1) testing the largest set of geoenvironmental
variables that could have statistically significant relationships with
slope failures, (2) performing statistical tests so to exclude those vari-
ables that result as being not significantly correlated with the depen-
dent (with the exception of those variables that have a high diagnostic
morphodynamic meaning), and (3) finally, adopting the most parsi-
monious, but performing, number of independent variables. The
whole sequence must obviously configure acceptable time/money
costs for acquisition and processing of the spatial layers of the selected
variables. In this sense, a strong constraint is the set of already
available variables. Moreover, the predictive performances of each
considered factor or variable has to be evaluated considering both its
morphodynamic role and the resolution of the available source data.

In light of the main morphodynamic characteristics of the
considered landslides, controlling factors were selected in order
to directly or indirectly (as proxies) express the conditions that
can determine flow initiation on slopes: lithology, hydrology, site
and general morphology, and land use. In this study, we exploited
a geological map which was specifically prepared for the landslide
research and a soil use map, which was derived from the 1:100,000
Corine coverage based on photointerpretation from Landsat 1988
and aerial photos (1:75,000 scale), made available by the Sicilian
Region; a field survey was carried out to check and detail the
geological and soil use data up to a scale of 1:10,000. As regards
the topographic attributes, a detailed DEM (2-m side cell), which
was derived from a LIDAR flight, was acquired from the Sicilian
Region web GIS databank.

No matter the scale of the source maps from which the
geoenvironmental attributes were derived, all the grid layers were
structured with a 8-m2 cell; this was, in fact, the resolution of the
mapping unit discretization that was adopted. By processing the
source data layers, a set of 17 topographic and two geoenvironmental
independent variables was defined (Table 2a, b).

The DEM was processed by using GIS software and tools (ESRI
ArcView 3.2 and ArcGIS 9.3, SAGA GIS) to derive the following
primary and secondary topographic attributes: aspect, steepness,
topographic wetness index, stream power index, and topographic
curvatures. Aspect was used for further processing to produce a
discrete nominal variable (see below), while the average of the
steepness in a neighborhood area of one cell (SLONGB) was com-
puted as a landslide-controlling factor. In this way, more general
conditions, rather than local steepness, were included in the model
to represent the role of gravitative stress. By using a terrain analysis,
ArcView 3.2 script (Topocrop Terrain Indices), topographic wetness
index (TWI), and stream power index (SPI) were derived (the con-
tributing area was calculated using the D8 algorithm; O'Callaghan
andMark 1984). These secondary attributes typically express the way
in which the surface morphology controls the surface runoff and,
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Table 2 a: Descriptions of the independent categorical variables b: Descriptions of the independent continuous variables

Independent variables

Categorical variables: binary response [0,1]

Name: code (source) Classes Variable Count %
Outcropping lithology:
LIT (geological map: this study )

Clays LIT_CLAY 28.845

Clayey and breccia clays LIT_CLBRE 44.290

Clayey sands LIT_CLYSN 16.457

Alluvial LIT_ALL 5.683

Arenites LIT_ART 1.849

Gypsum arenites LIT_GYART 1.058

Carbonates LIT_CARB 0.817

Marls LIT_MARL 0.622

Arenaceous LIT_ARN 0.247

Debris LIT_DBR 0.132

Slope aspect: ASP (derived and
reclassified from DEM: SAGA GIS, Olaya 2004)

North ASP_N 13.016

North-east ASP_NE 13.560

East ASP_E 11.175

South-east ASP_SE 9.624

South ASP_S 10.476

South-west ASP_SW 14.791

West ASP_W 14.001

North-west ASP_NW 13.356

Curvature classification:
CCL (derived from DEM: SAGA GIS, Olaya 2004)

Convex/concave CCL_CXCC 34.907

Planar/concave CCL_PCC 31.795

Concave/convex CCL_CCXC 17.799

Planar/planar CCL_PP 15.243

Concave/planar CCL_CCP 0.105

Convex/convex CCL_CXCX 0.079

Planar/convex CCL_PCX 0.069

Convex/planar CCL_CXP 0.002

Landform classification: LCL
(derived from DEM: ArcView 3.2+topographic
position index, Jenness 2006)

Upper slopes, mesas LCL_UPPSLO 49.344

Local ridges/hills in valleys LCL_LOCRID 9.446

Canyons, deeply Iincised streams LCL_CANDEE 8.363

Midslope drainages, shallow valleys LCL_MIDDRAIN 7.494

Midslope Rridges, small hills in plains LCL_MIDRID 6.722

Open slopes LCL_OPEN 6.445

Plains small LCL_PLASMA 5.986

U-shaped Vvalleys LCL_USHAPE 5.603

Upland drainages, headwaters LCL_UPDRAIN 0.453

Mountain tops, high Rridges LCL_MOUNTOP 0.144

Land use (Corine 2006 project) Non irrigated arable lands USE_211 86.786

Fruit tree and berry plantatations USE_222 0.628

Olive trees USE_223 2.692

Pastures USE_231 1.201

Coniferous forest USE_312 3.875
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potentially, infiltration and water erosion phenomena, respectively
(Wilson and Gallant 2000). Thus, as the drainage network is charac-
terized by the highest values of contributing area, TWI and SPI
typically have their highest values along the high and low order
drainage axes, respectively. This produces a saturation of the scale
of these variables, responsible for a lower discrimination between the
cells onto the slopes (which are the ones from which landslides
trigger). A further processing of these variables was performed, and
TWISLO and SPISLO variables were also computed by dividing TWI
and SPI values, respectively, for their standard deviation evaluated
for a neighborhood of two cells; the latter, in fact, ranges from
minimum, along the streams, to maximum, away from streams on
slopes, where both TWI and SPI values are lower but more constant.
Topographic curvatures were also derived both considering a local
(one cell=8 m) and a large (two cells=16 m) curvature calculation.
Eight curvature variables were so derived, by combining planar or
profile and concave or convex shapes, for the two 8-m and 16-m
curvatures: 8PLANCONC, 8PLANCONV, 8PROFCONC, 8PROFCONV,
16PLANCONC, 16PLANCONV, 16PROFCONC, and16PROFCONV
were so derived. The altitude (HEIGHT) of each cell was also
used as a proxy variable to represent possible rainfall or climatic
variations inside the basin.

From the geological map, a grid layer of the outcropping lithol-
ogy (LIT) was prepared, assuming that each of the ten lithology
potentially is responsible for a different morphodynamic response.
The Corine 2006 coverage was converted in a grid file of soil use

(USE) by using the third level full Corine legend. Aspect (ASP),
curvature classification (CCL), and landform classification (LCL)
were derived by processing the DEM with topographic analysis
tools. Aspect was defined by partitioning the whole 360° range into
eight 45° interval classes. Landform classification was derived by
using a freeware ArcView extension tool (Jenness 2006) that com-
pares small and large neighborhood topographic position index
(TPI) computed for each cell. The TPI values reflect the difference
between the elevation of the considered cell and the average
elevation in the neighborhood area. To compute the TPI, the inner
and the outer neighborhood areas were set to 400 and 800 m,
respectively. Ten landform classes are obtained allowing us to
assign the morphological conditions (position and shape) to each
cell. Finally, curvature classification was obtained by processing
the DEM exploiting a terrain analysis module (Morphometry) of
SAGA GIS (Olaya 2004).

All the discrete variables were binarized before being included
in the logistic regression-based model-building procedure. Logis-
tic regression requires a dataset composed of a near-balanced
number of positive (unstable) and negative (stable) cases
(Atkinson and Massari 1998; Bai et al. 2010; Frattini et al. 2010;
Nefeslioglu et al. 2008; Süzen and Doyuran 2004; Van Den
Eeckhaut et al. 2009). When using grid cell-based models, which
exploit very small cell size so as to increase the spatial resolution of
factors and diagnostic areas, positive cases are typically fewer than
negatives; in fact, the diagnostic areas include only a few more

Table 2 (continued)

Independent variables

Burnt areas USE_334 0.594

Natural grasslands USE_321 0.201

Sclerophyllus vegetation USE_323 3.817

Beaches, dunes, and sand plains USE_331 0.206

Continuous variables
Name Description DEM processing GIS- tools

HEIGHT Elevation SAGA GIS

SLOPENGB Neighborood steepness SAGA GIS

TWI Topographic wetness Iindex ArcvView 3.2+Topocrop Terrain Indices

SLOPETWI Slope-TWI ArcvView 3.2+Topocrop Terrain Indices

SPI Stream power Iindex ArcvView 3.2+Topocrop Terrain Indices

SLOPESPI Slope_SPI ArcvView 3.2+Topocrop Terrain Indices

8PROFCONC Local profile concave curvature SAGA GIS

8PROFCONV Local profile convex curvature SAGA GIS

8PLANCONV Local plan convex curvature SAGA GIS

8PLANCONC Local plan concave curvature SAGA GIS

16PROFCONC Large profile concave curvature SAGA GIS

16PROFCONV Large profile convex curvature SAGA GIS

16PLANCONV Large plan convex curvature SAGA GIS

16PLANCONC Large plan concave curvature SAGA GIS
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neighboring cells around the LIPs, while all the stable areas (out-
side the landslide areas) correspond to hundreds of thousands of
stable cells, from which a negative subset is randomly extracted.
Logistic regression is then performed only on the balanced posi-
tive/negative subset, which means to take into consideration only
a very small percentage of the studied area! This could reduce the
robustness of the model, as the regressed logistic equation will
depend on the particular set of selected stable cells. By performing
more than one random extraction of negatives cases, different
equations could arise. Furthermore, each of the models could be
affected by overfitting, as it will work very well inside a cluster of
the hyperspace of the p predictors, whose shape and dimension
will depend on the characteristics of the actual worked cells.

Likewise, in the present research, because of the very low number
of positive cases or unstable cells (760), a balanced model accounts
only for a very poor portion of the whole studied area (1,520 over
1,213,092 total cells). That would mean training the susceptibility
model on just 0.124 % of the whole basin! To explore the effects
produced by enlarging the area on which themodel is trained, a suite
of models was prepared by differently merging the set of 760 LIPs
and randomly extracted subsets of stable cells. In order to face the
problem of sizing and selecting the landslide-free cells, a multiple
balanced-suite randomly extraction was used in this research.

A suite of 1,520 counts models was prepared by merging the 760
unstable cells with 16 different randomly selected subsets of 760
stable cells: all the unstable 760 LIPs were systematically included
in each model, together with an equal number of stable cells which
were randomly extracted from the set of the stable cells. It is
important to note that differently from the 760 LIPs, which are
systematically included, each unstable subset was included in only
one model. In this way, a total number of [760+(760*16)]=1,920
cells, corresponding to around the 1 % of the whole investigated
area, was included in the suite of models.

Validation
To estimate the performance of a susceptibility model, different
stages of the model building procedure are to be taken into
consideration. Particularly, model fitting, prediction skill, and ro-
bustness are among the main performance characteristics which
must be quantitatively estimated (Carrara et al. 2008; Frattini et al.
2010; Guzzetti et al. 2006; Rossi et al. 2010).

The model fitting expresses the adequacy and reliability with
which the model classifies the known phenomena (i.e., the positive
and negative cases on which the maximum likelihood method has
worked in estimating the ’ coefficients). Model fitting was evalu-
ated for each model by computing the statistic −2LL: the larger the
negative log-likelihood, the better the fit of the model. The logistic
regression component of the software TANAGRA also provides
the results of the model chi-square test, which allows for assessing
the global significance of the regression coefficients. The signifi-
cance was also evaluated individually for each independent vari-
able incorporated in the model by means of the Wald test.
Together with the confusion matrices, which were used in this
research, other alternative methods can be adopted to estimate the
model fitting, such as those quoted in Frattini et al. (2010) and
Guzzetti et al. (2006). The model fitting was also evaluated by
exploiting two pseudo-R2 statistics: the McFadden R2 and the
Nagelkerke R2. The first is defined as 1−(LMODEL/LINTERCEPT)
being confined between 0 and 1. As a rule of thumb (Mc Fadden Ta
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1979), values between 0.2 and 0.4 attest for excellent fit. Nagelkerke
R2 is a corrected pseudo-R2 statistics, ranging from 0 to 1
(Nagelkerke 1991). At the same time, mathematical or statistical
evaluation on how well the predictors describe the known phe-
nomena must be coherent with a geomorphologic interpretation of
the results (adequacy), so as to give sense to the overall relation-
ships between landslides and factors.

The prediction skill of the model, which corresponds to its
ability to predict the unknown stable and unstable cases, can be
obtained (as was done in this study) by randomly extracting a
subset of cells from the initial dataset before proceeding in
regressing the model. In some other cases, available temporal or
spatial partitioned landslide inventories can be exploited.

The accuracy of logistic regression in modeling landslide suscep-
tibility of the study area was evaluated by drawing, for each model,
the receiver operating characteristic (ROC) curves (Goodenough et
al. 1974; Lasko et al. 2005) and by computing the values of the area
under the ROC curve (AUC; Hanley and McNeil 1982). A ROC curve
plots true positive rate TP (sensitivity) against false positive rate FP
(1−specificity), for all possible cutoff values; sensitivity is computed
as the fraction of unstable cells that were correctly classified as
susceptible, while specificity is derived from the fraction of stable
cells that were correctly classified as nonsusceptible. The closer the
ROC curve to the upper left corner (AUC=1), the higher the predic-
tive performance of the model; a perfect discrimination between

positive and negative cases produces an AUC value equal to 1, while
a value close to 0.5 indicates inaccuracy in the model (Akgün and
Türk 2011; Fawcett 2006; Nandi and Shakoor 2009; Reineking and
Schröder 2006). In relation to the computed AUC value, Hosmer and
Lemeshow (2000) classify a predictive performance as acceptable
(AUC>0.7), excellent (AUC>0.8), or outstanding (AUC>0.9). ROC
curves were drawn both for the validation (test) and calibration
(training) cells, in order to evaluate the predictive performances of
the models and to further investigate their fit to the training obser-
vations (model fitting); moreover, the difference between apparent
accuracy (on training data) and validated accuracy (on test data)
indicates the amount of overfitting (Märker et al. 2011).

Once a balanced model was prepared, a 75 % random propor-
tional splitting of the data was further applied to extract the calibra-
tion cells subset, which was then used for the logistic regression. The
25 % percent not used for calibration was finally exploited for
validating the model and estimating its prediction skill.

Finally, the robustness of the model depends on its invariance
with respect to small changes both in the input variables and in the
model building procedure. The robustness of the models is typi-
cally evaluated by preparing suite or ensemble of models (e.g.,
Guzzetti et al. 2006; Van Den Eeckhaut et al. 2009), obtained by
randomly extracting multiple, but not overlapping, subsets of the
whole investigated area and comparing the regressed models in
terms of selected factors, adequacy, precision, and accuracy.

Fig. 5 a Earth-flow susceptibility map for the best model (M13). b Frequency distribution of positives (LIPs) on the probability (susceptibility) classes
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Results
On thewhole, themodel suite produces good fittings (Table 3) which are
characterized by a mean error rate of 0.235 (std. dev.=0.01), Mc Fadden
R2=0.28, and AUC values higher than 0.8. On the basis of amulticriteria
selection (best Nagelkerke and Mc Fadden R2, maximum sum and
minimum difference between training and test ROC curves AUCs, and
minimum error rate), the model M13 was adopted as the best and
applied to produce the susceptibility map (Fig. 5). The confusionmatrix
(Table 4) attests for recall and 1−precision larger for “NO” than “YES,”
with differences of 0.0413 and 0.0195, respectively, while all the pseudo-
R2 statistics attest for excellent fitting as well.

AUC values for both the two (known and unknown LIPs) ROC
curves (Fig. 6) are excellent (AUC>0.8) with the exception of
models 6, 8, and 12, for which it is, however, largely acceptable
(AUC>0.75). The stability of the AUCs is higher for the training
(std. dev.=0.009) than for the test dataset (std. dev.=0.017).

As regards the predictors (Table 5), a first group of six variables
was selected more than 15 times with a very high mean rank order
(i.e., the iteration of the forward selection procedure, in which they
are extracted), which is less than 8: SLOPENGB was systematically
extracted as the first predictor, with a positive coefficient; 16PROF
and 8PLAN curvatures, showing negative and positive coefficients,
respectively, with a mean rank R of less than 4, with the exception
of 16PROFCONC; and LIT_CLAYS, with a positive coefficient and a
mean rank of less than 6, is selected for 15/16. A second group
includes four variables that were selected less than 16 times but
more than 50 % (8) times: LCL_MIDDRAIN and LCL_MIDRID, with
negative coefficients, and LCL_LOCRID and LCL_CANDEE, with pos-
itive coefficients; high mean ranks characterize the LCL selected
classes. Finally, a third group includes the nine variables that were

selected at least four times (25 %), with middle–high rank orders
(between 6 and 12): LIT_ALL, 8PROFCONV, TWI, SLOPETWI, and
LCL_UPPSLO, with negative coefficients, and ASP_W, CCL_PP,
16PLANCONC, and LCL_PLASM, with positive coefficients. With
the exception of LIT_ALL, the selected variables produced high
(>95 %) significance Wald tests. All the selected variables were
regressed with congruent coefficients (always positive or negative,
with the exception of LCL_UPPSLO) and quite constant ranks.

Discussion and concluding remarks
The research whose results are here presented deals with two main
topics: adopting automatically generated point representation for
landslides (the LIPs) and defining simplified procedures to assess the
robustness of grid cell models based on logistic regression. In partic-
ular, a procedure is proposed for verifying the robustness of logistic
regression landslide (earth-flow) susceptibility models with respect to
the specific locations of the stable cells which have to be included in
the regressed subset to balance those which are stable. Without taking
into consideration the whole area, it is, in fact, possible to work on a
limited suite of models to check for large variations in the results,
when changing the stable cases. At the same time, the possibility of
exploiting LIPs to select positive (unstable) cases was explored.

In spite of the striking criticism which arises when selecting only a
very limited subset of the mapped areas, a number of papers, which
exploit logistic regression methods to produce grid cell susceptibility
models, optimizes very sophisticated statistic procedures but disre-
gards the real spatial representativeness of the fitted models; in these
studies, models are trained solely on very limited part of the mapped
basins, which typically stretch for hundreds of square kilometers,
without verifying if changes in the random extraction of negative

Table 4 Confusion matrix for the model suite

Error rate Recall 1−precision
TP FN FP TN Yes No TOT Yes No Yes No Suite

422 149 129 440 571 569 1,140 0.24386 0.7391 0.7733 0.2341 0.2530 M01

425 146 113 456 571 569 1,140 0.22719 0.7443 0.8014 0.2100 0.2425 M02

425 146 118 451 571 569 1,140 0.23158 0.7443 0.7926 0.2173 0.2446 M03

426 145 128 441 571 569 1,140 0.23947 0.7461 0.7750 0.2310 0.2474 M04

420 151 145 424 571 569 1,140 0.25965 0.7356 0.7452 0.2566 0.2626 M05

435 136 124 445 571 569 1,140 0.22807 0.7618 0.7821 0.2218 0.2341 M06

433 138 125 444 571 569 1,140 0.23070 0.7583 0.7803 0.2240 0.2371 M07

422 149 105 464 571 569 1,140 0.22281 0.7391 0.8155 0.1992 0.2431 M08

420 151 119 450 571 569 1,140 0.23684 0.7356 0.7909 0.2208 0.2512 M09

428 143 125 444 571 569 1,140 0.23509 0.7496 0.7803 0.2260 0.2436 M10

431 140 137 432 571 569 1,140 0.24298 0.7548 0.7592 0.2412 0.2448 M11

434 137 128 441 571 569 1,140 0.23246 0.7601 0.7750 0.2278 0.2370 M12

431 140 113 456 571 569 1,140 0.22193 0.7548 0.8014 0.2077 0.2349 M13

424 147 115 454 571 569 1,140 0.22982 0.7426 0.7979 0.2134 0.2446 M14

425 146 117 452 571 569 1,140 0.23070 0.7443 0.7944 0.2159 0.2441 M15

413 158 120 449 571 569 1,140 0.24386 0.7233 0.7891 0.2251 0.2603 M16

425.9 145.1 122.6 446.4 571 569 1,140 0.23481 0.7458 0.7846 0.2233 0.2453 Mean

5.9 5.9 9.8 9.8 0 0 0 0.00953 0.0104 0.0173 0.0138 0.0082 STDV

Table 4 Confusion matrix for the model suite
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cases result in modifying the selected factors or their regression
coefficients (Akgün 2012; Chauan et al. 2010; Erener and Düzgün
2010; Mathew et al. 2009; Nefeslioglu et al. 2008; Ohlmacher and
Davis 2003; Süzen and Doyuran 2004). At the same time, some other
papers in literature deal with the estimation of robustness in terms of
stability of the statistical procedure, disregarding the problem of the
geologic representativeness of the subset on which regression is
applied (e.g., Carrara et al. 2008; Vorpahl et al. 2012), using totally
boot strapping-based procedures.

The strategy here adopted seems to be adequate enough to
apply logistic regression, which requires a balanced sizing of the
worked dataset, without losing the connection between reliability

and accuracy of the susceptibility model and its real spatial rep-
resentativeness. In fact, though about just 1 % of the whole area
was included in the worked dataset, comparing the selected factors
(ranking and coefficients) and performances of each of a suite of
16 balanced datasets, the robustness of the regressed model was
evaluated. The good stability of the results suggested that there is
need to increase the number of models in the suite for the inves-
tigated area. Otherwise, in case of higher variability, automatic
model building procedure could be implemented to consider a
larger fraction of the whole area (in this case, 160 models would
have been required to reach up to 10 % of the area). Performing
multiextraction of different negative subsets allows us to prepare

Fig. 6 ROC curves for the 16 landslide susceptibility models (see also Table 3)
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suites of partially overlapped models, which share only positive
cases. Boot strapping-based procedures can be then applied on
each single model to assess their reliability. In few papers, similar
multiselection procedures are applied, but for producing grid cell
models based on canonical discriminant analysis, using unbal-
anced (1/5) extraction of positive and negative, respectively (e.g.,
Van den Eeckhaut et al. 2009).

The problem of sizing the dataset should be never overlooked
when exploiting logistic regression for modeling landslide suscepti-
bility. Model suite generation together with forward selection proce-
dure is one of the possible tools to cope with intrinsic limits of
logistic regression. In this research, the procedure adopted in build-
ing the earth-flow susceptibility model allowed us to obtain 16
performing models, whose fitting and prediction skill resulted in
being very stable, so that these can be considered as not dependent
on the particular locations of the extracted unstable cells. The ro-
bustness of the procedure was tested both in terms of selected vari-
ables and predictive performances of the suite of models.

Particularly, the forward logistic regression procedure selected 10
predictors eight times out of 16, while a subset of nine predictors was
selected a number of times between four and seven, and 51 predictors at
least one time. Also, for each of the selected variables, the regression
coefficients obtained from the suite of models have coherent signs and
very stable values. The number of predictors selected for eachmodel of
the suite is also quite similar (12.7; std. dev.=1.3). It is generally verified
that the more frequently a predictor is selected, the higher the rank
order in the list of controlling factors, for which it is singled out. At the
same time, very small differences were observed for each model be-
tween training and test ROC curves, attesting for negligible overfitting.

As regards the use of LIPs, these have demonstrated to be
sensitive in indicating homogeneous geoenvironmental conditions
and specific enough to produce a low number false positives,
whatever the selected (out of 16) group of negatives. At the same
time, using LIPs represents a good compromise between adequate-
ness and objectivity: these are, in fact, automatically generated by
picking the cells at the top of the depletion zones which are the ones
that, according to basic morphodynamic models, typically show site
conditions similar to those responsible for past activations (Carrara
et al. 2008; Nefeslioglu et al. 2008; Rotigliano et al. 2011). The use of a
single point to represent a diagnostic area reduces problems of
spatial autocorrelation (Van den Eeckhaut et al. 2009), while the
automatic generation of the LIPs speeds up the modeling procedure
and avoids the subjectivity of the operator.

The main controlling factors for earthflow landslides in the study
area are: topography (steepness and curvatures), outcropping lithol-
ogy (clays), and landform classification (midslope drainages, canyons,
local, and midslope ridges). As expected, the probability of having
unstable conditions is positively correlated with the mean steepness in
the neighborhood of the cells. Nomatter the sign, topographic local plan
curvatures, and large profile curvatures showed positive and negative
correlations, respectively. This seems to indicate these curvatures as
good predictors because they express the role of mechanical stresses
(connected to the local shape of the topographic surface) rather than
indicating convergences/divergences of runoff. Concavities and convex-
ities showed, on average, very similar positive coefficients for local plan
curvature. As regards the large profile curvature, convexities influence
(decrease) the odds of unstable cells much more than concavities.
Ridges are not the sites for unstable cells, while these are much more
likely on the slopes ofmidslope drainages and canyons. Thismeans that

earth-flow crowns are far downhill from the head of the slopes, where in
some cases, rotational slides are recognized. Westward slope aspect is a
positive condition for landslides, while, as expected, clayey outcropping
lithology is a very important condition for determining unstable condi-
tions. Alluvial deposits, on the contrary, seem to be stable, even if this
predictor showed a very low significance in the Wald test. At the same
time, these relationships could be due to the fact that alluvial deposits
outcrop down on valley floor, where landslides are not possible due to
topographic conditions. Surprisingly, both TWI and SLOPETWI are
negatively correlated with the odds of unstable cells, which could be
due to the prevalence of the steepness control in landsliding (high TWI
occurs on low steepness). Slope aspect and curvature classification were
involved in the models with only one class, among the most selected
predictors. Soil use resulted to be almost useless in predicting unstable
cells.

According to the model, clayey, short, and steep slopes are
those which produce high susceptibility conditions, while, where
slopes decline and enlarge, earth flows are less likely to occur. At
the same time, the southwestern-facing slopes of the shorter sub-
basins, close to the confluence into the Platani river, are the sites
for the highest probability for new activations.

In spite of the need for landslide hazard studies to support
projects for the strengthening of transportation infrastructure,
which are mandatory for the socioeconomic development of inner
areas of southern Italy, the Tumarrano river basin was uncovered
by landslide studies before this research. Furthermore, the study area
is highly representative of the geologic and geomorphologic setting
of a large sector of western-southern Sicily, which makes the
obtained results of importance as a reference test.
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